
R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 1 of 89

Grant agreement no. 621447

Project acronym R5-COP

Project full title Reconfigurable ROS-based Resilient Reasoning Robotic

Cooperating Systems

Dissemination level PU

Date of Delivery 03/03/2015

Deliverable Number D34.10

Deliverable Name Languages and formalisms for expressing properties for

on-line and off-line verification

WP / Task related WP34 T34.1

Author BME

Contributors BME: Istvan Majzik, Zoltán Micskei, Tamás Tóth, András

Vörös, Dániel Darvas, Gergő Horányi, Zoltán Szatmári

Keywords Property description language, safety rules, function contracts,

temporal properties, runtime verification, incremental testing

Abstract This deliverable aims at the selection and definition of descrip-

tion languages that can be used for (1) capturing the properties

to be checked by on-line verification and (2) describing the rela-

tion of components, properties and test cases for incremental

testing. These languages allow the formalization of capabilities

and restrictions, safety rules, function contracts, temporal or

trace-based reference behaviour, as well as test coverage with

respect to components and specified properties.

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 2 of 89

Document History

Ver. Date Changes Author

0.1 11/11/2014 Initial structure of the content I. Majzik (BME)

0.2 09/01/2015 Integration of contribution about incre-
mental testing

Z. Micskei (BME)

0.3 21/01/2015 Integration of contribution about de-
scribing reference automata

T. Tóth (BME)

0.4 23/01/2015 Integration of contributions about exist-
ing solutions

All (BME)

0.45 26/01/2015 Integration of contributions about the
overview of the languages

All (BME)

0.5 28/01/2015 Integration of contribution about code
contracts

A. Vörös (BME)

0.55 30/01/2015 Integration of contributions about con-
text and scenario modelling

Z. Szatmári, Z. Micskei, I. Ma-
jzik (BME)

0.6 03/02/2015 Integration of contributions about con-
figuration description

A. Vörös (BME)

0.65 04/02/2015 Integration of contribution about CaTL,
scenarios and patterns

G. Horányi, I. Majzik (BME)

0.7 06/02/2015 Integration of contribution about prop-
erty description languages

D. Darvas, I. Majzik (BME)

0.75 11/02/2015 Integration of the additional contribu-
tions

All (BME)

0.8 13/02/2015 Modifications after discussion All (BME)

0.9 16/02/2015 Document is ready for internal review All (BME)

0.9r 27/02/2015 Internal review of the document R. Lill (FAU)

1.0 03/03/2015 Corrections after the internal review All (BME)

Note: Filename should be

“R5-COP_D##_#.doc”, e.g. „R5-COP_D91.1_v0.1_TUBS.doc“

Fields are defined as follow

1. Deliverable number *.*

2. Revision number:

 draft version v

 approved a

 version sequence (two digits) *.*

3. Company identification (Partner acronym) *

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 3 of 89

Content

Content ... 3

List of images .. 5

List of tables .. 7

List of Acronyms .. 8

1 Introduction ... 9

1.1 Summary (abstract) .. 9

1.2 Purpose of Document ... 9

1.3 Partners Involved ...10

2 The General Context ..11

2.1 Incremental Testing of Autonomous Robots ..11

2.1.1 Basis of the Approach ...11

2.1.2 Reconfiguration ...12

2.1.3 Inputs and Outputs ..14

2.2 On-line Verification of Autonomous Robots ...14

2.2.1 Checking Safety and Liveness Properties ...15

2.2.2 Checking Properties Formalized Using Scenarios ...16

2.2.3 Supporting Technology ...16

2.2.4 Inputs and Outputs ..17

2.3 Overview of the Required Descriptions and Languages...17

3 Context, Scenario and Configuration Modelling ...19

3.1 Context Modelling ..19

3.2 Scenario Modelling ..21

3.3 Configuration Modelling ...23

4 Describing Artefacts for Incremental Testing ..26

4.1 Background ...26

4.2 The Envisaged Approach ..27

4.3 Description for Incremental Testing ...28

4.3.1 General Model for Incremental Testing ...28

4.3.2 Using Context Models as the Source for Incremental Testing29

4.3.3 Using Configuration Models as the Source for Incremental Testing29

4.3.4 Description of Change and Reconfiguration ..30

4.4 Detailed Examples Using the Defined Descriptions ...30

4.4.1 Context Models and Test Contexts ...30

4.4.2 Configuration Models and Tests ..32

5 Describing Properties for On-line Verification ...34

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 4 of 89

5.1 Overview of the Languages ...34

5.2 Existing Solutions and New Challenges ...36

5.2.1 Runtime Verification Techniques and Supporting Tools36

5.2.2 Property Description Languages ...39

5.2.3 New Challenges and Required Extensions ...46

5.3 Specifying Reference Automata ..47

5.3.1 The Constraint Specification Language ...47

5.3.2 The System Specification Language ...51

5.4 Specifying Temporal Properties ...55

5.4.1 Overview of LTL’s Timing Extensions ..56

5.4.2 Context Modelling ...57

5.4.3 The Syntax of CaTL ..57

5.4.4 The Semantics of CaTL...58

5.4.5 Examples for CaTL ...60

5.4.6 A Concrete Syntax for CaTL ...61

5.5 Describing Code Contracts ..61

5.5.1 Existing Approaches ...61

5.5.2 The Language for Describing Code Contracts ...63

5.6 Describing Reference Behaviour using Statecharts ...64

5.7 Describing Scenarios ...66

5.7.1 Syntax of the Language ..66

5.7.2 Semantics ...67

5.7.3 Mapping to CaTL...74

5.8 Describing Event Patterns ...75

5.8.1 The Pattern Library ...76

5.8.2 Abstract Syntax for a Graphical Pattern Language ..80

6 Conclusions ...83

7 References ..84

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 5 of 89

List of images

Figure 1. Creating test data (at the bottom) from context models (at the top)12

Figure 2. Change in tests due to reconfiguration in the context or environment13

Figure 3. Effects of change in the robot configuration ...14

Figure 4. Live Sequence Chart with components A, B, C, D; messages m1, m2, m3; and
conditions for variable x ..16

Figure 5. Supporting on-line verification by monitor code generation16

Figure 6. Context metamodel of a home environment ..20

Figure 7. Context model (instance model) conforming to the context metamodel21

Figure 8. Reduced abstract syntax of the message view ..22

Figure 9. Example scenario model R2: Alerting a living being ..23

Figure 10. Example scenario model R3: Detecting unusual noise ..23

Figure 11. Basic concepts in the configuration and skill metamodel24

Figure 12. An example skill model ..25

Figure 13. A simple configuration model editor ...25

Figure 14. Overview of the incremental testing methods ..27

Figure 15. Metamodel for describing incremental testing ..28

Figure 16. Example context model and test contexts ..31

Figure 17. Representation of the context model and test contexts ..31

Figure 18. Context model after reconfiguration ...32

Figure 19. Incremental testing analysis of the reconfiguration ..32

Figure 20. Example configuration model ..32

Figure 21. Representation of the configuration model and test contexts33

Figure 22. Effect of the two reconfigurations ...33

Figure 23. Languages used to describe properties to be monitored......................................35

Figure 24. Example VTS specification [52] ...41

Figure 25. Example GIL specification [53] ..41

Figure 26. Example MSC [56]...42

Figure 27. Example LSC [56]..43

Figure 28. Example TOCL specification [60] ...43

Figure 29. An example property pattern (Precedence) [75] ..44

Figure 30. The compatibility relation between two contexts ..60

Figure 31. Context definition for illustrating the immutability of object assignments60

Figure 32. Overview of the components of the VCC on-line verification approach62

Figure 33. Abstract syntax (metamodel) of the statechart language65

Figure 34. Example of the graphical requirement specification language66

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 6 of 89

Figure 35. Example requirement with a referenced context fragment: Event view (left) and
Context view (right) ..67

Figure 36. Example of the usage of cold conditions (condition in blue)67

Figure 37. The translation algorithm ...69

Figure 39. Handling an alt fragment..70

Figure 40. Handling an opt fragment ..71

Figure 41. Handling a loop fragment ...71

Figure 42. Handling a break fragment ..71

Figure 43. Handling a neg fragment ...71

Figure 44. The postprocessing algorithm ..72

Figure 45. Example requirement scenarios ..73

Figure 47. CaTL expressions belonging to scenarios in Figure 45 ..75

Figure 48. Scope of a pattern in a trace w.r.t. events Q and R ..76

Figure 49. The quantification of the formula ..81

Figure 50. The temporal patterns ...81

Figure 51. The structural pattern ..82

Figure 52. The pattern elements ...82

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 7 of 89

List of tables

Table 1: Techniques and example solutions for runtime verification37

Table 2: Architectures for monitoring with examples ...38

Table 3: Typical tools and frameworks for on-line verification ...39

Table 4: Concrete textual syntax for PLTL operators ..61

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 8 of 89

List of Acronyms

CaTL Context-aware Timed Propositional Linear Temporal Logic

CTL Computational Tree Logic

EMF Eclipse Modeling Framework

LSC Live Sequence Chart

LTL Linear Temporal Logic

MSC Message Sequence Chart

OCL Object Constraint Language

PLTL Propositional Linear Temporal Logic

PSL Property Specification Language

R3-COP Resilient Reasoning Robotic Cooperative Systems

ROS Robot Operating System

UML Unified Modeling Language

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 9 of 89

1 Introduction

1.1 Summary (abstract)

WP34 of R5-COP aims at supporting the off-line and on-line verification of the behaviour of
R5-COP systems by elaborating methods and tools for incremental testing and runtime moni-
toring. Incremental testing focuses on checking the permanent effects of reconfiguration on
basic safety and robustness properties, while runtime monitoring focuses also on checking
the effects of runtime errors, this way also supervising error handling and self-healing poli-
cies.

 Incremental testing of the behaviour of reconfigurable systems is relevant in the de-
sign phase (to check configuration possibilities) and in maintenance phases (to check
the behaviour of a concrete reconfigured version). Incremental testing can build on
the already existing test suites (that were developed for the previous versions) and
the results of these previous testing activities.

 Runtime monitoring addresses the detection of errors and malfunctions that manifest
themselves in runtime (e.g., due to random hardware faults, configuration faults, op-
erator faults, faults in adaptation and self-healing).

To support these activities, description languages are needed to capture those properties of
the system that characterise its correct behaviour. These formalized properties provide the
basis for monitoring and incremental test selection:

 For incremental testing, the description of the relation of test cases, system compo-
nents and properties is used by the methods and tools for selecting, adapting and ex-
tending test cases from existing test suites in an incremental way, in order to check
the changed components or properties. Accordingly, the language captures the new
requirements (formalized in scenarios), the changes in the context of the system
(formalized in context ontologies and metamodels), and the changes in the internal
components (formalized in architecture and capability models).

 For runtime monitoring, the description of the properties is used by the methods and
tools for monitor synthesis, i.e., an automated construction of software monitors to
check the specified system properties. Accordingly, the language captures safety and
liveness properties (for monitoring safe and correct behaviour during execution), and
function contracts (formalized using assertions, temporal and trace-based properties).

1.2 Purpose of Document

This deliverable aims at the selection and definition of description languages that can be
used for (1) capturing the properties to be checked by on-line verification and (2) describing
the relation of components, properties and test cases for incremental testing. These lan-
guages allow the formalization of capabilities and restrictions, safety rules, function contracts,
temporal or trace-based reference behaviour, as well as test coverage with respect to com-
ponents and specified properties.

As mentioned above, these languages form the basis of the following tasks of WP34:

 Task 34.2: Incremental testing of behaviour. In this task, a method will be elaborated
that can be used for the selection, adaptation and extension of test cases. The gaps
in the coverage of the existing test suites are identified, which drives the adaptation of
existing test cases and the generation of new test cases to cover the changes.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 10 of 89

 Task 34.3: Design of the monitoring infrastructure. The monitoring infrastructure com-
prises the monitor components that perform the on-line verification and the mecha-
nisms for accessing the monitored information. The algorithms of these monitors and
procedures for their synthesis are derived on the basis of the semantics of the formal-
ized properties to be checked.

1.3 Partners Involved

Partners and Contribution

Short Name Contribution

BME Selection and definition of description languages

FAU Review of the document

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 11 of 89

2 The General Context

This section describes the general concept of incremental testing and runtime verification in
order to put into context the selection and definition of the description languages presented in
the subsequent sections of the document.

2.1 Incremental Testing of Autonomous Robots

To create reconfigurable robotic systems, not only the development but also the verification
and testing activities have to take into account reconfiguration and changes. Time and re-
sources required for testing can be reduced if testing is performed incrementally.

In classical software engineering terminology, the re-use of previous tests and test results is
denoted as “regression testing”. Here “incremental testing” is used to address the stepwise
extension/change of the functional scope of the subject under test throughout successive
testing phases. To increase efficiency in testing, the previous tests and test results are re-
used and testing is focused on the changed part of the reconfigured system.

2.1.1 Basis of the Approach

In the preceding R3-COP project, BME developed a model-based system level testing meth-
od for testing the context-aware behaviour of an autonomous robot. The test goal is to check
the safe execution of a robot mission (e.g., transportation of goods without collision) in vari-
ous contexts (e.g., in the presence of obstacles, humans, other robots and various environ-
ment objects). Accordingly, test contexts (arrangements of objects, obstacles etc.) shall be
constructed systematically. To do this, we model the scenarios (describing the requirements
against the robot) and the potential contexts of the robot (environment object types with their
relations and constraints). On the basis of these models, our tool generates systematically
the models of test contexts in which the mission of the robot can be checked. These gener-
ated test context models can be mapped to the configuration of a real test environment, a
simulated environment (like in ROS+Gazebo), or internal representation of perceived context
of the robot in ROS (depending on the implementation). Various test generation strategies
can be supported, like the generation of extreme context for robustness testing.

