
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Railway control systems:
Development of safety-critical software

Istvan Majzik

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Contents

 The role of standards

 Development of railway control software

o Safety lifecycle

o Roles and competences of personnel

o Techniques for design and V&V

o Tools and languages

o Documentation

 Case study: SAFEDMI

o Hardware and software architecture

o Verification techniques

2

3

The role of standards
for railway control systems

How the development is influenced by
the requirements of the standards?

Standards for railway control applications
 Basic standard:

o IEC 61508: Functional safety of electrical/
electronic/programmable electronic safety-related systems

 Specific CENELEC standards derived from IEC 61508:
o EN 50126-1:2012 - Railway applications - The Specification and

Demonstration of Reliability, Availability, Maintainability and
Safety (RAMS)

o EN 50129:2003 - Railway applications - Communication,
signalling and processing systems - Safety related electronic
systems for signalling

o EN 50128:2011 - Railway applications - Communication,
signalling and processing systems - Software for railway control
and protection systems

o EN 50159:2010 - Railway applications - Communication,
signalling and processing systems - Safety-related
communication in transmission systems

4

Relation of railway related standards

5

6

Railway control software
as safety-critical software

Software route map

 Basic SIL concepts:

o Software SIL shall be identical to
the system SIL

o Exception: Software SIL can be
reduced if mechanism exists to
prevent the failure of a software
component from causing the
system to go to an unsafe state

 Reducing software SIL requires:

o Analysis of failure modes and
effects

o Analysis of independence between
software and the prevention
mechanisms

7

Example: SCADA system architecture

8

Reducing SW component SIL
by the following solutions:

 Processing in two
channels

 Comparison of output
signals at the I/O

 Comparison of visual
output by the operator:
Alternating bitmap
visualization from the
two channels (blinking if
different)

 Detection of internal
errors before the effects
reach the outputs

Syncron

Communication

protocol

Input

Database

Control

GUI

Channel 1 Channel 2

Communication

protocol

Control

Database

Input
Syncron

Pict BPict A

I/O

Recall: Safety integrity requirements

 Low demand mode
(low frequency of
demands):

 High demand mode
(high frequency or
continuous demand):

SIL Probability of dangerous failure per
hour per safety function

1 10-6  PFH < 10-5

2 10-7  PFH < 10-6

3 10-8  PFH < 10-7

4 10-9  PFH < 10-8

SIL Average probability of failure to
perform the function on demand

1 10-2  PFD < 10-1

2 10-3  PFD < 10-2

3 10-4  PFD < 10-3

4 10-5  PFD < 10-4

(PFH or THR)

11

Problems in demonstrating software SIL
 Systematic failures in complex software:

o Development of fault-free software cannot be guaranteed in
case of complex functions

• Goal: Reducing the number of faults that may cause hazard

o Target failure measure (hazard rate) cannot be demonstrated
by a quantitative analysis

• General techniques do not exist, estimations are questionable

 SW safety standards prescribe methods and techniques
for the software development, operation and maintenance:

1. Safety lifecycle

2. Competence and independence of personnel

3. Techniques and measures in all phases of the lifecycle

4. Documentation

12

Safety lifecycle

Software lifecycle
Basic principles:
 Top-down design
 Modularity
 Preparing test

specifications
together with the
design
specification

 Verification of
each phase

 Validation
 Configuration

management and
change control

 Clear
documentation
and traceability

13

14

Software quality assurance

 Software Quality Assurance Plan
o Determining all technical and control activities in the lifecycle

• Activities, inputs and outputs (esp. verification and validation)

• Quantitative quality metrics

• Specification of its own updating (frequency, responsibility, methods)

o Control of external suppliers

 Software configuration management
o Configuration control before release for all artifacts

o Changes require authorization

 Problem reporting and corrective actions (issue tracking)
o “Lifecycle” of problems: From reporting through analysis,

design and implementation to validation

o Preventive actions

15

Software/hardware

integration

Development of generic software

System

development

Requirement

specification

Architecture

design

Component

design

Component

coding

Component

test spec.

