
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Modeling Event-Based Behavior with
State Machines

Critical Embedded Systems
Dr. Ákos Horváth and Dr. Balázs Polgár

Prepared by
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics
Dept. of Measurement and Information Systems

© All rights reserved.

This material can only used by participants of the course.

System Modeling Process

2

What is it about?

Context of the Modeling Aspect

State Machine Diagram

4

Modeling Aspect

What are the states of the selected component?

How it reacts to events (how it changes states)?

5

What are the building blocks?

Modeling Elements & Notation

 Event:

o Asynchronous occurrence/happening with parameters
e.g. mouse click and its place and which button

o Full-fledged object, instance of the Event class
inheritance: extension of its attributes

o Life-cycle:

• Initialization, notification of target objects

• Event-queues and selection

• Processing

o Reactive objects: react to events

Atoms of dynamic modeling

7

 Operation:

o Services provided by the classes (methods)

• client-server relation

• can have return values

o Part of the class definition

o Synchronous or asynchronous communication between
objects

• e.g., method invocation

result = server->operation(p1, p2, ..., pn)

 Signal reception

o Asynchronous communication between objects

Atoms of dynamic modeling II.

8

 State:
o The state of an object

o Defined by:
- value of its attributes (e.g., x<3)
- conditions are met (e.g., operation can be executed)

 Transition:
o Change of state

o Triggered either by the incoming event
or completion

 Action:
o The operations to be executed by the object

Atoms of dynamic modeling III.

9

Dynamic Modeling

with State Machines

State Machines
 Describes the states and state transitions of the system, of a

subsystem, or of one specific object.
o hierarchical and concurrent systems

 States
o Concrete state:

• Combination of possible values of attributes
• Can be infinite

o Abstract states: (like in State Machines)
• Predicates over concrete states
• One abstract state  many concrete states
• Hierarchical states:

– Frequent in embedded apps (e.g. control of car brake)

 Transitions
o Triggering Event
o Guard
o Action

11

State Machine - introduction

 For defining reactive behavior of objects

o Responds to events:
state transitions and actions

o Traditional approach: state machine

 UML State Machine: extension to state machine

o State hierarchy: refinement of states

o Concurrent behavior: parallel threads

o Memory: last active state configuration

12

States I.

 Attributes:

o entry action

o do action

o exit action

 State refinement

o Simple state

o OR refinement: auxiliary state machine,
only one active state

o AND refinement: concurrent regions (state machines),
all regions are active in parallel

report_job

entry/init()
do/print()

exit/reset()

13

Example: State refinement I.

On Off

off

out

on

14

On Off

Standby

Disconnected

out in

off

out

on

OR refinement

Example: State refinement II.

15

On Off

Standby

Disconnected

Sound Image

out in

off

out

on

AND refinement

Example: State refinement III.

16

On Off

Standby

Disconnected

Sound Image

SoundOn

SoundOff

snd mute out in

off

out

on

Show

Coordinates

coor

Example: State refinement IV.

coor

17

On Off

Standby

Disconnected

Sound Image

SoundOn

SoundOff

snd mute out in

off

out

on

Show

Coordinates

Clock

NoClock

clk clk

Example: State refinement V.

coor coor

18

State II.

 History state
o Stores the last active state configuration

o Input transition: it sets the object to the saved state
configuration

o Output transition: defines the default state, if there were
no active state since

o Deep history state: saves the complete state hierarchy
(down to the lowest substates)

 Initial state: becomes active when entered to the
region

• One in each OR refinement
• One in each AND region

 Final state: state machine terminates

19

Print_job

Close

Print

Process
Handle

Get

Reply

it

Example: History State

H

20

Transition I.

 Defining state changes

 Syntax:

 trigger [guard] / action

o trigger: event, triggered operation or time-out

o guard: transition condition

• Logic formula over the attributes of the objects and events

• referring to a state: IS_IN(state) macro

• Without trigger: if becomes true the transition is active

o action: operations  action semantics

21

Transition II.

 Time-out trigger:
o becomes active if the object stays in he source state for the

predefined interval

 e.g., tm(50), based on system time

 Complex transitions
o Fork

o Join

o Condition

o (Internal)
• executes without exiting or re-entering the state in which it is defined

 Transitions between different hierarchy levels

22

Transition example

Prepare

Phase1

Act1

Phase2

Act2 Act3

Passed

Missed
tm(50)

error

Work

Group2

Group1

illegal_activity [fatal] / report_status()

[fatal] / report_status()

[not_fatal] / recovery()

State name

Failure

23

(Basic) State Machine elements

 State

 (Transition)

 History state

 Initial State

 Final State

 Conditional transition

 Synchronization(fork/join)

State name

H H*

s1 s2

24

How is the model interpreted?

Semantics of the Model

Semantics: How does it work?

 Basics:

o Hierarchical state machine (state chart)

o Event queue + scheduler

 Semantics defines:
Behavior in case an event occurs
 one step of the state chart

o (concurrent) transitions fire

o State configuration changes
in all region in the active state and also one substate in
the OR refinement (recursively)

26

Semantics of State Transitions

 Separately processed events:

o Scheduler only triggers the next event if the previous
one is completely processed
stable configuration: there is no state change without an event

 Complete processing of events:

o The largest set of possible fireable transitions
(all enabled transition fires, if they are not in conflict)

 How does it work?: Steps of the event processing

27

Steps of event processing I.

