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1 Introduction 

1.1 Summary (abstract) 

The R5-COP project aims to create solutions that allow robotic system designers to rapidly 
reconfigure their tools using standardized interfaces and modular, exchangeable 
components. 

This document summarizes solutions allowing Seamless integration of components through 
standardized and/or abstract software interfaces. 

The lowest level interface pertaining to software we have identified is the one separating 
hardware resources and code execution. Section 2 gives a detailed overview of Virtualization 
techniques and their applicability to embedded and cyber-physical systems. These solutions 
aim to separate hardware and software design, and allow us to use programs written once 
on different kinds of CPUs and microcontrollers. Besides a general overview of virtualization 
we put a special emphasis on the QEMU embedded virtualization solution. 

Section 3 focuses on a higher level software interfaces, namely the message oriented data 
exchange formats. These can take place locally or over the Internet and are closely related 
to Web technologies. We give an overview of these technologies focusing on semantic 
technologies, which encapsulate data together with its interpretation. We introduce self-
describing XML based languages, the resource description framework technique, and 
standardized data storage and exchange formats such as SensorML created by the Open 
Geospatial Consortium. Finally, subsection 3.1 gives an overview of standardized software 
interfaces already in use in the robotic industry, and an outlook on upcoming standardized 
software interfaces. 

1.2 Purpose of document 

This document presents various interfacing techniques using virtualization and semantic 
technologies, and evaluates the potential gain by using them. It focuses on techniques such 
as virtualization, semantic web technologies. 

This is a draft document of the final deliverable due in M18, which will also contain sections 
regarding message oriented middleware solutions. 

1.3 Partners involved 

 

Partners and Contribution 

Short Name Contribution 

BME Overview and evaluation of virtualization techniques with a particular focus 

on embedded virtualization. Overview and evaluation of semantic web 

techniques providing an abstract, self-describing means for data exchange. 

PIAP Overview of standard software interfaces in the robotic industry, and 

examples of related technologies such as laser scanning. 

TTS A short draft related to audio/video sensor interfaces 

TUBS  
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2 Improving component interoperability through embedded 
virtualization 

2.1 Virtualization in general 

Before we discuss embedded virtualization and the ways it can improve component 
interoperability let’s discuss virtualization in general. Virtualization can happen at different 
levels. Depending on the level at which virtualization operates we can distinguish between 
system virtualization and process virtualization. 

From now on under virtualization we mean system virtualization. System virtualization makes 
an additional copy (or copies) of the environment provided by the hardware to the software 
running on it. This virtual environment is called virtual machine. And the component 
realizing the virtualization is called hypervisor or virtual machine monitor (VMM). The 
paper of Popek and Goldberg (1974) [1] is a well cited starting point in the field of 
virtualization. In their work they defined three requirements against hypervisors: 

1. Equivalence criteria: the virtual environment shall be essentially indistinguishable 
from the real one by the software.1 

2. Efficiency criteria: the applications running inside the virtual environment suffer only 
minor decreases in speed.2 

3. Control criteria: the hypervisor shall be in complete control over the resources of the 
real environment.3 

                                                
1
 Implementing virtualization needs time and resources. For these reasons the virtualized environment behaves in 

a different way from the timing point of view compared to the real environment. Furthermore it has less resources. 
However from all the other aspects the virtualized environment must be identical to the real one. 
2
 In practise it means that the virtualization can be considered as efficient if the majority of the instructions can be 

executed without any modifications. 
3
 In other words the hypervisor must catch the moments when the code running in the virtualized environment 

wants to get information on the state of resources in the system or wants to alter it. In these cases the hypervisor 
must show the virtual copy of these states instead of the real ones. 

Figure 2-1. Process virtualization vs. System virtualization 
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2.1.1 Classic virtualization 

In their paper Popek and Goldberg also declared a sufficient condition to test whether a 
given architecture can support virtual machines or not: 

“... a virtual machine monitor may be constructed if the set of sensitive instructions for that 
computer is a subset of the set of privileged instructions.” 

By sensitive instructions they mean those instructions whose execution is either depending 
on the state of the resources in the system or whose execution alters the state of these 
resources. (Examples for these resource states can be the amount of available memory, the 
current execution mode of the processor or whether interrupts are enabled or not.) 

By privileged instructions they mean those instructions whose execution is allowed only in 
the privileged mode of the processor (this mode often called supervisor or kernel mode). 
Whereas any attempt of the execution of these instructions in the unprivileged (also called 
user) mode generates an exception (also called trap). It is important to note that simply 
omitting the execution of these instructions in the unprivileged mode is not enough. The 
exception is has to be asserted in these cases. 

Let’s consider some software we want to run in a virtualized environment. The software can 
be divided into two parts. Some of the code (in our example an operating system) is 
executed in kernel mode (which is needed because normally the OS is supposed to be in 
control of the resources in a system). The remainder part of the software (in our example the 
processes) runs in user mode. 

What happens if Popek and Goldberg’s sufficient condition on virtualizability holds true 
meanwhile we try to execute the OS in user mode (in other words we deprivilege it)? Every 
time the OS executes a sensitive instruction (in other words it tries to read or alter the state 
of the resources in the system) a trap occurs. Processors jump to a well defined program 
memory address if they receive a trap. (This is because under normal circumstances (e.g. 
not virtualized) a trap usually indicates that something went wrong. The code located at that 
memory address is supposed to handle the situation.) 

This behaviour is quite handy for virtualization purposes. After the OS failed to execute the 
sensitive instruction and trap has been arisen all we need to do is to put the entry point of a 
hypervisor to the address where the processor just jumped. 

This way the hypervisor now can “fool” the OS. If it wanted to read the state of the real 
system the hypervisor can show the state of the virtual environment. Likewise if the OS 

Figure 2-2. Classic virtualization 
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wanted to alter the state of the real system the hypervisor alters the state of the virtual 
environment. 

This technique (trap and emulate) is also called as classic virtualization. In this case the 
hypervisor is the only component running in kernel mode. The original kernel mode is now 
called virtual kernel mode and the original user mode is called virtual user mode. The real 
system is the host and the virtual system(s) is (are) the guest(s). 

It is worth to mention that not all architecture can be virtualized in the above described 
classic way. An example for such an architecture is the well know x86 (without the various 
virtualization support extensions added by Intel and AMD after realizing the lack of support 
for classic virtualization in the original x86 architecture). 

It is also worth to note that not being virtualizable in the classic way does not mean not being 
virtualizable at all. Remember, Popek and Goldberg’s condition on virtualization is just a 
sufficient condition, not a necessary one. This leaves the way free for other virtualization 
techniques to meet the three criteria (namely the equivalence, efficiency and control) against 
a hypervisor. [2] 

2.1.2 Dynamic binary code translation 

If the classic way of virtualization cannot be applied we can theoretically create a hypervisor 
using an interpreter. The interpreter simply fetches the next instruction from memory, then 
decodes it and finally also executes it. However this technique fulfils two of Popek and 
Goldberg’s criteria (namely the equivalence and control), it cannot be said to be an efficient 
one. [2] 

A somewhat similar technique is the binary (code) translation. The idea is that only those 
sensitive instructions need special attention whose execution in user mode does not 
generate a trap. All of the other instructions can be executed natively (there is no need to 
interpret them). 

Binary translation thus has to be able to locate those problematic instructions. To make this 
task a little bit easier and faster, the code about to run is first divided into small chunks called 
basic blocks. A basic block has exactly one entry point and exactly one exit point (like a 
jump, subroutine call or a return). The search for problematic instructions happens within 
these basic blocks. And if one is found that instruction needs to be handled. It will be usually 
a call to the hypervisor. Execution also returns to the hypervisor if the exit point has been 
reached. [3] After the problematic instruction has been replaced the effect is somewhat 
similar to as if a trap had been asserted (which also supposed to give the execution to the 
hypervisor). 

To speed up this technique the translated blocks are stored in a cache. This way the 
negative impact on speed caused by binary translation happens only once (at the cost of 
increased memory consumption). As time goes on more and more part of the code will be 
translated. If at the end of a basic block the execution is about to move to another basic 
block (which has been already translated) we do not need to return back to the hypervisor. 
The next basic block can simply be directly invoked. [3] 

It is worth to note that in virtual user mode we do not need to translate the code. Simply 
omitting these problematic instructions by the processor is adequate. [3] This way we further 
can speed up this technique by switching off binary translation (direct execution) every time 
the system running in the virtual environment switches to user mode. [2] 

The method described so far is precisely called dynamic binary (code) translation because 
translation happens on the fly every time a basic block is about to be executed. 

