
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Safety-critical systems:
Basic definitions

Ákos Horváth

Based on István Majzik’s slides
Dept. of Measurement and Information Systems

Introduction

 Safety-critical systems
o Informal definition: Malfunction may cause injury of people

 Safety-critical computer-based systems
o E/E/PE: Electrical, electronic, programmable electronic systems

o Control, protection, or monitoring

o EUC: Equipment under control

Railway signaling, x-by-wire,
interlocking, emergency
stopping, engine control, …

Specialities of safety critical systems

 Special solutions to achieve safe operation
o Design: Requirements, architecture, tools, …
o Verification, validation, and independent assessment
o Certification (by safety authorities)

 Basis of certification: Standards
o IEC 61508: Generic standard (for electrical, electronic or

programmable electronic systems)
o DO178B/C: Software in airborne systems and equipment
o EN50129: Railway (control systems)
o EN50128: Railway (software)
o ISO26262: Automotive
o Other sector-specific standards: Medical, process

control, etc.

Definition of safety

 Central concepts: Hazard, risk and safety

Safety

Harm

Risk

Hazard

Functional
safety

Definition of safety

 Central concepts: Hazard, risk and safety

Safety

Harm

Risk

Hazard

Functional
safety

Physical injury or damage to the
health of people

• either directly
• or indirectly as a result
 of damage to property
 or to the environment

Definition of safety

 Central concepts: Hazard, risk and safety

Safety

Harm

Risk

Hazard

Functional
safety

Potential cause of harm

• Hazardous situation:
 Circumstance in which a person is
 exposed to hazards
• Hazardous event: Hazardous
 situation which may result in harm
• Accident: Unintended event that
 results in harm
• Incident (near miss): Event that
 has the potential of harm

Definition of safety

 Central concepts: Hazard, risk and safety

Safety

Harm

Risk

Hazard

Functional
safety

Combination of the probability of
occurrence of harm and the severity of that
harm

• Tolerable risk: Risk which is
 accepted in a given context
 (based on the values of society)
• Residual risk: Risk remaining after
 protective measures have been taken

Definition of safety

 Central concepts: Hazard, risk and safety

Safety

Harm

Risk

Hazard

Functional
safety

Freedom from
unacceptable risk

Forms of safety in computer systems:
Primary safety:
• Dangers caused directly by the system itself
 (e.g., electric shock)
Functional safety:
• This concerns the EUC controlled by the computer
 and is related to the correct functioning of the
 computer and software.
Indirect safety:
• This relates to the indirect consequences of a
 computer failure or the production of incorrect
 information.

Definition of safety

 Central concepts: Hazard, risk and safety

Safety

Harm

Risk

Hazard

Functional
safety

Part of the overall system safety

• depends on the correct functioning of
 the E/E/PE system: i.e., whether it operates
 correctly in response to its inputs
• depends on other technology safety-
 related systems
• depends on external risk reduction
 facilities

Accident examples

 A320-211 Accident in Warsaw (14 September 1993)
o Windshear

o Left gear touched the ground 9 sec later than the right

o Intelligent braking is controlled by shock absorber + wheel
rotation -> delayed braking -> hitting the embankment

 Is the control system ”too intelligent”?

 Correct functioning but not safe behaviour!

Accident examples

 Toyota car accident in San Diego, August 2009

 Hazard: Stuck accelerator (full power)

o Floor mat problem

 Hazard control: What about…

o Braking?

o Shutting off the engine?

o Putting the vehicle into neutral?
(gearbox: D, P, N)

Experiences

 Harm is typically a result of a complex scenario
o (Temporal) combination of failure(s) and/or normal event(s)

o Hazards may not result in accidents

 Hazard ≠ failure
o Undetected (and unhandled) error is a typical cause of hazards

o Hazard may also be caused by (unexpected) combination of
normal events

 Central problems in safety-critical systems:
o Analysis of hazards

o Assignment of functions to avoid hazards  accidents  harms

State 1 Hazard Harm
Event 1 Event 2 Accident

Trigger

Hazard control

 Risk characteristics:
o Frequency of occurrence

o Severity of its consequence

 Mitigation: Eliminate or decrease the chance of a hazard

 Containment: Reduce the consequence of a hazard

Safety-related system

 Safety function:
o Function which is intended to achieve or maintain a safe

state for the EUC

 Safety-related system:
o Implements the required safety functions necessary to

achieve or maintain a safe state for the EUC,

o and is intended to achieve the necessary safety integrity
for the required safety functions