Integration test

specification

Validation test

specification

Component

testing

Software

integration

Software

validation

Software

assessment

Operation and

maintenance
Generic software:
It can be used and re-used
after parameterization with
specific data
(e.g., station layout)

16

Software/hardware

integration

Parameterization of generic software

System

development

Requirement

specification

Architecture

design

Component

design

Component

coding

Component

test spec.

Integration test

specification

Validation test

specification

Component

testing

Software

integration

Software

validation

Software

assessment

Operation and

maintenance

Parameterization

Design for
paramete-
rization

V&V of
paramete-
rization

17

Roles and competences in the
lifecycle

Roles in the development lifecycle

1. Project Manager (PM)

2. Requirements Manager (RQM)

3. Designer (DES)

4. Implementer (IMP)

5. Tester (TST) – component and overall testing

6. Integrator (INT) – integration testing

7. Verifier (VER) – static verification

8. Validator (VAL) – overall satisfaction of req.s

9. Assessor (ASR) – external reviewer

18

The preferred organizational structure

19

20

Competence of personnel

 Competence shall be demonstrated for each role
o Training, experience and qualifications

 Example: Competences of an Implementer
o Shall be competent in engineering appropriate to the

application area

o Shall be competent in the implementation language and
supporting tools

o Shall be capable of applying the specified coding standards
and programming styles

o Shall understand all the constraints imposed by the
hardware platform and the operating system

o Shall understand the relevant parts of the standard

21

Techniques for design and V&V

22

Basic approach

 Goal: Preventing the introduction of systematic faults and
controlling the residual faults

 SIL determines the set of techniques to be applied as

o M: Mandatory

o HR: Highly recommended (rationale behind not using it
 should be detailed and agreed with the assessor)

o R: Recommended

o ---: No recommendation for or against being used

o NR: Not recommended

 Combinations of techniques is allowed

o E.g., alternative or equivalent techniques are marked

 Hierarchy of methods is formed (references to sub-tables)

Example: Software design and implementation

23

Example: Software Architecture
Combinations:
 „Approved

combinations of
techniques for
Software SIL 3
and 4 are as
follows:
o 1, 7, 19, 22 and

one from 4, 5,
12 or 21; or

o 1, 4, 19, 22 and
one from 2, 5,
12, 15 or 21.”

 „Approved
combinations of
techniques for
Software SIL 1
and 2 are as
follows:
o 1, 19, 22 and

one from 2, 4, 5,
7, 12, 15 or 21.”

24

Example: Verification and Testing

Requirements
for SIL4:
 5: Mandatory

 4: Highly
recommended

 3:
Recommended

 2: No
recommendation

 1: Not
recommended

29

Example: Integration and Overall SW Testing

30

31

Specific techniques (examples)

 Defensive programming
o Self-checking anomalous control/data flow and data values during

execution (e.g., checking variable ranges, consistency of
configuration) and react in a safe manner

 Safety bag technique
o Independent external monitor ensuring that the behaviour is safe

 Memorizing executed traces
o Comparison of program execution with previously documented

reference execution in order to detect errors and fail safely

 Test case execution from error seeding
o Inserting errors in order to estimate the number of remaining errors

after testing – from the number of inserted and detected errors

32

Tools and languages

Tool classes

 T1: Generates outputs which cannot contribute to
the executable code (and data) of the software
o E.g.: a text editor, a requirement support tool, a

configuration control tool

 T2: Supports the test or verification of the design
or executable code, where errors in the tool can
fail to reveal defects
o E.g.: a test coverage measurement tool; a static

analysis tool

 T3: Generates outputs which can contribute to the
executable code (including data) of the system
o E.g.: source code compiler, a data/algorithms

compiler

33

Selection of software tools
 Justification of the selection of T2 and T3 tools:

o Identification of potential failures in the tools output
o Measures to avoid or handle such failures

