
Formal modelling
and verification

István Majzik slides

Modified by András Vörös on 15. October 2013

Budapest University of Technology and Economics

Dept. of Measurement and Information Systems

Ariane-5 Flight 501

Ariane-5 Flight 501

• Ariane-5 first test flight (4. June 1996.)

– http://www.youtube.com/watch?v=c9Hf4qTxdxs

http://www.youtube.com/watch?v=c9Hf4qTxdxs
http://www.youtube.com/watch?v=c9Hf4qTxdxs

Ariane-5 Flight 501

• Ariane-5 first test flight (4. June 1996.)

– http://www.youtube.com/watch?v=c9Hf4qTxdxs

– Exploded after 40 s (self destruction)

– damage: at least US$ 370,000,000 (others say: 8 billion $)

– Cause: software bug (not found by tests)

– The control software of Ariane-4 was used

– The software contains a float-int conversion

– The acceleration of Ariane-5 was higher than the
acceleration of Ariane-4

– The acceleration value stored in a float variable of 64 bit
could not be converted into a signed integer variable of 16
bit. This lead to unhandled exception

http://www.youtube.com/watch?v=c9Hf4qTxdxs
http://www.youtube.com/watch?v=c9Hf4qTxdxs

Ariane-5 Ada code example

≈70

KLOC

Case study: ProSigma SCAN protokoll
• A real time safety critical (SIL 4) protocol

developed by Prolan Zrt.
– Function: ensuring fault-free communication

• Analysed function:
connection handling
– Establishing

connection

– Sending object state

• Checked property:
– The connection

remains established
after a while

– A liveness property

Data Transfer Layer

Case study: Field LG

Reset

Connecting

Connected

module FieldLG

OBJ2, OBJDOWN received:

ToSync over:

send OBJ1(TPropMin,TPropMax]

set ToSync[TSync]

set ToReset[TRtMax]

ToSync over:

send OBJ1(TPropMin, TPropMax]

set ToSync[TSync]

OBJDOWN received:

ToReset over:

invalidate ToReset

ToSync over:

send OBJUP(TPropMin, TPropMax]

set ToSync[TSync]

OBJ2 received:

OBJDOWN received:

set ToReset[TRtMax]

OBJ2 received:

set ToReset[TRtMax]

ToReset over:

invalidate ToReset

set ToSync[TSync]

invalidate ToReset

Case study: Control LG

Reset

Connecting

Connected

module ControlLG

OBJUP received:

OBJ1 received:

send OBJ2(TPropMin, TPropMax]

set ToReset[TRtMax]

OBJ1 received:

ToReset over:

invalidate ToReset

OBJ1 received:

OBJUP received:

send OBJDOWN(TPropMin, TPropMax]

set ToReset[TRtMax]

OBJUP received:

send OBJDOWN(TPropMin, TPropMax]

set ToReset[TRtMax]

ToReset over:

invalidate ToReset

invalidate ToReset

Case study: Fault model

One_left No_more

module FaultModel

OBJ1, OBJ2, OBJUP, OBJDOWN received:

Case study: results

• An unexpected

counterexample for the

correct behavior

– The loss of a single

message can cause the

protocol to be stuck in a

bad state

• Suggestion to correct the

specification

• Proving the correctness

of the modified system

Example software lifecycle (V-model)

Requirement
analysis

System
specification

Architecture
design

Module
design

Module
implementation

Module
verification

System
integration

System
verification

System
validation

Operation,
maintenance

Module test
design

Integration test
design

System test
design

System val. design

Formal modelling and
verification are relevant in

these phases

Techniques and measures in standards

• IEC 61508:
Functional
safety in
electrical /
electronic /
programmable
electronic
safety-related
systems

• Example:
Software
architecture
design

Goals of formal modeling and verification

System model Formalized properties

Automated
model checker

OK
Counter-
example

correct faulty

Modeling with timed automata

Goals of formal modeling and verification

System model Formalized properties

Automated
model checker

OK
Counter-
example

correct faulty

• Modeling with timed automata

• Mapping to timed automata from higher-level
 models (e.g., from UML state machines)

Automata and variables

• Goal: Modeling event driven, state based behaviour

• Basic formalism: Finite state machine (FSM)
– States (with state names)

– State transitions

State name

Automata and variables

• Goal: Modeling event driven, state based behaviour

• Basic formalism: Finite state machine (FSM)
– States (with state names)