 Requirements for a safety-related system:
o What is the safety function: Safety function requirements

o What is the likelihood of the correct operation of the
safety function: Safety integrity requirements

Safety integrity
 Safety integrity:

o Probability of a safety-related system satisfactorily
performing the required safety functions (i.e., without
failure)

• under all stated conditions
• within a stated period of time

 Types of safety integrity:
o Random (hardware): Related to random hardware failures

• Occur at a random time due to degradation mechanisms
o Systematic: Related to systematic failures

• Failures related in a deterministic way to faults that can only be
eliminated by modification of the design / manufacturing process
/ operation procedure / documentation / other relevant factors

 Safety integrity level (SIL):
o Discrete level for specifying safety integrity requirements

of the safety functions (i.e., probabilities of failures)

Example: Safety function

 Machine with a rotating blade
o Blade is protected by a hinged solid cover

 Cleaning of the blade: Lifting of the cover is needed

 Hazard analysis: Avoiding injury of the operator
when cleaning the blade
o If the cover is lifted more than 5 mm then the motor

should be stopped

o The motor should be stopped in less than 1 sec

 Safety function: Interlocking
o When the cover is lifted to 4 mm, the motor is stopped and braked in 0,8 s

 Safety integrity:
o The probability of failure of the interlocking (safety function) shall be less

than 10-4 (one failure in 10.000 operation)

o Failure of interlocking is not necessarily result in an injury since the
operator may be careful

Safety and dependability

 Safety vs. reliability:

o Fail-safe state: safe, but 0 reliability

• Railway signaling, red state: Safety  reliability

• Airplane control: Safety = reliability

 Safety vs. availability:

o Fail-stop state: safe, but 0 availability (and reliability)

o High availability may result in (short) unsafe states

Safety requirements

 Requirements for a safety-related system:
o Safety function requirements:

• Derived from hazard identification

o Safety integrity requirements:
• Related to target failure measure of the safety function

• Derived from risk estimation: Acceptable risk

 Safety standards: Risk based approach for
determining target failure measure
o Tolerable risk: Risk which is accepted in a given context

based on the current values of society

o It is the result of risk analysis
• Performed typically by the customer

• Considering the environment, scenarios, mode of operation, …

Risk based approach

 EN50129:
Railway
applications

 THR:
Tolerable
hazard rate
(continuous
operation)

Risk analysis

 EN50129 (railway applications)

Mode of operation

 Way in which a safety-related system is to be used:
o Low demand mode: Frequency of demands for operation is

• no greater than one per year and
• no greater than twice the proof-test frequency

o High demand (or continuous) mode: Frequency of
demands for operation is

• greater than one per year or
• greater than twice the proof-test frequency

 Target failure measure:
o Low demand mode: Average probability of failure to

perform the desired function on demand
o High demand mode: Probability of a dangerous failure per

hour
• Acceptable risk -> Tolerable hazard rate (THR)

Safety integrity requirements

 Low demand mode:

 High demand mode:
SIL Probability of dangerous failure per

hour per safety function

1 10-6  PFH < 10-5

2 10-7  PFH < 10-6

3 10-8  PFH < 10-7

4 10-9  PFH < 10-8

SIL Average probability of failure to
perform the function on demand

1 10-2  PFD < 10-1

2 10-3  PFD < 10-2

3 10-4  PFD < 10-3

4 10-5  PFD < 10-4

15 years lifetime:
1 failure in case of
750 equipment

(PFH or THR)

Determining SIL: Overview

 Hazard identification and risk analysis -> Target failure measure

Frequency of

hazardous event

Consequence of

hazardous event

EUC

Risk

System

safety

integrity

level

Software

safety

integrity

level

4

3

2

1

0

 4

3

2

1

0

THR SIL

Structure of requirements

Hardware

Typically
software

Challenges in achieving functional safety

 E/E/PE systems: Complexity
o Impossible to determine every failure mode
o Difficult to predict safety performance

 Preventing/controlling dangerous failures resulting from
o Incorrect specification (system, HW, SW)
o Omissions in safety requirement specification
o Hardware failure mechanisms: Random or systematic
o Software failure mechanisms: Systematic
o Common cause failures
o Human (operator) errors
o Environmental influences (e.g., temperature, EM, mechanical)
o Supply system disturbances (e.g., power supply)
o …

