
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Testing:
Test design and testing process

Ákos Horváth, PhD

Based on István Majzik’s and Zoltán Micskei’s slides
Dept. of Measurement and Information Systems

Overview

 Testing basics

o Goals and definitions

 Test design

o Specification based (functional, black-box) testing

o Structure based (white-box) testing

 Testing process

o Module testing

o Integration testing

o System testing

o Validation testing

2

Basic definitions

What is the goal of testing?

What are the costs of testing?

What can be automated?

Definition of testing

“An activity in which a system or component is
executed under specified conditions, the results are
observed or recorded, and an evaluation is made of
some aspect of the system or component.”

 IEEE Std 829-2008

Lots of other, conflicting definitions!

6

Basic concepts

 Test case

o a set of test inputs, execution conditions, and expected
results developed for a particular objective

 Test suite

o several test cases for a component or system under test

 Test oracle

o A source to determine expected results to compare with
the actual result

 Verdict: result (pass / fail /error…)

7

Specification,
requirements

Test cases Verdicts
Test

execution

Remarks on testing

Testing != Debugging

Exhaustive testing:
 Running the program in all possible ways (inputs)

 Hard to implement in practice

Observations:

o Dijkstra: Testing is able to show the presence of faults,
but not able to show the absence of faults.

o Hoare: Testing can be considered as part of an
inductive proof: If the program runs correctly for a
given input then it will run similarly correctly in case of
similar inputs.

8

Practical aspects of testing

 Testing costs may reach 50% of the development costs!
o Test data generation

o Test code implementation

o Running the tests

o Evaluation of the results

 Testing embedded systems:
o Cross-development (different platforms)

o Platform related faults shall be considered (integration)

o Performance and timing related testing are relevant

 Testing safety-critical systems:
o Prescribed techniques

o Prescribed test coverage metrics

 Typically

 manual work

 May be automated

10

Testing in the standards (here: EN 50128)
 Software design and implementation:

 Functional/black box testing (D3):

11

Testing in the standards (here: EN 50128)

 Performance testing (D6):

12

Test design

How can be test data selected?

Test approaches

I. Specification based (functional) testing
o The system is considered as a “black box”

o Only the external behaviour (functionality)
is known (the internal behaviour is not)

o Test goals: checking the existence of the specified
functions and absence of extra functions

M1

m1()

m2()
m3()

A1

A2 A3

A4

M1
II. Structure based testing

– The system is considered as a white box

– The internal structure (source) is known

– Test goals: coverage of the internal

behaviour (e.g., program graph)

14

I. Specification based (functional) testing

Goals:
o Based on the functional specification,

o find representative inputs (test data)

for testing the functionality.

Overview of techniques:

 1. Equivalence partitioning

 2. Boundary value analysis

 3. Cause-effect analysis

 4. Combinatorial techniques

15

1. Equivalence partitioning

Input and output equivalence classes:
Data that are expected to cover the same faults

(cover the same part of the program)

Goal: Each equivalence class is represented by a test
input (selected test data); the correctness in case of
the remaining inputs follows from the principle of
induction

Test data selection is a heuristic procedure:
o Input data triggering the same service

o Valid and invalid input data

 -> valid and invalid equivalence classes

o Invalid data: Robustness testing

16

Equivalence classes (partitions)
 Classic example: Triangle characterization program

o Inputs: Lengths of the sides (here 3 integers)
o Outputs: Equilateral, isosceles, scalene

 Test data for equivalence classes
o Equilateral: 3,3,3
o Isosceles: 5,5,2

• Similarly for the other sides

o Scalene: 5,6,7
o Not a triangle: 1,2,5

• Similarly for the other sides

o Just not a triangle: 1,2,3
o Invalid inputs

• Zero value: 0,1,1
• Negative value: -3,-5,-3
• Not an integer: 2,2,’a’
• Less inputs than needed: 3,4

 How many tests are selected?
o Beck: 6 tests, Binder: 65 tests, Jorgensen: 185 tests …

a

b c

17

Valid/invalid equivalence classes
 Tests in case of several inputs:

o Valid (normal) equivalence classes:
 test data should cover as much equivalence classes as possible

o Invalid equivalence classes:
 first covering the each invalid equivalence class separately,
 then combining them systematically

18

2. Boundary value analysis

 Examining the boundaries of data partitions
o Focusing on the boundaries of equivalence classes

o Input and output partitions are also examined

o Typical faults to be detected: Faulty relational operators, conditions in
cycles, size of data structures, …

 Typical test data:

o A boundary requires 3 tests:

o A partition requires 5-7 tests:
h1 h2

h1

19

3. Cause-effect analysis

 Examining the relation of inputs and outputs
(if it is simple, e.g., combinational)

o Causes: input equivalence classes

o Effects: output equivalence classes

 Boole-graph: relations of causes and effects

o AND, OR relations

o Invalid combinations

 Decision table: Covering the Boole-graph

o Truth table based representation

o Columns represent test data

20

A

B

C

1

2

3

Cause-effects analysis

1

2

A

B

3 C

OR

AND

OR

AND

Invalid ID

Access granted

Authorization failed

Owner ID

Administrator ID

Authorization

 T1 T2 T3

1 0 1 0
2 1 0 0

3 1 1 1

A 0 0 1

B 1 1 0

C 0 0 0

Inputs: Outputs:

Inputs

Outputs

21

4. Combinatorial techniques

 Several input parameters

o Failures are caused by (specific) combinations

o Testing all combinations requires too much test cases

o Rare combinations may also cause failures

 Basic idea: N-wise testing

o For each n parameters, testing all possible
combinations of their potential values

o Special case (n = 2): pairwise testing

22

Example: pair-wise testing

 Given input parameters and potential values:
o OS: eCos, c/OS

o CPU: AVR Mega, ARM7

o Protocol: IPv4, IPv6

 How many combinations are possible?

 How many test cases are needed for pairwise
testing?
A potential test suite:

T1: eCos, AVR Mega, IPv4

T2: eCos, ARM7, IPv6

T3: c/OS, AVR Mega, IPv6

T4: c/OS, ARM7, IPv4

23

Additional techniques

 Finite automaton based testing
o The specification is given as a finite automaton
o Typical test goals: to cover each state, each transition,

invalid transitions, …

 Use case based testing

o The specification is given as a set of use cases
o Each use case shall be covered by the test suite

 Random testing
o Easy to generate (but evaluation may be more difficult)
o Low efficiency

24

Test approaches

I. Specification based (functional) testing
o The system is considered as a “black box”

o Only the external behaviour (functionality)
is known (the internal behaviour is not)

o Test goals: checking the existence of the specified
functions and absence of extra functions

M1

m1()

m2()
m3()

A1

A2 A3

A4

M1
II. Structure based testing

– The system is considered as a white box

– The internal structure (source) is known

– Test goals: coverage of the internal

behaviour (e.g., program graph)

25

II. Structure based testing

 Internal structure is known:

o It has to be covered by the test suite

 Goals:

There shall not remain such

• statement,

• decision,

• execution path

 in the program,

 which was not executed during testing

26

The internal structure

 Well-specified representation:

o Model-based: state machine, activity diagram

o Source code based: control flow graph (program graph)

S1

S2
S3

e1 / a1
e2[g] / a1

e0 / a0

S4

e1 / a2

e2

e1 / a2

e2[g1] / a2

S A1

A2

A3 A4

S

A5 E

27

The internal structure

 Well-specified representation:

o Model-based: state machine, activity diagram

o Source code based: control flow graph (program graph)

a: for (i=0; i<MAX; i++) {

b: if (i==a) {

c: n=n-i;

 } else {

d: m=n-i;

 }

e: printf(“%d\n”,n);

 }

f: printf(“Ready.”)

Source code: Control flow graph:

Statement b

c

d

e

Path

a

f

28

Conditions and decisions

 Condition: a logical indivisible (atomic) expression

 Decision: a Boolean expression composed of
conditions and zero or more Boolean operators

 Examples:

o A decision with one condition:

 if (temp > 20) {…}

o A decision with several conditions:

if (temp > 20 && (valveIsOpen || p == HIGH)) {…}

29

Test coverage metrics

Characterizing the quality of the test suite:

Which part of the testable elements were tested
 1. Statements → Statement coverage

 2. Decisions → Decision coverage

 3. Conditions → Condition coverage

 4. Execution paths → Path coverage

This is not fault coverage!

Standards require coverage (DO-178B, EN 50128,...)
o 100% statements coverage is a basic requirement

30

1. Statement coverage

Definition:
Number of executed statements during testing

Number of all statements

Statement coverage: 80%

A1

A2

A3 A4

A5

Statement coverage: 100%

Does not take into account branches without statements

k=0

k=1

m=1/k

[a>0]
[a<=0]

31

2. Decision coverage

Definition:

Number of decisions reached during testing

Number of all potential decisions

Decision coverage: 50%

A2

A3 A4

Decision coverage: 100%

Does not take into account all combinations of conditions!

A2

A3 A4

[safe(c) || safe(b)]

32

3. Multiple condition coverage

Definition:
Number of condition combinations tried during testing

Number of all condition combinations

Strong, but complex:

Number of conditions

Number

of test

data

For n conditions 2n test cases may be necessary!

In avionics systems there are programs with more than 30 conditions!

33

Other coverage criteria

MC/DC: Modified Condition/Decision Coverage

 It is used in the standard DO-178B to ensure that
Level A (Catastrophic) software is tested adequately

 During testing followings must be true:

o Each entry and exit point has been invoked at least once,

o every condition in a decision in the program has taken all
possible outcomes at least once,

o every decision in the program has taken all possible
outcomes at least once,

o each condition in a decision is shown to independently
affect the outcome of the decision.

34

4. Path coverage
Definition:

Number of independent paths traversed during testing
Number of all independent paths

100% path coverage implies:
o 100% statement coverage, 100% decision coverage
o 100% multiple condition coverage is not implied

Path coverage: 80%

Statement coverage: 100%

A1

A2

A3 A4

A5

35

Summary of coverage criteria

36

From: K. J. Hayhurst et al. A Practical Tutorial on Modified Condition/ Decision Coverage, NASA/TM-2001-210876

Testing process

What are the typical phases of testing?