Figure 1 presents an example from an autonomous forklift. The left hand side depicts the
context model representing that a forklift can move on segments and can interact with peo-
ple, pallets and other forklifts. On the bottom left a scenario states that if a person moves
close to the robot (it is in the so called “warning” range), then the robot has to react with an
alarm sound. Another requirement is that if the person is too close (in the “danger” range),
then the robot has to stop. From these models the test generator tool creates models de-
scribing test contexts (one of them is depicted on the bottom of Figure 1). Test context mod-
els place different objects and persons around the robot to verify that it can handle multiple,
possibly conflicting requirements (e.g., when one person is in warning range, and another is
in danger range).

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 12 of 89

Figure 1. Creating test data (at the bottom) from context models (at the top)

2.1.2 Reconfiguration

In a reconfiguration, the context or the configuration of the robot can change. For example, a
new type of object can appear in the environment, a requirement is modified, or a new type
of sensor is added to the robot. In these cases the most basic strategy is to run all previous
tests (called retest-all). However, this is not an optimal solution, as some of the previous
tests are

 reusable (redundant): these tests are using only unchanged part of the system, thus it
is unnecessary to run them, valuable test resources and time could be saved,

 retestable: these tests exercise the changed part of the system, thus they need to be
re-executed,

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 13 of 89

 obsolete: these tests are not valid any more (e.g., a component of the robot has been
removed),

Moreover, new tests may be needed, i.e., it has to be identified which new tests are required
after a reconfiguration.

The following possible reconfiguration scenarios are investigated:

 The context or the requirements of the robot changed: In this case the related models
are changed and it is identified (1) which previously generated test data are invalid
now, and (2) which part of the new context model is not covered by the existing tests.
Figure 2 presents an example: part of the context model is removed (e.g., the robot
will be used in a different context), thus one of the previous tests is obsolete.

Test is

obsolete

New test is

needed

Figure 2. Change in tests due to reconfiguration in the context or environment

 The configuration of the robot changes: For example, a new type of sensor or naviga-
tion method is added to the robot. In this case, if there is a mapping between the tests
and the components/skills exercised by these tests (e.g., when during a given test the
robot uses a laser sensor then a mapping between the test and the laser sensor is
recorded), then based on the description of the configuration the tests can also be
classified. (Note that the description of the configuration could be obtained from the
skill composer tool of WP 3.5.) Figure 3 presents a simplified example.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 14 of 89

Figure 3. Effects of change in the robot configuration

2.1.3 Inputs and Outputs

In order to perform this kind of analysis in a demonstrator, the following inputs are needed:

 Description of the demonstrator’s components: list of the major components and the
dependencies between them (e.g., details of the architecture or the skill models de-
veloped in the project).

 Description of tests: mapping of existing tests to components (e.g., an integration test
suite checking the communication between the sensors and the navigation module).

 Description of context: description of the environment of the robot used in testing.

The outcome is a method for

 the identification of the tests that need to be executed after a reconfiguration,

 the identification of those parts of the system which are not covered by the existing
tests.

2.2 On-line Verification of Autonomous Robots

On-line verification by runtime monitoring addresses the detection of errors and malfunctions
that manifest themselves in runtime (e.g., due to random hardware faults, configuration
faults, operator faults, faults in adaptation etc.). Such kind of error detection is especially im-
portant in safety-critical systems, where one of the basic principles for assuring safe behav-
iour is reactive fail-safety: proper detection and handling of hazardous errors that occur in
system components implementing a safety-related function. This principle appears, among
others, in IEC 61508 (the generic standard for safety-related electronic systems).

Accordingly, on-line verification uses runtime monitor components that observe the behav-
iour of the robot components (the trace of states, events, actions, and the perceived context),
detect the hazardous situations, and trigger a reaction to maintain safety (e.g., to stop the
robot). In the typical case, these monitor components are implemented as additional software
components in ROS.

In WP3.4, a technology is developed that allows automated construction of monitors by the
synthesis of their source code. In our solution, the potential hazardous situations (the internal
status of state variables, sequences of interactions among components, inputs and outputs)
are specified using a high-level language: sequence diagrams, logic and temporal operators.
On the basis of this specification, our tool automatically generates the source code of the
monitor components that detect these situations.

A hierarchical structure of monitors is envisaged that is configurable in order to detect faults
at the level of separate components (local monitoring) and at the level of the robot (system-
level monitoring). The automated code generation offers optimized monitor code for a given
configuration. In addition, instrumentation technologies are developed to support monitoring
by accessing (1) local information about the states and actions to be observed by a local
monitor, and (2) interactions among components to be observed by a system-level monitor.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 15 of 89

Of course, the resource (CPU + memory) needs of monitoring depend on the number of vari-
ables/events to be monitored and the complexity of the situation to be detected by the moni-
tor. Implementing efficient algorithms for detection and measuring overhead in concrete de-
monstrators is an important task in the project.

Note that monitors are useful not only in runtime (to detect operational faults), but also during
testing: The monitors form part of the test oracle that decides whether the behaviour is ac-
ceptable considering the execution of a given test suite (i.e., a set of test traces is evaluated).

The following use cases of monitoring and runtime verification are supported:

 Behaviour monitoring of software components: In this use case the goal is to check
the internal behaviour of the component, detecting in this way all errors that influence
the states (state variables) and the control flow of the component. The monitored
component is instrumented in order to send to the monitor information (signatures)
that allow the identification of the internal states. The monitor receives this run-time
information and compares it with the reference behaviour that defines the states and
state transitions that are allowed (i.e., accepted by the monitor without detecting an
error).

 Trace-based monitoring of single components: In this use case the goal is to check
the externally observable behaviour of a component (when the instrumentation nec-
essary for checking its internal behaviour is not possible). The monitor observes the
timed sequence of inputs and outputs on the interface of the component (together
with context and configuration related information) and decides whether the run-time
sequence of these events is conformant with the reference information that is given
as a set of allowed traces. Basically, reference traces capture safety properties
(“something bad never happens”) and liveness properties (“something good will even-
tually happen”) restricted to the externally observable operation of a single compo-
nent.

 Trace-based monitoring of interacting components: In this use case the goal is to
check the interactions between components. The monitor observes the sequences of
inputs and outputs on the interfaces of multiple interacting components (together with
context related information) and decides whether the run-time sequence of these
events is conformant with the reference information that is given as a set of allowed
traces. Basically, traces represent here the correct execution of interactions (proto-
cols) among multiple components.

 Function contract monitoring: In this use case the goal is to check contracts (simple
conditions) expressed using the input and output parameters (variables) of the func-
tion interface of a component when a function call is performed. The monitor ob-
serves these parameters and checks the conditions in the form of executable asser-
tions. In this case the scope of checking is a single function call, and the temporal or-
dering of the related states and events are checked separately (as presented in the
previous use cases) or are not relevant.

In the following, two typical applications of these monitoring approaches are detailed (as ex-
amples), then the supporting technology is summarized.

2.2.1 Checking Safety and Liveness Properties

In this case the monitors observe the execution trace and evaluate the reachability of speci-
fied situations. Reachability is described using operators like “eventually”, “always”, “until”,
“potentially always”, and “leads to”, potentially with time information. An example reachability
property that can be checked by a monitor is the following: “Whenever a state Stop is
reached, it implies that no Speedup actions are executed until the event Restart is received”.
The source code of the monitors is generated in such a way that they observe and evaluate
the execution trace on the basis of these expressions.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 16 of 89

2.2.2 Checking Properties Formalized Using Scenarios

Scenarios are used to specify properties of interactions among components. An example
scenario that can be checked by a monitor is the following: “If component B sends a mes-
sage Start to component A, and C sends Resume to A (in any order), then B must receive
Ready from C within 1 to 3 time units”. A scenario can be formalized by a Live Sequence
Chart. It is composed of two parts (Figure 4): a so-called pre-chart (condition part) and a
main chart (checked part). If the behaviour described by the pre-chart is encountered, then
the behaviour described by the main chart must be matched to satisfy the scenario (other-
wise an error is detected). The source code of the monitor is generated using an algorithm
that matches the conditions and messages observed in runtime with the traces allowed by
the scenario. Here the trace includes the local conditions of the components as well as the
messages among them.

Pre-chart

Main chart

Figure 4. Live Sequence Chart with components A, B, C, D; messages m1, m2, m3; and
conditions for variable x

2.2.3 Supporting Technology

On-line monitoring and verification is supported by the automated generation of the source
code of the monitor components on the basis of the properties to be monitored. To do this, it
is necessary to define the languages that are used to describe the properties relevant for on-
line verification. Moreover, it is necessary to develop the algorithms to be used by the moni-
tors to evaluate the properties. These algorithms will be realized by the monitor source code
generator tool (Figure 5) that (together with the component instrumentation technologies) are
made available to the developers.

Monitor code

generator

Source code

for run-time

monitors

Algorithms to

evaluate

requirements

Algorithms to

synthesize

monitors

Techniques and

interfaces for

instrumentation

Reference

behaviour

Reference

traces

Function

contracts

Figure 5. Supporting on-line verification by monitor code generation

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 17 of 89

2.2.4 Inputs and Outputs

In order to apply this kind of on-line verification in a demonstrator, the following inputs are
needed:

 Description of properties (hazardous situations) to be monitored. These will be formal-
ized and form the basis of monitor code generation.

 Interfaces to observe the trace of states/events/actions to be monitored, or source
code of the components for instrumentation.

The outcome can be used in the demonstrator in the following form:

 The source code of monitor components (ROS components) that are able to detect
the hazardous situation.

 Tools for specifying the hazardous situations and generate the source code of the
monitors.

2.3 Overview of the Required Descriptions and Languages

On the basis of the use cases and general context presented in the previous sections, it can
be concluded that several types of artefacts shall be captured to form the inputs for test anal-
ysis for incremental testing and for generating the source code of on-line monitors. These
(types of) artefacts can be grouped into three categories as follows:

1. The so-called common artefacts that have to be captured both for test analysis and
monitor code generation:

 Context elements: As the verification of context-aware autonomous behaviour
is addressed, the context elements include environment objects, their proper-
ties, the potential relations among them (e.g., abstract relations as “close to”,
“lying on”), and the constraints among them (including physical constraints as
well as domain-specific logic constraints).

 Scenarios: Testing and on-line verification address safety and robustness of
behaviour, expressed in the form of expected reactions of the autonomous
system to its context and to the input events (messages and signals). Accord-
ingly, the requirements are given in a generic and lightweight form as scenari-
os that include context, input events and observable output actions.

 Configurations: As re-configuration is a key concept both for incremental test-
ing and on-line verification, the (current) configuration of the system and its
changes shall be captured. Configuration can be considered as a hierarchical
structure of skills (from which an application is built), software components
(that realize one or more skill), and hardware devices (that are used by the
software components using specific interfaces).

2. The specific artefacts that are relevant for incremental testing:

 Tests: Tests are captured as basic entities.

 Testables: The term testable is a common artefact that includes everything
that can be addressed (covered) by a test: Context fragments (relevant subset
of context elements), requirements, configuration fragments (relevant subset
of configuration elements), source code snippets, etc. are represented under
this common term.

 Mapping: The mapping is a relation “tests” among tests and testables.

3. The specific artefacts that are relevant for monitor code generation include the prop-
erties that are checked by the monitor:

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 18 of 89

 Reference behaviour: The reference behaviour of a monitored component
gives the states and state transitions that are allowed (i.e., accepted by the
monitor without detecting an error). The reference behaviour is needed in a
behavioural monitoring use case, when the monitored component is instru-
mented in such a way that its internal states can be identified by the monitor.

 Reference traces: The set of reference traces gives the sequences of observ-
able events (inputs, outputs of components) that are allowed. Reference trac-
es are needed in the trace based monitoring use cases (trace based monitor-
ing of single or multiple components) when the monitor is able to observe the
inputs and outputs on the external interface(s) of the monitored component(s).
The reference traces are usually given in a declarative form by specifying the
temporal ordering among the relevant events (e.g., by using scenarios, or
temporal logic operators like “after”, “before”, “until” etc.). Basically, reference
traces capture safety properties (“something bad never happens”) and
liveness properties (“something good will eventually happen”).

 Function contracts: Function contracts are simple conditions expressed using
the input and output parameters (variables) of the function interface of a com-
ponent. These are needed in a function contract monitoring use case, when
the monitor evaluates these conditions in the form of executable assertions.

The following sections present the languages that were selected and adapted to describe the
above mentioned three categories of artefacts.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 19 of 89

3 Context, Scenario and Configuration Modelling

Context and scenario modelling formed the basis of the model based robustness testing ap-
proach that was worked out in the frame of the R3-COP (Resilient Reasoning Robotic Co-
operating Systems) project and documented in its deliverables D4.2.1 “Models, Languages
and Coverage Criteria for Behaviour Testing of Individual Autonomous Systems – Part I: Be-
haviour Testing” [69] and D4.2.2 “Behaviour Testing Strategies and Test Case Generation –
Part I: Behaviour Testing” [70]. Accordingly, in the following subsections we recapitulate the
context modelling (Section 3.1) and scenario modelling (Section 3.2) approaches that are re-
used in R5-COP in our task. Finally, in Section 3.3 we present the basic concepts of configu-
ration modelling, that will be integrated with the output of the R5-COP work package WP13
“Dealing with Configurability”.

3.1 Context Modelling

To capture and process the information and requirements about the context (environment) of
an autonomous system (AS) a model of the context can be used. The context model is a
domain-specific description of the objects and events in the context that are relevant to the
behaviour of the AS. Context modelling requires a formalized modelling language that sup-
ports precise representation and automated processing.

