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Ariane-5 Flight 501 

• Ariane-5 first test flight (4. June 1996.) 

– http://www.youtube.com/watch?v=c9Hf4qTxdxs 

http://www.youtube.com/watch?v=c9Hf4qTxdxs
http://www.youtube.com/watch?v=c9Hf4qTxdxs


Ariane-5 Flight 501 

• Ariane-5 first test flight (4. June 1996.) 

– http://www.youtube.com/watch?v=c9Hf4qTxdxs 

– Exploded after 40 s (self destruction) 

– damage: at least US$ 370,000,000 (others say: 8 billion $) 

– Cause:  software bug (not found by tests) 

– The control software of Ariane-4 was used 

– The software contains a float-int conversion 

– The acceleration of Ariane-5 was higher than the 
acceleration of Ariane-4 

– The acceleration value stored in a float variable of 64 bit 
could not be converted into a signed integer variable of 16 
bit. This lead to unhandled exception 

http://www.youtube.com/watch?v=c9Hf4qTxdxs
http://www.youtube.com/watch?v=c9Hf4qTxdxs


Ariane-5 Ada code example 

≈70 

KLOC 



Case study: ProSigma SCAN protokoll 
• A real time safety critical (SIL 4) protocol 

developed by Prolan Zrt. 
– Function: ensuring fault-free communication 

• Analysed function: 
connection handling 
– Establishing 

connection 

– Sending object state 

• Checked property: 
– The connection 

remains established 
after a while 

– A liveness property 

Data Transfer Layer 



Case study: Field LG 

Reset

Connecting

Connected

module FieldLG

OBJ2, OBJDOWN received:

ToSync over:

send OBJ1(TPropMin,TPropMax]

set ToSync[TSync]

set ToReset[TRtMax]

ToSync over:

send OBJ1(TPropMin, TPropMax]

set ToSync[TSync]

 

OBJDOWN received:

ToReset over:

invalidate ToReset

ToSync over:

send OBJUP(TPropMin, TPropMax]

set ToSync[TSync]

 

OBJ2 received:

 

OBJDOWN received:

set ToReset[TRtMax]

OBJ2 received:

set ToReset[TRtMax]

ToReset over:

invalidate ToReset

set ToSync[TSync]

invalidate ToReset



Case study: Control LG 

Reset

Connecting

Connected

module ControlLG

OBJUP received:

OBJ1 received:

send OBJ2(TPropMin, TPropMax]

set ToReset[TRtMax]

OBJ1 received:

ToReset over:

invalidate ToReset

OBJ1 received:

 

OBJUP received:

send OBJDOWN(TPropMin, TPropMax]

set ToReset[TRtMax]

OBJUP received:

send OBJDOWN(TPropMin, TPropMax]

set ToReset[TRtMax]

ToReset over:

invalidate ToReset

invalidate ToReset



Case study: Fault model 

One_left No_more

module FaultModel

OBJ1, OBJ2, OBJUP, OBJDOWN received:



Case study: results 

• An unexpected 

counterexample for  the 

correct behavior 

– The loss of a single 

message can cause the 

protocol to be stuck in a 

bad state 

• Suggestion to correct the 

specification 

• Proving the correctness 

of the modified system 



Example software lifecycle (V-model) 

Requirement 
analysis 

System 
specification 

Architecture 
design 

Module 
design 

Module 
implementation 

Module 
verification 

System 
integration 

System 
verification 

System 
validation 

Operation, 
maintenance 

Module test 
design 

Integration test 
design 

System test 
design 

System val. design 

Formal modelling and 
verification are relevant in 

these phases 



Techniques and measures in standards 

• IEC 61508: 
Functional  
safety in  
electrical /  
electronic /  
programmable  
electronic  
safety-related  
systems 

• Example:  
Software 
architecture 
design 



Goals of formal modeling and verification 

System model Formalized properties 

Automated 
model checker 

OK 
Counter- 
example 

correct faulty 



Modeling with timed automata 



Goals of formal modeling and verification 

System model Formalized properties 

Automated 
model checker 

OK 
Counter- 
example 

correct faulty 

•  Modeling with timed automata 

•  Mapping to timed automata from higher-level 
   models (e.g., from UML state machines) 