At first we may think that binary translation is a slower technique compared to the trap and 
emulate method. However practice shows mixed result. This is because a modern processor 
usually has instruction cache and branch prediction circuit. Their content is invalidated 
every time a trap occurs. And this is expensive. [2] For this reason a hypervisor may decide 
to use binary translation even in those cases where classic virtualization also could be used. 
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2.1.3 Paravirtualization 

To accomplish system virtualization there is another interesting idea called 
paravirtualization. This technique intentionally allows the software within the virtual 
environment to be aware not running on the real system. Although this way we sacrifice one 
of Popek and Goldberg’s criteria (equivalence) we can increase the efficiency criteria (as we 
do not need relatively expensive techniques like trap and emulate or binary translation). The 
guest operating system simply invokes hypervisor calls where it normally wanted to 
execute a sensitive instruction. This is somewhat similar when a process invokes system 
calls if it wants something only the operating system has right to do so. This way a 
programming interface can be defined between the operating system and the hypervisor. 

It is worth to note that in this case the hypervisor tends to be similar to a microkernel. A 
microkernel implements by definition4 only those services that are absolutely necessary for 
the operation. All other service (like a device driver or a file system implementation) runs 
within user mode processes. In other words: a microkernel implements only mechanisms. 
But those policies what tell us how to use the mechanisms provided by the microkernel are 
not part of the kernel. (A possible example can be scheduling. In this case the mechanisms 
the microkernel has to provide is finding the highest priority task ready to run and to manage 
the context switch. However those policies what tells how to assign priorities to the tasks are 
implemented in user mode. [3]) 

Hypervisors are working in a quite similar way in the paravirtualized case: they are a 
relatively thin software layer running in kernel mode and provide fundamental services to the 
operating system above them. All of the other services are implemented within the operating 
system in user mode. For this reason a paravirtualized hypervisor is often called as a 
microvisor (which is a term made up from the words microkernel and hypervisor). [4] 

As we can see paravirtualization requires the guest operating system to be modified (this is 
the cost we must pay for the increased efficiency). As soon as we modify our operating 
system it won’t be able to run directly on the bare metal. Furthermore there exists quite a few 
hypervisors. This would require to modify the operating system according to every 
hypervisor. To overcome these difficulties a standard virtual machine interface can be 
defined. In theory operating system developers needs to modify their product for this 

                                                
4
 An often cited statement for the definition of microkernels is from Joachen Liedtke: a concept is tolerated inside 

the µ-kernel only if moving it outside the kernel, i.e. permitting competing implementations, would prevent the 
implementation of the system’s required functionality. A megadott forrás érvénytelen. 

Figure 2-3. Paravirtualization 
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interface only. Hypervisor developers expected to produce a thin mapping layer which 
translates from the standard interface calls to the actual hypervisor calls. And hardware 
manufacturers are expected to produce a similar mapping layer to translate the standard 

interface calls to the real hardware. An example for such a standard interface is VMI (Virtual 
Machine Interface). It has been developed by VMware in 2006. [5] 

After the appearance of paravirtualization some refer to the two older techniques (classic 
virtualization, binary translation) as full virtualization [6]. This is because those methods 
fulfil all three criteria on hypervisors defined by Popek and Goldberg. Whereas 
paravirtualization sacrifices one: equivalence criteria. 

Some define classic virtualization as pure virtualization and call binary translation and 
paravirtualization as impure virtualization. This is because classic virtualization does not 
require the code to be modified whereas binary translation alters the code in runtime and 
paravirtualization alters the code at design time. [7] 

2.1.4 Location of the hypervisor 

According to the previous three chapters we can distinguish between hypervisors by the 
technique they implement. However there is another distinction between the hypervisors 
based on the position they located in a system. 

If the hypervisor is the software component running directly on the hardware we call it type-1 
hypervisor (or bare-metal hypervisor). If the hypervisor is a process running on top of an 
operating system we call it type-2 hypervisor (or hosted hypervisor). 

Figure 2-4. Virtual Machine Interface 

Figure 2-5. Possible locations of a hypervisor 
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Type-1 has the advantage of being more effective: 

 It runs directly on the hardware. So there is no need to go through various operating 
system calls. 

 Other processes do not decrease the amount of resources available for the 
hypervisor. 

Type-2 has the advantage to be more convenient: 

 The user can keep their operating system. 

 It has greater hardware support as popular operating systems usually have wider 
support for various devices than hypervisors. 

The above mentioned leads to the fact that type-1 hypervisors are more often used in case 
of servers (where efficiency is important but convenience is not). And type-2 hypervisors are 
more often used on desktop and mobile machines (where efficiency is not too important but 
convenience is). 

Examples for type-1 hypervisors: VMware ESXi, Xen Project Hypervisor, Oracle VM Server5, 
Microsoft Hyper-V, OKL4, Xvisor. Examples for type-2 hypervisor: VMware Workstation (and 
VMware Player), QEMU, Oracle VM VirtualBox, Microsoft Virtual PC. 

2.1.5 Virtualization of other devices 

The previous chapters covered some aspects of virtualization regarding the CPU. However it 
is worth to note that in the field of informatics a device in almost all of the cases is not just a 
CPU but has memory and other I/O devices as well. This means if we want to virtualize a 
whole system we have to virtualize the memory management and the I/O devices too. 
Although it is beyond the scope of this document to describe these techniques in detail it is 
worth to mention them at least in a few words. 

2.1.5.1 Virtualization of memory management 

In a modern processor besides the CPU we can found also an MMU (Memory Management 
Unit) device too. The aim of this device is to help with virtual memory management. It is very 
important to note that at this point the word virtual has nothing to do with the field of 
virtualization we mentioned in this document so far. The word virtual refers to a technique 
which makes it possible for an operating system to show address spaces to the processes 
independent from the physical memory. These address spaces are continuous, independent 
from each other and usually has the extent of the whole address space the processor is able 
to address. 

The above mentioned means that first, these virtual memory address spaces have to be 
mapped to physical memory locations second, not all virtual memory can be mapped directly 
to physical memory. In this case an auxiliary device (like a HDD) with greater storage 
capacity but lower speed is used to store data which is not mapped directly to physical 
memory. 

The mapping information is stored in page tables. These data structures are located in 
memory and every process has one. The CPU uses virtual addresses and the MMU 
translates these addresses to physical addresses using the mapping information stored in 
page tables. And also the MMU is the device which eventually puts these physical addresses 
to the memory address bus of the system. 

If we want to virtualize this memory management we can define a very similar task to the one 
described above. The hypervisor needs to map the physical addresses valid within the virtual 
machines to the physical addresses valid within the real system (for the sake of simplicity we 
call this latter machine address). 

                                                
5
 Internally uses the Xen hypervisor. 
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The problem is that without modification the MMU cannot be used for this task by the 
hypervisor. This is because the MMU not just translates between the virtual addresses to 
physical addresses but also puts the physical addresses to the memory address bus. 

For this reason the first technique invented by software engineers is the use of shadow 
page tables. These tables are administered by the hypervisor and maps the virtual 
addresses to machine addresses. To accomplish this task the hypervisor needs some 
trickery to catch the events when the guest operating system updates its page tables and 
shall update its shadow page tables accordingly. This process has certain computing 
overhead and also needs some extra memory as to every page table belongs a shadow 
page table. So we need as many shadow page tables as many processes exist in the sum of 
the virtual environments. 

After realizing the computational and memory overhead caused by the technique of shadow 
page tables hardware engineers extended the functionalities of the MMU by adding support 
for second level address translation. The second level page tables map physical 
addresses to machine addresses. An MMU supporting second level address translation is 
capable of using the original page tables (mapping from virtual addresses to physical 
addresses) in combination with the second level page tables to eventually map between 
virtual addresses to machine addresses without software intervention by the hypervisor. 

This way both the computing and memory overhead is much less because this technique 
needs only one second level page table per virtual machine compared to the case of shadow 
page tables when as many shadow page tables are needed per virtual machine as many 
processes are located within the virtual machine in question. 

However this technique also has a disadvantage compared to the shadow page tables. This 
is because speeding things up MMU-s usually have a cache for recently used physical 
addresses. This cache is called TLB (Translation Lookaside Buffer). This is a relatively 
small but fast buffer (compared to the main memory). This way the MMU needs to go 
through a relatively bigger page table located in a relatively slower memory only if the TLB 
does not contain the already translated physical address (called a TLB miss). Using the 
technique of second level address translation has a performance penalty on TLB misses 
compared to the case of shadow page tables. [3] [8] [9] 

2.1.5.2 I/O device virtualization 

If there are some I/O devices in the system we might want to virtualize them as well. There 
are mainly three techniques: direct I/O (or I/O pass-through), full emulation and 
paravirtualization (or split driver). 

The first method (direct I/O) is not really a virtualization technique. It accomplishes just an 
allocation task. The only thing the hypervisor is expected to do is to grant exactly one virtual 
machine direct access to the I/O device in question. After that there is no more intervention 
by the hypervisor. This technique is by far the most efficient and simplest one as there is no 
virtualization at all. If at any given time only one virtual machine is expected to handle the I/O 
device this method is suitable. 