 Evidence in case of T3 tools:
o Output of the tool conforms to its specification
o Or failures in the output are detected

 Sources of evidence:
o Validation of the output of the tool: Based on the same steps

necessary for a manual process as a replacement of the tool
o Validation of the tool: Sufficient test cases and their results

• History of successful use in similar environments, for similar tasks

o Compliance with the safety integrity levels derived from the
risk analysis of the process including the tools

o Diverse redundant code that allows the detection and control of
tool failures

34

Programming languages

 The programming language shall

o have a translator which has been evaluated, e.g., by a
validation suite (test suite)

• for a specific project: reduced to checking specific suitability

• for a class of applications: all intended and appropriate use
of the tool

omatch the characteristics of the application,

o contain features that facilitate the detection of design
or programming errors,

o support features that match the design method

35

Requirements for languages

 Coding standards (subsets of languages) are defined
o “Dangerous” constructs are excluded (e.g., function pointers)

o Static checking can be used to verify the subset

36

37

Interesting facts
 Boeing 777: Approx. 35 languages are used

o Mostly Ada with assembler (e.g., cabin management
system)

o Onboard extinguishers in PLM

o Seatback entertainment system in C++ with MFC

 European Space Agency:
o Mandates Ada for mission critical systems

 Honeywell: Aircraft navigation data loader in C

 Lockheed: F-22 Advanced Tactical Fighter program
in Ada 83 with a small amount in assembly

 GM trucks vehicle controllers mostly in
Modula-GM (Modula-GM is a variant of Modula-2)

 TGV France: Braking and switching system in Ada

 Westinghouse: Automatic Train Protection (ATP)
systems in Pascal

Restrictions using pre-existing software
 The following information about the pre-existing software shall

clearly be identified and documented:
o the requirements that it is intended to fulfil
o the assumptions about the environment
o interfaces with other parts of the software

  Precise and complete description for the system integrator
 The pre-existing software shall be included in the validation

process of the whole software
 For SIL 3 or SIL 4 the following precautions shall be taken:

o analysis of its possible failures and their consequences
o a strategy to detect failures and to protect the system from these

• e.g., wrapper code to detect failures and isolate the unit

o verification and validation of the following:
• that it fulfils the allocated requirements
• that its failures are detected and the system is protected
• that the assumptions about the environment are fulfilled

38

Specification of interfaces
 Pre/post conditions
 Data from and to the interfaces

o All boundary values for all specified data,
o All equivalence classes for all specified data and each function
o Unused or forbidden equivalence classes

 Behaviour when the boundary value is exceeded
 Behaviour when the value is at the boundary
 For time-critical input and output data:

o Time constraints and requirements for correct operation
o Management of exceptions

 Allocated memory for the interface buffers
o The mechanisms to detect that the memory cannot be allocated

or all buffers are full

 Existence of synchronization mechanisms between functions

39

40

Documentation

Documents in the software lifecycle

41

Doc. control

 Writing

 First check:
Verifier

 Second
check:
Validator

 Third check:
Assessor

42

43

Case study: SAFEDMI

Development of a safe driver-machine
interface for ERTMS train control

What is ERTMS?

 European Rail Traffic Management System
o Single Europe-wide standard for train control and

command systems

 Main components:
o European Train Control System (ETCS): standard for in-cab

train control
o GSM-R: the GSM mobile communications standard for

railway operations (from/to control centers)

 Equipment used:
o On-board equipment: e.g., EVC European Vital Computer

for on-board train control
o Infrastructure equipment: e.g., balise, an

electronic transponder placed between
the rails to give the exact location of a train

44

Development of a safe DMI

46

EVC:
European
Vital
Computer
(on board)

Train driver

Maintenance centre

DMI
EVC

Main characteristics:
 Safety-critical functions

o Information visualization
(speedometer, odometer, …)

o Processing driver commands
o Data transfer to EVC

 Safe wireless communication
o System configuration
o Diagnostics
o Software update

