Design of the architecture
of safety-critical systems

Akos Horvath, PhD

Based on Istvan Majzik’s slides
Dept. of Measurement and Information Systems

Budapest University of Technology and Economics

Department of Measurement and Information Systems

Objectives

Fail-safe operation

Safe operation

even in case of faults

/

Fail-stop behaviour

e Stopping (switch-off)

is a safe state

¢ |n case of a detected error
the system has to be

stopped

e Detecting errorsis a

critical task

\

Fail-operational behaviour

* Stopping (switch-off)
is not a safe state
e Service is needed even
in case of a detected error
e full service
e degraded (but safe) service
e Fault tolerance is required

Architectural solutions (overview)

= Safety in case of single random hardware faults

Fault handling

Composite fail-safety Reactive fail-safety Inherent fail-safety
e Each function is e Each function is e All failure modes
implemented by equipped with an are safe
at least 2 independent independent e Inherent safe”
components error detection system
e Agreement between e The effects of
the independent detected errors
components is needed can be handled

to continue the operation (compensated)

Typical architectures
for fail-stop operation

Budapest University of Technology and Economics
Department of Measurement and Information Systems

1. Single channel architecture

with built-in self-test

= Single processing flow
= Scheduled hardware self-tests

o After switch-on: Detailed self-test to detect
permanent faults

o In run-time: On-line tests to detect latent
permanent faults

= Scheduled software self-tests

o Typically application dependent techniques

o Checking the control flow, data acceptance
rules, timeliness properties

= Disadvantages:

o Fault coverage of the self-tests is limited '

o Fault handling (e.g., switch-off) shall be
performed by the same channel

Implementation of on-line error detection

= Application dependent (ad-hoc) techniques

o Acceptance checking (e.g., for ranges of values)

o Timing related checking (e.g., too early, too late)

o Cross-checking (e.g., using inverse function)
o Structure checking (e.g., in linked list structure)

= Application independent mechanisms

o Hardware supported on-line checking
e CPU level: Invalid instruction, user/supervisor modes etc.
* MMU level: Protection of memory ranges

o Generic architectural solutions

* Two-channel execution with comparison
* Two-channel execution with safety bag

Example: Testing memory cells

States of a correct cell: State transitions to check stuck faults:
wo w1 , (c'.x)/0 r'/t ri/o
'o.o | (WOi Woj) . (Wlivwoj) -

wO

Stuck-at 0/1 faults:

wO,wi wO,wi

Gp r'/0 r'/1
(Woiswlj) -

Transition fault: ,March” algorithms: 1

Example: Software self-test

" Checking the correctness of execution paths
o On the basis of the program control flow graph

Source code: Control flow graph:
a: for (i=0; i<MAX; i++) { e \
b: if (i==a) { |

C: n=n-i; ‘/o
}else { °

T \/

e: printf(“%d\n”,n);
}

(

®
\

f: printf(“Ready.”)

Example: Software self-test

= Checking the correctness of execution paths
o On the basis of the program control flow graph
o Actual run: Checked on the basis of assigned signatures

Instrumented source code: Control flow graph (reference):
a: S(a); for (i=0; i<kMAX; i++) { e \
b: S(b): if (i==a) { |

(o} S(c); n=n-i; ‘/o
}else { °

d: S(d); m=m-i;
} \ /

e: S(e); printf(“%d\n”,n);
}

(

f: S(f); printf(“Ready.”)

®
\

2. Two-channels architecture with comparison

= Two or more processing |
channels

o Shared input
o Comparison of outputs
o Stopping in case of deviation

= High error detection coverage

= The comparator is a critical
component (but simple)

= Special way of comparison:

o Performed by the operator

= Disadvantages:

o Common mode faults L = |

o Long detection latency l \n_, stop

Example: Tl Hercules Safety Microcontrollers

CPU self test
controller requires
little S/W overhead

Logical / physical
design optimized to
reduce probability
of common cause
failure

Dual-core lockstep—
cycle-by-cycle CPU
fail safe detection

Parity on all
peripheral, DMA and
interrupt controller
RAMs

Parity or CRC in
serial and network
communication

peripherals

Memory-protection ECC for Flash / RAM
units in CPU and interconnect evaluated
DMA inside the Cortex R4F