Demonstrating SIL requirements

 Approaches:
o Random failure integrity:

• Quantitative approach: Based on statistics, experiments

o Systematic failure integrity:
• Qualitative approach: Rigor in the engineering

– Development life cycle
– Techniques and measures
– Documentation
– Independence of persons

 Safety case:
o Documented demonstration that the product

complies with the specified safety requirements
o Systematic demonstration

Summary of the basic concepts

System safety

 emphasizes building in safety, not adding it to a
completed design

 deals with systems as a whole rather than with
subsystems or components

 takes a larger view of hazards than just failures

 emphasizes analysis rather than past experience
and standards

 emphasizes qualitative rather than quantitative
approaches

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Dependability related requirements

(Safety is not enough)

 Typical characteristics of services:
o Reliability, availability, integrity, ...

o These depend on the failures during the use of the
services (the good quality of the production process
is not enough)

 Composite characteristic: Dependability
o Definition: Ability to provide service in which reliance

can justifiably be placed
• Justifiably: based on analysis, evaluation, measurements

• Reliance: the service satisfies the needs

o Basic question: How to avoid or handle the faults
affecting the services?

Characterizing the system services

Fault effects

Development process Product in operation

• Design faults
• Implementation faults

• Hardware faults
• Configuration faults
• Operator faults

Fault effects

Development process:

• Better quality management, better methodology

• But: Increasing complexity, difficulty in verification

Typical estimations for 1000 lines of code:

• Good development “by hand” : <10 faults

• Tool-supported development: ~1-2 faults

• Application of formal methods: <1 faults

Development process Product in operation

• Design faults
• Implementation faults

• Hardware faults
• Configuration faults
• Operator faults

Fault effects

Limits of the technology:

• Better quality control, better materials

• But: increasing sensitivity to environment effects

Typical estimations:

• CPU: 10-5…10-6 faults/hour

• RAM: 10-4…10-5 faults/hour

• LCD: ~ 2…3 years lifetime

Development process Product in operation

• Design faults
• Implementation faults

• Hardware faults
• Configuration faults
• Operator faults

Fault effects

Fault tolerance

during

operation

Verification

during the

development

Development process Product in operation

• Design faults
• Implementation faults

• Hardware faults
• Configuration faults
• Operator faults

Dependability and security

 Basic attributes of dependability:
o Availability: Probability of correct service (considering

repairs and maintenance)
o Reliability: Probability of continuous correct service (until

the first failure)
o Safety: Freedom from unacceptable risk of harm
o Integrity: Avoidance of erroneous changes or alterations
o Maintainability: Possibility of repairs and improvements

 (Attributes of security:)
o Availability
o Integrity
o Confidentiality: absence of unauthorized disclosure of

information

Dependability metrics: Mean values

 Partitioning the state of the system: s(t)
o Correct (U, up) and incorrect (D, down) state partitions

 Mean values:

o Mean Time to First Failure: MTFF = E{u1}

o Mean Up Time: MUT = MTTF = E{ui}
(Mean Time To Failure)

o Mean Down Time: MDT = MTTR = E{di}
(Mean Time To Repair)

o Mean Time Between Failures: MTBF = MUT + MDT

t

s(t)

 u1 d1 u2 d2 u3 d3 u4 d4 u5 d5 ...

U

D

Dependability metrics: Probability functions

 Availability:

 (failures may occur)

 Reliability:

 (no failure until t)

 Asymptotic availability: (regular repairs)

 In other way:

t

K

a(t)

r(t)

1.0

0

 () ()a t P s t U 

 () (') , 'r t P s t U t t   

lim ()
t

K a t




MTTF /(MTTF MTTR)K A  

Availability related requirements

Availability of a system built up from components,
where the availability of a component is 95%:

 Availability of a system built from 2 components: 90%

 Availability of a system built from 5 components : 77%

 Availability of a system built from 10 components : 60%

 Availability Failure period per year

 99% ~ 3,5 days

 99,9% ~ 9 hours

 99,99% („4 nines”) ~ 1 hour

 99,999% („5 nines”) ~ 5 minutes

 99,9999% („6 nines”) ~ 32 sec

 99,99999% ~ 3 sec

Attributes of components

 Fault rate:
o Probability density that the component will fail at time point t

given that it has been correct until t

o In other way (on the basis of the definition of reliability):

o For electronic components:

0

()
1 ()

() , thus ()
()

t

t dtdr t
t r t e

r t dt




 

  

t

(t)

H ere () tr t e 

 1

0

1
()M TFF E U r t dt





  

Initial faults

(after

production)

Aging

period

Operating period

 () () | () while 0t t P s t t D s t U t       

()t

Case study: development of a DMI

EVC:

European

Vital

Computer

(on board)

Driver

Maintenance centre

DMI

Characteristic:
 Safety-critical functions

o Information visualization
o Processing driver commands
o Data transfer to EVC

 Safe wireless communication
o System configuration
o Diagnostics
o Software update

EVC

Case study: DMI requirements

 Safety:
o Safety Integrity Level: SIL 2

o Tolerable Hazard Rate: 10-7 <= THR < 10-6

hazardous failures per hours

o CENELEC standards: EN 50129 and EN 50128

 Reliability:
o Mean Time To Failure: MTTF > 5000 hours

 (5000 hours: ~ 7 months)

 Availability:
o A = MTTF / (MTTF+MTTR), A > 0.9952

Faulty state: shall be less than 42 hours per year
MTTR < 24 hours if MTTF=5000 hours

Threats to dependability

 Fault  Error  Failure examples:

Component
or system

Error: State leading to

the failure

Fault:
adjudged or
hypothesized
cause of an error

Failure:
the delivered
service deviates
from correct service

Fault Error Failure

Bit flip in the memory
due to a cosmic particle

Reading the faulty
memory cell will result in
incorrect value

The robot arm
collides with the wall

The programmer
increases a variable
instead of decreasing

The faulty statement is
executed and the value of
the variable will be
incorrect

The final result of the
computation will be
incorrect



 



The characteristics of faults

Software fault:

 Permanent design fault (systematic)
 Activation of the fault depends on the operational profile (inputs)

Fault

Space Time

Internal External

Physical
(hardware)

Design
(typ. software)

Physical
(environment)

Data
(input)

Intermittent
(transient)

Permanent

Means to improve dependability

 Fault prevention:

o Physical faults: Good components, shielding, ...

o Design faults: Good design methodology

 Fault removal:

o Design phase: Verification and corrections

o Prototype phase: Testing, diagnostics, repair

 Fault tolerance: avoiding service failures

o Operational phase: Fault handling, reconfiguration

 Fault forecasting: estimating faults and their effects

o Measurements and prediction
E.g., Self-Monitoring, Analysis and Reporting Technology (SMART)

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Overview of the development
of safety-critical systems

Overall safety lifecycle model: Goals

 Technical framework for the activities necessary
for ensuring functional safety

 Covers all lifecycle activities

o Initial concept

o Hazard analysis and risk assessment

o Specification, design, implementation

o Operation and maintenance

o Modification

o Final decommissioning and/or disposal

Hardware and software development

 PE system
architecture
(partitioning of
functions)
determines
software
requirements

 PES integration
follows
software
development

 Final step:
E/E/PES
integration

E/E/PES safety
requirements
specification

E/E/PES
architecture

Software safety
requirements

Software design
and development

PES integration
(software
and hardware)

Hardware safety
requirements

Programmable
hardware design
and development

Non-programmable
hardware design
and development

E/E/PES
integration

Software safety lifecycle

 Safety req. spec.
has two parts:
o Software safety

functions
o Software safety

integrity levels

 Validation planning is
required

 Integration with PE
hardware is required

 Final step: Software
safety validation

Software safety requirements

Safety
functions

Safety
integrity

Software safety
validation planning

Software design
and development

PES integration
(hw and sw)

Software
safety validation

Example software lifecycle (V-model)

Requirement
analysis

System
specification

Architecture

design

Module
design

Module
implementation

Module
verification

System

integration

System
verification

System
validation

Operation,
maintenance

Module test
design

Integration test

design

System test
design

System val.
design

Maintenance activities

Normal
operation

Failure

Operation
anomaly

Operation
report

Maintenance
request

Diagnosis
and repair

Revalidation

Return to
operation

Maintenance
report

Analysis of
failures

Perf. data in
operation

Failure rate
database

Perf. data in
risk analysis

Performance
comparison

Revised
risk analysis

Modification
request

Failure rate
above predicted

Risk reduction
not achieved

Systematic
failure

Random
failure

Techniques and measures: Basic approach

 Goal: Preventing the introduction of systematic faults
and controlling the residual faults