Based on the different aspects of the context, the model can be divided into two parts:

 Static environment description: The static part of the context model supports the rep-
resentation of the environment objects, their attributes and relations (links). The ob-
jects are modelled using a type hierarchy (in other words, a dictionary-based taxono-
my). Static elements of the context model can represent a snapshot (scene) of the
environment at a concrete point of time.

For example, in case of a household robot, the static context description should con-
tain object types like room, furniture, table, chair, and their attributes like position,
colour and size.

 Dynamic changes: To be able to represent an evolving context, dynamic changes
should also be represented. This dynamic aspect is included in the context model by
defining the concept of changes with regard to objects (i.e., an object appears, disap-
pears), their properties (e.g., a property changes) and their relations. Changes as
perceived by the AS are represented by individual context model elements called
context events that have attributes and relations to static objects and their relations
(depending on the type of the event). The actions of the AS are represented in a sep-
arate action model.

For example, in case of a household robot, context events are moving of an object, or
sounding of an unusual noise, while actions are starting the motor or speaking an
alert.

The types of these model elements are captured in a type hierarchy in form of a context met-
amodel. Note that the metamodel can be systematically constructed on the basis of domain
ontologies (like the existing RoboEarth or KnowRob ontology) [69]. A context model is
formed by the instantiations of the context metamodel elements. In summary, a context
model is able to capture (i) the relevant environment of the AS, (ii) its evolution in time, and
(iii) the events perceived and the actions initiated by the AS.

In our approach, the construction of the context metamodel (either in a direct form or by con-
structing a domain ontology and mapping from it to a metamodel) is the task of the develop-
er. To ease the programmatic manipulation of the context metamodel and context models,

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 20 of 89

the EMF (Eclipse Modelling Framework)1 technology can be used for a concrete representa-
tion.

The metamodels are completed with domain-specific constraints that define various re-
strictions. Two types of constraints can be distinguished:

 Well-formedness constraints define constraints that must be satisfied by any context
model, otherwise conceptual rules or the laws of physics are violated. For example,
constraints expressing that “an object cannot hover” or “the sum weight of the objects
placed on a table should be less than the carrying capacity of the table” are well-
formedness constraints.

 Semantics constraints are derived from the requirements of an application, this way
these are only preconditions or expectations about the context that can be violated in
particular cases (e.g., when the robustness of an autonomous system is checked).
For example, constraints expressing that “the chairs are around the table” or “there
are two doors in the room” are semantic constraints.

The constraints can be captured using OCL, the standard Object Constraint Language. Sev-
eral constraints can be mapped to context model patterns (however, there are limits to OCL
constraints and this mapping, e.g., the lack of temporal operators and no quantification over
infinite domains can be mentioned).

The structured context metamodel and the related constraints offer several advantages over
an ad-hoc representation of context elements. Among others, it supports the automated gen-
eration of test data to test the behaviour of an AS in different contexts. The domain-specific
constraints allow the automated generation of extreme contexts (as test data for robustness
testing) that violate these constraints. Moreover, it is also the basis of the definition of precise
test coverage metrics.

An example context metamodel and a context model of a household robot are presented in
Figure 6 and Figure 7.

Figure 6. Context metamodel of a home environment

1
 http://www.eclipse.org/modeling/emf/

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 21 of 89

r1 : Room

hugo : Robot

t2 : Table

t1 : Table h2 : Human

n1 : Noise

f1 : Flat

r2 : Room

hasRoom hasRoom

connected

start = 3

a1 : AppearEvent

target

start = 10

m1 : MoveEvent

target

Figure 7. Context model (instance model) conforming to the context metamodel

3.2 Scenario Modelling

Scenarios are used to express requirements, which are later checked against execution
traces. In the domain of autonomous systems, the requirements usually refer not only to
events, actions and messages processed or initiated by the AS, but also to objects in the
context (environment) of it (e.g., “if the robot is near to a human then it has to send an alert
message”).

Each scenario has two parts:

 The trigger part captures the sequence of events and contexts that are considered as
the “condition” part of a requirement, i.e., the scenario is only relevant if its trigger part
has been traversed.

 The assert part captures the sequence of events, actions and contexts that describe
what shall or shall not happen after traversing the trigger part.

These parts may have several fragments, like opt fragment for expressing optional behav-
iour, alt for expressing alternatives, and neg for a negative fragment that should not happen.

In the scenarios, context model fragments can be referenced as initial context of the scenar-
io, interim context in the trigger part that should occur during execution, and final context (in
the assert part) that shall be reached (matched) in order to satisfy the requirement.

Accordingly, the scenario language has two parts: a context view and a message view.

 Context view: The context view contains zero or more context fragments. A context
fragment contains an instance model of the context metamodel, i.e., an arbitrary
number of class instances and links between them. Instances of those classes that
represent dynamic events can only appear in those context fragments that are used
as initial context fragments in the requirements. A context fragment is represented as
an object diagram (referenced with the name of the package containing it). The rele-
vant part of UML’s abstract and concrete syntax (the metaclasses Package, In-
stanceSpecification, and Slot) was not modified. There are no other syntactic re-
strictions.

 Message view: Graphical scenarios are captured in the form of extended and restrict-
ed UML 2 Sequence Diagrams. Language extensions were added to refer to the con-
text fragments. Restrictions were applied to simplify the language by eliminating

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 22 of 89

complex constructs that make the evaluation of execution traces too difficult. Figure 8
presents the subset of the model elements that can be used to represent require-
ments. Some of the elements of the original UML metamodel were removed in order
to simplify the checking of requirements.

Figure 8. Reduced abstract syntax of the message view

In summary, the most important changes with respect to the original metamodel are the
following:

 Gate and InteractionUse were removed to prevent references to other scenarios.

 The following operators were removed: seq, strict, loop, ignore, break, critical.

 Each scenario should have an assert fragment at the bottom of the diagram covering
all the lifelines. This represents the mandatory part of the requirement, while the ele-
ments before the assert fragment form the trigger part of the requirement.

References to context fragments (used in initial, interim or final contexts) are expressed
as StateInvariants placed on the Lifeline.

The concrete syntax of the language remains the same as the original, no new graphical
notation was needed. In this way, existing UML modelling tools can be used to create
scenarios.

The main purpose of the requirement scenarios is to evaluate execution traces (totally or-
dered sequence of contexts, events, and actions), and categorize them with respect to a giv-
en requirement scenario as passed, failed or inconclusive. The semantics was designed in a
way that supports this overall goal: the operational semantics is defined by building one
global finite automaton for the whole scenario. This automaton can be used as an observer
automaton to categorize execution traces. The details of constructing this automaton for on-
line verification purposes are described in Section 5.7.

Figure 9 and Figure 10 present two scenarios (R2 and R3) of a vacuum cleaner robot (SUT).
R2 states that when a living being is detected nearby the robot then it has to be alerted. R3
states that if a noise is detected in the room then the robot should send a predefined alert.
Here the requirements with respect to the initial contexts are described using context frag-
ments (model instances conforming to the context metamodel).

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 23 of 89

ContextFragment2

alt

sd R2

assert

Perception SUT

humanDetected

speakNearbyAlert

Actuators

R1 : Room

R : Robot L : LivingBeing
nearBy

animalDetected

Initial context: ContextFragment2

ME :

MoveEvent

Figure 9. Example scenario model R2: Alerting a living being

ContextFragment1

sd R3

assert

Perception SUT

detectUnusualNoise

sendUnusualNoiseAlert

Actuators

R1 : Room

R : Robot N : Noise

Initial context: ContextFragment1

AE :

AppearEvent

Figure 10. Example scenario model R3: Detecting unusual noise

3.3 Configuration Modelling

Modelling configurations is a complex task due to the large number of possible software
packages, hardware elements and their combinations. The modelling approach is aimed to
support the test generation by defining the artefacts, this yields additional requirements
against the developed language.

In this section we introduce a compact language which can serve as the basis for a more
complex configuration description language. Our goal is now to collect the basic concepts
that are necessary for the purposes of on-line and off-line verification. This conceptual model
will be merged and harmonized with the output of work package WP13 “Dealing with Config-
urability” in deliverables “Skill Model” and “Configuration models”.

The considerations behind the proposed language are the following:

 Simple skill modelling;

 Being able to define software and hardware components and their relations;

 Straightforward definition of complex building blocks of robots;

 Being able to define not only type but also cardinality constraints.

To support (incremental) testing of robot systems requires the ability to define the different
skills of the robots and also the configurations implementing the skills.

The metamodel depicted on Figure 11 defines the basic concepts and their relations. The
elements are organized into Invertories. From a high level point of view, two main concepts
are modelled, Skills and Implementations. Skills can be organized according to their depend-
encies (depends navigation). This way we provide a simple language to define the various

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 24 of 89

skills and their relations. The Implementation can either be a ComplexComponent, or a
ComponentType. A ComplexComponent is composed of ComponentTypes through the
Composition class. In Composition the cardinality of the relation, i.e., the required number of
hardware and software elements can be defined. A ComponentType can be HardwareCate-
gory, SoftwareCategory, HardwareType or SoftwareType. Categories can be organized into
hierarchies to provide more accurate classification of the components. Software and hard-
ware types are members of the categories: they constitute complex components together.

The metamodel was developed using the Eclipse Modeling Framework (EMF). Moreover, on
the basis of the EMF technology, a simple model editor was implemented to support the
quick development of configuration models (Figure 13).

Figure 11. Basic concepts in the configuration and skill metamodel

To demonstrate the capabilities of the language, the configuration model of a hypothetic ro-
bot (inspired by Care-O-bot 3) is presented in Figure 12. Components of the robot were
modelled by ComplexComponents built from various software and hardware parts. The spec-
ification of robot components means either defining categories of hardware or software parts,
or giving a specific hardware or software type. For example, the implementation of the Safe
Navigation Skill requires laser scanners (Hardware Category) and Robot Navigation Soft-
ware (Software Type).

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 25 of 89

Robotic Home Assistant Skill

Assistant Skill

Safe Transport Skill

Safe Navigation Skill

Transport Skill

depends

depends

depends

depends

Software Type:
Robot Navigation Software

Hardware Category:
Robot arm

Complex Component:
Sensor head

Hardware Category:
gripping device

Hardware Category:
PC

implements

implements

implements

implements

Hardware Category:
Laser scanner

implements

implements

Complex Component:
Omnidirectional Platform

Complex Component:
Power supply

implements

implements

Figure 12. An example skill model

Figure 13. A simple configuration model editor

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 26 of 89

4 Describing Artefacts for Incremental Testing

4.1 Background2

The kind of incremental testing approach planned in the project is usually referred as regres-
sion testing in the literature [1]. Regression testing is defined as “selective retesting of a sys-
tem or component to verify that modifications have not caused unintended effects and that
the system or the component still complies with its specified requirements” [3]. Regression
testing can be performed on any testing level (i.e., module, integration, etc.), and it can cover
both functional and non-functional requirements. However, rerunning every test after each of
the modifications is resource and time-consuming, thus a trade-off must be made between
the confidence gained from regression testing and resources used for it. For this reason,
several regression testing techniques were proposed over the years, e.g. to select only a
subset of the regression test suite, what is relevant for the current change, or to identify
those new parts of the system, which are not covered by existing tests.

The research in the field of regression testing focused on the following problems:

a) Regression test selection: select only tests from the regression test suite that are af-
fected by changes.

b) Test suite minimization: find a minimal subset of test cases that preserves the cover-
age with respect to a certain criterion of the original test set.

c) Coverage identification: identify those parts of the system that need additional tests
due to the change.

d) Test prioritization: optimize the order of tests according to some criteria, e.g. to run
those tests first which are more likely to uncover bugs or which need less time to run.

e) Test suite execution: automatically execute the test in an efficient way.

For regression test selection techniques the basic idea is similar to the one used in build sys-
tems (e.g. the make tool), namely that at each build only those files need to be recompiled
that have been changed or depend on a file that have been changed. Similarly, to reduce the
size of the regression test suite, and thus reduce the time and resources needed to execute
it, one can select only those tests that work on changed parts of the system. Rothermel and
Harrold published a detailed survey paper about regression selection techniques [4]. They
evaluated several techniques according to their inclusiveness, precision, efficiency and gen-
erality. The surveyed techniques consisted of linear equation, symbolic execution, path anal-
ysis, dataflow, program dependence graph, system dependence graph, modification based,
cluster identification, slicing, graph walk techniques, etc. Each technique had its strength or
weakness; some were able to uncover more errors, while some computed the selected tests
very fast. A more recent survey can be found in [2].

As the test suite grows and changes, some tests become redundant. Test suite minimization
techniques remove test cases from the tests suite to retain only a minimal number of test
cases, while providing the same level of coverage than the original test suite. However, care
must be taken, because removing too much test cases can reduce its fault detection effec-
tiveness.

Changes in the system can introduce new parts, which are not exercised by existing tests.
Coverage identification can map these parts of the system. Simple approaches can use code
coverage analysis tools to uncover changed portions not touched by existing tests. More

2
 Adapted from previous work: Zoltan Micskei (BME). „Evaluation of existing methods and principles in MBT”,

BME, 2009.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 27 of 89

advanced approaches typically use some sophisticated data structure, e.g. dependence
graphs that capture also data and control dependencies in the system.

Test prioritization techniques can have several goals. One can optimize the order of the test
suite to increase the rate of fault detection, code coverage, or the rate at which high-risk
faults are detected. Rothermel et al. analysed in [5] nine test prioritization techniques (e.g.
random, prioritize in order of coverage statements, etc.). Their conclusion was that even
simple approaches (which are quite easy to implement and inexpensive) can improve the
rate of fault detection. However, the performance overhead of more sophisticated approach-
es was still a bit high.

Test suite execution techniques concentrate on the automatic execution and evaluation of
test cases. These techniques moved into the practice over the years, as most of the current
testing tools have these functionalities.