Memory Power, Clock, and Safety
OSC PLL PBIST/LBIST

Flash w/ ECC

RAM w/ ECC

Flash
EEPROM w/ ECC

POR ESM

CRC RTVDWWD

Memory Protection

Fail Safe JTAG Debu_]
Detection ded Trace

Memory Interface

External Memory

e =
Enhanced System Bus and Vectored Interrupt Module

Safe island hardware diagnostics (red)
Blended hardware diagnostics (blue)
Non-safely critical functions (black)

Memory BIST on all
RAMs allows fast

memory test at
startup

On-chip clock and
voltage monitoring

Error signaling
module with
external error pin

1/0 loop back, ADC
self test, ...

Dual ADC cores with
shared channels

3. Two-channels architecture with safety bag

= |ndependent second |
channel

o ,Safety bag”: only
safety checking

o Diverse implementation

o Checking the output of
the primary channel

= Example:

o Elektra railway
interlocking system

o Rules are implemented
to check the primary
channel —

\n—, Stop

—IN

Example: Alcatel (Thales) Elektra

Peripheral elements

HMI

Central
Controller

Field Element
Controller

Two channels:

Logic channel:
CHILL (CCITT High
Level Language)
procedure-oriented
programming
language

Safety channel:
PAMELA (Pattern
Matching Expert
System Language)
rule-based language

Typical architectures
for fault-tolerant systems

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Objectives for fault tolerant behaviour

Fail-safe operation

/

Fail-stop behaviour

e Stopping (switch-off)
is a safe state

e In case of a detected error
the system has to be
stopped

e Detecting errors is a
critical task

Fail-operational behaviour

e Stopping (switch-off)
is not a safe state
¢ Service is needed even
in case of a detected error
e full service

e degraded (but safe) service
e Fault tolerance is required

Fault tolerant systems

= Fault tolerance: Providing (safe) service in case of faults
o Autonomous error handling during operation (instead of stopping)
o Intervening into the fault — failure chain

= Basic condition: Redundancy

Extra resources to replace (the service of) faulty components

o Hardware N

o Software . ..
> redundancy (sometimes joint appearance)

o Information

o Time _/

= Types of redundancy
o Cold: The redundant component is inactive in fault-free case
o Warm: The redundant component has reduced load in fault-free case

o Hot: The redundant component is active in fault-free case

Forms of redundancy

1. Hardware redundancy

o Extra hardware components
* Inherent in distributed systems
* Planned for fault tolerance

2. Software redundancy
o Extra software modules

3. Information redundancy

o Extra information
* Example: Error correcting codes (ECC)

4. Time redundancy
o Repeated execution (to handle transient faults)

Example: Error detecting and correcting codes

ransfer
_>
£

= Error detecting codes (EDC): Only detection of errors

Encode |—

—Decode — H

o Parity bit: Increasing the Hamming-distance, 1 bit error can be detected

o Checksum: Using in case of files, messages

= Error correcting codes (ECC): Identifying and correcting errors

4 data bits, o Higher Hamming distance: Errors can be corrected
3 redundant

bits * E.g.: (7,4) bit Homming code: 1 bit error corrected, 1 or 2 bit errors detected

o Information blocks: More difficult codes are used
* E.g.: (255, 223) byte Reed-Solomon code: 16 byte errors can be corrected
= Limited error correction capability

o Information storage: In long time, more errors can occur than the number of
errors that can be corrected by the applied codes

o Basic idea: Periodic reading, correcting and writing back the information

How to use the redundancy?

" Hardware design faults: (< 1%)

o Hardware redundancy, with design diversity

o Often are neglected (wide-spread components are used)
" Hardware permanent operational faults: (~20%)

o Hardware redundancy (e.g., redundant processor)
" Hardware transient operational faults: (~ 70-80%)

o Time redundancy (e.g., instruction retry)

o Information redundancy (e.g., error correcting codes)

o Software redundancy (e.g., checkpointing and recovery)
= Software design faults: (~ 10%)

o Software redundancy, with design diversity

1. Fault tolerance for hardware permanent faults

Replication: ——
= Duplication: "
o With comparison: | Primary g
Error detection only! _Input Output
o With diagnostic support: ek .