Automata and variables 

• Goal: Modeling event driven, state based behaviour 

• Basic formalism: Finite state machine (FSM) 
– States (with state names) 

– State transitions 

State name 



Automata and variables 

• Goal: Modeling event driven, state based behaviour 

• Basic formalism: Finite state machine (FSM) 
– States (with state names) 

– State transitions 

• Extension: Using integer variables 
– Range of potential values can be specified 

– Constants can be defined 

– Integer arithmetic can be used 

• Extensions on state transitions: 
– Guards: Predicates on the variables 

• It shall be true in order to enable the state transition 

– Actions: Assignments to the variables 



Automata and variables 

• Goal: Modeling event driven, state based behaviour 

• Basic formalism: Finite state machine (FSM) 

• Extension: Using integer variables 

• Extensions on state transitions 

Guard 

Action 



Extensions using clock variables 

• Goal: Modelling time dependent behaviour 
– Time elapses in the states 

– Behaviour depends on the time spent in the state 

– To be verified: States that can be reached after/until a given time 

• Modelling extension: Clock variables 
– Concurrent clocks (timers) having the same rate 

– Relative time measurements (e.g., time-out): Resetting and reading clock 
variables 

• Usage in state transitions: 
– Actions: Resetting clock variables, independently 

– Guards: Referring to clock variables and constants 

• Usage in states: 
– State invariants: The validity of the state is specified using predicates on 

clock variables and constants 



Extensions using clock variables 

• Goal: Modelling time dependent behaviour 

• Modelling extension: Clock variables 

• Usage in state transitions 

• Usage in states 

Action 

Guard 

State  
Invariant 



Timed automata (in the UPPAAL tool) 

State name 

Guard 

Invariant 

Action 

clock x; 



Role of state invariants and guards 

Guard 

Invariant 

clock x; 

The value of clock x is in the range [4, 8] when leaving the state open 

4 8 t 



Extensions for modeling distributed systems 

• Goal: Modeling networks of interacting automata 
– Synchronization among automata 

– Synchronized state transitions (rendezvous): synchronous communication 

• Sending and receiving of messages at the same time 

• This primitive can be used also to model asynchronous communication 

• Extension: Synchronized actions 
– Channels are defined (synchronous channels) 

– Message sending:       ! operator on the channel 
Message receiving:    ? operator on the channel 

• E.g., on the channel a the actions are a! and a? 

• Parameterization 
– Automata with parameters: Instantiation of templates 

• E.g., Door(bool &id) with id as a parameter 

– Channel arrays (indexed) 

• E.g., a[id] is a channel indexed by the value of variable id 

a! a? 

chan a 



Example: Using clock variables and synchronization 

Declarations: 

 clock t, u; 

 chan press; 

Switch: 

 

 

 

 

 

User: 

“Receiving a 

message” 

“Sending a 

message” 



Further extensions 

• Committed state: atomic state transitions 
– Typical usage: Before executing the outgoing 

transition, the interleaved execution of a state 
transition of another automaton is not allowed: 
the incoming and the outgoing transitions are 
executed in an atomic operation 

• Urgent channel: delay is not allowed 
– Synchronization shall be executed  

immediately, without delay 
(but interleaving is possible) 

– No time related guard is allowed 
on the state transition with an action  
referring to an urgent channel 

– No state invariant is allowed in a state  
where there is an outgoing transition  
with an action referring to an urgent channel 

a! 

No state invariant  

is allowed here 

No time related 

guard is allowed 

here 

urgent chan a; 

C 



The UPPAAL tool set 

• Development (1999-): 
– Uppsala University, Sweden 

– Aalborg University, Denmark 

• Web page (information, downloading, examples): 
http://www.uppaal.org/  

• Related tools: 
– UPPAAL CoVer:  Test generation 

– UPPAAL TRON:  On-line testing 

– UPPAAL PORT:  Designing component based systems 

– … 

• Commercial version: 
http://www.uppaal.com/  

http://www.uppaal.org/
http://www.uppaal.org/
http://www.uppaal.org/
http://www.uppaal.com/
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Formalizing requirements 
with temporal logics 

 -->  



Goals of formal modeling and verification 

System model Formalized properties 

Automated 
model checker 

OK 
Counter- 
example 

correct faulty 

• Precise formalization of properties 
(requirements) to support automated 
checking 



What are the formalized properties? 

