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The role of standards  
for railway control systems 

How the development is influenced by 
the requirements of the standards? 



Standards for railway control applications 
 Basic standard:  

o IEC 61508: Functional safety of electrical/ 
electronic/programmable electronic safety-related systems 

 Specific CENELEC standards derived from IEC 61508: 
o EN 50126-1:2012 - Railway applications - The Specification and 

Demonstration of Reliability, Availability, Maintainability and 
Safety (RAMS) 

o EN 50129:2003 - Railway applications - Communication, 
signalling and processing systems - Safety related electronic 
systems for signalling 

o EN 50128:2011 - Railway applications - Communication, 
signalling and processing systems - Software for railway control 
and protection systems 

o EN 50159:2010 - Railway applications - Communication, 
signalling and processing systems - Safety-related 
communication in transmission systems 
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Relation of railway related standards 
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Railway control software  
as safety-critical software  



Software route map 

 Basic SIL concepts:  

o Software SIL shall be identical to 
the system SIL 

o Exception: Software SIL can be 
reduced if mechanism exists to 
prevent the failure of a software 
component from causing the 
system to go to an unsafe state 

 Reducing software SIL requires: 

o Analysis of failure modes and 
effects 

o Analysis of independence between 
software and the prevention 
mechanisms 
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Example: SCADA system architecture 
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Reducing SW component SIL 
by the following solutions: 

 Processing in two 
channels 

 Comparison of output 
signals at the I/O 

 Comparison of visual 
output by the operator: 
Alternating bitmap 
visualization from the 
two channels (blinking if 
different) 

 Detection of internal 
errors before the effects 
reach the outputs 
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Recall: Safety integrity requirements 

 Low demand mode 
(low frequency of 
demands): 

 

 

 High demand mode 
(high frequency or 
continuous demand):  

SIL Probability of dangerous failure per 
hour per safety function 

1 10-6  PFH < 10-5 

2 10-7  PFH < 10-6 

3 10-8  PFH < 10-7 

4 10-9  PFH < 10-8 

SIL Average probability of failure to 
perform the function on demand 

1 10-2  PFD < 10-1 

2 10-3  PFD < 10-2 

3 10-4  PFD < 10-3 

4 10-5  PFD < 10-4 

(PFH or THR) 
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Problems in demonstrating software SIL 
 Systematic failures in complex software: 

o Development of fault-free software cannot be guaranteed in 
case of complex functions 

• Goal: Reducing the number of faults that may cause hazard 

o Target failure measure (hazard rate) cannot be demonstrated  
by a quantitative analysis 

• General techniques do not exist, estimations are questionable 
 

 SW safety standards prescribe methods and techniques 
for the software development, operation and maintenance: 

1. Safety lifecycle 

2. Competence and independence of personnel 

3. Techniques and measures in all phases of the lifecycle 

4. Documentation 
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Safety lifecycle 



Software lifecycle 
Basic principles: 
 Top-down design 
 Modularity 
 Preparing test 

specifications 
together with the 
design 
specification 

 Verification of 
each phase 

 Validation 
 Configuration 

management and 
change control 

 Clear 
documentation 
and traceability 
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Software quality assurance 

 Software Quality Assurance Plan 
o Determining all technical and control activities in the lifecycle 

• Activities, inputs and outputs (esp. verification and validation) 

• Quantitative quality metrics 

• Specification of its own updating (frequency, responsibility, methods) 

o Control of external suppliers 

 Software configuration management 
o Configuration control before release for all artifacts 

o Changes require authorization 

 Problem reporting and corrective actions (issue tracking) 
o “Lifecycle” of problems:  From reporting through analysis, 

design and implementation to validation 

o Preventive actions 
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Software/hardware 

integration 
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after  parameterization with 
specific data  
(e.g., station layout) 
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Software/hardware 
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Roles and competences in the 
lifecycle 



Roles in the development lifecycle 

1. Project Manager (PM) 

2. Requirements Manager (RQM) 

3. Designer (DES) 

4. Implementer (IMP) 

5. Tester (TST) – component and overall testing 

6. Integrator (INT) – integration testing 

7. Verifier (VER) – static verification 

8. Validator (VAL) – overall satisfaction of req.s 

9. Assessor (ASR) – external reviewer 
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The preferred organizational structure 
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Competence of personnel 

 Competence shall be demonstrated for each role 
o Training, experience and qualifications 

