Formal modelling
and verification

Istvan Majzik slides
Modified by Andras Voros on 15. October 2013
Budapest University of Technology and Economics

Dept. of Measurement and Information Systems

Ariane-5 Flight 501

Ariane-5 Flight 501

e Ariane-5 first test flight (4. June 1996.)
— http://www.youtube.com/watch?v=c9Hf4qTxdxs

http://www.youtube.com/watch?v=c9Hf4qTxdxs
http://www.youtube.com/watch?v=c9Hf4qTxdxs

Ariane-5 Flight 501

e Ariane-5 first test flight (4. June 1996.)
— http://www.youtube.com/watch?v=c9Hf4qTxdxs

— Exploded after 40 s (self destruction)

— damage: at least USS 370,000,000 (others say: 8 billion S)
— Cause: software bug (not found by tests)

— The control software of Ariane-4 was used

— The software contains a float-int conversion

— The acceleration of Ariane-5 was higher than the
acceleration of Ariane-4

— The acceleration value stored in a float variable of 64 bit
could not be converted into a signed integer variable of 16
bit. This lead to unhandled exception

http://www.youtube.com/watch?v=c9Hf4qTxdxs
http://www.youtube.com/watch?v=c9Hf4qTxdxs

L%

el

end LIRE DERIVE;
--$finprocedure

et |
procedure LIRE SEUIL (P_M SEUIL : out TDB.T ENTIER 16Nf) is

Ariane-5 Ada code example

L -2 R 1% Sup B Sy
L_M DON_32 := TDB.T_ENTIER 325 ((1.0/C_M LSB DON) *
G_M_INFO_DERIVE(T_ALG.E_DCW))
if L M DON_32 > 32767 then
P M DERIVE(T ALG.E DON) := 16#7FFF#;
elsif L_M DON_32 < -32768 then
P_M_DERIVE(T_ALG.E_DON) := 16#8000%;
else
P_M_DERIVE(T_ALG.E_DON) := UC_16S_EN_16NS(
TDB.T_ENTIER 16S(L M DON -32))r
end if;

P_M_DERIVE (T ALG.E_DOE) := UC_16S_EN 16NS (TDB.T ENTIER 168
((1.0/C_M_LSB DOE) *
G_M_INFO_DERIVE (T_ALG.E_DOE)

L M BV_32 := TDB.T_ENTIER 325 ((1.0/C_ M LSB BV) *
G_M_INFO_DERIVE(T ALG.E BV)).
if L M BV 32 > 32767 then
P M DERIVE (T_ALG.E , BV) = 16#7FFF#;
elsif L M BV _ 32 < -32768 then
P_M DERI 2 (?_ALG.E_BV) := .16#8000¢%;
else '
P _M DERIVE(T_ALG.E_BV) := UC_16S_EN_16NS(TDB.T_ENTIER 16S(L_M
end if;

P_M_DERIVE(T_ALG.E_BH) := UC_16S_EN_16N

-\

Case study: ProSigma SCAN protokoll

* A real time safety critical (SIL 4) protocol

developed by Prolan Zrt.

— Function: ensuring fault-free communication

« Analysed function:
connection handling

— Establishing
connection

— Sending object state
* Checked property:

— The connection
remains established
after a while

— A liveness property

Data Transfer Layer

ETHO l

ETH3

Logikai kartya

Objektummodul1

A A A A A
\ 4 \ 4
A 4) 4 i
A 4 A A 4
A SCAN busz A

Logikai kartya

Objektummodul12

Case study: Field LG

module FieldLG

set ToSync[TSync] OBJ2, OBJDOWN received:
invalidate ToReset |
‘ 1 Reset
—>_ % R

ToSync over:
send OBJ1(TPropMin, TPropMax]
set ToSync[TSync]
set ToReset[TRtMax]

ToReset over:
invalidate ToReset

Y ToSync over:

_ send OBJ1(TPropMin, TPropMax]]
Connecting set ToSync[TSync] . TolReset over:
invalidate ToReset

OBJDOWN received:

OBJ2 received:
set ToReset[TRtMax]

ToSync over:
send OBJUP(TPropMin, TPropMax]
set ToSync[TSync]

OBJ2 received:

OBJDOWN received: Connected
set ToReset[TRtMax]

Case study: Control LG

module ControlLG

OBJUP received:

invalidate ToReset -
. 1 Reset

A

(g N
OBJ1 received:
ToReset over: send OBJ2(TPropMin, TPropMax]
invalidate ToReset set ToReset[TRtMax]
Connecting ToReset over:
OBJ1 received: invalidate ToReset
OBJ1 received: OBJUP received:
. send OBJDOWN(TPropMin, TPropMax]
OBJUP received: set ToReset[TRtMax]
send OBJDOWN(TPropMin, TPropMax]
set ToReset[TRtMax]

; Connected J

Case study: Fault model

module FaultModel

OBJ1, OBJ2, OBJUP, OBJDOWN received:
One_left No_more

Case study: results

» An unexpected a
counterexample for the
correct behavior 3 \.//,
— The loss of a single JpE—
message can cause the —
protocol to be stuck in a
bad state Ir_h_;_._m___l"f*f’f'i‘f? ___________ — ¢ ToResat

* Suggestion to correct the e e S
specification

- Proving the correctness | |§| | T ——
of the modified system | .| | meog

TIMESYNC
18 >

Example software lifecycle (V-model)

Requirement
analysis

Formal modelling and
verification are relevant in

Operation,
maintenance

A

____________ these phases L System
validation
System System test System
A S > e e
specification design verification
Architecture Integration test System
design | design |~ integration
Module Module test Module
. o . e e -
design design verification

\/

Module
implementation

Techniques and measures in standards

e |[EC61508:

Functional
safety in
electrical /
electronic /
programmable
electronic
safety-related
systems

e Example:
Software
architecture
design

Table A.2 — Software design and development:
software architecture design (see 7.4.3)

Technique/Measure* Ref SIL1 SiL2 SIL3 SlLa
1 Fault detection and diagnosis C.3.1 R HR HR
2 Error detecting and correcting codes c.3.2 R R R HR
3a Failure assertion programming C.3.3 R R R HR
3b Safety bag techniques C.3.4 e R R R
3c Diverse programming C.3.5 R R R HR
3d Recovery block C.3.6 R R R R
3e Backward recovery C.3.7 R R R
3f Forward recovery C.3.8 R R R 3]
3g Re-try fault recovery mechanisms c.39 R R R HR
3h Memorising executed cases C.3.10 .- R R HR
4 Gracetul degradation C.3.11 R R HR HR
5 Artificial intelligence - fault correction C.3.12 -- NR NR NR
6 Dynamic reconfiguration C.3.13 NR NR NR
7a Structured methods including for exampie, JSD, c.21 HR HR HR HR

MASCOT, SADT and Yourdon.
7b Semi-formal methods Table R R HR HR
S
7c Formal methods including for example, CCS, CSP, HOL, c.24 R R HR
LOTOS, OBJ, temporal fogic, VDM and Z

NOTE = The measures in this table concerning fault tolerance (control of failures) should be considered with the

requirements for architecture and control of failures for the hardware of the programmable electronics in
IEC 61508-2.

" Appropriate techniques/measures shall be selected according to the saiety integrity level. Alternate or
equivalent techniques/imeasures are indicated by a letter following the number. Only one of the alternate or
equivalent techniques/measures has to be satisfied.

