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System Modeling Process 
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What is it about? 

Context of the Modeling Aspect 



State Machine Diagram 
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Modeling Aspect 

What are the states of the selected component? 

How it reacts to events (how it changes states)? 
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What are the building blocks? 

Modeling Elements & Notation 



 Event: 

o Asynchronous occurrence/happening  with parameters  
e.g. mouse click and its place and which button 

o Full-fledged object, instance of the Event class 
inheritance: extension of its attributes 

o Life-cycle: 

• Initialization, notification of target objects  

• Event-queues and selection 

• Processing 

o Reactive objects: react to events 

Atoms of dynamic modeling 
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 Operation: 

o Services provided by the classes (methods) 

• client-server relation 

• can have return values 

o Part of the class definition 

o Synchronous or asynchronous communication between 
objects 

• e.g., method invocation 

result = server->operation(p1, p2, ..., pn) 

 Signal reception  

o Asynchronous communication between objects 

Atoms of dynamic modeling II. 
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 State: 
o The state of an object 

o Defined by:  
- value of its attributes (e.g., x<3) 
- conditions are met (e.g., operation can be executed) 

 Transition: 
o Change of state 

o Triggered either by the incoming event 
or completion  

 Action: 
o The operations to be executed by the object 

Atoms of dynamic modeling III. 
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Dynamic Modeling 

with State Machines 



State Machines 
 Describes the states and state transitions of the system, of a 

subsystem, or of one specific object. 
o hierarchical and concurrent systems 

 States 
o Concrete state:  

• Combination of possible values of attributes 
• Can be infinite 

o Abstract states: (like in State Machines) 
• Predicates over concrete states 
• One abstract state  many concrete states 
• Hierarchical states:  

– Frequent in embedded apps (e.g. control of car brake) 

 Transitions 
o Triggering Event 
o Guard 
o Action 
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State Machine - introduction 

 For defining reactive behavior of objects 

o Responds to events: 
state transitions and actions 

o Traditional approach: state machine 

 UML State Machine: extension to state machine 

o State hierarchy: refinement of states 

o Concurrent behavior: parallel threads 

o Memory: last active state configuration 
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States I. 

 Attributes: 

o entry action 

o do action 

o exit action 

 State refinement 

o Simple state  

o OR refinement: auxiliary state machine,  
only one active state 

o AND refinement: concurrent regions (state machines), 
all regions are active in parallel 

report_job 

entry/init() 
do/print() 

exit/reset() 
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Example: State refinement I. 

On Off 

off 

out 

on 
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On Off 

Standby 

Disconnected 

out in 

off 

out 

on 

OR refinement 

Example: State refinement II. 
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On Off 

Standby 

Disconnected 

Sound Image 

out in 

off 

out 

on 

AND refinement 

Example: State refinement III. 
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On Off 

Standby 

Disconnected 

Sound Image 

SoundOn 

SoundOff 

snd mute out in 

off 

out 

on 

Show 

Coordinates 

coor 

Example: State refinement IV. 

coor 
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On Off 

Standby 

Disconnected 

Sound Image 

SoundOn 

SoundOff 

snd mute out in 

off 

out 

on 

Show 

Coordinates 

Clock 

NoClock 

clk clk 

Example: State refinement V. 

coor coor 
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State II. 

 History state 
o Stores the last active state configuration 

o Input transition: it sets the object to the saved state 
configuration 

o Output transition: defines the default state, if there were 
no active state since 

o Deep history state: saves the complete state hierarchy 
(down to the lowest substates) 

 Initial state: becomes active when entered to the 
region 

• One in each OR refinement 
• One in each AND region 

 Final state: state machine terminates 
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Print_job 

Close 

Print 

Process 
Handle 

Get 

Reply 

it 

Example: History State 

H 
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Transition I. 

 Defining state changes 

 Syntax: 

 trigger [guard] / action 

o trigger: event, triggered operation or time-out 

o guard: transition condition 

• Logic formula over the attributes of the objects and events 

• referring to a state: IS_IN(state) macro 

• Without trigger: if becomes true the transition is active 

o action: operations  action semantics 
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Transition II. 

 Time-out trigger: 
o becomes active if the object stays in he source state for the 

predefined interval 

 e.g., tm(50), based on system time 

 Complex transitions 
o Fork 

 

o Join 
 

o Condition 

 

o (Internal) 
• executes without exiting or re-entering the state in which it is defined 

 Transitions between different hierarchy levels 
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Transition example 

Prepare 

Phase1 

Act1 

Phase2 

Act2 Act3 

Passed 

Missed 
tm(50) 

error 

Work 

Group2 

Group1 

illegal_activity [fatal] / report_status() 

[fatal] / report_status() 

[not_fatal] / recovery() 

State name 

Failure 
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(Basic) State Machine elements 

 State 

 (Transition) 

 History state 

 Initial State 

 Final State 

 Conditional transition 

 Synchronization(fork/join) 

State name 

H H* 

s1 s2 
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How is the model interpreted? 

Semantics of the Model 



Semantics: How does it work? 

 Basics: 

o Hierarchical state machine (state chart) 

o Event queue + scheduler 

 Semantics defines:  
Behavior in case an event occurs 
 one step of the state chart 

o (concurrent) transitions fire 

o State configuration changes 
in all region in the active state and also one substate in 
the OR refinement (recursively) 
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Semantics of State Transitions 

 Separately processed events: 

o Scheduler only triggers the next event if the previous 
one is completely processed  
stable configuration: there is no state change without an event 

 Complete processing of events: 

o The largest set of possible fireable transitions  
(all enabled transition fires, if they are not in conflict) 

 How does it work?: Steps of the event processing 
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Steps of event processing I. 