 Scheduler triggers an event for the State Machine
in a stable state configuration

 Enabled transitions:
o Source state is active

o The event is their trigger

o Guards are evaluated to true

 Based on the number of fireable transitions
o Only one: fire!

o None: do nothing

o More than one: select transitions to fire?

28

t4

t5
t3 t2 t1

a1 a2

a11 a12
a21

a22

a111

a112 a113

a121

a122

All transitions are triggered by the same e event: Which should fire?

Cannot fire together : (t1,t2); (t1,t4); (t2,t4); (t3,t4)
Disabled (cannot fire): t5

Example: Conflict

29

Steps of event processing II.

 Selection of fireable transitions:

o Fireable = Enabled + Max, priority

o Conflict: Has the same source state

• Formally: the intersection of their left (exit) states is not
empty

Conflict resolution  priority:

• Defined between two transitions (t1 and t2)

• t1 > t2, if and only if the source state of t1 is a substate within
the state hierarchy of t2 („lower level”)

30

Steps of event processing III.

 Selection of transitions to fire:

o Set of transitions to fire: parallel execution of
concurrent transitions:

• Maximum number of fireable transitions
(= cannot be extended any further)

• There is no conflict between any two transitions

o Selection of this set:

• Random!

31

Fireable: (t1,t3) or (t2,t3)

Conflict resolution

t4

t5
t3 t2 t1

a1 a2

a11 a12
a21

a22

a111

a112 a113

a121

a122

32

Steps of event processing IV.

 Selected transitions fire:
 in random order

 Firing one transition:

o Leaving the source states from the bottom to top and
execute all their exit operations

o Execute the action of the transition

o Entering the target states from top to bottom and
execute the entry actions  new state configuration

33

Steps of event processing V.

 Entering a new state configuration:

o Simple target state: part of the state configuration

o Non-concurrent superstate: direct target of one of its
substate or its initial state

o Concurrent target state: all of its regions have to have
an active state either as direct target state or with
initial state

o History state : the last active state configuration
if there is none: the target state of the history state

34

State transition example

35

S11

S12

S111

S121

S1111

S1

S1211

S1112 S1113
S112

S1212
S122 S123

S1231 S1232

State transition example

36

S11

S12

S111

S121

S1111

S1

S1211

S1112 S1113
S112

S1212
S122 S123

S1231 S1232

S1211 - exit action

State transition example

37

S11

S12

S111

S121

S1111

S1

S1211

S1112 S1113
S112

S1212
S122 S123

S1231 S1232

S121 - exit action

State transition example

38

S11

S12

S111

S121

S1111

S1

S1211

S1112 S1113
S112

S1212
S122 S123

S1231 S1232

S12 - exit action

State transition example

39

S11

S12

S111

S121

S1111

S1

S1211

S1112 S1113
S112

S1212
S122 S123

S1231 S1232

Transition action

State transition example

40

S11

S12

S111

S121

S1111

S1

S1211

S1112 S1113
S112

S1212
S122 S123

S1231 S1232

S11 – entry action

State transition example

41

S11

S12

S111

S121

S1111

S1

S1211

S1112 S1113
S112

S1212
S122 S123

S1231 S1232

S111 – entry action

State transition example

42

S11

S12

S111

S121

S1111

S1

S1211

S1112 S1113
S112

S1212
S122 S123

S1231 S1232

S1111 - entry action

Summary

 Effective technique to model certain dynamic
systems

 Hierarchic refinement allows iterative
development

 Already used in many application domain

o Avionics, automotive, control, etc.

 43

Complex Example

 Traffic light for an intersection with a prioritized
road

o Off: (blinking yellow)

o On: green for the priority road

o Green, yellow, red etc. Different timerange (timer)

o 3 waiting vehicle on priority road: green light despite
the timer’s ticks

o Automatically take photos of vehicles crossing the
priority road on red light. Manual on/off for this
feature.

44

1. Basic state machines

Off

do/blink

!reset

Red

Yellow

Green

Red
Yellow

T1

T4

T2

T3

reset

reset

reset

reset

tm(T4)

45

2. Hierarchy

Off

On

do/blink

reset

!reset

Red

Yellow

Green

Red
Yellow

T1

T4

T2

T3

46

3. Concurrent states

Off

On

do/blink

reset

!reset

Red

Yellow

Green

Red
Yellow

T1

T4

T2

T3

Camera Count

47

4. History States

Off

On

do/blink

!reset

Red

Yellow

Green

Red
Yellow

On

Off

Shoot

CarGo

M
an

u
alO

ff

M
an

u
alO

n

T1

T4

T2

T3

Camera Count
reset

H

48

Complete System

Off

On

do/blink

reset

!reset

Red

Count0

Count1

Count2

car

car

car

Yellow

Green

Red
Yellow

On

Off

Shoot

CarGo

M
an

u
alO

ff

M
an

u
alO

n

T1

T4

T2

T3

Camera Count
H

49