But if not we have to virtualize (e.g. duplicate) the device in question. Compared to the one 
extreme of not virtualizing at all the opposite extreme is the full emulation. This means that 
the hypervisor is expected to emulate every aspect of the given device for all of the virtual 
machines that wants to use such a device. A good example can be a virtual disk image file. 
This technique has the advantage that every virtual machine can possess this kind of a 
device (not just one compared to the direct I/O case). Another advantage can be that the 
emulated device is usually a very simple (thus general) implementation. This usually means 
that more system has support for it compared to a very exotic real device. In the other hand 
this technique needs the biggest overhead. 

The third method is in between the above mentioned two extremes. It is the paravirtualized 
case. It is also called the split driver technique because the driver is actually composed of 
two parts. One part (name it the front-end) is located in the virtual machines. These parts 
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communicate with the other part (name it the back-end) running as part of the hypervisor. 
The back-end’s task is to communicate with the real hardware and to multiplex the device 
accesses from the various virtual machines. This case is called paravirtualized because a 
special front-end driver is needed in the virtual machines. And this driver is fully aware that it 
is not in full control of the given device. 

There is a subcase of paravirtualized I/O in some hypervisors where a special virtual 
machine contains the back-end driver. Having such a special virtual machine has the 
advantage of simpler hypervisor development as there is no need to make device drivers for 
all of the exotic devices. An already existing OS with great device support can be used 
instead. However this advantage comes at the cost of increased code size and memory 
footprint introduced by an extra virtual machine compared to the case when the device 
drivers are part of the hypervisor itself. 

In the case of I/O virtualization problem can arise with DMA capable devices as these 
devices are able to directly access memory under normal circumstances. These memory 
accesses have to be caught by the hypervisor to translate them to machine addresses before 
actual DMA occurs. Although this task can be accomplished by software it poses a 
performance penalty. 

A so called IO MMU device can ease up the burden of DMA address translations for the 
hypervisor. An IO MMU uses page tables to translate memory accesses from I/O devices in 
a very similar way as an MMU uses page tables to translate memory accesses from the 
CPU. (Using an IO MMU has advantages for an operating system too. [10] If the hypervisor 
allows the guest operating system to use the IO MMU for its own purposes then the task of 
virtualizing the IO MMU has to be accomplished. This can happen in a very similar way as 
with MMU virtualization: either maintaining shadow page tables or using second level 
address translation if the IO MMU supports it.) 

2.2 Embedded virtualization 

Embedded systems usually differ in some properties from the desktop and enterprise 
devices. For this reason the virtualization techniques used in the latter case usually cannot 
be applied without modification. They need to be adapted to the embedded world. 

2.2.1 Properties of embedded systems 

Traditionally embedded systems are designed to fulfil a very specific task. They have a 
strong connection to the environment surrounding them: they continuously observe it via their 
various sensors and if necessary also intervene via their actuators. Although in some cases 
they can fulfil their task in a pure hardware based way (using ASICs or programmable logic 
devices like FPGAs or CPLDs) it is far more common to have some kind of a processor and 
thus embedded software (called firmware). A traditional embedded system is a compact and 
closed device. Its hardware and software components are usually cannot be changed by the 
user. In most of the cases they have dedicated power supply thus power consumption is a 
critical aspect. Their task is usually simpler (compared to the desktop or enterprise case). For 
these two reasons the processing units of traditional embedded systems are usually less 
powerful (lower clock frequency, fewer pins, lower power consumption) and their operative 
memory is also smaller. And last but not least it is worth to mention that their task is often 
safety critical and they often face real-time requirements. 

Meanwhile traditional embedded systems continue to exist we can observe the trend that 
more and more embedded devices are nowadays much liker to a personal computer (just in 
a miniature form) than to a traditional embedded system. This trend produces a continuous 
range with traditional embedded systems at one end, personal computer like devices at the 
other end and a lot of devices in between. 

If we investigate this range from the virtualization point of view we can state that traditional 
embedded systems simply do not have enough resources to support virtualization. The other 
end of the range is able to support virtualization even without modification. The more 
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interesting domain is the devices in between. A good example can be a smart phone. As it is 
a cell phone we can think of it as a traditional embedded system. We expect it to operate as 
a phone with high reliability, long battery life and without the need to periodically update its 
firmware. For the phone task itself this device does not require powerful resources. However 
at the same time we think of it as a smart device. For this reason we expect it to be a perfect 
mini personal computer with rich features, powerful resources and highly customizable 
software. These devices have enough capabilities to support virtualization however still do 
not have as powerful resources as their desktop and enterprise relatives. This implies that 
the techniques used for virtualization need to be customized to fit within the limited 
capabilities of resources in this segment. 

2.2.2 Motivations of embedded virtualization 

Why can be virtualization attractive for embedded systems? Let’s see a few examples: [7] 

 Multiple concurrent operating systems: staying with the cell phone example it can 
be seen that the two-sided expectations of a reliable phone and a versatile mini 
computer can be fulfilled appropriately only if we choose the right OS for each of the 
functions. (For the phone function usually a tiny but efficient embedded real-time OS 
(RTOS) is the right choice meanwhile for the mini computer function a feature rich 
application OS (like embedded Linux).) 

 Security: even if we do not want to use different OS-es simultaneously virtualization 
can be a benefit for security reasons. This is because virtual machines are relatively 
separated from each other (compared to applications residing on the same OS). Thus 
if the software within one of the virtual machines fails (either because of a bug or an 
attack) the failure is more probably can be contained only within the virtual machine in 
question. 

 License separation: sometimes licensing issues can arise if we want to use 
proprietary software along with open-source (like GPL) software. Separating these 
two components into different virtual machines can be a solution. 

2.2.3 Limitations of traditional virtualization 

Let’s see what are those limitations that make it either impossible or inconvenient to use 
traditional virtualization in embedded devices located at the middle of the above mentioned 
range: [7] 

 Granularity vs. performance: each time we decide to put a software component to a 
separate virtual machine the hypervisor needs to maintain another copy of the real 
environment. But what is maybe worse is that most likely our software component 
needs an OS too which needs to be now duplicated. In an embedded system poor on 
resources we simply cannot afford too many components to put into separate virtual 
machines. 

 Integrity: meanwhile in the enterprise (or even desktop) use case usually 
independent services are running within the virtual machines, the components of an 
embedded software are much more linked to each other (they have a much higher 
level of cooperation): 

o High-performance communication: to be effective these components 
implement high-performance communication between them. Communication 
between virtual machines are very expensive. If we put these components into 
separate virtual machines we would get highly degraded communication 
performance. 

o Sharing I/O devices: in embedded software I/O devices often have to be 
shared between components (either simultaneously or in a time-sharing 
method). If one virtual machine gets the I/O device exclusively others cannot 
access it (direct I/O). If the hypervisor is about to fully emulate the device it 
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has great performance penalty. If the hypervisor uses a paravirtualized 
approach the hypervisor has to be equipped with a suitable device driver 
(which is not trivial if we consider the vast variety of embedded systems and 
their devices). If the paravirtualization puts the back-end driver to a dedicated 
virtual machine we face the already discussed problem of high-performance 
communication. 

o Integrated scheduling: a traditional hypervisor can schedule only virtual 
machines and the OS-es running inside the virtual machines have the duty to 
schedule tasks. This approach is not always sophisticated enough. In some of 
the cases we have to think about the system as a whole and have to schedule 
the tasks not depending on which virtual machine they are running. 

 Security policies: in many cases there are strict rules on communication. Not all 
components are allowed to communicate with any of the other. Traditional 
virtualization has nothing to do with such restrictions. 

 Trusted Computing Base (TCB): consider a security critical service. The TCB 
(regarding this service) consists of all the code whose malfunction can compromise 
the service in question. Besides the code of the service itself what can be counted as 
part of its TCB? All of the other code on which the service is depending. Despite the 
very rare cases when a code is mathematically proven to be correct we must assume 
that a code contains bugs. The easiest way to reduce the potential number of bugs is 
to reduce the size of the code. Traditional virtualization even increases the TCB by 
adding the layer of the hypervisor. 

2.2.4 Requirements against embedded virtualization 

Regarding the above mentioned limitations of traditional virtualization it is needed to be 
customized for embedded systems considering the following requirements: [11] 

 Efficiency: as embedded systems have less resources an embedded hypervisor has 
to be small and efficient (specifically regarding memory usage). 

 Security: to make it possible for the embedded system to meet security requirements 
even with virtualization the TCB has to be small. 

 Isolation: the embedded virtualization technique has to be able to separate software 
components from each other. 

 Communication: however between those components that are allowed to 
communicate with each other the embedded virtualization must provide efficient 
communication methods. 

 Real-time operation: the embedded hypervisor has to be able to schedule real-time 
which implies that the virtual machines cannot be black boxes for the hypervisor 
(integrated scheduling). 

Regarding the efficiency and security requirements type-1 hypervisors are the better solution. 

Regarding the isolation and communication requirements our idea is to decompose the 
embedded software into small components. Between these components isolation and 
efficient communication has to be provided. Because these components can be relatively 
small it would be beneficial if the components were able to run even directly on the 
hypervisor without a complete virtual machine container with an OS. 