Goals of formal modeling and verification

System model

Formalized properties

correct

OK

Automated
model checker

faulty

Counter-
example

Modeling with timed automata

Off S Light

Goals of formal modeling and verification

/

\

Modeling with timed automata

Mapping to timed automata from higher-level
models (e.g., from UML state machines)

\

)

System model Formalized

properties

correct

Automated
model checker

faulty

OK

Counter-
example

Automata and variables

e Goal: Modeling event driven, state based behaviour
e Basic formalism: Finite state machine (FSM)

— States (with state names)
— State transitions

Working BrokenDown

2\State name}
UnderRepair

Automata and variables

Goal: Modeling event driven, state based behaviour
Basic formalism: Finite state machine (FSM)

— States (with state names)
— State transitions

Extension: Using integer variables

— Range of potential values can be specified
— Constants can be defined

— Integer arithmetic can be used

Extensions on state transitions:

— Guards: Predicates on the variables
¢ |t shall be true in order to enable the state transition

— Actions: Assignments to the variables

Automata and variables

Goal: Modeling event driven, state based behaviour
Basic formalism: Finite state machine (FSM)
Extension: Using integer variables

Extensions on state transitions

Working BrokenDown Guard

money>1000

money-=1000
Action
UnderRepair

Extensions using clock variables

Goal: Modelling time dependent behaviour
— Time elapses in the states
— Behaviour depends on the time spent in the state
— To be verified: States that can be reached after/until a given time

Modelling extension: Clock variables

— Concurrent clocks (timers) having the same rate

— Relative time measurements (e.g., time-out): Resetting and reading clock
variables

Usage in state transitions:

— Actions: Resetting clock variables, independently
— Guards: Referring to clock variables and constants
Usage in states:

— State invariants: The validity of the state is specified using predicates on
clock variables and constants

Extensions using clock variables

Goal: Modelling time dependent behaviour

Modelling extension: Clock variables

Usage in state transitions

Usage in states

Working

BrokenDown

UnderRepair

t<20

money>1000 (
money-=1000. Action
t=0 .

J

hn

State
Invariant

J

Timed automata (in the UPPAAL tool)

clock
State name g "
idle

~

Guard

)

Invariant %

)

Action

\J>

closed

A e —
W=
& »

-
F — — |

x=0,

X,

O activated = frue |
(;2{:> (f?g:)xwan =g

P9

activated=false

clasing

K<=h

W ==

w=(] [Committed

O-

é apen S
<=8

& Edit Location x|

........................

Marme: Iwait

Ineariank:

[~ Urgent

Ik I Cancel |

apening
®K<=h =

Guard: [.==¢

Ilpdate:|.=n

Role of state invariants and guards

idle ® activated = true
% é) wait

g —
K —
Eat e

closed apening

c==F v ==F Guard]

w=0
activated=false

—||
-:Injsing(-)(w»=4 x=0 éjpwn

-
K<=h

clock x;

The value of clock x is in the range [4, 8] when leaving the state open

»
»

4 8 t

Extensions for modeling distributed systems

e Goal: Modeling networks of interacting automata
— Synchronization among automata

— Synchronized state transitions (rendezvous): synchronous communication
e Sending and receiving of messages at the same time

e This primitive can be used also to model asynchronous communication

e Extension: Synchronized actions Q Q

— Channels are defined (synchronous channels)

— Message sending: | operator on the channel al a?
Message receiving: ? operator on the channel

e E.g.,onthe channel a the actions are a! and a?

e Parameterization chan a

— Automata with parameters: Instantiation of templates
e E.g., Door(bool &id) with id as a parameter

— Channel arrays (indexed)
e E.g., a[id] is a channel indexed by the value of variable id

Example: Using clock variables and synchronization

Declarations:

clock t, u;
chan press;

“Receiving a
message”

SW|tCh press? t>=3
off press? t=0 nght press? t<3 Brlght
Q 0 >
press?
“« .
User: oress! U=0 LightOn Sending a
= ”
message
Think - .
press! u=3
press! u=0 TDBHQ"IL press BrightOn
=) =
u=3

press

Further extensions

e Committed state: atomic state transitions l
— Typical usage: Before executing the outgoing
transition, the interleaved execution of a state @
transition of another automaton is not allowed:
the incoming and the outgoing transitions are l
executed in an atomic operation

e Urgent channel: delay is not allowed

— Synchronization shall be executed
immediately, without delay
(but interleaving is possible)