 Scheduler triggers an event for the State Machine 
in a stable state configuration 

 Enabled transitions: 
o Source state is active 

o The event is their trigger 

o Guards are evaluated to true 

 Based on the number of fireable transitions 
o Only one: fire! 

o None:  do nothing 

o More than one:  select transitions to fire? 

28 



t4 

t5 
t3 t2 t1 

a1 a2 

a11 a12 
a21 

a22 

a111 

a112 a113 

a121 

a122 

All transitions are triggered by the same e event: Which should fire? 

Cannot fire together : (t1,t2); (t1,t4); (t2,t4); (t3,t4) 
Disabled (cannot fire): t5 

Example: Conflict 
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Steps of event processing II. 

 Selection of fireable transitions: 

o Fireable = Enabled + Max, priority 

o Conflict: Has the same source state  

• Formally: the intersection of their left (exit) states is not 
empty 

Conflict resolution  priority:  

• Defined between two transitions (t1 and t2) 

• t1 > t2, if and only if  the source state of t1 is a substate within 
the state hierarchy of t2 („lower level”) 
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Steps of event processing III. 

 Selection of  transitions to fire: 

o Set of transitions to fire: parallel execution of 
concurrent transitions: 

• Maximum number of fireable transitions  
(= cannot be extended any further)  

• There is no conflict between any two transitions 

o Selection of this set:  

• Random! 
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Fireable: (t1,t3) or (t2,t3) 

Conflict resolution 

t4 

t5 
t3 t2 t1 

a1 a2 

a11 a12 
a21 

a22 

a111 

a112 a113 

a121 

a122 
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Steps of event processing IV. 

 Selected transitions fire: 
 in random order 

 Firing one transition: 

o Leaving the source states from the bottom to top and 
execute all their exit operations 

o Execute the action of the transition 

o Entering the target states from top to bottom and 
execute the entry actions  new state configuration 
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Steps of event processing V. 

 Entering a new state configuration: 

o Simple target state: part of the state configuration 

o Non-concurrent superstate:  direct target of one of its 
substate or its initial state 

o Concurrent target state:  all of its regions have to have 
an active state  either as direct target state or with 
initial state 

o History state : the last active  state configuration 
if there is none: the target state of the history state 
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State transition example 
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S11 

S12 

S111 

S121 

S1111 

S1 

S1211 

S1112 S1113 
S112 

S1212 
S122 S123 

S1231 S1232 



State transition example 
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S11 

S12 

S111 

S121 

S1111 

S1 

S1211 

S1112 S1113 
S112 

S1212 
S122 S123 

S1231 S1232 

S1211 - exit action 



State transition example 
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S11 

S12 

S111 

S121 

S1111 

S1 

S1211 

S1112 S1113 
S112 

S1212 
S122 S123 

S1231 S1232 

S121 - exit action 



State transition example 
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S11 

S12 

S111 

S121 

S1111 

S1 

S1211 

S1112 S1113 
S112 

S1212 
S122 S123 

S1231 S1232 

S12 - exit action 



State transition example 
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S11 

S12 

S111 

S121 

S1111 

S1 

S1211 

S1112 S1113 
S112 

S1212 
S122 S123 

S1231 S1232 

Transition action 



State transition example 
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S11 

S12 

S111 

S121 

S1111 

S1 

S1211 

S1112 S1113 
S112 

S1212 
S122 S123 

S1231 S1232 

S11 – entry action 



State transition example 
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S11 

S12 

S111 

S121 

S1111 

S1 

S1211 

S1112 S1113 
S112 

S1212 
S122 S123 

S1231 S1232 

S111 – entry action 



State transition example 
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S11 

S12 

S111 

S121 

S1111 

S1 

S1211 

S1112 S1113 
S112 

S1212 
S122 S123 

S1231 S1232 

S1111 - entry action 



Summary 

 Effective technique to model certain dynamic 
systems 

 

 Hierarchic refinement allows iterative 
development 

 

 Already used in many application domain 

o Avionics, automotive, control, etc. 
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Complex Example 

 Traffic light for an intersection with a prioritized 
road 

o Off: (blinking yellow) 

o On: green for the priority road 

o Green, yellow, red etc. Different timerange (timer) 

o 3 waiting vehicle on priority road: green light despite 
the timer’s ticks 

o Automatically take photos of vehicles crossing the 
priority road on red light. Manual on/off for this 
feature. 
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1. Basic state machines 

Off 

do/blink 

!reset 

Red 

Yellow 

Green 

Red 
Yellow 

T1 

T4 

T2 

T3 

reset 

reset 

reset 

reset 

tm(T4) 
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2. Hierarchy 

Off 

On 

do/blink 

reset 

!reset 

Red 

Yellow 

Green 

Red 
Yellow 

T1 

T4 

T2 

T3 
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3. Concurrent states 

Off 

On 

do/blink 

reset 

!reset 

Red 

Yellow 

Green 

Red 
Yellow 

T1 

T4 

T2 

T3 

Camera Count 
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4. History States 

Off 

On 

do/blink 

!reset 

Red 

Yellow 

Green 

Red 
Yellow 

On 

Off 

Shoot 

CarGo 

M
an

u
alO

ff 

M
an

u
alO

n
 

T1 

T4 

T2 

T3 

Camera Count 
reset 

H 
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Complete System 

Off 

On 

do/blink 

reset 

!reset 

Red 

Count0 

Count1 

Count2 

car 

car 

car 

Yellow 

Green 

Red 
Yellow 

On 

Off 

Shoot 

CarGo 

M
an

u
alO

ff 

M
an

u
alO

n
 

T1 

T4 

T2 

T3 

Camera Count 
H 
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