 Example: Competences of an Implementer 
o Shall be competent in engineering appropriate to the 

application area 

o Shall be competent in the implementation language and 
supporting tools 

o Shall be capable of applying the specified coding standards 
and programming styles 

o Shall understand all the constraints imposed by the 
hardware platform and the operating system 

o Shall understand the relevant parts of the standard 
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Techniques for design and V&V 
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Basic approach 

 Goal: Preventing the introduction of systematic faults and 
controlling the residual faults 

 SIL determines the set of techniques to be applied as 

o M:   Mandatory 

o HR:  Highly recommended (rationale behind not using it  
        should be detailed and agreed with the assessor) 

o R:    Recommended 

o ---:  No recommendation for or against being used 

o NR: Not recommended 

 Combinations of techniques is allowed 

o E.g., alternative or equivalent techniques are marked 

 Hierarchy of methods is formed (references to sub-tables) 



Example: Software design and implementation 
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Example: Software Architecture 
Combinations: 
 „Approved 

combinations of 
techniques for 
Software SIL 3 
and 4 are as 
follows:  
o 1, 7, 19, 22 and 

one from 4, 5, 
12 or 21; or 

o 1, 4, 19, 22 and 
one from 2, 5, 
12, 15 or 21.” 

 „Approved 
combinations of 
techniques for 
Software SIL 1 
and 2 are as 
follows:  
o 1, 19, 22 and 

one from 2, 4, 5, 
7, 12, 15 or 21.” 
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Example: Verification and Testing 

Requirements 
for SIL4: 
 5: Mandatory 

 4: Highly 
recommended 

 3: 
Recommended 

 2: No 
recommendation 

 1: Not 
recommended 
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Example: Integration and Overall SW Testing 

 

30 
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Specific techniques (examples) 

 Defensive programming 
o Self-checking anomalous control/data flow and data values during 

execution (e.g., checking variable ranges, consistency of 
configuration) and react in a safe manner 

 Safety bag technique 
o Independent external monitor ensuring that the behaviour is safe 

 Memorizing executed traces 
o Comparison of program execution with previously documented 

reference execution in order to detect errors and fail safely 

 Test case execution from error seeding 
o Inserting errors in order to estimate the number of remaining errors 

after testing – from the number of inserted and detected errors 
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Tools and languages 



Tool classes 

 T1: Generates outputs which cannot contribute to 
the executable code (and data) of the software 
o E.g.: a text editor, a requirement support tool, a 

configuration control tool 

 T2: Supports the test or verification of the design 
or executable code, where errors in the tool can 
fail to reveal defects 
o E.g.: a test coverage measurement tool; a static 

analysis tool 

 T3: Generates outputs which can contribute to the 
executable code (including data) of the system 
o E.g.: source code compiler, a data/algorithms 

compiler 
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Selection of software tools 
 Justification of the selection of T2 and T3 tools: 

o Identification of potential failures in the tools output 
o Measures to avoid or handle such failures 

 Evidence in case of T3 tools: 
o Output of the tool conforms to its specification 
o Or failures in the output are detected 

     Sources of evidence: 
o Validation of the output of the tool: Based on the same steps 

necessary for a manual process as a replacement of the tool 
o Validation of the tool: Sufficient test cases and their results 

• History of successful use in similar environments, for similar tasks 

o Compliance with the safety integrity levels derived from the  
risk analysis of the process including the tools 

o Diverse redundant code that allows the detection and control of 
tool failures 
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Programming languages 

 The programming language shall 

o have a translator which has been evaluated, e.g., by a 
validation suite (test suite) 

• for a specific project: reduced to checking specific suitability 

• for a class of applications: all intended and appropriate use 
of the tool 

omatch the characteristics of the application, 

o contain features that facilitate the detection of design 
or programming errors, 

o support features that match the design method 
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Requirements for languages 

 Coding standards (subsets of languages) are defined 
o “Dangerous” constructs are excluded (e.g., function pointers) 

o Static checking can be used to verify the subset 
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Interesting facts 
 Boeing 777: Approx. 35 languages are used 

o Mostly Ada with assembler (e.g., cabin management 
system) 

o Onboard extinguishers in PLM 

o Seatback entertainment system in C++ with MFC 

 European Space Agency: 
o Mandates Ada for mission critical systems 

 Honeywell: Aircraft navigation data loader in C 

 Lockheed: F-22 Advanced Tactical Fighter program 
in Ada 83 with a small amount in assembly 

 GM trucks vehicle controllers mostly in  
Modula-GM (Modula-GM is a variant of Modula-2) 

 TGV France: Braking and switching system in Ada 

 Westinghouse: Automatic Train Protection (ATP) 
systems in Pascal 



Restrictions using pre-existing software 
 The following information about the pre-existing software shall 

clearly be identified and documented: 
o the requirements that it is intended to fulfil 
o the assumptions about the environment 
o interfaces with other parts of the software 