— No time related guard is allowed
on the state transition with an action al _
referring to an urgent channel No time related

. L : rd is allow
— No state invariant is allowed in a state v guard is allowed
) : . here
where there is an outgoing transition
with an action referring to an urgent channel

urgent chan a;

No state invariant
IS allowed here

The UPPAAL tool set

Development (1999-):

— Uppsala University, Sweden

— Aalborg University, Denmark
Web page (information, downloading, examples):
http://www.uppaal.org/

Related tools:

— UPPAAL CoVer: Test generation

— UPPAAL TRON: On-line testing
— UPPAAL PORT: Designing component based systems

Commercial version:
http://www.uppaal.com/

http://www.uppaal.org/
http://www.uppaal.org/
http://www.uppaal.org/
http://www.uppaal.com/

Automaton model

2. E:/Tools/Uppaal/demo;/2doors.xml - UPPAAL

File Edit View Tools Options Help

=10l x|

| Bal A& RE o

Editor I Simulator | verifier |

Drag out I: MName: IDoor Parameters: |boo| &activated, urgent chan &pushed, urgent chan &closed1, urgent chan &closed2
_4 Project
o4 Declarations
'&m pushed?
-8 User closed1! activated = true

@ System declarations

i

closed!

il

x=0,

idle

closed
=)

activated=false

closing

X<=6

closed!

wait

closed2?

x=0

é opening
X<=6

=0

x=0

@
X <=8

Simulator

File Edit Yiew Tools Options Help

£ E:/Tools/Uppaal/demo/2doors.xml - UPPAAL

|IBal e & RA o

Edito I verifier |
Drag out I: Drag out : |-
= activated] = 1 Door1 Door2
Enabled Transitions activated? = D
AeHvglcte= pushed1? pushed2?
U Doorl.x == dosed1! activated! = true closed?2! activated2 = true ;
closed2: Door2 --» Doorl Door2.x >=0 M dosed! g doszd2!
Userl.w=10 idle wait idle wait
(] =
Liserz =0 dosed2? dosed1?
Doorl.x = Door2,x =5 =0 =5 x=0
Door2.x = User2.w
X closed1! dosad2!
T dossd (opening dosed () opening
&7 x<=5 <=0 x<=5 <7 y<=R
|
Mext | Reset | ==0 ==6 X==06 ¥==06
x=0, x=0 x=0, x=0
2 i , 24
Simulation Trace activatedi=falss activated=false
(idle, idle, idle, idle) dosing =]
User1 x<=6
(idle, idle, -, idle)
pushed1: Userl --> Doorl User1 User2
{wait, idle, idle, idle) iclle i
. . . . " e pushed1! e pushed2!
lacti vated! lact vatec2
we0 w0
=
Door1 Door2 User1 User2
Trace File: | [:]
rev [dExt Repla
B pox pushed1
Open Save Random
|
| | | { | | |
Slow Fast

Formalizing requirements
with temporal logics

Goals of formal modeling and verification

€ Precise formalization of properties
(requirements) to support automated
checking

_
System model Formalized properties

correct faulty

Automated
model checker

Counter-
example

OK

What are the formalized properties?

An example to illustrate the properties to be formalized:

e The states of an air-conditioner:

— Switched-off, switched-on, faulty,
light cooling, strong cooling, heating, ventilating

e Requirements for the air-conditioner:
— After switched-on, it shall start ventilating
— Strong cooling is allowed only after light cooling
— Heating shall be followed by ventilating
— The faulty air-conditioner shall not perform heating

State based properties

e Local: Properties to be evaluated in a given state

— Evaluation is possible using the current values of the state
variables (and clock variables)

— Example: , In the initial state ventilating shall be provided”

e Reachability: Properties to be evaluated on a
sequence of states
— Evaluation is possible on the state space of the system
— Example: ,,Heating shall be followed by ventilating”
— |t can be applied in continuously working systems

— Typical categories of reachability properties:
o Safety” of the system
e ,Liveness” of the system

Safety properties

e Typical use: Specification that each state shall be safe,
i.e., something bad shall never happen

— ,In each state the pressure shall be lower than the critical
value.”