An example to illustrate the properties to be formalized: 
 

• The states of an air-conditioner: 

– Switched-off, switched-on, faulty, 
light cooling, strong cooling, heating, ventilating 

 

• Requirements for the air-conditioner: 

– After switched-on, it shall start ventilating 

– Strong cooling is allowed only after light cooling 

– Heating shall be followed by ventilating 

– The faulty air-conditioner shall not perform heating 

– ... 



State based properties 

• Local: Properties to be evaluated in a given state 

– Evaluation is possible using the current values of the state 
variables (and clock variables) 

– Example: „In the initial state ventilating shall be provided” 
 

• Reachability: Properties to be evaluated on a 
sequence of states 

– Evaluation is possible on the state space of the system 

– Example: „Heating shall be followed by ventilating” 

– It can be applied in continuously working systems 

– Typical categories of reachability properties: 
• „Safety” of the system 

• „Liveness” of the system 



Safety properties 

• Typical use: Specification that each state shall be safe, 
i.e., something bad shall never happen 
– „In each state the pressure shall be lower than the critical 

value.” 

– „In each operating state the door shall be closed.” 

• Invariant properties are specified: 
– „In each reachable state it shall be true that …” 

• Examples of IT related safety properties: 
– Mutual exclusion: In each reachable state, only one process 

shall stay in the critical section 

– Security: In each reachable state only authorized 
information access is possible 



Liveness properties 

• Typical use: Specification that a desired state is 
eventually reachable, i.e., something good shall happen 

– „After switch-on, the request should eventually be 
responded.” 

– „The process shall eventually reach its goal.” 

• Existence (reachability) of given state(s) is specified: 

– „A state is eventually reached, in which …” 

• Examples of IT related liveness properties: 

– After sending a request the reply shall eventually be received 

– The message that is sent shall eventually be delivered 

– The process shall compute the required result 



Language to formalize reachability properties 

• Reachability: Refers to states that occur each after the 
other (following each other) 

– The sequence of states in considered as logic time: 
• The present: The current state 

• The next time points: The subsequent states 

– Temporal (ordering in logic time) operators can be defined to 
express the reachability properties 

• Temporal logic: 

– Formal language to express propositions qualified in terms of 
time 

– Typical temporal operators: „always”, „eventually”, „before”, 
„until”, „after”, … 

  
    



Temporal logics 

• Linear time:  
The subsequent states form a linear sequence 
(each state has only one successor) 
→ logic time forms a linear timeline 
 
 

• Branching time:  
The subsequent states form 
a tree structure  
(each state may have  
multiple successors) 
 → logic time forms branching timelines 

  

s 2   s1 s 3   

{Green}   {Yellow}   {Red} 

s4   

  {Red, Yellow}     

s1 

{Green} 

s5 

{Blinking} 

s2 

{Yellow} 

s3 

{Red} 

s5 

{Blinking} 

s3 s3 

{Red} 



The computational tree 

Computational tree: 
Structure of the  
potential successor  
states 

s5   
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with labelled 
states  



The computational tree 

Computational tree: 
Structure of the  
potential successor  
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Quantifying paths and characterizing states 

• Operators that quantify the paths starting  
from a given state: 

– A: for all paths from the given state 

– E: for an existing path from the given state 

• Operators that characterize states along  
a given path: 

– F: for a state along the path (“future”) 

– G: for all states along the path (“globally”) 

– X: for the next state from the initial state of the path (“next”) 

– U: for states until reaching a specified state (“until”) 
• E.g., Yellow U Red means states labeled with Yellow until reaching a 

state labeled with Red 

 



The Computational Tree Logic (CTL) 

• Composite operators are formed 

– First quantifying paths using operators A, E; then 
characterizing states along the path by operators F, G, X, U 

– Composite operators: 
• For all paths: AF, AG, AX, A(. U .) , 

• For an existing path: EF, EG, EX, E(. U .) 