Running a set of regression tests is usually part of the automatic build procedures of popular,
modern software development processes. However, industrial testing tools and platforms
used nowadays (both commercial and open source ones) usually concentrate on just the
automatic execution of tests, collection of results, and creating test reports when talking
about regression testing. These tools usually do not perform test selection or minimization on
the regression test suite.

On the other hand, several academic tools were reported to support research on different
regression testing techniques. The drawback of these tools is however that they are usually
not available to the public or not maintained any more.

4.2 The Envisaged Approach

The existing tools and approaches usually concentrated on one programming or modelling
language as the input source for incremental testing. However, as we have seen in the pre-
vious sections, in R5-COP there could be multiple levels and types of reconfiguration. In-
stead of performing incremental testing separately for each of the change types, we could
apply a unified approach, as basically they all belong to the same problem.

Incremental
Testing
Analysis

Context

(other sources)

Analysis results

 classification of tests
 not covered elements

Specification for new
tests

Context
model

Existing test
contexts

Mapping

Configuration

Configuration
model

Existing
tests

Mapping

M
o

d
el

 a
d

ap
te

r
C

h
an

ge
 d

et
ec

ti
o

n

Input sources Incremental testing tool Output

Figure 14. Overview of the incremental testing methods

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 28 of 89

We recommend to develop a common, general incremental testing approach, and connect
the specific test types (test contexts from context models, module/integration tests for com-
ponents, etc.) using special adapters to this core. Figure 14 depicts the approach in detail.

 The incremental testing analysis component is the central element of the approach. It
defines a very general model for representing the tests and tested elements. The regres-
sion testing algorithms (test selection or coverage identification described in the previous
section) work on this general model.

 A model adapter is responsible for connecting the different sources, like context or con-
figuration models and tests to the general analysis component. This adapter should be
developed for each source type and is responsible for converting the models and tests to
the internal representation of the analysis component. This component is also responsi-
ble for detecting changes in the sources.

 The outcome of the analysis is a classification of tests as described in Section 2 and the
coverage information of the source elements (e.g. there is a class in the context model
that is not present in any of the existing test contexts). This information can later be used
to create new tests either manually or automatically.

The next section will detail the required description formats for these elements.

4.3 Description for Incremental Testing

4.3.1 General Model for Incremental Testing

The core incremental testing analysis component needs a very general model to represent
the inputs from the various sources. It should be able to describe elements in the context of
the system or dependencies between the various components of the system.

Thus the following general model was designed that can incorporate the basic concepts of
incremental testing. (The modelling diagram was created using Eclipse EMF, that is why the
types are EMF-specific, like EString or ELong, but it can be easily converted to other basic
types, if needed.)

Figure 15. Metamodel for describing incremental testing

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 29 of 89

The elements in the model are defined as follows.

 Test: Represents a test case with the last outcome and execution time of the test.
Execution time will be used for cost calculation and outcome may be used for addi-
tional algorithms (e.g. run most frequently failing tests first). Tests also have refer-
ence to the object they exercise.

 Test Suite: A Test Suite is used for grouping purposes, e.g. unit and integration test
suites can be represented separately.

 Testable: Testable is an abstraction of an object, which is executed or checked by an
arbitrary number of tests.

 Component: An implementation of Testable. It allows dependencies to be specified.

 System: Root element for the model, a System is composed of its testables and test
suites.

 Changeable: abstract base class to be able to mark objects ”changed”. This flag will
be used by the incremental testing algorithm, and is planned to be edited by the
model adapter components.

The model could be easily extended with further specializations of these general concepts.
Components, packages, context elements, source projects all belong to the Testable role,
while test contexts, integration or unit tests can all be classified as tests. The fundamental
thing that has to be captured for incremental testing is the hierarchy between the testables
and the many-to-many relation between tests and testables.

4.3.2 Using Context Models as the Source for Incremental Testing

When the reconfiguration is performed in the environment or application domain of the robot,
it can be reflected with changes in its context model. In this case, the incremental testing
analysis should find those test contexts, which

 contain instances of modified context model elements,

 are invalid, because they contain instances, whose type has been deleted.

Moreover, the approach should identify not covered context model elements.

As seen in Section 3 context models are basically class models, which describe the envi-
ronment of the robot under tests. The requirements for using contexts models as input
sources for incremental testing are the followings.

 Context models should be specified as UML class diagrams or Eclipse Ecore models.

 Test contexts should be specified as instances of the context model.

 The mapping of tests and testable is not required to be given separately, as the in-
stanceOf relation between an instance objects and its meta-element can be used for
this purpose.

Thus, in case of context model, it is relatively straightforward to use them as inputs for the
envisaged incremental testing approach.

4.3.3 Using Configuration Models as the Source for Incremental Testing

When the reconfiguration is in the capabilities or components of the robot, then it can be cap-
tured with changes in the configuration or skill model. As the skill model of R5-COP is still in
development, we could not yet use directly it, but the following general requirements can be
formulated.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 30 of 89

 The configuration model (components, skills, etc.) should be given as a graph-based
model, preferably a UML or Ecore model. It should describe the hierarchy and de-
pendency relations between the configuration elements.

 The list of test projects, test suites or individual test cases should be specified.

 The mapping of tests and configuration elements needs to be specified. A relation
should exist between a test and a configuration element, when

o the test checks directly the element (e.g. a module test is written for a given
component),

o the test needs the given element for its execution (e.g. an integration test re-
quires also the service provided by the component to start).

If the configuration model is given as a UML element, then the list of tests and the mapping
can also be incorporated in the model. Otherwise, the mapping can be specified in a textual
format, e.g. an XML file.

4.3.4 Description of Change and Reconfiguration

So far the models describe only one given context or configuration. However, a crucial part is
to include the changes induced by a reconfiguration of the systems. Thus, the concept of
“change” should somehow appear in the descriptions used in incremental testing. There are
three fundamental ways to achieve this.

1. Annotate the model: annotate the source models with tags or stereotypes describing
new, changed or deleted elements.

2. Trigger-based support: if the modelling environment supports hooks and triggers to
notify about model manipulation, then the changes can be detected in this way.

3. Calculate diff between models: if an old and new version of the model is given, then
the difference can be calculated

The first solution could be quite cumbersome. For a simple model, annotating it by hand
could be done once, but maintaining the annotations through several changes in a large
model is not preferable.

The second solution could only be used, if the input sources (context or configuration mod-
els) are created in a modelling tool, and the tooling supports change detection. Such func-
tionality exists for instance in the Eclipse-based modelling tooling.

The third option can be used without any special modelling environment support and it does
not require extra effort from the user either. However, calculating differences in large graph
models in not trivial.

4.4 Detailed Examples Using the Defined Descriptions

The following examples present the approach for incremental testing. The examples are
simplified in order to ease understanding, but the descriptions would use the same formats
for larger models and demonstrators.

4.4.1 Context Models and Test Contexts

The following figure depicts the simplified context of a robot, which works in a household
environment. The robot can move in rooms, which contains chairs or sofas. The robot can be
near to a furniture, in that case it should avoid collision with the furniture when moving.

Two test contexts were created for this robot. In the first one there is only a sofa far apart
from the robot, thus it should not watch for collision. While in the second one, there are two
chairs, one of them being near, thus this situation could be more complex for the robot.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 31 of 89

Room

Robot

Furniture

Chair Sofa

isNear

r : Room

h : Robot

s : Sofa

r : Room

h : Robot

c : Chair

c : Chair

isNear

(a) Context model b) Test context 1 b) Test context 2

Figure 16. Example context model and test contexts

The context model is given as a class model, and the test contexts are instance models. We
plan to use the open-source, industry standard Eclipse EMF modelling environment, thus
these models should be preferably in EMF or Eclipse UML2 format.

The mapping between the test contexts and the context model are defined by the instance of
relations, i.e. a test contexts covers a model element, if there is an object that is the instance
of that element. Thus all the non-abstract classes and the associations in the model are cov-
ered in the two test contexts.

This coverage is represented, when the input is parsed into the general model. The classes
of the context model are the testable elements, and the test contexts are related to those
elements, for which they contain an instance of it.

room:
Testable

sofa :
Testable

testContext1
: Test

chair :
Testable

testContext2
: Test

Figure 17. Representation of the context model and test contexts

Note. In this example only non-abstract classes of the model are imported, abstract classes
and associations are left out. In some cases, associations could illustrate also vital require-
ments, thus they should also be covered. The incremental testing approach is general
enough, it can be used in this situation (the important association could be represented as a
Testable, and mapping of test contexts could be calculated).

Let us imagine a reconfiguration: the robot is redeployed in a different setting, for example a
hospital. The context in which it should operate has changed. The new context model reflects
this change:

 the attributes of the Chair model element is changed (marked with yellow colour)

 the Sofa model element is deleted (red)

 a new element, HospitalBed is added (green).

(In a real implementation instead of colours the change is captured through the activity or
history of a modelling tool. Colour is used here only for illustrative purposes.)

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 32 of 89

Room

Robot

Furniture

Chair Sofa

isNear

HospitalBed

Figure 18. Context model after reconfiguration

When this changed context model is supplied to the incremental testing analysis, it detects
the following:

 As the Chair testable element has been changed, all the test contexts related to this
element should be retested. In the example this is test context 1.

 The Sofa testable element has been deleted, thus all the test contexts connected to
this element are obsolete now. This affects test context 2.

 There is a new testable element, namely HospitalBed, which is not covered in any of
the existing test contexts. This information could serve as input for generating new
test contexts.

room:
Testable

sofa :
Testable

testContext1
: Test

chair :
Testable

testContext2
: Test

hospitalbed:
Testable

Figure 19. Incremental testing analysis of the reconfiguration

The example showed how context models and test contexts could be parsed into the general
incremental testing model, and how the analysis could help testing after a reconfiguration.

4.4.2 Configuration Models and Tests

The next example shows how the incremental testing approach could be applied to configu-
ration models. The following component hierarchy is inspired by the perception-related pack-
ages of ROS.

camera_driver

image_proc

stereo_image_proc

image_geometry

Figure 20. Example configuration model

The camera_driver handles obtaining the raw image from the camera, image_proc provides
image rectification and colour processing, and stereo_image_proc performs processing the
image of two cameras using the help of the image_geometry component.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 33 of 89

The following tests are currently available for these packages:

 DirectedTest: unit test for image_geometry, which tests some basic calculation.

 ImageProcTest: unit test for image_proc, which directly loads a raw camera image
stored in a file.

 StereoProcTest: an integration test, which starts the whole perception stack and pro-
cesses the raw image given to the camera driver.

This information can be represented with the incremental testing model in the following way.

camera_driver:
Component

image_proc :
Component

DirectedTest :
Test

image_geometry :
Component

ImageProcTest:
Test

stereo_image_proc
: Component

StereoProcTest :
Test

Figure 21. Representation of the configuration model and test contexts

In this model instances of Components are used (Component is an implementation of Testa-
ble), because we want to capture dependencies between the different packages.

Now let’s imagine two modifications. In the first, only the image_geometry component is
changed. In the second, the camera_driver is modified.

camera_driver:
Component

image_proc :
Component

DirectedTest :
Test

image_geometry :
Component

ImageProcTest:
Test

stereo_image_proc
: Component

StereoProcTest :
Test

camera_driver:
Component

image_proc :
Component

DirectedTest :
Test

image_geometry :
Component

ImageProcTest:
Test

stereo_image_proc
: Component

StereoProcTest :
Test

Figure 22. Effect of the two reconfigurations

In the first change the image_geometry component is modified, but because the ste-
reo_image_proc component depends on it, it is also affected (illustrated with orange colour
on the figure). Thus, the DirectedTest and StereoProcTest test should be rerun, but the Im-
ageProcTest could be omitted. Similarly, if the camera_driver component is changed, then
StereoProcTest (direct useage) and ImageProcTest (indirect usage through) should be exe-
cuted.

The approach can be extended with using further attributes of tests in the selection (e.g.
costs, execution time, previous outcome, etc.), and defining different strategies (e.g. select-
ing the minimal number of tests covering the changed elements, selecting all affected tests,
etc.). These strategies and their applicability to the R5-COP project and its demonstrators will
be investigated in Task 34.2 next.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 34 of 89

5 Describing Properties for On-line Verification

This section presents the languages selected or defined for describing the properties for on-
line verification. Subsection 5.1 provides an overview on the role and required basic proper-
ties of these languages; subsection 5.2 presents a categorization of existing solutions and
identifies the new challenges; while the subsequent subsections describe the languages in
detail.

5.1 Overview of the Languages

In Section 2.3, the main types of artefacts relevant for on-line verification were identified and
categorized. The common artefacts are captured by the languages that are described in Sec-
tion 3. Their role in monitoring can be summarized as follows:

 Context elements: Context modelling (see in Section 3.1) is used to represent context
fragments that are included in scenarios (as initial, interim or final context), and con-
text fragments that capture relevant parts of the perceived context in reference traces
to be monitored.

 Scenarios: Scenario modelling (see in Section 3.2) is used to represent requirements
as the sequence of contexts, input events, interactions, and output actions (in a form
similar to message sequence charts). For monitoring purposes, a scenario is filtered
to get the sequence of events and actions that is relevant to the component that is
monitored.

 Configurations: Configuration modelling (see in Section 3.3) is used here to identify
the software components (with their interfaces) that are monitored.

This section will describe the languages to capture the properties to be monitored. On the
basis of the use cases of monitoring (see in Section 2.2) and the identified artefacts (Section
2.3), the following basic requirements towards the languages can be summarized:

• Behaviour monitoring: The monitored property is given as reference behaviour. The
language for capturing the reference behaviour shall be able to describe the states
and state transitions that are allowed (i.e., accepted by the monitor without detecting
an error).