— ,,In each operating state the door shall be closed.”
e |nvariant properties are specified:

— ,In each reachable state it shall be true that ...”
e Examples of IT related safety properties:

— Mutual exclusion: In each reachable state, only one process
shall stay in the critical section

— Security: In each reachable state only authorized
information access is possible

Liveness properties

e Typical use: Specification that a desired state is
eventually reachable, i.e., something good shall happen

— ,After switch-on, the request should eventually be
responded.”

— ,The process shall eventually reach its goal.”

e Existence (reachability) of given state(s) is specified:
— ,A state is eventually reached, in which ...”

e Examples of IT related liveness properties:

— After sending a request the reply shall eventually be received
— The message that is sent shall eventually be delivered
— The process shall compute the required result

Language to formalize reachability properties

e Reachability: Refers to states that occur each after the
other (following each other)
— The sequence of states in considered as logic time:

e The present: The current state
e The next time points: The subsequent states

— Temporal (ordering in logic time) operators can be defined to
express the reachability properties
e Temporal logic:
— Formal language to express propositions qualified in terms of
time
— Typical temporal operators: ,,always”, ,eventually”, ,before”,
,until”, after”, ...

Temporal logics

e Linear time:
The subsequent states form a linear sequence
(each state has only one successor)
— logic time forms a linear timeline

{Green} {Yellow} {Red} {Red, Yellow}
> 52 > s3 :@ >

e Branching time: {Green}
The subsequent states form
BIm YeIIow}

a tree structure

(each state may have @e‘” {BIIN}
multiple successors)

— logic time forms branching timelines

The computational tree

{Green} {Yellow} {Red} {Red, Yellow}

Blinkin
> S2 > s3 { g}

{Blinking}

Automaton (FSM)
with labelled
states T

Computational tree:
Structure of the
potential successor
states

{Blinking} {Red, Yellow}

O

The computational tree

{Green} {Yellow} {Red} {Red, Yellow}

> s2 > s3

{Blinking}

Automaton (FSM)
with labelled
states T

{Green}

Computational tree: @
Structure of the

potential successor

states

The computational tree

{Green} {Yellow} {Red} {Red, Yellow}

> s2 > s3

{Blinking}

Automaton (FSM)
with labelled {Yellow}

states T e

{Green}
Computational tree:

Structure of the
potential successor

states
{Blinking}

The computational tree

{Green} {Yellow} {Red} {Red, Yellow}

> s2 > s3

{Blinking}

Automaton (FSM)
with labelled
states T

Computational tree:
Structure of the
potential successor
states

{Blinking}

The computational tree

{Green} {Yellow} {Red} {Red, Yellow}

Blinkin
> S2 > s3 { g}

{Blinking}

Automaton (FSM)
with labelled
states T

Computational tree:
Structure of the
potential successor
states

{Blinking} {Red, Yellow}

O

Quantifying paths and characterizing states

e Operators that quantify the paths starting

from a given state: /‘_’

— A: for all paths from the given state ‘i:.;

— E: for an existing path from the given state '\
e Operators that characterize states along

a given path: o->0->

— F: for a state along the path (“future”)

— G: for all states along the path (“globally”)

— X: for the next state from the initial state of the path (“next”)
— U: for states until reaching a specified state (“until”)

e E.g., Yellow U Red means states labeled with Yellow until reaching a
state labeled with Red

The Computational Tree Logic (CTL)

e Composite operators are formed

— First quantifying paths using operators A, E; then
characterizing states along the path by operators F, G, X, U

— Composite operators:
e For all paths: AF, AG, AX, A(. U .),
e For an existing path: EF, EG, EX, E(. U .)