      Precise and complete description for the system integrator 
 The pre-existing software shall be included in the validation 

process of the whole software 
 For SIL 3 or SIL 4 the following precautions shall be taken: 

o analysis of its possible failures and their consequences 
o a strategy to detect failures and to protect the system from these 

• e.g., wrapper code to detect failures and isolate the unit 

o verification and validation of the following: 
• that it fulfils the allocated requirements 
• that its failures are detected and the system is protected 
• that the assumptions about the environment are fulfilled 
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Specification of interfaces 
 Pre/post conditions 
 Data from and to the interfaces 

o All boundary values for all specified data, 
o All equivalence classes for all specified data and each function 
o Unused or forbidden equivalence classes 

 Behaviour when the boundary value is exceeded 
 Behaviour when the value is at the boundary 
 For time-critical input and output data: 

o Time constraints and requirements for correct operation 
o Management of exceptions 

 Allocated memory for the interface buffers 
o The mechanisms to detect that the memory cannot be allocated  

or all buffers are full 

 Existence of synchronization mechanisms between functions 
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Documentation 



Documents in the software lifecycle 
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Doc. control 

 Writing 

 First check: 
Verifier 

 Second 
check: 
Validator 

 Third check: 
Assessor 
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Case study: SAFEDMI 

Development of a safe driver-machine 
interface for ERTMS train control 



What is ERTMS? 

 European Rail Traffic Management System 
o Single Europe-wide standard for train control and 

command systems 

 Main components: 
o European Train Control System (ETCS): standard for in-cab 

train control 
o GSM-R: the GSM mobile communications standard for 

railway operations (from/to control centers) 

 Equipment used: 
o On-board equipment: e.g., EVC European Vital Computer 

for on-board train control  
o Infrastructure equipment: e.g., balise, an  

electronic transponder placed between  
the rails to give the exact location of a train 
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Development of a safe DMI 
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EVC: 
European 
Vital 
Computer 
(on board)  

Train driver 

Maintenance centre 

DMI 
EVC 

Main characteristics: 
 Safety-critical functions 

o Information visualization 
(speedometer, odometer, …) 

o Processing driver commands 
o Data transfer to EVC 

 Safe wireless communication 
o System configuration 
o Diagnostics 
o Software update 



Requirements 

 Safety: 
o Safety Integrity Level:      SIL 2 

o Tolerable Hazard Rate:      10-7 <= THR < 10-6 

hazardous failures per hours 

o CENELEC standards: EN 50129 and EN 50128 

 Reliability: 
oMean Time To Failure:       MTTF > 5000 hours 

  (5000 hours: ~ 7 months) 

 Availability: 
o A = MTTF / (MTTF+MTTR),     A > 0.9952 

Faulty state: shall be less than 42 hours per year 
MTTR < 24 hours if MTTF=5000 hours 
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Operational concerns 
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Fail-safe operation 

Fail-stop behaviour Fail-operational behaviour 

• Stopping (switch-off) 
   is a safe state 
• In case of a detected error 
   the system has to be  
   stopped 
• Detecting errors is the  
   main concern 

• Stopping (switch-off) 
   is not a safe state 
• Service is needed even 
   in case of a detected error 

• full service 

• degraded (but safe) service 

• Fault tolerance is required 

Safe operation  
even in case of faults 



Fail-safety concerns 
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Safety in case of single random hardware faults 

Fault handling 

Composite fail-safety Reactive fail-safety 

• Each function is  
   implemented by  
   at least 2 independent  
   components 
• Agreement between  
   the independent  
   components is needed  
   to continue the operation 

• Each function is 
    equipped with an  
    independent  
    error detection 
•  The effects of  
     detected errors 
     can be handled 

Inherent fail-safety 

• All failure modes 
    are safe 
• „Inherent safe”  
    system 



The SAFEDMI hardware concept 
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 Single electronic structure based on reactive fail-safety 

 Generic (off-the-shelf) hardware components are used 

 Most of the safety mechanisms are based on software  
implemented error detection and error handling 
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The SAFEDMI hardware architecture 

Commercial hardware components: 
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The SAFEDMI fault handling 

 Operational modes: 

o Startup, Normal, Configuration and Safe (stopped) modes 

o Suspect state to implement controlled restart/stop after error:  
counting occurrences of errors in a given time period; 
forcing to Safe state (stop) in a given limit is exceeded 
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Error detection in Startup mode 

