
CES

Formal modelling and verification
You have to create formal models and verify them in the UPPAAL tool. The assignment consists of two
parts, at first you have to create an untimed model and then extend it with timing information.

Documents: you have to create the formal models, the verification queries and you also have to
write a summary (the summary should be in doc or pdf format). All these documents have to be
compressed into a zip file and be sent before the deadline! The summary has to contain the following
information: the detailed models and their explanation, the modelling decisions, the verification
queries and their evaluation, with also the explanation of the results! We are also evaluating the
outline of the document, so please try to prepare nice documents!

The evaluation is the following. We can only deal with solutions containing both parts of the modelling
phases and have all queries defined according to the specification! In the final evaluation you have to
be able to defend your modelling and verification decisions! In addition, you might be asked to modify
your specification/model!

Operating system

Engineers implemented the following protocol in an operating system to ensure the mutual exclusion
so that no two threads are in their critical section at the same time, no two threads access to a shared
resource simultaneously. In order to ensure this property, the designers implemented a controller,
which handles the requests and lets the threads to enter their critical section.

The working of the protocol is the following. When the operating system is started, it creates two
binary (Boolean) variables for each thread in the memory. Thread i will use these two variables ri and
gi to communicate with the controller. These variables are initialized to “FALSE”. Thread i sets the value
of variable ri to “TRUE” if it wants to enter the critical section. The controller can read the variable r of
every thread. If the controller recognizes that thread i has set its variable ri to “TRUE”, it can grant the
right for thread i to enter the critical section by setting the variable gi of thread i to “TRUE”. The thread
periodically checks if its variable g had been set “TRUE”, then the thread enters its critical section and
uses the shared resources. When thread i leaves the critical section, it sets the variable ri to “FALSE”
and it proceeds with its normal working. The controller periodically checks the variable ri, and if it is
“FALSE”, it drawbacks the grant from thread i by setting variable gi to “FALSE”.

The implementations are the following (pseudo) codes. Each line is an atomic operation in itself.

threadi controller
1 … other activity …

2 ri := TRUE
3 wait until gi = TRUE
4 critical section

5 ri := FALSE
6 go to 1

1 wait until at least one ri is TRUE

2 let c be such that rc = TRUE
3 gc := TRUE

4 wait until rc = FALSE
5 gc := FALSE
6 go to 1

If more than one thread set their variables ri to “TRUE”, the controller chooses nondeterministically
from them (in line 2 of controller).

Let assume that our operating system runs 3 threads and one controller.

Critical Embedded Systems

2

Phase1: Modelling and verification

Create the formal model of the system in UPPAAL! Does your model have the same behaviours as the
pseudo codes?

Formalize the following specification properties with the help of temporal logic and verify your system
(if the system satisfies the property, explain why, if the system violates the property, explain the
counterexample, why did the model violate the specification)!

1. The model does not have deadlock!
2. Is it possible for every thread to enter their critical section?
3. Is it true that at most one of the threads can be in the critical section?
4. Is the system starvation and livelock free?

Phase2: Modelling and verification the timed system

Modify your (system) model! We know that each operation of the thread requires 1 time unit and it
stays in the critical section at least 8 and at most 10 time units. After leaving the critical section, the
thread needs at least 8 time units to process the results, so it cannot request access in the next 8 time
units.

The controller requires 2 time units for each operation (so the operation “wait until” checks the given
variable at every 2 units).

Create the formal model of the system in UPPAAL!

Check the requirements on the timed model:

1. The model does not have deadlock!
2. Is it possible for every thread to enter their critical section?
3. Is it true that at most one of the threads can be in the critical section?
4. Is the system starvation and livelock free?