 SIL determines the set of techniques to be applied as
o M: Mandatory

o HR: Highly recommended (rationale behind not using it
 should be detailed and agreed with the assessor)

o R: Recommended

o ---: No recommendation for or against being used

o NR: Not recommended

 Combinations of techniques are allowed
o E.g., alternate or equivalent techniques are marked

 Hierarchy of methods is formed (references to tables)

Example: Guide to selection of techniques

 Software safety requirements specification:
o Techniques 2a and 2b are alternatives

o Referred table: Semi-formal methods (B.7)

Application of tools in the lifecycle

 Fault prevention:
o Program translation from

high-level programming languages
o MBD, CASE tools: High level modeling

and code/configuration generators

 Fault removal:
o Analysis, testing and diagnosis
o Correction (code modification)

Management tools

o Contributing both to fault prevention and removal
o Includes project management, configuration

management, issue tracking

Safety concerns of tools

 Types of tools
o Tools potentially introducing faults

• Modeling and programming tools
• Program translation tools

o Tools potentially failing to detect faults
• Analysis and testing tools
• Project management tools

 Requirements
o Use certified or widely adopted tools

• “Increased confidence from use” (no evidence of improper results
yet)

o Use the well-tested parts without altering the usage
o Check the output of tools (analysis/diversity)
o Control access and versions

Safety of programming languages
 Factors for selection of languages

o Functional characteristics (probability of faults)
• Logical soundness (unambiguous definition)
• Complexity of definition (understandability)
• Expressive power
• Verifiability (consistency with specification)
• Vulnerability (security aspects)

o Availability and quality of tools
o Expertise available in the design team

 Coding standards (subsets of languages) are defined
o “Dangerous” constructs are excluded (e.g., function

pointers)
o Static checking can be used to verify the subset

 Specific (certified) compilers are available
o Compiler verification kit for third-party compilers

Safety of programming languages
 Factors for selection of languages

o Functional characteristics (probability of faults)
• Logical soundness (unambiguous definition)
• Complexity of definition (understandability)
• Expressive power
• Verifiability (consistency with specification)
• Vulnerability (security aspects)

o Availability and quality of tools
o Expertise available in the design team

 Coding standards (subsets of languages) are defined
o “Dangerous” constructs are excluded (e.g., function

pointers)
o Static checking can be used to verify the subset

 Specific (certified) compilers are available
o Compiler verification kit for third-party compilers

Safety of programming languages
 Factors for selection of languages

o Functional characteristics (probability of faults)
• Logical soundness (unambiguous definition)
• Complexity of definition (understandability)
• Expressive power
• Verifiability (consistency with specification)
• Vulnerability (security aspects)

o Availability and quality of tools
o Expertise available in the design team

 Coding standards (subsets of languages) are defined
o “Dangerous” constructs are excluded (e.g., function

pointers)
o Static checking can be used to verify the subset

 Specific (certified) compilers are available
o Compiler verification kit for third-party compilers

Constructs that make verification difficult (61508):
• Unconditional jumps excluding subroutine calls
• Recursion
• Pointers, heaps or any type of dynamic variables
• Interrupt handling at source code level
• Multiple entries and exits of loops and subprograms
• Implicit variable initialization or declaration
• Variant records and equivalence
• Procedural parameters

Language comparison

Wild jumps: Jump to arbitrary address in memory
Overwrites: Overwriting arbitrary address in memory
Model of math: Well-defined data types
Separate compilation: Type checking across modules

Coding standards for C and C++

 MISRA C (Motor Industry Software Reliability
Association)
o Safe subset of C (2004): 141 rules (121 required, 20

advisory)
o Examples:

• Rule 33 (Required): The right hand side of a "&&" or "||"
operator shall not contain side effects.

• Rule 49 (Advisory): Tests of a value against zero should be made
explicit, unless the operand is effectively Boolean.

• Rule 59 (R): The statement forming the body of an "if", "else if",
"else", "while", "do ... while", or "for" statement shall always be
enclosed in braces.