• Trace based monitoring of single or multiple components: The monitored property is
given in the form of reference traces of observable inputs and outputs on the external
interface(s) of component(s). The language for capturing the reference traces shall be
able to describe the allowed temporal ordering of events, actions, and perceived con-
texts.

• Function contract monitoring: The monitored property is given in the form of function
contracts as local conditions evaluated on the parameters of a function call (note that
temporal ordering of calls and states are checked separately). Accordingly, the lan-
guage for capturing function contracts shall be able to specify assertions expressed
using the input and output parameters (variables) of the function interface of a com-
ponent.

The required property description languages are used at two levels of formalization (the ra-
tionale is described in Section 5.2.3 on the basis of Section 5.2.2.11):

• Formal languages: For automated monitor source code generation purposes, it is
required to use formal languages with precise syntax and semantics. However, math-
ematical languages with formal semantics are not easily used by developers (consid-
er, for example, temporal logics or formal automata), this way it is more convenient to
offer so-called engineering languages.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 35 of 89

• Semi-formal engineering languages: There are languages that are regularly used as
requirement description and behaviour modelling languages by software developers
in analysis and design phases. These languages typically have graphical syntax (dia-
grams) but lack formal semantics that is necessary for automated code generation.
This problem is solved by providing a mapping from the engineering language to a
formal language (assigning this way a formal semantics to the language).

On the basis of these considerations, languages are offered on two hierarchical levels: engi-
neering languages (describing checked properties given by the developers) and formal lan-
guages (used mainly for internal formal specification for monitor synthesis). These two levels
and the corresponding mappings are presented in Figure 23. The properties to be checked
are related to state-based event-driven behaviour. To identify the sequences of internal
states, instrumentation of the component is necessary. The traces of events (like messages
among components) can typically be observed on the external interfaces of the component
on the basis of monitoring the inter-component communication (e.g., message channels).
These alternatives are presented at the bottom of Figure 23.

Behavioural
monitor
synthesis

Reference
automaton

State machine
(statechart)

Component
instrumentation

Trace based
monitor
synthesis

Temporal
logic property

Scenario
(with context)

Component
observation

Internal
formal
specification

Monitor
synthesis

Checked
components

Checked
properties
from the
developers

Event
patterns

Language
patterns

Diagram
patterns

Figure 23. Languages used to describe properties to be monitored

The selection of these languages is explained in Section 5.2 where the existing approaches
and general requirements for property description languages are analysed. The role and use
of these languages can be summarized as follows.

Formal languages for automated generation of monitor code include automata, temporal log-
ic languages and contract languages:

• Automaton language: It is used to represent reference behaviour in a formal way. The
automaton is considered as an observer automaton that evaluates the sequence of
states and state transitions observed by the monitor. Behaviour that differs from the
reference automaton is considered as erroneous.

• Temporal logic language: It is used to represent reference traces. A new variant of
linear temporal logics called Context-aware Timed Propositional Linear Temporal
Logic (CaTL) is defined that (besides having the usual temporal operators as “next”,
“until”, “eventually” and “globally”) includes observable events, actions, perceived
context, configuration, and also time. This way the context-aware real-time behaviour
of reconfigurable systems can be monitored.

• Contract language: This language is used to capture function contracts that are
mapped to executable assertions.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 36 of 89

The engineering languages are used and mapped to formal languages in the following way:

• Statechart model: The statechart model offers a higher level representation of refer-
ence behaviour, having convenient constructs to represent state hierarchy, concur-
rent regions, and composite state transitions. A restricted subset of UML 2 statechart
(state machine) model is used with a formalized semantics that maps a state machine
defined by the statechart to a formal automaton (represented by the automaton lan-
guage).

• Scenario model: As the scenario model captures requirements, it has a central role in
specifying the properties to be monitored. Its formal semantics is given by defining an
observer automaton that decides on the run-time sequence of events, actions and
contexts. On the one hand, using this formal semantics, it is straightforward to map a
scenario to a formal automaton (represented by the automaton language). On the
other hand, it is also possible to characterize the allowed sequences of a scenario by
temporal logic operators, this way the scenario is mapped to the temporal logic lan-
guage.

• Event patterns: The low level mathematical operators of temporal logics can be re-
placed by more intuitive graphical or natural language constructs. Moreover, using
these intuitive construct, the typical and often used temporal properties can be de-
fined as building blocks, this way defining a pattern library with composition rules.

After summarizing the existing solutions (Section 5.2), the next subsections will present the
related languages and mappings in detail:

 The automaton language is defined in Section 5.3.

 The temporal logic language is defined in Section 5.4.

 The contract language is defined in Section 5.5.

 The statechart based modelling of reference behaviour is summarized in Section 5.6.

 The scenario model is recapitulated (from Section 3.2) in Section 5.7.

 The idea of event patterns is introduced in Section 5.8.

5.2 Existing Solutions and New Challenges

This subsection gives a concise overview on the existing typical runtime verification tech-
niques, supporting tools, characteristics of existing property description languages, and
summarizes the new challenges.

5.2.1 Runtime Verification Techniques and Supporting Tools

The implementation of runtime verification needs several techniques that can be categorized
in the following way:

 Property specification techniques: Solutions are given for the specification of the
properties to be monitored, typically based on execution history or contracts. The so-
lutions that focus on “specificationless” common properties like atomicity of execution
or freedom from race conditions can also be mentioned here.

 Verification techniques: Algorithms are given for the monitoring of temporal specifica-
tions, contracts, or specificationless properties.

 Instrumentation techniques: Solutions are given for systematic modification of the
source code or object code of the components to be monitored. Low overhead is a
typical requirement for instrumentation.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 37 of 89

 Feedback techniques: These techniques give solutions for initiating the error handling
when the run-time verification detects an error.

These techniques with typical solutions are presented in Table 1.

Technique Solution category Solutions

Property specifica-
tion techniques

Execution history based
techniques

Temporal logics

Regular expressions

State machines

Contracts based techniques Contracts

Assume-guarantee interfaces

Specificationless properties Common properties

Freedom from race conditions

Atomicity

Serializability

Verification tech-
niques

Monitoring temporal specifi-
cations

Incremental
3
 model checking

Monitoring specific logics

Design-by-contract
monitoring

Contract primitives

Comment-based frameworks

Trace assertions

Specificationless monitoring Data race checking

Atomicity and serializability check-
ing

Linearizability and refinement
checking

Instrumentation
techniques

Observation techniques Active instrumentation

Passive instrumentation

Interaction techniques Synchronous approach

Asynchronous approach

Implementation techniques Aspect Oriented Programming

Tracematch event patterns

Overhead reduction tech-
niques

Residual typestate analysis

Removing instrumentation points

Control-theoretic approaches

Feedback tech-
niques

Alerting Generation of alerts

Recovery routines Forward recovery

Backward recovery

Switch to fail-safe mode

Diagnostic facilities On-line diagnostics

Off-line diagnostics

Runtime enforcement Blocking of events

Delaying events

Table 1: Techniques and example solutions for runtime verification

3
 Here incremental model checking means that not a static model of behaviour is checked but a runtime evolution

of the observed behaviour, using specific techniques that focus on the efficient handling of the incrementally ob-
served new states and events.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 38 of 89

The architectures of monitoring can be categorized in the following way:

 Basic monitors observe and check single systems or components using the same
platform as the monitored component. Specific implementation techniques are in-line
and out-line monitoring.

 Distributed monitors are used as separate monitor nodes in distributed systems in or-
der to minimize the dependencies between the monitor and the monitored compo-
nents (nodes). In case of simple bus-monitor architectures, the same data bus is
used to interconnect the monitor with the observed nodes and the nodes themselves,
while in case of single process monitor architectures a dedicated monitor bus is used
to interconnect the monitor with the observed nodes. In distributed process monitor
architectures several monitor components are applied that are interconnected by a
monitor bus.

These types of architectures with references to typical examples are listed in Table 2.

Architecture Solution category Solution examples

Basic monitors Off-line monitoring [6] [7]

On-line monitoring General on-line monitoring [8] [9]

In-line monitoring [10]

Out-line monitoring [11]

Distributed monitors Bus-monitor architectures [12] [13]

Single process monitor archi-
tectures

[14] [15] [16] [17] [18]

Distributed process monitor
architectures

[19] [20]

Table 2: Architectures for monitoring with examples

The existing tools and languages that support monitor synthesis and instrumentation can be
categorized as follows:

 Monitoring temporal specifications: The properties to be monitored give temporal or-
dering of events, actions and messages, typically in a declarative form by using tem-
poral logic, event patterns, and evaluation rules.

 Monitoring state machine specifications: The properties to be monitored refer to
states and allowed transitions among them.

 Design-by-contract specifications: Conditions to be verified are given by code con-
tracts or trace contracts.

 Instrumentation tools: The instrumentation tools support the systematic modification
of the source code or object code of the components to be monitored.

Typical tools and frameworks in these categories are given in Table 3.

Tool category Example tools and frameworks

Monitoring temporal specifications MOP Framework [21]

Eagle [22]

RuleR [23]

Java PathExplorer [24]

Java-MaC [25]

Java LTL\X monitor [26]

Monitoring state machine specifications RMOR [27]

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 39 of 89

Tool category Example tools and frameworks

Design-by-contract specifications Eiffel [28]

Spec# [29]

Code Contracts [30]

TraceContract [31]

JML [32]

Jass [33]

Instrumentation tools J-Lo [34]

Hawk [35]

AspectBench [36]

Larva [37]

InterAspect [38]

Clara [39]

Table 3: Typical tools and frameworks for on-line verification

5.2.2 Property Description Languages

This section gives a short overview of widely-used formal specification languages, focusing
on the higher level languages that were intended to be used by engineers (instead of math-
ematicians). Language elements or basic ideas of these mentioned approaches will be re-
used or referenced in the languages selected for specifying the monitored properties. The
limitations of these existing solutions and the extensions necessary for our purposes are dis-
cussed at the end of the overview in Section 5.2.3.

5.2.2.1 Statecharts

Statecharts are extended, hierarchical finite state machines first introduced by Harel in [40].
He defined his statecharts as FSMs extended by “hierarchy, concurrency and communica-
tion”. The UML State Machine formalism is a widely-used object-based variant of Harel's
statecharts4. There are, however, some features that are not inherited by UML State Ma-
chines; also some possible extensions exist (e.g., parameterized states, overlapping states,
probabilistic statecharts). The original formalism has support for delays and timeouts using
implicit timers: conditions like “10 sec in state X” are allowed and also the timeout can be
indicated graphically. The UML standard defines similar time representation, e.g., “after (15
sec.)” as transition trigger.

A semi-formalisation of the UML State Machines can be found in the corresponding ISO
standard [41]. It specifies the syntax of the language, but the semantics are not defined pre-
cisely (there are missing pieces, for example the time semantics). There are several ap-
proaches to the formalization of the semantics. Among others, the paper [42] can be men-
tioned that presents the formalization of the semantics of a subset of UML Statechart Dia-
grams. Their approach is to map the statecharts to extended hierarchical automata and de-
fine the formal semantics this way. A more extended formalization (covering all concepts that
are relevant from the point of view of the practice) is found in [62]. This formalization is used
as the basis for automatic source-code level implementation of specified behaviour and
runtime error detection (comparison of the runtime behaviour with the reference one provided
by the State Machine model).

4
 Another variant with different semantics is the STATEMATE variant [90].

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 40 of 89

5.2.2.2 VDM-SL, VDM++, and Z

The Vienna Development Method is a formal method for specification and development [43],
developed initially by IBM in the 1970s. Its main element is the VDM-SL (Vienna Develop-
ment Method Specification Language) language, which is one of the two standardised formal
specification notation maintained by the ISO working group of Formal Specification Lan-
guages (JTC1/SC22/WG19). VDM-SL relies on set theory. Also, functions are defined along
with pre- and postconditions. It is a “wide spectrum specification language” [43], as it is suit-
able both for high-level, abstract specification, and for low-level, detailed specification.

VDM++ is the object-oriented version of VDM-SL, thus here the structuring is based on clas-
ses, not on modules. RAISE is an evolution of VDM [44]. Also, the COMPASS Modelling
Language (CML) is an extension of VDM.

VDM-SL is not directly supporting time, but VDM++ and its real-time extension called VDM-
RT cope with time [45]. Its semantics is based on a discrete clock and time costs associated
with each VDM construct.

The Z Notation [46] is one of the two standardised formal specification notation maintained
by the ISO working group of Formal Specification Languages (JTC1/SC22/WG19). The Z,
similarly to the B Method, also relies on set theory. An attempt to use UML diagrams (class,
state and object diagrams) together with Z specification is described in [47]. Here UML can
be considered as a graphical interface for the Z formalism. The Z notation does not support
time explicitly.

5.2.2.3 RSML

RSML [48] is a requirements specification language for embedded systems, based on
Statecharts by Harel. The state and its refinement concepts are similar to UML Statecharts.
The main difference is that the guard expressions are expressed using so-called AND/OR
tables that is a tabular format of the disjunctive normal form of the expression. Its goal is to
help the description of complex expressions.

The paper [49] provides a good overview of the method, along with a detailed example from
the TCAS II airplane collision avoidance system. This paper focuses on the slicing of state
machines in order to help the users in understanding the specification by focusing on a cho-
sen scenario.

RSML-e is a different version of RSML that supports rigorous specifications of the interfaces
between the environment and the control software. The paper [50] introduces RSML-e and
presents a translation to NuSMV for model checking purposes.

SpecTRM-RL is a successor of the RSML language. An introduction is found in [51]. This
language had tool support (Eclipse-based tool called SpecTRM), but apparently it is not
maintained anymore. It is claimed that timing constraints may also be specified as conditions
in the tables (i.e., conditions on the state transitions) in SpecTRM-RL [51].