For the above reasons it is advisable to implement the hypervisor with a microkernel. [7] [11] 

Although the above conclusion seems logical it has also disadvantages. Microkernel based 
hypervisors usually choose paravirtualization which requires the modification of the guest 
operating system. If we want to implement integrated scheduling even further modifications 
are required to the kernel of the guest OS-es. And last but not least decomposing the original 
embedded software to tiny components needs additional development time. For these 
reasons others rather not advise using a microkernel as the hypervisor.  [12] 
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If someone is interested in this topic more deeply they can observe a scientific battle on this 
field. [13] [14] 

As we can see both the microkernel and the monolithic kernel approach for a type-1 
hypervisor can have advantages over the other. For these reasons let’s see too examples for 
each of them: the OKL4 for a microkernel based design and the Xen for a more monolithic 
approach. After them we also mention QEMU. Although this latter is a hosted hypervisor it 
has a lot of interesting operating modes among which the capability to execute a binary 
image complied for a different hardware architecture. This property makes it easy to reuse a 
component complied for a different architecture. 

2.2.5 OKL4 microvisor 

This microvisor is developed by Open Kernel Labs6. The company was founded in 2006 as a 
spinout from NICTA7. In 2012 it has been acquired by General Dynamics8. The company has 
a great success in embedded virtualization. According their press release from 2012 [15] the 
OKL4 software has reached 1.5 billion deployments in mobile devices. Even the term 
microvisor was coined by them. [11] 

Unfortunately this hypervisor is not open-source. However it is worth to mention it as it has 
been designed alongside those clear ideas that concluded the usage of a microkernel as the 
hypervisor. The structure of OKL4 can be depicted as the following picture. 

As the name implies OKL4 is part of the L4 family of microkernels (which is the work of 
Joachen Liedtke). The components of an embedded software can be put into so called 
secure cells. These cells can contain a whole software stack having an OS (like with virtual 
machines we already know) but can support components (applications or device drivers) 
even without an underlying guest OS. Within the cells efficient inter process 
communication methods have been developed. Because device drivers can run in separate 
secure cells these communication methods really have to be efficient as in this case they 
serve as I/O communication pathways. [11] 

The OKL4 microvisor uses paravirtualization. OK Labs has been created the following 
paravirtualized guest OS-es: OK:Linux, OK:Android and OK:Symbian. [11] The release of 
OK:Windows is also planned. [16] It is interesting to note that on ARMv5 platform they were 
able to achieve nearly 50 times performance increase in lmbench context-switching tests 

                                                
6
 http://www.ok-labs.com/ 

7
 http://www.nicta.com.au/ 

8
 http://www.generaldynamics.com/ 

Figure 2-6. The structure of OKL4 

http://www.ok-labs.com/
http://www.nicta.com.au/
http://www.generaldynamics.com/
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compared to native Linux. This proves that a relatively small code is much easier to 
implement efficiently. [7] 

The microvisor also has efficient resource sharing mechanisms. It is possible to share 
memory buffers between the secure-cells (producer-consumer concept) in a way that the 
consumer has only read access rights. As with this solution there is no need for copy devices 

with high transfer rates can profit from this concept. Another example for the efficient way of 
resource sharing is the access to device drivers. These device drivers can be part of an 
operating system or stand-alone. [7] 

The kernel is capable of integrated (real-time) scheduling. Consider the case when there is a 
feature rich, user friendly application OS (not facing real-time requirements) and another, 
simpler, lightweight real-time OS for time critical tasks. If we want to assign priorities our first 
idea may be to assign the virtual machine running RTOS globally a higher priority. However 
this is not always a good idea. Consider some background task in the RTOS. They supposed 
to run only when there is no other tasks ready to run in the system. If there is only the RTOS 
running it works as expected. However if we have another virtual machine with the 
application OS and think of these two virtual machines together as the system the 
background task of the RTOS can starve all of the application OS tasks. Furthermore we can 
think of the case of a soft real-time task (like video playback). This can be accomplished 
more easily under an application OS. 

For these reasons it is important for the microvisor to implement integrated scheduling. An 
example for assigning priorities for the individual task within the system (rather than 
assigning priorities to the virtual machines first and then to the task running within them) can 
be seen on the following picture. [7] 

OKL4 supports ARM, MIPS and Intel processor architectures. 

Figure 2-7. OKL4 device driver sharing 
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Figure 2-8. Integrated scheduling in OKL4 

2.2.6 Xen hypervisor 

The Xen hypervisor was originally created for x86 architecture as part of a research project 
on Cambridge University at the late 90s. In 2002 it became open-source. The first public 

release was in 2003 (the developers consider this date as the “birthday” of the hypervisor). 

2-8. Figure: The structure of Xen Project hypervisor 

Author: Lars Kurth; Licence: Creative Commons Attribution ShareAlike 3.0 

URL: http://wiki.xenproject.org/mediawiki/images/6/63/Xen_Arch_Diagram.png 

http://creativecommons.org/licenses/by-sa/3.0/
http://wiki.xenproject.org/mediawiki/images/6/63/Xen_Arch_Diagram.png
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Version 1.0 was released in 2004 and soon after version 2.0. After that one of the founders 
and other developers have founded XenSource, Inc. as a spinout company to make a 
commercial product out of the research project. Fortunately the hypervisor remained open-
source. Version 3.0 was released in 2005. In 2007 the company has been acquired by Citrix 
Systems, Inc. A fork project to support the ARM platform (in a paravirtualized way) was 
started in 2008 by the leadership os Samsung Electronics. Version 4.0 was released in 2010. 
Out of the box Linux support for the Xen hypervisor has been highly increased in 2011. In the 
same year an experimental prototype for a hardware assisted ARM hypervisor has been 
announced. In 2013 this prototype has become functional. Xen Project has become part of 
the Linux Foundation in the same year. [17] 

The structure of the Xen Project can be observed in the picture above. The Xen hypervisor is 
a type-1 hypervisor. So this software layer handles the CPU, memory and interrupts. The 
virtual machines are located above this layer. The Xen terminology usually refers them as 
domains (or guests). There is a special domain named domain0. The purpose of this virtual 
machine is to contain the device drivers and a component named Toolstack (or Control 
Stack) to manage the rest of the virtual machines. This management software can be 
accessed using either command-line interface or GUI (it can also be integrated to some 
cloud based management service. 

The Xen hypervisor can use paravirtualization or classic virtualization (if the architecture 
supports it). It is even possible to use more virtualization techniques if there are more than 
one virtual machine in the system. Furthermore even if basically classic virtualization is used 
for a guest it is allowed to use some paravirtualization methods as well. 

The virtualization modes of Xen are namely: 

 HVM (Hardware Virtual Machine): in this case hardware assisted virtualization is used 
to virtualize the CPU and the page tables. All other devices are emulated using 
QEMU [ref]. 

 PV on HVM: in this case hardware assisted virtualization is used to virtualize the 
CPU and page table (as in the above case). However some of the devices uses 
paravirtualized drivers. 

 PVH (PV in an HVM container): in this case hardware assisted virtualization is used 
to virtualize the CPU and page table (as in the above cases). However all other 
devices uses paravirtualized drivers. 

 PV (ParaVirtualization): for every component in the system paravirtualization is used 
as the virtualization technique. 

The following table summarizes the above mentioned: 

VS: Virtualized (SW) 
VH: Virtualized (HW) 
P: Paravirtualized 

Disk and 
network 

ITs, timers 
and spinlocks 

Motherboard 
and system 

startup 

Privileged 
instructions 

and page 
tables 

FV | HVM VS VS VS VH 

PV on HVM (Win) P VS VS VH 

PV on HVM P P VS VH 

PVH P P P VH 

PV P P P P 

2-1. Table: Comparison of Xen virtualization techniques. 

2.2.7 QEMU 

QEMU is the abbreviation for “Quick EMUlator”. Although the name refers to emulation 
QEMU can be a hosted (type-2) hypervisor too (this happens if the target architecture is the 
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same as the host one). It works on x86 and PowerPC architectures and currently being 
tested on ARM, HPPA and Sparc platforms. It can emulate x86, ARM, MIPS, PowerPC, 
Sparc, MicroBlaze and Xtensa architectures with high levels of success (and Alpha, CRIS, 
M68k and SH4 with varying level of success). [18] It is free and open-source. 

It has basically two modes of operation: [18] [19] 

 User-mode emulation: it is an application level emulation. With the help of QEMU 
one can run a process compiled for a given architecture on another architecture. 
Although the processor architecture may differ the used operating system has to be 
the same. System calls are altered to fix any endianness or 32/64 bit issues. 

 System emulation: it is a platform level emulation. It means a full system (with 
peripherals) is emulated. Different operating systems can be booted. 