– Examples: 
• EF Red: There shall exist a path where a state with Red is reached  

• AG Green: For all paths, all states shall be labeled with Green 

• E(Yellow U Red): There shall exist a path where states are labeled 
with Yellow until a state with label Red is reached  

• Restricted version of CTL is used in UPPAAL 

– AF, AG, EF, EG operators are used 

 



Summary of temporal operators in UPPAAL 

UPPAAL:  and  are Boolean expressions on clocks, variables and state names 

Operator Informal semantics UPPAAL notation 

AG  For all paths, 
for all states  

A[]  

AF  For all paths, 
for a state eventually  

A<>  

EG  For an existing path, 
for all states  

E[]  

EF  For an existing path, 
for a state eventually  

E<>  

AG( => AF ) After  always   -->  

There is no deadlock AG not deadlock 



Composite operators for all paths 

AG : For all paths, 
for all states  is true 

AG  AF  

 AF : For all paths, 
for a state eventually  
becomes true 



Composite operators for an existing path 

• Is there a relation between AG and EF? 

• Is there a relation between AF and EG? 

EG  EF  

EG : There exists a path, 
where for all states  is true 

EF : There exists a path, 
where for a state eventually 
 becomes true 



Conditional reachability 

• AG( => AF ) =  -->   
For all paths, for all states: if  is true then it implies that on all 
paths eventually a state occurs in which  becomes true 

• Reachability with a timing condition:  --> ( and x <= t)  
where x is a clock variable that is reset when  becomes true 

 -->  



Examples: formalizing properties using temporal logic 

Let us consider an air-conditioner with states labelled by the following propositions: 

{Switched-off, Switched-on, Faulty, LightCooling, StrongCooling, Heating, Ventilating} 
 

• These atomic propositions can be used in the formalized properties 

• The reachability properties refer to the initial state of the system 

• The behaviour of the air-conditioner may not be known when the properties are 
formalized (the behavioural model shall be verified using these properties) 

 

Examples for formalized properties: 

• If the air-conditioner is faulty then it shall be eventually repaired: 

 AG(Faulty => AF (Faulty)) or Faulty --> (Faulty) 

• If the air-conditioner is faulty then it shall not heat: 

 AG ((Faulty  Heating)) 

• It shall be possible to eventually switch off the air-conditioner: 
AF (Switched-off)  

• The air-conditioner will eventually become faulty (Murphy’s law) : 

 AF (Faulty) 

 



Model checking 

System model Formalized properties 

Automated 
model checker 

OK 
Counter- 
example 

correct faulty 

Temporal logic properties Timed automata model 



The UPPAAL model checker 

• Properties can be formalized using temporal logic 

• Verification of the properties is automated 

• Verification is performed by an exhaustive exploration 
of the state space of the model 

– Breadth-first, or depth-first search can be configured 

• Diagnostic trace can be generated 

– Counter-example (for safety properties) or witness (for 
liveness properties) 

– Shortest, fastest, or some (any) diagnostic trace can be 
configured 

– The diagnostic trace can be loaded into the simulator to 
investigate and debug the behaviour 



The UPPAAL model checker 



Counter-example in the simulator 



Demo 



Summary: Model checking in the lifecycle 

Requirement 
analysis 

System 
specification 

Architecture 
design 

Module 
design 

Module 
implementation 

Module 
verification 

System 
integration 

System 
verification 

System 
validation 

Operation, 
maintenance 

Module test 
design 

Integration test 
design 

System test 
design 

System val. design 

Properties 

Models 

Model checking  
on the basis of 

the source code 



Summary: Properties of model checking 

• Advantages: 
– It offers a complete exploration of the state space of the model 

– It is possible to check huge state spaces (in specific cases) 

• 1020, or even 10100 states can be checked automatically 

– There are fully automated tools, there is no need to perform manual 
adjustment, mathematical operations, or heuristics 

– Diagnostic trace is generated, which supports debugging and correction 

• Problems: 
– Scalability is limited (state space must fit to memory) 

– Effective for control-oriented models 

• Complex data structures result in huge state space 

– It is not easy to generalize the results 

• If a protocol is correct for 2 processes, is it correct for N processes as well? 

– The formalization of properties is difficult 

• There are different „temporal logic languages” 



Summary of model based design and verification 

• Formal modeling:  

– Timed automata models 

• Formalization of properties:  

– Temporal logic 

• Formal verification: 

– Model checking 

• Source code synthesis: 

– Template based code generation from timed automata 

• Monitor code synthesis: 

– Runtime verification of the control flow 