5.2.2.4 Visual Timed Event Scenarios

The authors of Visual Timed Event Scenarios (VTS) decided to create a brand-new formal
notation to express properties to be checked, instead of extending existing ones. A VTS de-
scribes an event pattern, where events and the precedence and temporal distance between
them are defined. Restrictions can be also included (e.g., forbidden events). The formal syn-
tax and semantics of VTS is defined in [52], also a translation to timed automata for verifica-
tion purposes is described. An example VTS can be seen in Figure 24. Arrows denote prec-
edence among events, and also temporal distance between events is illustrated.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 41 of 89

Figure 24. Example VTS specification [52]

5.2.2.5 Graphical Interval Logic

Graphical Interval Logic (GIL), presented in [53], is a formal specification notation for concur-
rent software systems. The aim is to provide a formalism that can be easier-to-use for the
software engineers than temporal logics. The formulas are similar to informal timing dia-
grams. To illustrate the structure of GIL diagrams, an example can be seen in Figure 25 (the
notation is not introduced here in detail).

Figure 25. Example GIL specification [53]

5.2.2.6 PSL

The Property Specification Language is a general assertion language for hardware descrip-
tion languages [54]. PSL is typically used to describe assertions that are required to hold.
PSL is composed of 4 layers: Boolean, temporal, verification, and modelling layer. The first
contains Boolean expressions; the second is composed by temporal operators. The verifica-
tion layer defines how the temporal expressions should be handled (if it is an assertion, an
assumption, a restriction, etc.). The modelling layer is only used in complex models. PSL
comes in different flavours to adapt mainly the Boolean and temporal layer to the syntax of
the programming language used with.

This language is now defined in the IEEE 1850-2010 standard [55], containing the formal
syntax and semantics.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 42 of 89

5.2.2.7 Sequence Charts (MSC, LSC. PSC)

Message Sequence Charts (MSC) is a visual formalism to capture system requirements in
the early design stages [56]. In UML, it is the basis for Sequence Diagrams. Although for the
first sight MSCs provide an intuitive way to present the possible scenarios of a system, they
have many weak points: its expressiveness is weaker than temporal logics, difficult to distin-
guish between possible and necessary behaviour, etc. [56]. The MSCs can be grouped into
high-level MSC (HMSC) that is a finite state machine whose states are labelled by MSC
showing the possible connections (asynchronous composition) between the scenarios.
MSCs are widely used in the industry and are standardised in an ITU recommendation 87.
An example MSC is presented in Figure 26.

Figure 26. Example MSC [56]

The Live Sequence Charts (LSCs) introduced in [58] extends MSCs by making possible to
clearly distinguish between possible, necessary and forbidden behaviour. Also, it is often
misunderstood if an MSC specification is a collection of sample behaviours, or is a complete
set of allowed behaviours [58]. For this purpose, hot and cold elements are explicitly distin-
guished, corresponding to necessary and possible behaviours, respectively. LSCs are also
extended by “preconditions” (pre-charts) and looping constructs.

The work [56] also mentions briefly that timing constraints can be included in LSCs. The
play-in/play-out approach is also presented: this is a LSC specification method, where the
LSCs are automatically built based on the developers interaction with a skeleton.

An example LSC can be seen in Figure 27 At the top, the participants of the scenario are
given with their lifelines drawn from the top to the bottom. Then pre-chart (conditions and
messages that shall be observed in order to start checking this scenario) is given in a dashed
fragment, while at the bottom part three embedded fragments specify the required sequenc-
es of messages and conditions.

The Property Sequence Charts (PSCs) were introduced in [59] to provide a scenario-based
language for expressing temporal properties. Similarly to LSCs, the possible behaviours
(“regular messages”), the mandatory behaviours (“required messages”), and the forbidden
behaviours (“fail messages”) are distinguished. Also, a strict ordering operator is introduced.
Furthermore, multiple constraints/restrictions can be assigned to the messages. [59] pre-
sents the syntax and the operational semantics of PSCs by mapping them to Büchi automa-
ta. The main advantage of PSC with respect to LSC is claimed to be its ability to specify
chain constraints.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 43 of 89

Figure 27. Example LSC [56]

5.2.2.8 Temporal OCL

Temporal OCL (TOCL) [60] is a generic model-based property language. TOCL is an exten-
sion of the Object Constraint Language (OCL), that “smoothly integrates” past and future
temporal operators. The authors of [61] claim that even if TOCL is close to OCL, it is “still not
well suited to many domain engineers”. An example TOCL expression can be seen in Figure
28.

Figure 28. Example TOCL specification [60]

5.2.2.9 Pattern-based Requirement Formalization

The idea of property specification patterns was first suggested by Dwyer et al [72]. The moti-
vation was to free the user from building complex temporal logic expressions that needs
deep knowledge and expertise. They proposed a specification pattern system which is a hi-
erarchical system of simple patterns. These patterns generalize commonly occurring re-
quirements without being too abstract. The paper [73] extends this work by assessing the
method based on more than 500 real requirements, collected from literature, researchers,
mailing lists and student projects. They found that 92% of these requirements were instances
of their patterns. Their updated pattern collection is available online [74].

A similar work restricted to safety patterns can be read in [75]. It contains a hierarchical clas-
sification that can help the user to find the appropriate pattern. An example pattern definition
(excerpt) can be seen in Figure 29.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 44 of 89

Figure 29. An example property pattern (Precedence) [75]

The work [76] applies the pattern-based requirement description to the domain of program-
mable logic controllers. Their main contributions are two new pattern groups (possibility and
fairness), and a tool helping the users to produce the temporal logic expressions based on
the patterns. Later a new pattern (liveness, that is the generalization of the possibility pattern)
was proposed and applied in a real case study [77].

The work of Preusse et al. [78] follows a slightly different approach. The defined small “pat-
terns” based on the Computational Tree Logic (CTL) that can be combined together freely.
The result is a highly restricted English called Safety-Oriented Technical Language (SOTL).
Although it is considered as a specification method, even they admit that it is not suitable for
a complete specification of the behaviour, but to check critical cases.

The paper [79] presents many patterns formalised in CTL and ACTL (Action CTL – CTL on
LTS). It can help to formulate new templates or to make questionnaires.

5.2.2.10 Restricted English

The paper [80] targets the automatic conversion of restricted subset of English sentences to
CTL. To achieve that, they defined a CTL-to-English translation to get the set of possible
sentences (transliteration). Then this language can be extended by synonyms and syntactic
variants. Higher level languages are defined too, in order to find the proper trade-off between
expressiveness and ease of processing.

Another attempt to use English as formal language is the Attempto Controlled English pro-
ject5 that does not specifically focus on temporal logics or on formal specification. The recent
paper [81] shows a survey and classification on controlled natural languages.

5.2.2.11 Overall Evaluation of (Formal) Specification Languages

Sommerville's Software Engineering Book

In the book “Software engineering” by Ian Sommerville, a whole chapter is devoted to formal
specification [82]. It starts with a historical overview about the motivation of formal specifica-
tion. Later, it discusses the place of formal specification in the development process. The
formal specification methods are classified in two dimensions: algebraic or model-based ap-
proaches and approaches to describe sequential or concurrent systems. The classified
methods are Larch, OBJ (algebraic - sequential); Z, VDM, B (model-based - sequential); LO-
TOS (algebraic - concurrent); CSP, Petri nets (model-based - concurrent). Sommerville
claims that formal verification is not widely used for four reasons:

5
 See the webpage of the project: http://attempto.ifi.uzh.ch/site/

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 45 of 89

 software engineering is successful even without formal methods;

 the time-to-market becomes more important than quality;

 the scope of formal methods is limited (e.g., it is difficult to specify user interfaces, ex-
tra-functional properties);

 the scalability (of formal specification and verification) is limited.

He emphasizes that besides the ability of formal verification, formal specification is helpful
because it forces the specifier to make a detailed system analysis and it increases the un-
derstanding of the specification and the system.

Some examples are presented for the algebraic approach, stating that their applicability is
limited (operations should not depend on the results of the previous operations) and they are
increasingly difficult to understand as their size grows. Then examples in the Z notation are
shown for model-based specification. Even in the presented small example, there are ques-
tionable and ambiguous parts. Furthermore, temporal behaviour is not modelled as it is pos-
sible but rather clumsy in Z.

The CESAR Project

The CESAR (Cost-efficient Methods and Processes for Safety Relevant Embedded Sys-
tems) was an ARTEMIS project (2009-2012) aimed to boost cost efficiency of embedded
system development. In 2010, they published a survey report [11] on modelling languages
and validation technologies for safety critical systems. They evaluate multiple technologies
based on maturity, industrial adoption, and ongoing work. They assess state-of-the-art tools
and languages in clusters such as “Requirement and scenario modelling” (e.g., UML Use
Cases), “Property description languages” (e.g., OCL, temporal logics, Alloy), “Behaviour
modelling” (e.g., UML State Machine, Activity Diagram). Although in a slightly inconsistent
way, the document has a relatively big collection of relevant methods and tools.

Knight: Formal Methods in the Industry

The paper of Knight et al. [83] addresses the following question: why formal methods are not
used more widely? It states that even if academia claims that formal methods could help to
increase a better software quality, these methods are poorly accepted in the industry. The
authors proposed an evaluation framework for formal methods to check their strengths and
weaknesses from the point of industry. In this paper they focus on the assessment of specifi-
cation methods, comparing Z, PVS and Statecharts. Their criteria include coverage of all
aspects, integration in the development process, support for group development, support for
evolution, usability (expressiveness). The specification is intended to serve as a means of
communication, this way annotating the specification with explanations, rationale, or assump-
tions is important for both the use of the specification in later phases and for modifications of
the specification. The authors state that the 3 checked languages and their tool support are
not really satisfying the above criteria. They also present a small experiment where 3 specifi-
cation languages were assessed by nuclear engineers (not formal methods experts) on a
nuclear case study application. Their opinions were obtained by interviews after an informal
presentation of the current specification notation. Although the role of specification was not
understood by everyone for first, the nuclear engineers liked the concept of formal specifica-
tion. Once they had experience with one or more of the formal specification notations, they
said they would “never trust a natural language specification again”. They were impressed by
the level of understanding of the system that was required to write the specifications and felt
that with natural language specifications they could never be sure that the words were not
just copied down with little understanding of the system. Z had a good welcome, but the
mathematical notation was not convenient; PVS seemed too complex; and Statecharts had
the best scores. Similar opinions were given by the interviewed computer engineers. The
report [84] is a much more detailed version of the paper including the models and the ques-
tionnaires.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 46 of 89

Comparison of Six Formal Methods

In [85] six formal methods were compared for specifying safety critical software. The applica-
bility of the Integrated Approach (IA), the Software Cost Reduction (SCR), the Coloured Petri
Nets (CPN), the Statecharts, the Z and the Prototype Verification System (PVS) methods
were studied in the nuclear domain. A small example is presented in each studied formal
language. Their final conclusion is the following: “We consider best the Statechart description
of the system for external behavioural analysis and tabular notation for analysis of the inter-
nal conditions and calculations for algorithms".

Boeing Case Study

The paper [86] shows a case study from Boeing. They present lessons learned about
statechart modelling and its tool support. They claim that statecharts is an intuitive represen-
tation, as it is close to the engineers’ intuition or how they describe the requirements in non-
formal English specification. This simplicity provided a good learning curve for the develop-
ers. The statecharts even allowed the simplification of requirements in many cases. Also, the
dynamic execution and visualization of statecharts helped the developers in the early valida-
tion. Furthermore, statechart models facilitate the clear communication. The paper concludes
with the statement that using statecharts can even can “make the [specification] process an
enjoyable one”.

5.2.3 New Challenges and Required Extensions

In our case, the new aspects of monitoring that are not addressed by the existing solutions in
an integrated way can be identified as follows:

 Monitoring of context-aware autonomous behaviour: The properties to be monitored
may include reference to the perceived context. Accordingly, the context (context
fragment) is a concrete language element in the property languages, and the monitor
shall perform continuous mapping between the perceived run-time context and the
context fragments given in the property specification.

 Monitoring of dynamic reconfiguration (e.g., during error handling or due to context
changes): The property to be monitored may include reference to the internal configu-
ration of the robot. Accordingly, the configuration (configuration fragment) is a lan-
guage element in the property languages, and the monitor shall be able to compare
the runtime configuration of the robot with the specified configuration fragment.

In the following, for the sake of simple language definitions, (fragments of) the per-
ceived context and (fragments of) the runtime configuration are referred to commonly
as context (fragments). This way the internal configuration as “internal context” is
handled in a similar way as the “external context”, as their semantics from the point of
view of runtime monitoring is the same: fragments specified in the property language
shall be matched with the detected runtime (internal and external) context.

 Monitoring of timely context-aware behaviour and/or reconfiguration: The monitored
properties that refer to the perceived context and/or the internal configuration may al-
so include timing information.

Regarding the use of specification languages, the main challenge is the proper integration of
user-friendly (semi-formal) languages and formal (intermediate) languages. On the basis of
the evaluation presented in Section 5.2.2.11, statecharts (a restricted variant of UML 2 State
Machines) and scenarios (based on the LSC constructs) were selected as engineering lan-
guages, while automata and temporal logic as formalisms that have precise semantics sup-
porting monitor source code generation. Extensions were defined to cover context-aware
behaviour, dynamic reconfiguration, and time-dependent behaviour.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 47 of 89

In this deliverable the corresponding languages are presented. The detailed design of the
mapping among them and the monitor synthesis solutions will be described in deliverable
D34.31/32 “Design of the monitoring infrastructure”.

5.3 Specifying Reference Automata

The expected behaviors of a checked component can be described in terms of an abstract
reference automaton. This section describes a specification language for timed symbolic
transition systems that is suitable to represent such automata.

In our framework the reference automata may be specified in two ways:

 It is possible that the reference automata are given directly by the developer.