Besides these two main modes of operation QEMU can be integrated into other virtualization 
software: [19] 

 KVM9 hosting: if QEMU is used in conjunction with KVM its purpose is to set up and 
migrate KVM images. It is involved in emulation of the hardware however the 
execution of guest code is done by KVM (as requested by QEMU). 

 Xen hosting: as the previous chapter already mentioned Xen may use QEMU to 
emulate peripherals. In this case execution of guest code is done by Xen and thus 
totally hidden from QEMU. 

The next chapter describes QEMU user-mode emulation in details (considering emulation 
speed and the possibilities of seamless execution of foreign binaries). 

2.2.8 Using QEMU processor simulator software as a method of computing 
node virtualization 

To achieve architecture independence between the different types of nodes in a sensor 
network, processor virtualization can also be used alongside or instead of a virtual machine 
or a scripting language. 

Processor virtualization has many benefits compared to the other two mentioned 
possibilities. 

For example, the Java Virtual Machine (not to be confused with the Java-like Dalvik) or the 
.NET framework are usually not available on embedded platforms. Also, in general, it is hard 
to write direct hardware accessing code in either Java or a scripting language, which makes 
in the end reverting to native code under the hood. In some cases, the source code of a 
legacy embedded software is not accessible, but the processor platform is changed. With 
virtualization, porting legacy software can be easier. Finally, many embedded programmers 
still prefer to use C as a primary programming language. 

It is somewhat clear that native languages will remain the primary choice on embedded 
platforms, however the code and binary portability is a problem, especially on distributed 
systems. A processor simulator which seamlessly integrates into the system can solve 
portability issues. 

2.3 QEMU emulator 

For processor virtualization, the QEMU [20] emulator can be used. One of the benefits of 
QEMU is the great number of host and guest architectures it support via its TCG (Tiny Core 
Generator) binary translation mechanism. QEMU is also one of the components of the KVM 
(Kernel-based Virtual Machine) used in server virtualization.  

One the greatest advantages of QEMU in embedded systems is the Linux user mode 
emulation, which allows the user to spare computing power and storage space. 

                                                
9
 http://www.linux-kvm.org/page/Main_Page 

http://www.linux-kvm.org/page/Main_Page
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In Linux user mode emulation, QEMU executes only the user program on the guest 
architecture, however, every Linux system call and IO control is passed to the host Linux 
kernel, thus allowing greater computation speed and better interaction between the host and 
guest system. One can use QEMU to access the host hardware IO space without having to 
create the appropriate virtual hardware for QEMU. 

With Linux user mode emulation, application portability simplifies: a Linux application 
compiled on a given platform can be executed on a different architecture, albeit with a 
performance loss.  

2.3.1 Benchmarking QEMU emulation 

To measure the computing capabilities of a QEMU-emulated embedded platform, two 
different methods were used, reflecting the usual tasks of an embedded system. 

The first benchmark measures the computing performance of the QEMU userspace 
emulation, the second simple benchmark measures the IO performance. 

The benchmarked system is a Raspberry Pi board with Raspbian Linux distribution. The 
QEMU guest architecture emulated on the Raspberry Pi is little endian Xilinx MicroBlaze 
processor (microblaze architecture). 

2.3.2 Benchmark of the computing performance 

To benchmark the performance of the emulated architecture, three measurements were 
done. The first measures the native ARM processor performance, the second measures the 
emulated Xilinx MicroBlaze processor performance, the third measures the native 
performance of a 75 MHz Xilinx MicroBlaze processor. 

Since the goal of this benchmark is to expose the theoretical upper limit of the computing 
system, and not the measurement of the performance of a specific task (for example video 
stream compression) the NBench [21] synthetic computing benchmark program was used. 

One of the advantages of the NBench is its simplicity. The tests included in NBench are 
simple enough to be portable, but complex enough to test the processing power of the 
system under test. Also, NBench is designed to be scalable: it includes a dynamic workload 
adjustment, which allows the tests to adjust to the capabilities to the system, while providing 
consistent results.  

The following table shows the benchmark results: 

Task Native (operation/s) QEMU (operation/s) MicroBlaze(operation/s) 

Numeric sort 237 10 15 

String sort 38 1 1 

Bitfield manipulation 9.324e7 1.45e6  8.41e5 

Floating point 47 2 4 

FFT 2612 1 1 

IDEA encryption 791 3 12 

Huffman coding 487 7 9 

LU decomposition 84 1 1 

Without any hardware acceleration support, results of QEMU are in the magnitude of the 
performance of the native MicroBlaze running on 75 MHz. 



ARTEMIS-2013  R5-COP 

R5-COP D12.22 vFIN.docx © R5-COP consortium Page 25 of 46 

2.3.3 Benchmark of the IO performance 

We have seen that the performance hit of QEMU without any acceleration is high. However, 
the advantage of the user mode Linux emulation is to enable hardware virtualization without 
operating system support. 

On the Linux operating system, the IO access is done through special device or other system 
(e.g. SysFS) files. This gives us a great advantage: since every hardware IO from the 
userspace application is done with IO system calls (open, close, read, write), with the QEMU 
user mode emulation an application executed on a simulated processor can access the real 
hardware. QEMU translates all system calls from the emulated architecture to the host. 

This is the base of the IO benchmark. Since the QEMU Linux user mode emulation passes 
the guest system calls to the host kernel, software which relies on system calls and host 
kernel functions (for example an embedded software doing IO) can perform better than a 
computational software. 

The measurement simply tests the maximum achievable GPIO signal frequency by 
continously toggling a GPIO bit of the BCM2835 chip used on the Raspberry Pi board. 

Problems of this measurement method are that the TCG used in QEMU works especially 
good with tight loops [22], so we measured something which can be described as the “best-
case” scenario. However, since the most common IO tasks are built up from small loops, the 
measurement reflects the most common use cases. 

The result of the measurements are the following: With a native software running on the 
processor, a frequency of 15-16 MHz can be achieved, in accordance to earlier benchmarks 
done on the Raspberry Pi by Joonas Pihlajamaa. [23] 

 

1. Illustration: GPIO output frequency of native ARM 
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On the other hand, the emulated MicroBlaze is capable to generate a 5-6 MHz square wave. 

It is worth to be noticed that the relative inaccuracy (~20-25) of the frequency of the square 
wave generated by the virtualized system is much greater than the relative inaccuracy  (~6-
8%) of the frequency of the native code generated signal, mainly because of the inaccuracy 
of the running time of the dynamic recompilation done by QEMU.  

In some applications, this inaccuracy is not tolerable. 

2.3.4 Integrating foreign architecture binaries to the host 

The main advantage of the QEMU Linux user mode emulator is that our native software – 
although with a performance hit – could run independently on different architectures. This is 
not unlike Java's “write once, run anywhere” philosophy, with the difference that low level 
operations are much simpler. 

For this approach to work, an elementary operating system support is needed. 

An application – especially on UNIX and UNIX-like operating systems – is usually built up 
from many smaller lesser modules, which use each other. This is usually done from the 
program with the exec()-family of system calls, but executing an application can also be done 
from a shell script. 

Usually, when we try to execute a foreign binary (for the example, we will call it binfmt) from 
the shell, it will not succeed: 

└──> debug $ >> ./binfmt  

bash: ./binfmt: cannot execute binary file 

To seamlessly integrate a native application coming from a foreign architecture, we have to 
support its binary format. The support should be done on the kernel-level, since we want to 
integrate an unmodified native application into the system. 

2.3.5 Introduction to Linux foreign binary format support 

The UNIX operating system (on which Linux is also based) supports the automatic execution 
of interpreted languages from the shell. This is done with the support of so-called shebang 
lines. If an interpreted script starts with the special characters #! , and afterwards it states the  
path of the interpreter, it automatically executes it properly: 

2. Illustration: GPIO output frequency of emulated MicroBlaze 
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#!/usr/bin/python 

print "Hello" 

For a scripted language, which is a text file, usually having “#” as comment this is a feasible 
way. However, for a binary executable which has a strict format, insertion of a shebang line 
is not possible. 

The problem could be solved by modifying the Linux kernel to remove the shebang line from 
the binary before execution. However, if the kernel is to be modified, it is deserving to modify 
it to enable a higher level of functionality. The support which is already done by kernel 
developers is called binfmt_misc. 

2.3.5.1 binfmt_misc 

The early versions of Linux used the so-called a.out format for its binary executables. 
However, later versions migrated to the ELF (Executable and Linkable Format) binaries. To 
maintain backward compatibility, support for a.out still exists. 

Because support for two binary formats already exists in the kernel, it is worth to have a 
more general implementation, which can handle arbitrary binary formats. This is the 
binfmt_misc module. 

Execution of a binary module is built up from two parts: recognition of the binary format, and 
execution of the specific interpreter or simulator. 

binfmt_misc does the recognition part: from a given format description, it recognizes the 
binary format, and select the specified interpreter for it. Afterwards the Linux kernel executes 
the interpreter. 