– State transitions

• Extension: Using integer variables
– Range of potential values can be specified

– Constants can be defined

– Integer arithmetic can be used

• Extensions on state transitions:
– Guards: Predicates on the variables

• It shall be true in order to enable the state transition

– Actions: Assignments to the variables

Automata and variables

• Goal: Modeling event driven, state based behaviour

• Basic formalism: Finite state machine (FSM)

• Extension: Using integer variables

• Extensions on state transitions

Guard

Action

Extensions using clock variables

• Goal: Modelling time dependent behaviour
– Time elapses in the states

– Behaviour depends on the time spent in the state

– To be verified: States that can be reached after/until a given time

• Modelling extension: Clock variables
– Concurrent clocks (timers) having the same rate

– Relative time measurements (e.g., time-out): Resetting and reading clock
variables

• Usage in state transitions:
– Actions: Resetting clock variables, independently

– Guards: Referring to clock variables and constants

• Usage in states:
– State invariants: The validity of the state is specified using predicates on

clock variables and constants

Extensions using clock variables

• Goal: Modelling time dependent behaviour

• Modelling extension: Clock variables

• Usage in state transitions

• Usage in states

Action

Guard

State
Invariant

Timed automata (in the UPPAAL tool)

State name

Guard

Invariant

Action

clock x;

Role of state invariants and guards

Guard

Invariant

clock x;

The value of clock x is in the range [4, 8] when leaving the state open

4 8 t

Extensions for modeling distributed systems

• Goal: Modeling networks of interacting automata
– Synchronization among automata

– Synchronized state transitions (rendezvous): synchronous communication

• Sending and receiving of messages at the same time

• This primitive can be used also to model asynchronous communication

• Extension: Synchronized actions
– Channels are defined (synchronous channels)

– Message sending: ! operator on the channel
Message receiving: ? operator on the channel

• E.g., on the channel a the actions are a! and a?

• Parameterization
– Automata with parameters: Instantiation of templates

• E.g., Door(bool &id) with id as a parameter

– Channel arrays (indexed)

• E.g., a[id] is a channel indexed by the value of variable id

a! a?

chan a

Example: Using clock variables and synchronization

Declarations:

 clock t, u;

 chan press;

Switch:

User:

“Receiving a

message”

“Sending a

message”

Further extensions

• Committed state: atomic state transitions
– Typical usage: Before executing the outgoing

transition, the interleaved execution of a state
transition of another automaton is not allowed:
the incoming and the outgoing transitions are
executed in an atomic operation

• Urgent channel: delay is not allowed
– Synchronization shall be executed

immediately, without delay
(but interleaving is possible)

– No time related guard is allowed
on the state transition with an action
referring to an urgent channel

– No state invariant is allowed in a state
where there is an outgoing transition
with an action referring to an urgent channel

a!

No state invariant

is allowed here

No time related

guard is allowed

here

urgent chan a;

C

The UPPAAL tool set

• Development (1999-):
– Uppsala University, Sweden

– Aalborg University, Denmark

• Web page (information, downloading, examples):
http://www.uppaal.org/

• Related tools:
– UPPAAL CoVer: Test generation

– UPPAAL TRON: On-line testing

– UPPAAL PORT: Designing component based systems

– …

• Commercial version:
http://www.uppaal.com/

http://www.uppaal.org/
http://www.uppaal.org/
http://www.uppaal.org/
http://www.uppaal.com/

A
u

to
m

at
o

n
 m

o
d

el

Si
m

u
la

to
r

Formalizing requirements
with temporal logics

 --> 

Goals of formal modeling and verification

System model Formalized properties

Automated
model checker

OK
Counter-
example

correct faulty

• Precise formalization of properties
(requirements) to support automated
checking

What are the formalized properties?

An example to illustrate the properties to be formalized:

• The states of an air-conditioner:

– Switched-off, switched-on, faulty,
light cooling, strong cooling, heating, ventilating

• Requirements for the air-conditioner:

– After switched-on, it shall start ventilating

– Strong cooling is allowed only after light cooling

– Heating shall be followed by ventilating

– The faulty air-conditioner shall not perform heating

– ...