 It is possible that the reference automata are derived from other higher level formal-
isms (like statechart models), this way they are used as an intermediate representa-
tion (as presented in Section 5.1).

To support the first option, we propose a powerful language to define the reference behav-
iour. The language consists of two parts:

 A constraint language is used to specify constraints that can be evaluated (e.g., local
conditions in states).

 A system specification language that specifies (parametric) timed systems.

5.3.1 The Constraint Specification Language

This chapter introduces our general purpose constraint language that is suitable (in general)
for defining satisfiability problems over complex data types.

The language consists of two sublanguages, the Type language and the Expression lan-
guage, for which relating procedures like type checking and type inference are defined. The
syntax and the notions of the language are inspired by the SAL language [87].

For the syntax of the language, the following building blocks are used:

Digit := 0 | 1 | … | 9

Letter := a | b | … | Z

Name := (Letter | _)+ (Letter | Digit | _)*

Numeral := (Digit)+

The Constraint language has three components: type declarations, constant and function
declarations, and constraints.

Specification := specification Name {([Declaration],
+
)} {[

 TypeDeclaration |
 ConstantDeclarartion |
 FunctionDeclaration |
 BasicConstraint
]*}

TypeDeclaration := type Declaration

ConstantDeclarartion := const Declaration

 {:= Expression}

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 48 of 89

FunctionDeclaration := function Name([Declaration],
*
): Type

 {:= Expression}

BasicConstraint := constraint Expression

5.3.1.1 Type Language

The Type language specifies the types available in the language. The types of the language
include simple types (like integers), subranges, subtypes of a type constrained by an expres-
sion, and complex types like array or tuple types.

Type := TypeDefinition |

TypeReference

TypeDefinition := BasicTypeDefinition |

EnumerationTypeDefinition |

SubTypeDefinition |

SubRangeTypeDefinition |

FunctionTypeDefinition |
ArrayTypeDefinition |

TupleTypeDefinition |

RecordTypeDefinition |

TypeReference := Name

BasicTypeDefinition := boolean |

integer |

real |
natural

SubTypeDefinition := {Declaration | Expression}

SubRangeTypeDefinition := [(-inf | Expression) to (inf | Expression)]

ArrayTypeDefinition := array Type of Type

EnumerationTypeDefinition := enum {[EnumerationLiteral],
+
}

RecordTypeDefinition := record {[Declaration],
+
}

TupleTypeDefinition := tuple {[Type],
+
}

FunctionTypeDefinition := function([Declaration],
*
) returns Type

5.3.1.2 Expression Language

The Expression language deals with operators of the language. The Expression language
does not make a distinction between terms and formulae, as the later are interpreted as ex-
pressions of type Boolean. Operators include (simple and complex) literals, Boolean and
temporal connectives, quantifiers, arithmetic operators and predicates, polymorphic equality,
and operators to decompose complex types.

Expression := … | (Expression)

BooleanLiteralExpression := FalseExpression | TrueExpression

FalseExpression := false

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 49 of 89

TrueExpression := true

IntegerLiteralExpression := Numeral

DecimalLiteralExpression := Numeral.Numeral

RationalLiteralExpression := Numeral%Numeral

EnumerationLiteralExpresion := ::Name

FunctionLiteralExpression := lambda ([Declaration],
+
) := Expression

ArrayLiteralExpression := [Declaration |Expression]

TupleLiteralExpression := (#[Expression],
+
#)

RecordLiteralExpression := {[Name := Expression],
+
}

ReferenceExpression := Name

InExpression := Expression in Type

PrimedExpression := Expression’

FunctionAccessExpression := Expression([Expression],
*
)

ArrayAccessExpression := Expression[Expression]

TupleAccessExpression := Expression!Numeral

FieldAccessExpression := Expression.Name

UnaryMinusExpression := -Expression

UnaryPlusExpression := +Expression

AddExpression := Expression [+ Expression]+

SubtractExpression := Expression - Expression

MultiplyExpression := Expression [* Expression]+

DivideExpression := Expression / Expression

DivExpression := Expression div Expression

ModExpression := Expression mod Expression

GreaterExpression := Expression > Expression

GreaterEqualExpression := Expression >= Expression

LessExpression := Expression < Expression

LessEqualExpression := Expression <= Expression

EqualityExpression := Expression = Expression

InequalityExpression := Expression /= Expression

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 50 of 89

NextExpression := X Expression

FinallyExpression := F Expression

GloballyExpression := G Expression

UntilExpression := Expression U Expression

ReleaseExpression := Expression R Expression

TemporalForallExpression A Expression

TemporalExistsExpression E Expression

ForallExpression := forall ([Declaration],
+
) : Expression

ExistsExpression := exists ([Declaration],
+
) : Expression

NotExpression := not Expression

AndExpression := Expression [and Expression]+

OrExpression := Expression [or Expression]+

ImplyExpression := Expression imply Expression

EqualExpression := Expression equal Expression

IfThenElseExpression := if Expression then Expression else Expression

5.3.1.3 Example Specification

To demonstrate the capabilities of the constraint language, in the following as example the
specification of a finite Abelian group is given.

specification FiniteAbelianGroup(n : natural) {

 type G : [1 to n]

 const e : G

 function op(a : G, b : G) : G

 function inv(a : G) : G

 constraint forall (a : G, b : G, c : G) :

 op(a, op(b, c)) = op(op(a, b), c)

 constraint forall (a : G, b : G) :

 op(a, b) = op(b, a)

 constraint forall (a : G) : op(a, e) = a

 constraint forall (a : G) : op(a, inv(a)) = e

}

An (up to isomorphism unique) model for FiniteAbelianGroup(2) is induced by the fol-

lowing set of equalities:

e = 1

op = (lambda (a : G, b : G) := if a = b then 1 else 2)

inv = (lambda (a : G) := a)

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 51 of 89

5.3.2 The System Specification Language

In this section our language for specification of (parametric) timed systems is presented.
Both the syntax and semantics of the language is based on the Constraint language pre-
sented in the previous section. Similarly to the Constraint language, it also is inspired by the
intermediate language SAL. However, the language has some improvements to SAL in de-
scriptive power:

 Direct modeling support for timed behaviour. The language presented below offers di-
rect modeling support, like clock variables, state invariants and urgency constraints.

 More flexible command structure. In the language, different types of commands can
be combined freely. Moreover, multiple definitions for the same variable in a compo-
site command need not be collected in a single assignment manually.

Specification is given in the following form:

Specification := specification Name {([Declaration],
+
)} {[

 TypeDeclaration | … |

 TemplateDeclaration |
 PropertyDeclaration
]*}

In order to express timing, the System language extends the set of basic types by the new
type clock.

BasicTypeDefinition := boolean | … |
clock

5.3.2.1 System Language

The System language provides the notions for defining and composing systems.

System := SystemDefinition |

SystemReference |

AsynchronousCompositeSystem |

SynchronousCompositeSystem |

AsynchronousMultiSystem |

SynchronousMultiSystem

SystemDefinition := {[

 VariableDeclaration |

 DefinitionDeclaration |

 SystemConstraint |
 BehaviorDefinition
]*}

SystemReference := Name([Expression],
*
)

AsynchronousCompositeSystem := System [] System

SynchronousCompositeSystem := System || System

AsynchronousMultiSystem := async (Declaration): System

SynchronousMultiSystem := sync (Declaration): System

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 52 of 89

VariableDeclaration := InputVariableDeclaration |

OutputVariableDeclaration |

GlobalVariableDeclaration |

LocalVariableDeclaration

InputVariableDeclaration := input var Declaration

OutputVariableDeclaration := output var Declaration

GlobalVariableDeclaration := global var Declaration

LocalVariableDeclaration := local var Declaration

DefinitionDeclaration := definition Declaration := Expression

SystemConstraint := UrgencyConstraint |
InvariantConstraint

UrgencyConstraint := urgent Expression

InvariantConstraint := invariant Expression

BehaviorDefinition := InitializationDefinition |

TransitionDeifinition

InitalizationDefinition := initialization SimpleCommand

TransitionDefinition := transition SimpleCommand

5.3.2.2 Command Language

The Command language specifies the means for describing behavior of a system.

Command := SimpleCommand |

ElseCommand

SimpleCommand := AsynchronousCompositeCommand |

SynchronousCompositeCommand |

AsynchronousMultiCommand |

SynchronousMultiCommand |

GuardedCommand |

AssignmentCommand

AsynchronousCompositeCommand := async {

 [Command]*
}

SynchronousCompositeCommand := {sync} {

 [SimpleCommand]*
}

AsynchronousMultiCommand := async (Declaration):
 SimpleCommand

SynchronousMultiCommand := sync (Declaration):
 SimpleCommand

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 53 of 89

GuardedCommand := Expression --> SimpleCommand

AssignmentCommand := let Expression;

ElseCommand := else --> SimpleCommand

5.3.2.3 Example Specification

To demonstrate the capabilities of the system specification language, a solution (the Fischer
protocol6) for a mutual exclusion problem is presented. Note that for the sake of complete-
ness also a safety property of the protocol is included.

specification MutualExclusion(maxId : integer) {

 type Id : [1 to maxId]

 type Location : enum { sleeping, waiting, trying, critical }

 const a : natural

 const b : natural

 constraint a < b

 system Initializer := {

 global var lock : [0 to maxId]

 initialization let lock = 0;

 }

 system Fischer(id : Id) := {

 global var lock : [0 to maxId]

 local var location : Location

 local var c : clock

 invariant location = ::waiting imply c <= a

 initialization let location = ::sleeping;

 transition location = ::sleeping and lock = 0 --> {

 let location' = ::waiting;

 let c' = 0%1;

 }

 transition location = ::waiting and c <= a --> {

 let location' = ::trying;

 let lock' = id;

 let c' = 0%1;

 }

 transition location = ::trying and

 c >= b and lock /= id --> {

 let location' = ::sleeping;

 }

6
 This protocol is described among others in Stan Budkowski, Ana Cavalli, Elie Najm: Formal Description Tech-

niques and Protocol Specification, Testing and Verification. Springer Science & Business Media, 1998.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 54 of 89

 transition location = ::trying and

 c >= b and lock = id --> {

 let location' = ::critical;

 }

 transition location = ::critical --> {

 let location' = ::sleeping;

 let lock' = 0;

 }

 }

 system FischerNetwork :=

 Initializer || async (i : Id) : Fischer(i)

 property safe : FischerNetwork models G(

 forall (i : Id) : (

 location[i] = ::critical imply lock = i

)

)

}

5.3.2.4 Defining a Reference Automaton

Consider a component whose expected behavior is to keep speed low until a safety function
is turned on. To express this requirement, a reference automaton and a simple invariant
property is defined. The property is used for local checking of the automaton specification
itself and means that the Boolean property “faulty” (when the location of the automaton is s2)
is not true globally (as denoted by the G temporal operator) during the execution.

From such an automaton, the monitor code can be generated automatically.

specification Monitoring {

 system Monitor {

 input var speed_low : boolean

 input var safety_on : boolean

 local var loc : enum { s0, s1, s2 }

 definition faulty : boolean := loc = s2

 initialization async {

 speed_low and not safety_on --> let loc = s0;

 safety_on --> let loc = s1;

 else --> let loc = s2;

 }

 transition async {

 loc = s0 and speed_low and not safety_on -->

 let loc’ = s0;

 loc = s0 and safety_on --> let loc’ = s1;

 loc = s0 and not speed_low and not safety_on -->

 let loc’ = s2;

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 55 of 89

 loc = s1 --> let loc’ = s1;

 loc = s2 --> let loc’ = s2;

 }

 }

 property safe : Monitor models G not faulty

}

5.4 Specifying Temporal Properties

In this section another language is defined that is used to express requirements to be moni-
tored. The goal of this language is to be able to easily and unambiguously express temporal
properties for context-aware behaviour of dynamic systems. Besides the expressiveness of
the language, the lightweight runtime checking of properties defined with the language shall
be supported – even in environments with limited resources. For this high level demand the
following features are required:

 Explicit context definitions: Context shall explicitly appear in the requirements.

 Timing: Time-dependent behaviour shall be expressed.

 Modality: Requirements shall define mandatory and optional behaviour.

 Requirement activation: Ordering between the requirements shall be supported.

In our framework this language may be used in two ways:

 The language is used as a property specification language and its expressions (the
checked properties) are directly given by the developer.

 The language is used as an intermediate language, and its expressions are mapped
from higher level graphical languages (as presented in Section 5.1).

In any case, the properties specified using this language form the input of the monitor syn-
thesis tool. As textual languages are easier to be processed in an automated way, a textual
concrete syntax is used.

Propositional Linear Temporal Logic (PLTL) [64] is extensively used for defining require-
ments, and particularly popular in runtime verification frameworks. PLTL expressions can be
introduced as logic expressions that can be evaluated on a trace of steps, in which each step
can be characterized by atomic propositions. Here atomic propositions are local characteris-
tics of the step that may include all elements of a monitored execution trace that are relevant
from the point of view of property monitoring: function call, function return, input or output
signal, message received or sent, timer started or expired, state entered or left, context
change, configuration change, predicate on the value of a variable etc. Later, we will call the-
se atomic propositions in general as “events”, and the trace of steps is the “trace of events”.

Besides the usual Boolean language operators, PLTL has the following temporal operators:

 X: “Next” operator (X P means that the next step in the trace shall be characterized by
the atomic proposition P).

 U: “Until” operator (P U Q means that a step characterized by the atomic proposition
Q shall eventually occur, and until that occurrence all steps of the trace shall be char-
acterized by P).

 G: “Globally” operator (G P means that each step in the trace shall be characterized
by P).

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 56 of 89

 F: “Future” or “Eventually” operator (F P means that eventually a step shall occur in
the trace that is characterized by P).