— Examples:
e EF Red: There shall exist a path where a state with Red is reached

e AG Green: For all paths, all states shall be labeled with Green

e E(Yellow U Red): There shall exist a path where states are labeled
with Yellow until a state with label Red is reached

e Restricted version of CTL is used in UPPAAL
— AF, AG, EF, EG operators are used

Summary of temporal operators in UPPAAL

Operator Informal semantics UPPAAL notation
AG ¢ For all paths, All ¢
for all states ¢
AF ¢ For all paths, A<> @
for a state eventually ¢
EG ¢ For an existing path, E[] ¢
for all states ¢
EF ¢ For an existing path, E<> ¢
for a state eventually ¢
AG(¢p => AF y) After ¢ always y @ --> Y

There is no deadlock

AG not deadlock

UPPAAL: ¢ and y are Boolean expressions on clocks, variables and state names

Composite operators for all paths

AG ¢ AF ¢
AG @: For all paths, AF @: For all paths,
for all states ¢ is true for a state eventually ¢

becomes true

Composite operators for an existing path

EG o

As)

EG ¢: There exists a path,
where for all states ¢ is true

Is there a relation between AG and EF?
Is there a relation between AF and EG?

EF @: There exists a path,
where for a state eventually
¢ becomes true

Conditional reachability

¢ -->y

* AGp=>AFy)=0->y
For all paths, for all states: if ¢ is true then it implies that on all
paths eventually a state occurs in which y becomes true

e Reachability with a timing condition: ¢ --> (v and x <= t)
where x is a clock variable that is reset when ¢ becomes true

Examples: formalizing properties using temporal logic

Let us consider an air-conditioner with states labelled by the following propositions:
{Switched-off, Switched-on, Faulty, LightCooling, StrongCooling, Heating, Ventilating}

e These atomic propositions can be used in the formalized properties
e The reachability properties refer to the initial state of the system

e The behaviour of the air-conditioner may not be known when the properties are
formalized (the behavioural model shall be verified using these properties)

Examples for formalized properties:

e If the air-conditioner is faulty then it shall be eventually repaired:
AG(Faulty => AF (—Faulty)) or Faulty --> (—Faulty)

e If the air-conditioner is faulty then it shall not heat:
AG (—(Faulty A Heating))

e |t shall be possible to eventually switch off the air-conditioner:
AF (Switched-off)

e The air-conditioner will eventually become faulty (Murphy’s law) :
AF (Faulty)

Model checking

[Timed automata model } [Temporal logic properties }
System model Formalized properties

correct faulty

Automated
model checker

Counter-
example

OK

The UPPAAL model checker

Properties can be formalized using temporal logic
Verification of the properties is automated

Verification is performed by an exhaustive exploration
of the state space of the model

— Breadth-first, or depth-first search can be configured

Diagnostic trace can be generated

— Counter-example (for safety properties) or witness (for
liveness properties)

— Shortest, fastest, or some (any) diagnostic trace can be
configured

— The diagnostic trace can be loaded into the simulator to
investigate and debug the behaviour

The UPPAAL model checker

:I:!!I F:/FTapps/Uppaal /demo/train-gate.xml - UPPAAL - |EI|£|

File Edit Wiew Tools Options Help

IDa@aaa(x@--=

Eu:Iitu:url Simulator Werifier |

CEryie

E<> Gate.0cc

E<> Train(0).Cross

I E
E<>» Trainil).Cross Nser

E<> Train(0).Cross and Train(l).Stop O Remove
™

omments

E«> Traini0).Crogz and (forall (i : id t£) i != 0 imply Traini(i).3top)

ety
E== Train{0).Cross

Comrnenk

Train 0 can reach crossing.