State based properties

• Local: Properties to be evaluated in a given state

– Evaluation is possible using the current values of the state
variables (and clock variables)

– Example: „In the initial state ventilating shall be provided”

• Reachability: Properties to be evaluated on a
sequence of states

– Evaluation is possible on the state space of the system

– Example: „Heating shall be followed by ventilating”

– It can be applied in continuously working systems

– Typical categories of reachability properties:
• „Safety” of the system

• „Liveness” of the system

Safety properties

• Typical use: Specification that each state shall be safe,
i.e., something bad shall never happen
– „In each state the pressure shall be lower than the critical

value.”

– „In each operating state the door shall be closed.”

• Invariant properties are specified:
– „In each reachable state it shall be true that …”

• Examples of IT related safety properties:
– Mutual exclusion: In each reachable state, only one process

shall stay in the critical section

– Security: In each reachable state only authorized
information access is possible

Liveness properties

• Typical use: Specification that a desired state is
eventually reachable, i.e., something good shall happen

– „After switch-on, the request should eventually be
responded.”

– „The process shall eventually reach its goal.”

• Existence (reachability) of given state(s) is specified:

– „A state is eventually reached, in which …”

• Examples of IT related liveness properties:

– After sending a request the reply shall eventually be received

– The message that is sent shall eventually be delivered

– The process shall compute the required result

Language to formalize reachability properties

• Reachability: Refers to states that occur each after the
other (following each other)

– The sequence of states in considered as logic time:
• The present: The current state

• The next time points: The subsequent states

– Temporal (ordering in logic time) operators can be defined to
express the reachability properties

• Temporal logic:

– Formal language to express propositions qualified in terms of
time

– Typical temporal operators: „always”, „eventually”, „before”,
„until”, „after”, …

Temporal logics

• Linear time:
The subsequent states form a linear sequence
(each state has only one successor)
→ logic time forms a linear timeline

• Branching time:
The subsequent states form
a tree structure
(each state may have
multiple successors)
 → logic time forms branching timelines

s 2 s1 s 3

{Green} {Yellow} {Red}

s4

 {Red, Yellow}

s1

{Green}

s5

{Blinking}

s2

{Yellow}

s3

{Red}

s5

{Blinking}

s3 s3

{Red}

The computational tree

Computational tree:
Structure of the
potential successor
states

s5

s 2 s1 s 3 s4

{Green} {Yellow} {Red} {Red, Yellow}

{Blinking}

s4

{Red, Yellow}

s5

{Blinking}

s3

{Red}

s4

{Red, Yellow}

s5

{Blinking}

s1

{Green}

s5

{Blinking}

s2

{Yellow}

s3

{Red}

s5

{Blinking}

s3

{Red}

Automaton (FSM)
with labelled
states 

The computational tree

Computational tree:
Structure of the
potential successor
states

s5

s 2 s1 s 3 s4

{Green} {Yellow} {Red} {Red, Yellow}

{Blinking}

s1

{Green}

Automaton (FSM)
with labelled
states 

The computational tree

Computational tree:
Structure of the
potential successor
states

s5

s 2 s1 s 3 s4

{Green} {Yellow} {Red} {Red, Yellow}

{Blinking}

s1

{Green}

s5

{Blinking}

s2

{Yellow}

Automaton (FSM)
with labelled
states 

The computational tree

Computational tree:
Structure of the
potential successor
states

s5

s 2 s1 s 3 s4

{Green} {Yellow} {Red} {Red, Yellow}

{Blinking}

s1

{Green}

s5

{Blinking}

s2

{Yellow}

s3

{Red}

s5

{Blinking}

s3

{Red}

Automaton (FSM)
with labelled
states 

The computational tree

Computational tree:
Structure of the
potential successor
states

s5

s 2 s1 s 3 s4

{Green} {Yellow} {Red} {Red, Yellow}

{Blinking}

s4

{Red, Yellow}

s5

{Blinking}

s3

{Red}

s4

{Red, Yellow}

s5

{Blinking}

s1

{Green}

s5

{Blinking}

s2

{Yellow}

s3

{Red}

s5

{Blinking}

s3

{Red}

Automaton (FSM)
with labelled
states 

Quantifying paths and characterizing states

• Operators that quantify the paths starting
from a given state:

– A: for all paths from the given state

– E: for an existing path from the given state

• Operators that characterize states along
a given path:

– F: for a state along the path (“future”)

– G: for all states along the path (“globally”)

– X: for the next state from the initial state of the path (“next”)

– U: for states until reaching a specified state (“until”)
• E.g., Yellow U Red means states labeled with Yellow until reaching a

state labeled with Red

The Computational Tree Logic (CTL)

• Composite operators are formed

– First quantifying paths using operators A, E; then
characterizing states along the path by operators F, G, X, U

– Composite operators:
• For all paths: AF, AG, AX, A(. U .) ,

• For an existing path: EF, EG, EX, E(. U .)