The configuration file for binfmt_misc resides in the /proc/sys/fs/binfmt_misc directory. Each 
file in this directory gives information about the support for a given binary format. For 
example the support for Python 2.7 binaries is the following: 

└──> binfmt_misc $ >> cat python2.7  

enabled 

interpreter /usr/bin/python2.7 

flags:  

offset 0 

magic 03f30d0a 

This shows that every file which starts with the magic number 0x3f30d0a is launched with the 
Python interpreter. This means that – in contrary to Windows – can launch executables 
based on the content of the file, not on the extension of it. 

To register a new format, we have to write into the register file. The format of the file is the 
following: 

:name:type:offset:magic:mask:interpreter:flags 

1. name is the name used for identification. 

2. type is M or E. M means recognition based on the content of the executable, E 
means recognition based on the extension of the executable. 

3. offset gives the number of bytes at the start of the file which should be ignored. 

4. magic is the magic number we should match 

5. mask tells which bits in the magic should not be ignored 

6. interpreter is the executable which will launch the binary 

7. flags unused values 

If we write an entry into the register for the foreign ELF format, we can assign the QEMU 
Linux user mode emulator as interpreter, thus enabling seamless integration. 

The specification is available at: http://www.skyfree.org/linux/references/ELF_Format.pdf 

http://www.skyfree.org/linux/references/ELF_Format.pdf
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The information we use from the ELF is the following: 

 Format identifier: 0x7f “E””L””F” 

 Word length 

 Byte endian 

 Executable type 

 Architecture information 

For a big-endian MicroBlaze the register format will be the following: 

:mbelf:M:0:\x7fELF\x01\x02\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\xbd:\xff\xff\xff\xff\xff\xff\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\xff\xff\xff\xff:/usr/bin/qemu-microblaze: 

 

To modify it for a different foreign architecture, the following should be edited: 

1. The first \x01 means that the platform is 32 bit 

2. The first \x02 means big endian 

3. The last \xbd means MicroBlaze 

4. The simulator is /usr/bin/qemu-microblaze 

If we load binfmt_misc, the execution of a foreign binary will work: 

└──> debug $ >> ./binfmt  

Hello 

2.3.6 Conclusion 

Two disadvantages were found using QEMU as a Linux user mode emulator. The first is that 
the computing performance is much lower than the native performance. For simple control 
and measurement software this performance limit can be tolerated. 

The greatest disadvantage is that the QEMU Linux user mode is somewhat underdeveloped 
compared to recent Linux kernels, many newly implemented system calls and IOCTL's are 
yet cannot be passed to the host kernel. For example support to pass the USB IOCTL calls 
(used by userspace USB drivers) are not yet implemented. 

Nonetheless, for simple tasks where portability and direct hardware access is important, 
QEMU can be an option. 

We also explored the possibilities to execute a foreign binary on the host seamlessly. The 
Linux operating system gives support to execute foreign binary format files. 
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3 Abstract interfaces for exchanging sensor information 

3.1 Semantic web technologies 

The continuous advances in computing allow researchers to access an ever increasing pool 
of data. In order to handle the growing volume and complexity of the available information 
new approaches were required. The goal is to automate data manipulation so that computer 
programs can – in a limited way – reason and deduce facts and discover previously unknown 
relations. 

The Semantic Web [24] is an effort coordinated by the World Wide Web (W3C) consortium to 
create common data formats including semantic content. This inclusion should allow for a 
structured representation of our knowledge that is self-describing and can be interpreted by 
computers. 

There are a number of concepts and standards that pertain to the Semantic Web initiative, 
the most notable ones are the XML document formats and languages, Resource Description 
Frameworks (RDF) and the Web Ontology Language (OWL). These technologies are 
receiving a lot of support from within and without the W3C consortium, and already have a 
significant adoption rate in the IT sector. 

In this section we will have a special focus on a collection of standards originating from the 
Open Geospatial Consortium, namely the XML based SensorML language and the Sensor 
Observation Service standard. 

3.1.1 Resource Description Framework 

In order to better understand the importance of Resource Description Frameworks [25] and 
RDF databases it is best to look at the change they represent regarding our approach to 
collecting new information. 

The standard approach was limiting our scope to well-defined, and tightly-categorized 
information. In order to expand our knowledge, newly acquired data had to conform to our 
previous definitions and had to be described according to previously agreed categories. 
Schematic databases such as SQL fit this informational approach well. The basic unit of 
information is a triple of entity-attribute-value. A natural way of storing such information is a 
table. 

 

model power torque top speed 

Ferrari F50 513 hp 470 Nm 270 km/h 

Fiat Punto 75 hp 86 Nm 172 km/h 

Figure 3-1. Schematic table for car 

Records of the car table correspond to actual entities of cars. The columns of a table 

correspond to the attributes associated with the entities, and each record has a value 
corresponding to each entity. 

A schematic database is a very efficient tool for a wide range of applications, but has 
inherent limitations when it comes to representing new information of a different nature. This 
schema for example does not allow us to store the angle of the rear-spoiler. We could add a 
new attribute, but that would require modifying the whole table, and not all cars have a rear-
spoiler, thus the attribute for the Fiat Punto would be meaningless. A perfect solution 
differentiating between street and sport cars would require modifying the schemes of multiple 
tables and even creating new ones. 

As network enabled intelligent devices are becoming a cheap commodity a new approach to 
information management is being adopted by cutting-edge tech companies. This is the open-
ended informational approach, which handles information knowing, that it is only a small 
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portion of all available knowledge, and expects that our knowledge will be continuously 
expanded in an organic way. 

The basic unit of information in an RDF is a triple of subject-predicate-object. Instead of a 
table the most natural representation of an RDF database is a directed, labeled graph of 
such triples. 

 
Figure 3-2. A section of an RDF database shown as a directed graph 

In this model adding information of a new quality such as a spoiler angled at 20° can be done 
without affecting the rest of the database. 

RDF is meant to be a standard model for data interchange on the web. It offers data merging 
of data with differing schemas and can naturally support the evolution of schemas. The 
triples can describe two abstract or concrete entities connected with a relation. All three can 
described by Internationalized Resource Identifiers (IRI) which are a Unicode generalization 
of Universal Resource Identifiers (URI). Nodes can be also datatyped literals, such as string, 
number or date. 

The current specification is RDF 1.1 which has been released in 2014. [26] It defines an 
abstract syntax (a data model) which serves to link all RDF-based languages and 
specifications. A widely used implementation is the Stardog database, which is free to use 
under a limited number of connections. 

3.1.2 Extensible Markup Language 

XML is a text base document format meant to be readable by both humans and machines. 
[27] It has a strong support for Unicode text. While originally meant for describing documents 
over time it became a widely used format for the representation of arbitrary data structures. It 
has been derived from SGML (ISO 8879). 

Over time it has become a standard format for data exchange between web services. It is the 
language for widely used document formats such as RSS, Atom, Soap or XHTML. 

XML is capable of conveying syntactic and semantic constraints. The basic rules of XML 
define syntactic correctness, also referred to as well-formedness. All XML documents or 
messages must be well-formed and this property can be checked according to the general 
XML rules. 

Semantic rules are conveyed through XML schema systems. An XML schema is a 
description of a type of XML document that define constraints regarding the structure and 
contents of the document. There are multiple schema languages such as Document Type 
Definition (DTD) or XML Schema (with a capital S). 

The constraints defined by schemas can be lexical (allowed types and literal values at given 
places), grammatical (defined order of appearance of certain types) and referential (a given 
value must exist at some other defined location). Hence these schemas define XML based 
languages that can be adapted to practically any domain. 

Verifying that a given XML document conforms to the syntactical and semantic rules of an 
XML based language is called validation and is carried out by validating XML parsers. While 
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well-formedness can be determined independently from a given language validity can only 
be confirmed knowing the full ruleset of the language. 

The rules and validation process of domain oriented languages make XML a very flexible 
format, resulting in documents that are particularly suited to automatic parsing and self-
describing knowledge representation. It also helps reduce errors by enforcing a set of rules in 
the form of communication itself. By making inconsistent commands and information 
inexpressible they help create more robust systems. 

3.1.3 Sensor Model Language 

SensorML [28] is an XML based language standard created and maintained by the Open 
Geospatial Consortium (OGC). It is a robust, semantically-tied means for defining processes 
and processing components. 

SensorML is intended to be used for expressing and communicating information regarding 
measurements and post measurement transformation of observations. It can describe 
sensors, actuators as well as computational processes pertaining to pre- and post-
measurement tasks. 

The language references properties of various sensors and processes in a self-describing 
format i.e. using only SensorML documents and messages a knowledge graph of all involved 
entities can be constructed. 

The preferred format of element descriptions is OWL URIs, which stands for Web Ontology 
Language. [29] OWL descriptors use a computational logic-based language such that 
knowledge expressed in OWL can be exploited by computer programs. It contains 
sequences of annotations, axioms and facts. Annotations are meta-data meant for aiding 
human understanding, while axioms and facts can be classes, properties and individuals 
identified by further URIs creating a complex knowledge graph. The ontologies pertaining to 
such descriptions can give us means to discover and categorize sensors and relevant 
processes. 