Requirements

 Safety:
o Safety Integrity Level: SIL 2

o Tolerable Hazard Rate: 10-7 <= THR < 10-6

hazardous failures per hours

o CENELEC standards: EN 50129 and EN 50128

 Reliability:
oMean Time To Failure: MTTF > 5000 hours

 (5000 hours: ~ 7 months)

 Availability:
o A = MTTF / (MTTF+MTTR), A > 0.9952

Faulty state: shall be less than 42 hours per year
MTTR < 24 hours if MTTF=5000 hours

 47

Operational concerns

48

Fail-safe operation

Fail-stop behaviour Fail-operational behaviour

• Stopping (switch-off)
 is a safe state
• In case of a detected error
 the system has to be
 stopped
• Detecting errors is the
 main concern

• Stopping (switch-off)
 is not a safe state
• Service is needed even
 in case of a detected error

• full service

• degraded (but safe) service

• Fault tolerance is required

Safe operation
even in case of faults

Fail-safety concerns

49

Safety in case of single random hardware faults

Fault handling

Composite fail-safety Reactive fail-safety

• Each function is
 implemented by
 at least 2 independent
 components
• Agreement between
 the independent
 components is needed
 to continue the operation

• Each function is
 equipped with an
 independent
 error detection
• The effects of
 detected errors
 can be handled

Inherent fail-safety

• All failure modes
 are safe
• „Inherent safe”
 system

The SAFEDMI hardware concept

50

 Single electronic structure based on reactive fail-safety

 Generic (off-the-shelf) hardware components are used

 Most of the safety mechanisms are based on software
implemented error detection and error handling

LCD D ISPLAY

 DMI

E XCLUSION LOGIC
LCD
lamp

Vcc

………

K eyboard

Speaker

ERTMS ON-BOARD

SYSTEM (EVC)

commercial field bus

wireless
interface

The SAFEDMI hardware architecture

Commercial hardware components:

51

LCD

matrix

CPU

ROMRAM

Audio

Controller

Graphic

Controller

Keyboard

Controller

Keyboard

Speaker
Video

Pages

Thermometer

Cabin

Identifier

bus

Bus

Controller

Log

Device

Device to

communicate with

EVC

Device to

communicate with

BD

LCD

lamps

Flash

audio

LCD lamps

Controller

Watch

dog

LCD

matrix

CPU

ROMRAM

Audio

Controller

Graphic

Controller

Keyboard

Controller

Keyboard

Speaker
Video

Pages

Thermometer

Cabin

Identifier

Cabin

Identifier

bus

Bus

Controller

Log

Device

Device to

communicate with

EVC

Device to

communicate with

BD

LCD

lamps

Flash

audio

LCD lamps

Controller

Watch

dog

The SAFEDMI fault handling

 Operational modes:

o Startup, Normal, Configuration and Safe (stopped) modes

o Suspect state to implement controlled restart/stop after error:
counting occurrences of errors in a given time period;
forcing to Safe state (stop) in a given limit is exceeded

52

Error detection in Startup mode

Detection of permanent hardware faults by thorough self-testing

 Memory testing:

o March algorithms (for stuck-at and coupling faults):
writing and reading back regular 1 and 0 patterns stepwise

 CPU testing:

o External watchdog circuit: Basic functionality (starting, heartbeat)

o Self-test of functions: Core functionality  complex functionality
(instruction decoding, register decoding, internal buses, arithmetic
and logic unit)

 Integrity of software (in EEPROM):

o Error detection codes

 Device testing (speaker, keyboard etc.):

o Operator assistance is needed

53

Error detection in Normal/Config mode

 Hardware devices:

o Scheduled low-overhead memory, video page and CPU tests

o Acceptance checks for I/O

 Communication and configuration functions:

o Assertions for data acceptance / credibility checks of internal data

o Error detection and correction codes for messages

 Operation mode control and driver input processing:

o Control flow monitoring (based on the program control flow graph)

o Time-out checking for operations

o Acknowledgement procedure: the driver shall confirm risky operations

 Visualization of train data (bitmap computations):

o Duplicated computation and comparison of the results

o Visual comparison by the driver (periodic change of bitmaps)