.]

Skatus

Established direct connection to local server,

rAcademic) UPPAAL version 4.0.7 (rex, 41400, Movember 2008 -- server,
Disconnecked.

Established direct connection ko local server.

rAcadernic) UPPAAL version ¢.0.7 (rew, 4140), Movember 2008 -- server,
E <= Train{0), Cross

Property is sakisfied.

Counter-example in the simulator

:_I:S} F:/FTapps/Uppaal/demo, train-gate.xml - UPPAAL - |EI|1|
File Edit WYew Tools Options Help
Da@ *&aa|R§a@-mo
Editor - Simulator | \-'erifierl
.

| Drag ouk

Drag ouk |‘

Enabled Transitions

appr[2]: Train{2) —= Gate
appr3]: Train3) -- = Gate
appr[4]: Train(4) -- > Gate
appr[5]: TraingS) -- = Gate
leare[0]: Train(0) --= Gate

[

Mext | Reset |

Simulation Trace

(Safe, Safe, Safe, Safe, Safe, Safe, Free)
appr[0]: Train(0) -- > Gate

(Appr, Safe, Safe, Safe, Safe, Safe, Occ)
Train()

(Cross, Safe, Safe, Safe, Safe, Safe, Qo)
appr[1]: Traingl) -- = Gate

(Cross, Appr, Safe, Safe, Safe, Safe, -)

Kl |+
Trace File: I
Pres Iexk Replay
open Save Auto
|
| | | K | | |
Slow Fast

aate.list[0] =0
Gatelist[1] =1
Gate list[2] =10
Gate list[3] =10
Gate.list[4] =10

iate. list[5] = 0 3;5"[':']!
Gate.list[6] =0

Gate.len =2

Train 0. in [0,5]

Traini 1), in [0,5] -x""‘!?lj'LD

TrainZd,x == 10
Traing 3. == 10
Trainf4d,x == 10
Train(5).x == 10
Traing 0. - TrainiZ),x <= -10
Train(1).3 - Trainf0).x in [-5,0]

Train{D}

Stop

Train(1)

P]

Traing2i,x = Train{3).x

Train{0y Train(1) Traing2) Train(3) Train{4) Train{s) Gate

Train(3).: = Train(4).x

Traing4i,x = Train{S).x I |

T

TraingSi.x = Train(2).x

[Safe] [Safe] [Safel [Safe] [Safel [Safe][Free]

appild]

(Arer]

@DSS

appr[1]

[Occ]

(pp]

E

)

op[taill)]

Stop

Oce
N

Demo

Summary: Model checking in the lifecycle

Operation,
maintenance

A

Requirement System val. design System
analysis | "~ ~"~“~“~"™"7"7214 [T validation
System System test System
specification | design |7 » verification

7
Properties \ /

J

Architecture Integration test System
design [~ design |~ integration
Models Module Module test Module
— T design C Y design """ verification

T

Module
implementation

Model checking
on the basis of
the source code

Summary: Properties of model checking

e Advantages:
— It offers a complete exploration of the state space of the model

— Itis possible to check huge state spaces (in specific cases)
e 1079, or even 10! states can be checked automatically

— There are fully automated tools, there is no need to perform manual
adjustment, mathematical operations, or heuristics

— Diagnostic trace is generated, which supports debugging and correction

e Problems:
— Scalability is limited (state space must fit to memory)
— Effective for control-oriented models
e Complex data structures result in huge state space
— Itis not easy to generalize the results
e |f a protocol is correct for 2 processes, is it correct for N processes as well?

— The formalization of properties is difficult
e There are different ,temporal logic languages”

Summary of model based design and verification

e Formal modeling:
— Timed automata models

e Formalization of properties:
— Temporal logic

e Formal verification:
— Model checking

e Source code synthesis:
— Template based code generation from timed automata

e Monitor code synthesis:

— Runtime verification of the control flow