The current version of the standard is 2.0 published in 2014. 

3.1.3.1 Sensor Observation Service 

The SensorML language plays an important role in another standard of OGC, that is the 
Sensor Observation Service (SOS). 

The SOS is meant for applications in which sensor data needs to be managed in an 
interoperable way. It describes a web service interface which allows querying observations 
and sensor metadata. The preferred format for sensor metadata is a SensorML document. 

The SOS acts as a special datastore that can be accessed with self-describing XML 
messages pertaining to observations of physical quantities, events or computational 
processes yielding useful information. 

3.1.4 Web Services Description Language 

Web Services Description Language (WSDL) is an XML based standard for specifying and 
describing the functionality of a web service. The WSDL also means the concrete description 
of a specific web service and sometimes called WSDL file. This XML based file can be 
requested from the service and describes the following: 

 how the service can be called 

 what parameters it expects (in what format) 

 what data structures it returns. 

These 3 elements can make us associating to the method signature of a typical programming 
language. The main advantage of using WSDL is that web services can provide information 
about themselves in a machine readable manner. 
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Figure 3-3. Representations of concepts defined by WSDL documents 

As we can see on the above figure, WSDL documents can be separated to two parts: a 
concrete section and an abstract section. 

The abstract section declares reusable interfaces (port types in 1.1) through which the 
service can interact with clients. An interface can have one or more operations (with input 
and output). These operations correspond to functions or methods in programming 
languages, while the interface can be perceived as a function library or class. Both inputs 
and outputs are constrained by the types also specified in the abstract section of the WSDL 
file. While inputs correspond to the parameter list and outputs to the return value, types can 
be perceived as the primitive or complex types of a programming language. 

The concrete section describes the bindings of the reusable interfaces to concrete service 
endpoints (with network address). One interface can be bound to more network endpoints. 

WSDL is often used in combination with SOAP and an XML Schema to provide machine 
readable format for service description. Since 2007 the last version (2.0) of WSDL is W3C 
recommendation. 

3.1.4.1 Semantic Annotations for WSDL and XML Schema 

Semantic annotations for WSDL and XML Schema (SAWSDL) defines a set of extension 
attributes for the Web Services Description Language (WSDL) and XML Schema definition 
language. Application of the attributes shall allow for description of additional semantics of 
WSDL components. The specification defines how semantic annotation is accomplished 
using references to conceptual semantic models, e.g. ontologies. SAWSDL does not specify 
a language for representing the semantic models. Instead it provides mechanisms by which 
concepts from the semantic models can be referred using annotations. 
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3.2 Message orientated Middleware for seamless interfacing 

 

3.2.1 Features of Message oriented Middlewares 

Robotic systems require significant interaction and coordination of hardware and software 
elements. In the context of software engineering, the concept of middleware earned a very 
strong role in the entire software development process.  
In robotic applications the use of a middleware can help improving the organization, the 
maintainability and the efficiency of the code that controls the robot. Robotic systems are 
usually complex systems built on many different hardware and software components, as 
sensors and actuators as well as planners and control algorithms. In general, on each robot 
runs a software that is responsible for reading sensors data, extracting the needed 
information from them, computing the sequence of actions to accomplish a given task and 
controlling the actuators to execute the actions.  
Using a custom approach, there will be a single monolithic application that will handle all 
these tasks, making code maintenance hard and preventing every form of code reuse and 
sharing between different projects. Such a scenario, with many hardware and software 
components that needs to communicate and collaborate to reach a goal, is exactly where a 
middleware can help improving the organization, the maintainability and the efficiency of the 
code. The whole application can be structured into many little concern separated tasks, as 
”get a sensor reading”, ”extract features from some data”, ”drive the motors to some speed”. 
Different components can exchange data using a common communication channel provided 
by the middleware, using interfaces that are consistent between different applications.  
In this way, it becomes really easy to share and reuse code among different projects, or 
change an algorithm to get some functionality as it is only necessary to keep the same 
interface. As an example, if you need to switch from a proximity sensor to another, it is 
possible to write a new component that share the same interface and update it without 
modifying the rest of the application. This concept can be extended to large and complex 
applications, in which using a middleware can clearly improve the overall code organization 
and reduce the programming effort. 
 

3.2.2 Advantages of ROS 2.0 

The ROS 2.0 version addresses a set of issues to improve overall performance of the ROS 
MoM. The major improvements are: 

 multiple robots networks 
 embedded platforms support 
 Real-time features 
 Non-ideal networks support (recovery from data loss/data delay) 

The additional support of multi-master networks and embedded platforms in ROS 2.0 directly 
addresses the use of ROS 2.0 for robot swarms or sensor networks due to ability to connect 
multiple embedded sensors to a combined sensing network. 

With the ROS 2.0 improved communication stack and its Data Distribution Service (DDS) as 
communication layer, the ROS message services will be also able to handle time-critical 
transactions e.g. sensor messages and it will be tolerant against data loss and data delay to 
allow communication via non-ideal networks (wireless networks). This will enable enhanced 
sensor fusion of multiple robots by using wireless data distribution. 
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3.2.3 ROS 2.0 bridging 

The preliminary version of the ROS 2.0 includes bridging features to support communication 
for ROS-to-ROS2 and ROS2-to-ROS as part of the “ros1_bridge” package. The current 
simple prototype contains: 

 a bidirectional bridge which can only pass along a single message type on a fixed 
topic. 

 two unidirectional bridges which can only pass along a single message type on a 
fixed topic. 

Hence, the basic communication between ROS and ROS2 needed for sensor data transfers 
is supported. 

 

3.2.4 ROS as communication layer for sensor data distribution 

The ROS middleware is a well-known component of robotic systems that allows message 
based communication between software modules. The comparison of Message orientated 
Middlewares (MoM) included in [53] gives an overview of available middlewares for robotic 
systems. As result of the comparison the authors underline the advantages of ROS for the 
targeted robotic application.  

Using of ROS in robotic systems leads to a common message format that is used to 
exchange data between software components (nodes) inside the robot. As an example for 
data transfers as part of the MoM ROS, the laserscanner data is transformed to a ROS 
message type to transfer it from the laserscanner sensor to the SLAM software component. 

If we want to improve the sensor data distribution over the ROS communication layer it is 
beneficial to create sensors that can directly send ROS messages to avoid the 
transformation step as preprocessing of the sensor data. 

As proposed in WP21, the TUBS stereo camera system is able to communicate as ROS 
master or slave with a connected robotic system. The camera data is transmitted in form of a 
ROS message, so that other processing entities can directly use the information without 
previous conversion. Figure 3- shows the architecture of the TUBS stereo camera platform 
with embedded ARM processor for communication purpose as part of the sensing system. 

 

 
Figure 3-4 - Architecture of the TUBS stereo camera platform (WP21) 

 

The ROS message packing is done by and ROS node running on the ARM processor with 
an integrated ROS indigo version. This enables the seamless interfacing of the sensor to 
ROS enabled robotic systems. Moreover the presented sensing system is able to run ROS-
bridging features to support ROS 2.0 messages. The Gigabit Ethernet connection of the 
sensor allows framerates up to 60 frames per second for the transfer of 720p resolution 
depth images (grayscale, 8bpp). 
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3.3 Sensors interfaces in security robots 

3.3.1 Current state of art 

The only commonly recognized standard in software layer is JAUS. Currently there is open 
implementation of JAUS available called JAUS tool set [8], and there are several offered by 
software vendors like OpenJAUS [30]. JAUS is standardized as SAE AS-4 JAUS family of 
standards [31]. This protocol independent, so can be used over various lower layers, 
Ethernet or serial connection, etc., but most often JAUS systems are Ethernet based. 

Designed to be open architecture, communication protocol oriented JAUS employs service 
oriented architecture. It's services are defined in JAUS Service Interface Definition Language 
which provides XML schema for describing services. Those descriptions are often used by 
code generators to create interfaces stubs. Later can also be used for validation purposes. 

JAUS standards also define core services10, that provide following mechanisms: 

1. Transport – gateway for messages entering and leaving components 

2. Event – event based communication mechanism with requests 

3. Access control – implementation of mutual exclusion 

4. Management – access to information on components, and life cycle management 

5. Time – time synchronization 

6. Liveness & discovery – allows discovery and state determination. [32] 

One example of European Union funded projects that used JAUS was TALOS, where 
interfaces between OCU and UGV were defined according to this standard. [33] [34] 

                                                
10

 SAE AS5710A 
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3.3.2 Interoperability profile 

Recently new set of standard was released by United States Military (more exactly by 
Robotic Systems Joint Project Office) , called Interoperability Profile (v1), based on JAUS 
(but also defining mechanical and electrical interfaces), and chances are high that it will be 
enforced, at least in NATO countries (mostly because no competing standard exists). This 
standard not only specifies communication between UGV and OCU [35] but also 
communications with various on board sensors. [36] 

 

Figure 3-5. Example architecture of JAUS system - TALOS 
architecture 
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Interoperability Profile mostly relies on existing standards where possible, for example: 

1. Video - all IOP compliant digital motion imagery sensors must support H.264 or 
MPEG2 video standards, it also allows analog video transmission using NTSC 
standard. Video camera control can be done either using messages defined by 
JAUS, or by RTSP protocol. 