Fault tolerance by switch-over

= TMR: Triple Modular Redundancy

o Masking the failure

> Module 1
by majority votin Input
! J Y ; Jd Module 2 g Majority Output
o Voter is a critical component o | voting
(but simple)
» Module 3

= NNMR: N-modular redundancy
o Masking the failure by majority voting
o Goal: Surviving a mission time with high probability

Implementation of the replication

= Equipment/server level:
o Servers: High availability server clusters

* E.g., Linux HA Clustering, Windows Server Failover Clustering
o Software support: Failover and failback
= Board level:

o Run-time reconfiguration: “Hot-swap”
* E.g., CompactPCl, HDD, power supply

o Software support: monitoring, reconfiguration

= Component level:

o Replication of components: TMR

o Self-checking circuits (processing encoded information)

Example:

RAID disk
configura-
tions

(Redundant
Array of
Independent
Disks)

Sl L 2 G
—— —— — —

RAID-1: Mirroring (duplicated disks)

B = o [

RAID-2: Bit-level ECC (error correcting codes)

B | =

RAID-3: Bit-level parity (assumption: faulty disk is identified)

%%
-] a 1 B
—3 —— b—

RAID-4: Block-level parity (to improve performance)

RAID-5: Block-level parity (to avoid bottleneck of the parity disk)

T RESER

2. Fault tolerance for transient hardware faults

= Basic approach: Software supported fault tolerance
o Repeated execution will avoid transient faults
o The handling of fault effects is important

o Transient faults are handled by setting a fault-free state
and continuing the execution from that state (potentially
with repeated execution)

" Four phases of operation:
1) Error detection
2) Damage assessment
3) Recovery

4) Fault treatment and continuing service

The four phases of operation 1/4

1) Error detection:

= Application independent mechanisms:
o E.g., detecting illegal instructions at CPU level
o E.g., detecting violation of memory access restrictions

= Application dependent techniques:
o Acceptance checking
o Timing related checking
o Cross-checking
o Structure checking
o Diagnostic checking

The four phases of operation 2/4

2) Damage assessment:

= Motivation: Errors can propagate among the components
between the occurrence and detection of errors

Interactions

Fault% / / , Error detection
|
\

v

= Limiting error propagation: Checking interactions
o Input acceptance checking (to detect external errors)
o Output credibility checking (to provide ,fail-silent” operation)
o Checking and logging resource accesses and communication

= Estimation of components affected by a detected error

o Analysis of interactions (during the latency of error detection)

The four phases of operation 3/4

3) Recovery from an erroneous state

= Forward recovery:

o Setting an error-free state by selective correction
o Dependent on the detected error and estimated damage
o Used in case of anticipated faults

= Backward recovery:

o Restoring a prior error-free state (saved earlier)
o Independent of the detected error and estimated damage
o State shall be saved and restored for each component

= Compensation:

o The error can be handled by using redundant information

Types of recovery

= State space of the system (example): Error

detection
v2 ¢

Faultoccurrence% 4 _
7 | Error detection

s(t)

v1 state variable

Types of recovery

= State space of the system: Forward recovery

V2 A

N

% ==
7 ~

~

s(t)

Forward recovery

v1 state variable

Types of recovery

= State space of the system: Backward recovery

V2 A

Backward recovery

[1 Saved state

»
»

v1 state variable

Types of recovery

= State space of the system: Compensation

V2 A

% ,————
a

------ + Compensation

v1 state variable

Types of recovery

= State space of the system: Types of recovery

V2 A

————— > Backward
Forward
------ > Compensation
[1 Saved state

v1 state variable

Backward recovery

= Based on saved state
o Checkpoint: The saved state

o Checkpoint operations:
» Saving the state: periodically, after messages; into stable storage
e Recovery: restoring the state from the stable storage to memory
* Discarding: after having more recent saved state(s)

o Analogy: “autosave”
= Based on operation logs
o Error to be handled: unintended operation
o Recovery is performed by the withdrawal of operations
o Analogy: "undo”

= |tis possible to combine the two mechanisms

Scenarios of backward recovery

[]
[]

[]
|
| A\

~ .7

N =
Y .
N v'\.///

Checkpoint intervals

[]
[]
[]
[]
[]
[]