Detection of permanent hardware faults by thorough self-testing 

 Memory testing: 

o March algorithms (for stuck-at and coupling faults): 
writing and reading back regular 1 and 0 patterns stepwise 

 CPU testing:  

o External watchdog circuit: Basic functionality (starting, heartbeat) 

o Self-test of functions: Core functionality  complex functionality 
(instruction decoding, register decoding, internal buses, arithmetic 
and logic unit) 

 Integrity of software (in EEPROM): 

o Error detection codes 

 Device testing (speaker, keyboard etc.): 

o Operator assistance is needed 
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Error detection in Normal/Config mode 

 Hardware devices: 

o Scheduled low-overhead memory, video page and CPU tests 

o Acceptance checks for I/O 

 Communication and configuration functions: 

o Assertions for data acceptance / credibility checks of internal data 

o Error detection and correction codes for messages 

 Operation mode control and driver input processing: 

o Control flow monitoring (based on the program control flow graph) 

o Time-out checking for operations 

o Acknowledgement procedure: the driver shall confirm risky operations 

 Visualization of train data (bitmap computations): 

o Duplicated computation and comparison of the results 

o Visual comparison by the driver (periodic change of bitmaps) 
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Testing the DMI 



Testing goals 
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Main test groups: 
• ERTMS functions 

– Interactions with the driver 

– Interactions with the EVC 

• Internal safety mechanisms 

• Wireless communications 

EVC: 
European 
Vital 
Computer 
(on board)  

Driver 

Maintenance centre 

DMI 
EVC 



Testing the ERTMS functions 

 Sequences of test inputs: DMI inputs + workload 

 Test output: DMI display + Diagnostic device 
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Step Action Expected Event 

1.  Driver: give traction to the train  SAFEDMI: the current train speed increases. 

2.  None 

SAFEDMI:  

 The text message “Entry in Full 
Supervision Mode” is shown and a sound 
is produced. 

 the FS mode icon   is shown in area 
B7; 

 in area A2 the distance to target is shown; 

3.  
Driver: give traction to the train 
until the current train speed 
overcomes the permitted speed. 

SAFEDMI:  
- In area A1 the warning to avoid brake 

intervention is displayed and sound is 
produced; 

- In area E1 the icon  (Brake 
applied) is shown; 

 In area C9 the icon  (Service 
brake intervention or emergency brake 
intervention) is shown. 

 



Test environment 
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Simulating the workload: 
• signals from balises on a given route  
• control messages from the railway  

regulation control center 
Plus: Diagnostic device 



Output of the diagnostic device 
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Robustness testing 

 Focus: Exceptional and extreme inputs, overload 

 Testing behaviour on the driver interface: 

o Handling buttons: pressing more buttons simultaneously, … 

o Input fields: empty, full, invalid characters, … 

 Testing behaviour on the EVC interface: 

o Invalid messages: empty, garbage, invalid fields, flooding, … 
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Testing the internal mechanisms 

 Operational modes and the corresponding functions 

o Activation of operational modes, configuration, disconnection 
from the environment 

o Coverage of the state machine of the operational modes 

o Coverage of the state machine of error counting 

 Performance: Testing deadlines in case of maximum 
workload (specified on the EVC interface)  

 Handling of buttons: Blocked buttons, safety 
acknowledgements, ordering of events 

 Handling temperature sensors: Startup and operational 
temperature conditions (tested in climate test chamber) 
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Systematic testing 

 Testing the operational modes: 

o Covering each state and  
each state transition 
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State machine of the operational modes 

State machine of error counting 



Testing the internal safety functions 

 Targeted fault injection: Testing the implementation of the 
software based error detection and error handling mechanisms 

o Test goals: 

• The injected errors are detected by the implemented mechanisms 

• The proper error handling is triggered 

o Tested error detection mechanisms: 

• Control flow checking, data acceptance checking, 
duplicated execution and comparison, time-out checking 

 Random fault injection: Evaluation of error detection coverage 

o Collecting data for coverage statistics 

 Checking hardware self-tests in specific configurations 

o Hardware checks (RAM, ROM, video page) 

o I/O device checks (cabin, LCD, temperature) 
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Software based fault injection 
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Collecting diagnostic data 

65 



Testing the wireless communication 

 Scenario based testing: Communication scenarios 

 Normal operation: 
o Protocol testing: Establishing connection, message processing, 

closing the connection 

 Operation in case of transmission errors: 
o Error detection mechanisms (EDC, ECC) 

o Closing the connection in case of too frequent errors 
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Wrapper configuration for testing 
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