• Rule 104 (R): Non-constant pointers to functions shall not be
used.

o Tools to check “MISRA conformance” (LDRA, PolySpace,
…)

• Test cases to demonstrate adherence to MISRA rules
 MISRA C++ (2008): 228 rules
 US DoD, JSF C++: 221 rules (incl. metric guidelines)

o “Joint Strike Fighter Air Vehicle C++ Coding Standard”

Safety-critical OS: Required properties

 Partitioning in space
o Memory protection
o Guaranteed resource availability

 Partitioning in time
o Deterministic scheduling
o Guaranteed resource availability in time

 Mandatory access control for critical objects
o Not (only) discretionary

 Bounded execution time
o Also for system functions

 Support for fault tolerance and high availability
o Fault detection and recovery / failover
o Redundancy control

Example: Safety and RTOS

 Compromise needed
o Complex RTOS:

• Difficult to test

o “Bare machine”:
• Less scheduling risks

• High maintenance risks

 Example: Tornado® for Safety Critical Systems
o Integrated software solution uses Wind River's

securely partitioned VxWorks® AE653 RTOS

o ARINC 653: Time and space partitioning
(guaranteed isolation)

o RTCA/DO-178B: Level A certification

o POSIX, Ada, C support

Principles for documentation
 Type of documentation

o Comprehensive (overall lifecycle)
• E.g., Software Verification Plan

o Specific (for a given lifecycle phase)
• E.g., Software Source Code Verification Report

 Document Cross Reference Table
o Determines documentation for a lifecycle phase
o Determines relations among documents

 Traceability of documents is required
o Relationships between documents are specified (input,

output)
o Terminology, references, abbreviations are consistent

 Merging documents is allowed
o If responsible persons (authors) shall not be independent

Document cross reference table (EN50128)

 creation of a document
 used document in a given phase (read vertically)

 Example
(EN50128)

 Document
structure in
EN50128

 30 documents
in a systematic
structure
o Specification
o Design
o Verification

Software Planning Phase

Software Development Plan

Software Quality Assurance Plan

Software Configuration Management Plan

Software Verification Plan

Software Integration Test Plan

Software/hardware Integration Test Plan

Software Validation Plan

Software Maintenance Plan

System Development Phase

System Requirements Specification

System Safety Requirements Specification

System Architecture Description

System Safety Plan

Software Maintenance Phase

Software Maintenance Records

Software Change Records

Software Assessment Phase

Software Assessment Report

Software Requirements Spec. Phase

Software Requirements Specification

Software Requirements Test Specification

Software Requirements Verification Report

Software Validation Phase

Software Validation Report

Software/hardware Integration Phase

Software/hardware Integration Test Report

Software Architecture & Design Phase

Software Architecture Specification

Software Design Specification

Software Architecture and Design Verification Report

Software Integration Phase

Software Integration Test Report

Software Module Design Phase

Software Module Design Specification

Software Module Test Specification

Software Module Verification Report

Software Module Testing Phase

Software Module Test Report

Coding Phase

Software Source Code & Supporting Documentation

Software Source Code Verification Report

Human factors

 In contrast to computers
o Humans often fail in:

• reacting in time
• following a predefined set of instructions

o Humans are good in:
• handling unanticipated problems

 Human errors
o Not all kind of human errors are equally likely
o Hazard analysis (FMECA) is possible in a given context
o Results shall be integrated into system safety analysis

 Reducing the errors of developers
o Safe languages, tools, environments
o Training, experience and redundancy (independence)

 Reducing operator errors:
o Designing ergonomic HMI (patterns are available)
o Designing to aid the operator rather than take over

Organization

 Safety management
o Quality assurance

o Safety Organization

 Competence shall be demonstrated
o Training, experience and qualifications

 Independence of roles:
o DES: Designer (analyst, architect, coder, unit tester)

o VER: Verifier

o VAL: Validator

o ASS: Assessor

o MAN: Project manager

o QUA: Quality assurance personnel

Independence of personnel

DES, VER, VAL

DES VER, VAL

DES

MGR

VER, VAL

MGR

DES VER VAL

ASS

ASS

ASS

ASS

SIL 0:

SIL 1 or 2:

SIL 3 or 4:

or:

Organization Person
EN 50128:

Summary

 Safety-critical systems
o Hazard, risk

o THR and Safety Integrity Level

 Dependability
o Attributes of dependability

o Fault -> Error -> Failure chain

o Means to improve dependability

 Development process
o Lifecycle activities

o Methods and techniques

o Documentation

o Organization