54

55

Testing the DMI

Testing goals

56

Main test groups:
• ERTMS functions

– Interactions with the driver

– Interactions with the EVC

• Internal safety mechanisms

• Wireless communications

EVC:
European
Vital
Computer
(on board)

Driver

Maintenance centre

DMI
EVC

Testing the ERTMS functions

 Sequences of test inputs: DMI inputs + workload

 Test output: DMI display + Diagnostic device

57

Step Action Expected Event

1. Driver: give traction to the train SAFEDMI: the current train speed increases.

2. None

SAFEDMI:

 The text message “Entry in Full
Supervision Mode” is shown and a sound
is produced.

 the FS mode icon is shown in area
B7;

 in area A2 the distance to target is shown;

3.
Driver: give traction to the train
until the current train speed
overcomes the permitted speed.

SAFEDMI:
- In area A1 the warning to avoid brake

intervention is displayed and sound is
produced;

- In area E1 the icon (Brake
applied) is shown;

 In area C9 the icon (Service
brake intervention or emergency brake
intervention) is shown.

Test environment

58

Simulating the workload:
• signals from balises on a given route
• control messages from the railway

regulation control center
Plus: Diagnostic device

Output of the diagnostic device

59

Robustness testing

 Focus: Exceptional and extreme inputs, overload

 Testing behaviour on the driver interface:

o Handling buttons: pressing more buttons simultaneously, …

o Input fields: empty, full, invalid characters, …

 Testing behaviour on the EVC interface:

o Invalid messages: empty, garbage, invalid fields, flooding, …

60

Driver
DMI

EVC

Testing the internal mechanisms

 Operational modes and the corresponding functions

o Activation of operational modes, configuration, disconnection
from the environment

o Coverage of the state machine of the operational modes

o Coverage of the state machine of error counting

 Performance: Testing deadlines in case of maximum
workload (specified on the EVC interface)

 Handling of buttons: Blocked buttons, safety
acknowledgements, ordering of events

 Handling temperature sensors: Startup and operational
temperature conditions (tested in climate test chamber)

61

Systematic testing

 Testing the operational modes:

o Covering each state and
each state transition

62

State machine of the operational modes

State machine of error counting

Testing the internal safety functions

 Targeted fault injection: Testing the implementation of the
software based error detection and error handling mechanisms

o Test goals:

• The injected errors are detected by the implemented mechanisms

• The proper error handling is triggered

o Tested error detection mechanisms:

• Control flow checking, data acceptance checking,
duplicated execution and comparison, time-out checking

 Random fault injection: Evaluation of error detection coverage

o Collecting data for coverage statistics

 Checking hardware self-tests in specific configurations

o Hardware checks (RAM, ROM, video page)

o I/O device checks (cabin, LCD, temperature)

63

Software based fault injection

64

Collecting diagnostic data

65

Testing the wireless communication

 Scenario based testing: Communication scenarios

 Normal operation:
o Protocol testing: Establishing connection, message processing,

closing the connection

 Operation in case of transmission errors:
o Error detection mechanisms (EDC, ECC)

o Closing the connection in case of too frequent errors

66

Wrapper configuration for testing

67

CIS

(installed on DMI) DMI BD

DMI broadacst

CIS/DMI

Perf. Obs. Data

Session signaling Session signaling

DMI/BD session setup

Session data Session data

IUT

w
ra

p
p

e
r w

ra
p

p
e

r Control Data

SAVS

Bridge device Test control System under test Session control

83

Summary

 The role of standards

 Development of railway control software

o Safety lifecycle

o Roles and competences

o Techniques for design and V&V

o Tools and languages

o Documentation

 Case study: SAFEDMI

o Hardware and software architecture

o Verification techniques