2. Still images - for still images JPEG or JPEG2000 should be used. 

3. Audio - for audio transmission Vorbis codes should be used. Transmission can be 
controlled either using messages defined by JAUS, or by RTSP protocol. 

3.4 Sensor interfaces used in development 

There are many robotics frameworks that were developed to provide some common ground 
for various software components. Some more popular frameworks include: 

 Microsoft Robotics Studio [37] 

 Open Robot Control Software (OROCOS) [38] 

 Carnegie Mellon Robot Navigation Toolkit (CARMEN) [39] 

 URBI [40] 

 Mobile Robot Programming Toolkit [41] 

 ORCA [42] 

 Cross Platform Software for Robotics Research (MOOS) [43] 

 Robot Operating System (ROS) [44] 

There is lot of overlap and redundancy between those projects. Also multiple connections 
between them exist, allowing either component sharing or coexistence of frameworks in 
same system. 

Recently most commonly used software frameworks for developing robots is ROS and 
OROCOS [38] [44]. Since ROS framework was chosen for R5COP project, so it is very 
important to discuss information on how sensors data are exchanged there in details. 

In ROS for sensor messages specific package (called sensor_msgs) exists [45], and for all 
basic sensors there is already message specification. [46] 

 

Figure 3-6. Payload taxonomy as defined in IOP [36] 
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3.4.1 Point clouds 

Point clouds are used to represent data coming from various kinds of sensors, like lidars, 
time of flight cameras, structured light cameras or stereo vision cameras (but for later two 
depth images are often used). 

 

Popular library for handling point cloud is PCL, that aims to allow large scale 2D or 3D point 
cloud processing [47], with various algorithms for data processing (eg. filtering, feature 
estimation). This library is integrated into ROS, and can be used for almost any task related 
to point cloud handling. This integration allows passing point clouds using standard ROS 
publish/subscribe mechanisms. 

3.4.2 Depth maps 

Depth images represent data that are similar in nature to point clouds, are less generic, but 
also less verbose, and often easier to use. [48] 

3.4.3 Laser scans 

Laser scan can also be represented by point clouds (or even depth maps), but often is more 
convenient to use structure that is easier to manipulate with, and less verbose. Normally 
laser scan is structured as two tables, containing ranges and other containing intensities 
(lidars often produce not only information about range to obstacle, but also intensity of 
reflection). This data together with angle range and angle increment information provide full 
data on single laser scan. 

 

Figure 3-7. Point cloud generated by Velodyne 64E sensor 
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Figure 3-8. Four lasers scans generated by IBEO sensors 

3.4.4 Transforms 

For exchanging sensor data ROS also utilities transform system. Transform are used for 
manipulating information about sensor position, and allows translations from one reference 
frame to another. This is important for doing any kind of sensor fusion for which data from 
sensors have to be translated do common reference frame. 

 

 

Figure 3-9. PR2 Robot with transforms displayed [57] 
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3.4.5 ROS Sensor Interfaces 

R5-COP is a project based on ROS, therefore we will focus now in several aspects related to 
sensors, video and interfaces.  

In ROS systems, nodes communicate with each other by publishing messages. ROS 
platform provides several Message Ontologies. Sensor_msgs is the one related to messages 
for representing sensor data [45]. Sensors_msgs package defines messages for commonly 
used sensors, including cameras and scanning laser rangefinders. 

Among others, the package provides the following message types: Image, CompressedImage, 
PointField and PointCloud. 

3.4.6 JAUS-ROS Bridge 

JAUS is so far the most recognized software platform in the industry. ROS is gaining 
momentum. In order to integrate modules of both platforms, OpenJAUS has released jROS, 
a software library to bridge JAUS and ROS  [49]. 

jROS allows users to combine the power and flexibility of ROS with the maturity and 
robustness of the JAUS standard. In such a way, ROS tools for visualization, navigation and 
perception can be used in JAUS-based system. The library jROS consists of a set of ROS 
messages and services which are defined with respect to the JAUS message structure. 

 

 

 

 
Figure 3-9. JAUS-ROS Bridging 

3.4.7 ROS Video Sensors  

Some camera vendors have provided a ROS package to control and use their cameras. For 
instance, Axis has published the software package Axis_camera  [50]. The package includes 
Python ROS drivers for accessing an Axis camera's MJPG stream. It also allows controlling 
the PTZ parameters of their cameras. 

3.4.8 Image Processing in ROS 

The images capture by sensors can be processed with the ROS package image_pipeline 
stack [51]. The package processes raw camera images into useful inputs to vision 
algorithms: rectified mono/color images, stereo disparity images, and stereo point clouds. 
Components include:  

 Camera Calibration for both monocular and stereo cameras.  

 Monocular processing: remove camera distortion, color interpolation for Bayer pattern 
color cameras. 

 Stereo processing: to produce disparity images and point clouds. 



ARTEMIS-2013  R5-COP 

R5-COP D12.22 vFIN.docx © R5-COP consortium Page 41 of 46 

 Depth processing: for processing depth images (as produced by the Kinect, time-of-
flight cameras, etc.), such as producing point clouds. 

 Visualization: for viewing an image topic. It also includes a stereo_view tool for 
viewing stereo pairs and disparity images. 

3.4.9 Video Streaming 

There are several software packages at ROS.org that provide video streaming functionality. 

The ros_web_streamer [52] provides a video stream of a ROS image transport topic that can 
be accessed via HTTP. It opens a local port and waits for incoming HTTP requests. As soon 
as a video stream of a ROS image topic is requested via HTTP, it subscribes to the 
corresponding topic and creates an instance of the video encoder. The encoded raw video 
packets are served to the client. The web streamer tries to minimize internal coding latency 
by avoiding a B-frame encoding scheme and by forcing the codec to keep its internal network 
buffer as small as possible. 

image_transport [53] provides classes and nodes for transporting images in arbitrary over-
the-wire representations, while abstracting this complexity so that the developer only sees 
sensor_msgs/Image messages 

3.4.10 Communications channels bonding 

A big portion of the data generated by security robots may be video (e.g. in explorer robots or 
in robots aimed at deactivating bomb threats) or combined audio & video outputs. Delivering 
such amount of data via a 3G/4G channel may be problematic: the channel throughput may 
be insufficient or the cellular network could be down. The solution to such issues is channel 
bonding in order to get the needed throughput in the uplink as well as resilience, higher 
availability and sub-second latency.  

LiveU/Tellence [54] introduced such a concept in the market. The solutions of this company 
provide multichannel aggregation of different technologies (3G,4G-LTE, WiFi) over multiple 
carriers. This creates a reliable, broadband video uplink pipe over multiple narrow-band 
pipes. The solution uses adaptive algorithms which combine available communications 
channels and video encoding to achieve high bandwidth and smooth transmission, even as 
bandwidth and signal levels change across the different connections.. 

This type of multi-link bonding solutions have been developed for broadcasters and online 
video professionals and are a viable alternative to costly satellite uplink or portable satellite 
TV equipment. The challenge in R5-COP would be to integrate such a concept into a security 
robot for both analog A/V input or digital video sensor interfaces (SDI, HDMI, DVI, etc).  

Using channel bonding the video stream is divided among the different channels and 
reconstructed on destination. The same approach can be used to transmit big amounts of 
information generated by a large number of (non-video) sensors. 

The channel bonding system that is in fact an industry de-facto standard can be packed to be 
a ROS component in order to make it easy to integrate with other vendors in the robotics 
industry (ROS and JAUS via the JAUS-ROS bridge). 

Security robots may become more autonomous when they don’t depend on the availability of 
a single channel and/or cellular operator. This might enhance the communications schema of 
systems like TALOS [33] [34] which uses JAUS standard and whose architecture was 
introduced in section 3.3.1 .  

http://liveu.tv/LU500.html
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4 Summary 
This document presents an overview of software interfacing technologies and evaluates their 
potential uses in creating reconfigurable robotic systems. 

The techniques introduced range from low level solutions such as virtualization abstracting 
hardware capabilities, and high-level methods, such as self-describing, ontological data 
representation for data exchange between processes. 

Besides giving a technological overview we also focused on standardization and industrial 
acceptance. While low level virtualization solutions are not yet present in robotic systems it 
may be a viable route if we want to significantly increase these systems reconfigurability. The 
presented semantic technologies already have a very strong industrial adaptation among 
web technologies, and standards such as SensorML may bring them closer to the field of 
cyber-physical systems. 
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