Aspects of optimizing checkpoint intervals:
= Stable storage is slow (-> overhead) and has limited capacity
= Computation is lost after the last checkpoint

" Long error detection latency increases the chance of damaged
checkpoints

The four phases of operation 4/4

4) Fault treatment and continuing service

" Transient faults:
o Handled by the forward or backward recovery

= Permanent faults:

Recovery becomes unsuccessful (the error is detected again)
The faulty component shall be localized and handled:

o Diagnostic checks to localize the fault
o Reconfiguration

* Fault tolerance: Replacing the faulty component using redundancy
* Degraded operation: Continuing only the safety related services

o Repair and substitution

4. Fault tolerance for software faults

= Repeated execution is not effective for design faults

= Redundancy with design diversity is required!
Variants: redundant software modules with
o diverse algorithms and data structures,
o different programming languages and development tools,
o separated development teams

in order to reduce the probability of common failures

= Execution of variants:

o N-version programming

o Recovery blocks

N-version programming

= Active redundancy:

Each variant is executed (in parallel)

o The same inputs are used

o Majority voting is performed on the output

* Acceptable range of difference shall be specified

* The voter is a single point of failure

Input

Hl

Variant 1 |~

Variant 2 I—'

Voter

Hl

Variant 3 |~

Recovery blocks

" Passive redundancy: Activation only in case of faults
o The primary variant is executed first

o Acceptance checking performed on the output of the
variants

o In case of a detected error another variant is executed

‘Input

Execution of
a variant

y Acceptance n
checking

Recovery blocks

" Passive redundancy: Activation only in case of faults
o The primary variant is executed first

o Acceptance checking performed on the output of the
variants

o In case of a detected error another variant is executed

‘ Input

Execution of
a variant

\ 4

y Acceptance n n Is there y
checking a variant?

Output Error signal

Recovery blocks

" Passive redundancy: Activation only in case of faults
o The primary variant is executed first

o Acceptance checking performed on the output of the
variants

o In case of a detected error another variant is executed

Input

»i
<

Execution of Restoring
a variant state

A 4

y Acceptance n n Is there y
checking a variant?

Output Error signal

Comparison of the techniques

Property/Type

N-version prog.

Recovery blocks

Error detection

Majority voting,
relative

Acceptance
checking, absolute

Execution of variants

Parallel

Serial

Execution time

Slowest variant
(or time-out)

Depending on the
number of faults

Activation of
redundancy

Always (active)

Only in case of
fault (passive)

Tolerated faults

[(N-1)/2]

N-1

Fault handling

Masking

Recovery

Example: Airbus A-320, self-checking blocks

= Pair-wise self-checking execution
" Primary pair is active, switch-over in case of a fault

" Permanent hardware fault:
The pair with repeatedly detected fault will switch off

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Summary

"

| SYSTEM FAILURE |

Redundancy in space (resources) and time

,Space” redundancy (%)
N-version

A
[programming

J

]

10077

Recovery
blocks

Sl

~
Backward

Forward

Backward
recovery

recovery in
distributed

=)

Error correcting
codes

recovery

107T

>

(Retry)

v

I

systems y

|
I"0.001

Costs of redundancy and operation (faults)

Costs |

. Sum of costs
) Costs of redundancy

-
“——————

Costs of operation

Level of

optimum redundancy

Summary: Types of redundancy

1. Hardware redundancy
o Replicas are used to tolerate permanent faults

2. Software redundancy
o Variants (NVP, RB) are used to tolerate design faults
o Software is used to tolerate transient hardware faults:

* Forward recovery
* Backward recovery

3. Information redundancy

o Faults in information storage and transfer are
corrected by error correcting codes

4. Time redundancy
o Repeated execution is used in case of transient faults

Summary: Techniques of fault tolerance

1. Hardware design faults
o Diverse redundant components are used
2. Hardware permanent operational faults
o Replicated components are used

3. Hardware transient operational faults

o Software techniques for fault tolerance
1. Error detection
2. Damage assessment

3. Forward or backward recovery (or compensation)
4. Fault treatment

o Information redundancy: Error correcting codes
o Time redundancy: Repeated execution
4. Software design faults
o Variants as diverse redundant components (NVP, RB)