– Examples:
• EF Red: There shall exist a path where a state with Red is reached

• AG Green: For all paths, all states shall be labeled with Green

• E(Yellow U Red): There shall exist a path where states are labeled
with Yellow until a state with label Red is reached

• Restricted version of CTL is used in UPPAAL

– AF, AG, EF, EG operators are used

Summary of temporal operators in UPPAAL

UPPAAL:  and  are Boolean expressions on clocks, variables and state names

Operator Informal semantics UPPAAL notation

AG  For all paths,
for all states 

A[] 

AF  For all paths,
for a state eventually 

A<> 

EG  For an existing path,
for all states 

E[] 

EF  For an existing path,
for a state eventually 

E<> 

AG( => AF ) After  always   --> 

There is no deadlock AG not deadlock

Composite operators for all paths

AG : For all paths,
for all states  is true

AG  AF 

 AF : For all paths,
for a state eventually 
becomes true

Composite operators for an existing path

• Is there a relation between AG and EF?

• Is there a relation between AF and EG?

EG  EF 

EG : There exists a path,
where for all states  is true

EF : There exists a path,
where for a state eventually
 becomes true

Conditional reachability

• AG( => AF ) =  --> 
For all paths, for all states: if  is true then it implies that on all
paths eventually a state occurs in which  becomes true

• Reachability with a timing condition:  --> ( and x <= t)
where x is a clock variable that is reset when  becomes true

 --> 

Examples: formalizing properties using temporal logic

Let us consider an air-conditioner with states labelled by the following propositions:

{Switched-off, Switched-on, Faulty, LightCooling, StrongCooling, Heating, Ventilating}

• These atomic propositions can be used in the formalized properties

• The reachability properties refer to the initial state of the system

• The behaviour of the air-conditioner may not be known when the properties are
formalized (the behavioural model shall be verified using these properties)

Examples for formalized properties:

• If the air-conditioner is faulty then it shall be eventually repaired:

 AG(Faulty => AF (Faulty)) or Faulty --> (Faulty)

• If the air-conditioner is faulty then it shall not heat:

 AG ((Faulty  Heating))

• It shall be possible to eventually switch off the air-conditioner:
AF (Switched-off)

• The air-conditioner will eventually become faulty (Murphy’s law) :

 AF (Faulty)

Model checking

System model Formalized properties

Automated
model checker

OK
Counter-
example

correct faulty

Temporal logic properties Timed automata model

The UPPAAL model checker

• Properties can be formalized using temporal logic

• Verification of the properties is automated

• Verification is performed by an exhaustive exploration
of the state space of the model

– Breadth-first, or depth-first search can be configured

• Diagnostic trace can be generated

– Counter-example (for safety properties) or witness (for
liveness properties)

– Shortest, fastest, or some (any) diagnostic trace can be
configured

– The diagnostic trace can be loaded into the simulator to
investigate and debug the behaviour

The UPPAAL model checker

Counter-example in the simulator

Demo

Summary: Model checking in the lifecycle

Requirement
analysis

System
specification

Architecture
design

Module
design

Module
implementation

Module
verification

System
integration

System
verification

System
validation

Operation,
maintenance

Module test
design

Integration test
design

System test
design

System val. design

Properties

Models

Model checking
on the basis of

the source code

Summary: Properties of model checking

• Advantages:
– It offers a complete exploration of the state space of the model

– It is possible to check huge state spaces (in specific cases)

• 1020, or even 10100 states can be checked automatically

– There are fully automated tools, there is no need to perform manual
adjustment, mathematical operations, or heuristics

– Diagnostic trace is generated, which supports debugging and correction

• Problems:
– Scalability is limited (state space must fit to memory)

– Effective for control-oriented models

• Complex data structures result in huge state space

– It is not easy to generalize the results

• If a protocol is correct for 2 processes, is it correct for N processes as well?

– The formalization of properties is difficult

• There are different „temporal logic languages”

Summary of model based design and verification

• Formal modeling:

– Timed automata models

• Formalization of properties:

– Temporal logic

• Formal verification:

– Model checking

• Source code synthesis:

– Template based code generation from timed automata

• Monitor code synthesis:

– Runtime verification of the control flow