How to test complex systems?

Testing and test design in the V-model

Requirement

analysis

System

specification

Architecture

design

Module

design

Module

implementation

Module

verification

System

integration

System

verification

System

validation

Operation,

maintenance

Module test

design

Integration test

design

System test

design

System val.

design

44

1. Module testing

 Modules:

o Logically separated units

o Well-defined interfaces

o OO paradigm: Classes (packages, components)

 Module call hierarchy (in ideal case):
A

A1 A2

A31

A311

A3

A32 A33

A312 A313

A3 A31 A311 A312 A

45

Module testing

 Lowest level testing

o Integration phase is more efficient if the modules are
already tested

 Modules can be tested separately

o Handling complexity

o Debugging is easier

o Testing can be parallel for the modules

 Complementary techniques

o Specification based and structure based testing

46

Isolated testing of modules

 Modules are tested separately, in isolation

 Test executor and test stubs are required

 Integration is not supported

A

A1 A2

A31

A311

A3

A32 A33

A312 A313

Test

executor

Module to be

tested

Test

stub

Test

stub

Test

stub

47

Regression testing

Repeated execution of test cases:

 In case when the module is changed
o Iterative software development,

oModified specification,

o Corrections, ...

 In case when the environment changes
o Changing of the caller/called modules,

o Changing of platform services, ...

Goals:
o Repeatable, automated test execution

o Identification of functions to be re-tested

48

2. Integration testing

Testing the interactions of modules

 Motivation
o The system-level interaction of modules may be

incorrect despite the fact that all modules are correct

 Methods:
o Functional testing: Testing scenarios

• Sometimes the scenarios are part of the specification

o (Structure based testing at module level)

 Approaches:
o “Big bang” testing: integration of all modules
o Incremental testing: stepwise integration of modules

49

“Big bang” testing

 Integration of all modules and testing using the external
interfaces of the integrated system

 External test executor

 Based of the functional specification of the system

 To be applied only in case of small systems

D

C

Tester1

A

Tester2 B

Debugging is diffcult!

50

Top-down integration testing

 Modules are tested from the caller modules

 Stubs replace the lower-level modules that are called

 Requirement-oriented testing

 Module modification: modifies the testing of lower levels

A

A1 A2

A31

A311

A3

A32 A33

A312 A313

Tested module:

test executor

Module

to be tested

Test

stub

Test

stub

Test

stub

51

Bottom-up integration testing

 Modules use already tested modules

 Test executor is needed

 Testing is performed in parallel with integration

 Module modification: modifies the testing of upper levels

A

A1 A2

A31

A311

A3

A32 A33

A312 A313

Test

executor

Module

to be tested

Tested

module

Tested

module

Tested

module

52

Integration with the runtime environment

 Motivation: It is hard to construct stubs for the
runtime environment

o Platform services, RT-OS, task scheduler, …

 Strategy:

1. Top-down integration of the application modules to
the level of the runtime environment

2. Bottom-up testing of the runtime environment

• Isolation testing of functions (if necessary)

• „Big bang” testing
with the lowest level of the application module hierarchy

3. Integration of the application with the runtime
environment, finishing top-down integration

53

3. System testing

Testing on the basis of the system level specification

 Characteristics:

o Performed after hardware-software integration

o Testing functional specification +
testing extra-functional properties as well

 Testing aspects:

o Data integrity

o User profile (workload)

o Checking application conditions of the system
(resource usage, saturation)

o Testing fault handling

54

Types of system tests

55

Performance testing

Configuration testing

Concurrency testing

Stress testing

Reliability testing

Tester

Failover testing

• Checking saturation effects

• Real workload

• Response times

• Hardware and software settings

• Increasing the number of users

• Checking deadlock, livelock

• Checking the effects of faults

• Checking the redundancy

• Checking failover/failback

4. Validation testing

 Goal: Testing in real environment
o User requirements are taken into account

o Non-specified expectations come to light

o Reaction to unexpected inputs/conditions is checked

o Events of low probability may appear

 Timing aspects
o Constraints and conditions of the real environment

o Real-time testing and monitoring is needed

 Environment simulation
o If given situations cannot be tested in a real

environment (e.g., protection systems)

o Simulators shall be validated somehow

56

Relation to the development process

1. Module testing
o Isolation testing

2. Integration testing
o „Big bang” testing
o Top-down testing
o Bottom-up testing
o Integration with runtime environment

3. System testing
o Software-hardware integration testing

4. Validation testing
o Testing user requirements
o Environment simulation

57

Summary

 Testing techniques
o Specification based (functional, black-box) testing

• Equivalence partitioning
• Boundary value analysis
• Cause-effect analysis

o Structure based (white-box) testing
• Coverage metrics and criteria

 Testing process
o Module testing
o Integration testing

• Top-down integration testing
• Bottom-up integration testing

o System testing
o Validation testing

58