 W: “Weak until” operator (P W Q means that either there is no step in the trace char-
acterized by Q, or a step characterized by the atomic proposition Q shall eventually
occur and until that occurrence all steps of the trace shall be characterized by P).

In spite of there are several extensions of PLTL, for various purposes, there is no context-
aware temporal logic that can be found in the literature. For this reason we defined a new
extension of PLTL, the Context-aware Timed Propositional Linear Temporal Logic (CaTL).

Although no context-aware PLTL existed before, there are many examples for handling tim-
ing constraints within PLTL expressions. These can be used as a starting point, thus a short
overview is presented in Section 5.4.1. Context modelling aspects are recapitulated in Sec-
tion 5.4.2. After that, the syntax (Section 5.4.3) and the semantics (Section 5.4.4) of the
CaTL formalism is defined. Finally, a few CaTL examples are presented in Section 5.4.5,

5.4.1 Overview of LTL’s Timing Extensions

The goal for extending LTL languages with timing support is clear: one should be able to
define requirements regarding the timing of systems. The PLTL formalism is interpreted over
models which retain only the temporal ordering of the states, losing the precise timing infor-
mation. Therefore PLTL on its own cannot specify requirements, like “An alarm must be
raised, if the time difference between two successive states is more than 5 time units”. To
tackle this issue, various extensions can be found [65].

 The Explicit Clock Temporal Logic (XCTL) formulas [66] contain static timing varia-
bles and an explicit clock variable (referring to the current time). This logic allows cap-
turing the different values of the global clock in the timing variables. The captured
values can be then used in expressions. The previous example requirement for the
alarm can be formalised as follows.

1 1((5))G t c X c t alarm

 The Metric Temporal Logic (MTL) [67] formalism has a different approach. Instead of
having timing variables, it has time bounded temporal operators. This makes it quite
convenient to read expressions. Even the previous example is very easy to under-
stand if expressed using MTL.

5()G p F alarm

 The Timed Propositional Temporal Logic (TPTL) language introduced in [68] utilizes
the so-called freeze quantification. It means that each variable can be bound to the
time of a particular state (similarly to XCTL). The freeze quantifier appears in the syn-

tax as a dot: xi. means that the xi variable is bound to the time of . The earlier ex-
ample can be expressed with TPTL like this:

1 2 2 1(. (.(5)))G t X t t t alarm

 The Timeout based Extension of PLTL (TLTL for short) [65] uses static and dynamic
timing variables with the explicit global clock, which makes it flexible and expressive.
Without going deeper into the syntax and semantics of the language, the same ex-
ample looks as follows.

0 0(() ((5)))G x t X x t alarm

A more detailed explanation of this kind of temporal logics will follow in the next sec-
tion where the CaTL formalism is introduced, since this approach was selected for the
timing extension to be used in CaTL.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 57 of 89

5.4.2 Context Modelling

Context is referenced in the CaTL formulas using context fragments. A context fragment is
an instance model of the context metamodel (Section 3.1). It can be represented as a UML
package with the name of the context fragment. The relevant part of UML’s abstract and
concrete syntax (the metaclasses Package, InstanceSpecification and Slot) is not modified.

As the context view consists of instances from the context metamodel, the creation of the
context metamodel becomes a significant part of creating requirements. At first the context
metamodel contains the classes, its properties and the links between them. Moreover the
context metamodel shall define the well-formedness and semantic constraints. Well-
formedness constraints define constraints that must be satisfied by any context model, oth-
erwise conceptual rules or the laws of physics are violated. Semantic constraints are derived
from the requirements of an application, this way these are only preconditions or expecta-
tions about the context that can be violated in particular cases (e.g., when the robustness of
an autonomous system is exercised).

5.4.3 The Syntax of CaTL

The basic vocabulary of CaTL consist of a finite set P of propositions, a finite set T of static
timing variables and a finite set CM of static context variables.

Each ci CM is an instance of M context metamodel (ci M). A context metamodel is de-
fined as a 2-tuple M = (N,R), where N represents the set of classes in the metamodel and R

represents the relations (i.e., association or generalization) in the model. An ni N is a class,
which has a set of properties. Each property has a name and a type (e.g., Boolean or string).

One can create an EM set of predefined contexts, where ei M for all ei EM. The context
variables and the predefined contexts contain instances of the classes (objects) from M.

Each object has a unique identifier and an ni N class. The values of the properties can be
defined by property constraints (defined later), which refer to the objects by the unique identi-
fiers given in the variables. It is important, that if two context variables contain two objects
with the same identifier, then that two objects must be equivalent.

In addition, one can use two dynamic variables: t, which represents the clock and e, which
represents the context of the system. M must be defined in such a way, which ensures that e

is always a valid instance of M (e M).

Af is the set of atomic formulas, which consists of propositions from P, atomic timing con-
straints, context constraints and property constraints.

 Propositions are labels, referring to properties of a system. Each proposition can be
evaluated to true or false in each state of the system.

Examples: initialized, connected

 The timing constraints are defined in the following form: t u, where t is the dynamic

clock variable, {<, >, =}, u {ti + c, c}, ti T and c N.

Examples: t = t0, t < t0 + 5

 The context constraints are defined in the following form: xy, where x EM VM and

y CM {e}. In this notation is a compatibility relation (meaning x is compatible
with y) and VM is a set of context definitions. Context definitions are instances of the
M metamodel. A context definition can be one of the followings:

o a static context variable (ci CM), or

o a new context, created from a static context variable, with one of the following
operators:

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 58 of 89

 Node exclusion: z - v, where z is a context definition and v is a present
class instance of z,

 Node addition: z + w, where z is a context definition and w is an in-
stance of the classes of M,

 Connection exclusion: z - - a, where z is a context definition and a is a
present connection in z,

 Connection addition: z + + b(c, d), where z is a context definition and b
is connection between c and d, compatible with M.

Examples: e0 e, e0 - x e

 The property constraints are expressions over properties of an object. The following
syntax is defined to unambiguously select a p property: context.object.p. The syntax

of the property constraints is: p v, where p is a property, v is a value, which has to

be from the same type as the property, and is a comparison operator, which can be
evaluated to a Boolean value.

Examples: e0.a.connected = true, e1.b.speed < 10

For each atomic formula, assigns the modality of that atomic formula (a so-called “tem-

perature”): : Af {hot, cold}. An atomic formula with hot temperature is a mandatory, while
cold formulas are optional. The notation of the modality is the following. If no additional nota-
tion is given, then the modality of the atomic formula is hot (mandatory). The cold (optional)
modality of the af atomic formula is written like < af >.

A CaTL formula can be one of the followings:

 Atomic formula: af Af

 Disjunction:

 Negation:

 “Next” operator: X

 “Until” operator: 1 U 2

All static variables used in a formula are implicitly quantified with a universal quantifier. Addi-
tional operators can be defined with the previously defined ones as syntactical abbreviations.
The most commonly used abbreviations are defined as follows:

 Conjunction: a b = (a b)

 Implication: a b = a b

 “Eventually” operator: F = true U , where “true” denotes the Boolean true value

 “Globally” operator: G = (F)

 “Weak until” operator: 1 W 2 = (G 1) (1 U 2)

5.4.4 The Semantics of CaTL

Formally, the CaTL formulas are interpreted over finite traces of Context-aware Kripke-
structures (CaKS). A CaKS is the extended version of the classical Kripke-structure, which is
the mathematical abstraction of finite state-transition systems with labelled states. A CaKS
for a P set of labels and an M context metamodel is defined as a 6-tuple: CaKS = (S, T, I, L,
C, E), where

 S is a finite set of states.

 T SS is the state transition relation.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 59 of 89

 I S is the initial state of the system.

 L is a labelling function, which assigns labels to states L: S 2P.

 C function assigns clock value to each state: C: S N, and the clock value assigned

to the initial state is 0 (C(I) = 0) and if (a, b) T, then C(b) >= C(a), so the time is not
decreasing.

 E function assigns a context to each state: E: S C, where C is the set of context in-

stances (c C: c M).

Thus a CaKS model is a finite state-transition system, where a context and a clock value are
assigned to each state of the system.

A finite trace of a CaKS is sequence of states connected by the transition relation: = (s0, s1,

s2, … sn-1), where si S (i [0, n- 1]), n > 0, s0 = I and 0<i<n : (si-1, si) T. A j trace suffix is

defined by removing the first j steps (j < n) from the trace. By definition 0=.

The inductive definition of the semantics of a CaTL formula is given below. The notation

i |= means, that the formula is true on i trace suffix. The x|a=b notation is used for sub-

stituting the a variable in x with the b value.

 |= p if and only if p L(s0), where p P is an atomic proposition.

 |= c if and only if c|t=C(s0) is true, where c is a timing constraint.

 |= d if and only if d|e=E(s0) is true, where d is a context constraint.

 |= f if and only if f|e=E(s0) can be evaluated, and evaluated to true, where f is a prop-
erty constraint. If f contains a property, which does not exist, then the constraint will
be evaluated to false.

 |= if and only if |= is not true

 |= 1 2 if and only if |= 1 or |= 2

 |= X if and only if length of is at least 2 (n>1) and 1 |=

 |= 1 U 2 if and only if 0 <= i < n: i |= 2 and 0 <= j < i: j |= 1

Lastly, a few terms concerning the contexts must be defined. An e1 context is compatible with

e2 (denoted as e1 e2) if, and only if, exists a bijective function between the two object sets
e1 and e2, which assigns a compatible object to each object. Two objects are compatible, if
and only if both have the same type and have the same relations to other objects. Therefore

if the compatibility function assigns o2 e2 to o1 e1 and o4 e2 to o3 e1 and there is an
edge between o1 and o3, then an edge must be present in e2 between o2 and o4, with the
same label as in e1. Note that the context compatibility relation does not require the equality
or compatibility of the properties of the objects, only the object types and relations are con-
cerned.

The compatibility relation defines a bijective function, thus in e1 e2 for all objects in e1 (the
Oe1 notation will be used in the future), there must be an object from Oe2 assigned, and if o’,

o’’ Oe1 are two different objects then the assigned objects from Oe2 must be different. It is
also required to assign an object to all objects in Oe1, but objects in Oe2 can remain without an
assigned counterpart. An example for two compatible contexts can be found on Figure 30. It
is possible that more than one assignment function between two contexts exist.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 60 of 89

Figure 30. The compatibility relation between two contexts

The objects in the context variables have unique identifiers, meaning that if two objects with
the same identifier appear in two contexts then these two objects are identical. This con-
straint results that the assignments between the objects are immutable. Each object has only
one identifier, thus two different identifiers always mean two different objects.

Figure 31. Context definition for illustrating the immutability of object assignments

Here follows an example to illustrate the effects of the previous constraints. Two contexts are

defined on Figure 31. The = e1 e X(e2 e) requirement means that currently the o1
object must be connected to o2, but in the next state of the system the connection must be
dropped and a new connection with a new object must be made, as o1 is connected to o3 in
e2 instead of o2.

5.4.5 Examples for CaTL

After getting through syntax and semantics of CaTL, let us consider some easy to under-
stand examples. First of all, by the definitions CaTL is an extension of PLTL, thus any valid
PLTL formula is a valid CaTL formula. The following formulas are all valid CaTL formulas.
The meaning for each formula is also given.

 (())G connected F disconnected

It is always true, that if the system is in the connected state, then it will eventually be-
come disconnected.

 0 0((5))G connected t t F disconnected t t

It is always true, that if the system is connected, then it will be disconnected in 5 se-
conds (it is assumed that the time unit is a second).

 1 2(() ())G connected e e X disconnected F e e

o1

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 61 of 89

It is always true, that if the system is connected and in the e1 context (from Figure 31)
and will be disconnected in the next state, then eventually it will be in the e2 context. It
can be also phrased as follows: If the system is connected to an object and discon-
nects from it, then it will eventually be connected to another object.

5.4.6 A Concrete Syntax for CaTL

To be able to represent CaTL formula in machine-readable textual format, we propose the
following concrete syntax of the operators (Table 4).

Operator Concrete textual syntax

 not

 and

 or

 implies

X Next

U Until

G Globally

F Eventually

W Until*

 Compatible

Table 4: Concrete textual syntax for PLTL operators

The other operators (=, <, >, +, ++, -, --) are used in their usual mathematical form.

5.5 Describing Code Contracts

Code contracts are used in the design by contract approach to specify the expected behav-
iour of a component or function, typically on its interface. According to B. Meyer, the key
concept of design by contract in object oriented programming is “viewing the relationship
between a class and its clients as a formal agreement, expressing each party's right and ob-
ligations” [88]. Code contracts can be checked both by static analysis and runtime verifica-
tion. On the basis of the analysis of the existing approaches (Section 5.5.1) we define a lan-
guage that will be used for describing the code contracts for on-line verification by executable
code snippets (Section 5.5.2.

5.5.1 Existing Approaches

Code contracts were introduced into high level programming languages like C, C#, and Java.
In the following we describe two approaches that demonstrate the basic concepts and typical
language constructs that are used in languages describing the code contracts.

5.5.1.1 C# Code Contracts

Spec# being developed by Microsoft Research is a formal language for API contracts (influ-
enced by JML, AsmL, and Eiffel). It extends C# with constructs for non-null types, precondi-
tions, postconditions, and object invariants. Spec# comes with a sound programming meth-
odology that permits specification and reasoning about object invariants even in the pres-
ence of callbacks and multi-threading. Spec# is a programming language providing support
for the definition of pre- and postconditions.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 62 of 89

In the example below the precondition requires the variable x to be greater or equal to zero,
while the post condition ensures that the result of the function satisfies basic properties of a
square root computing function.

requires 0 <= x;
ensures result*result <= x && x < (result+1)*(result+1);

While Spec# is a prototype with static analysis and offline verification techniques, code con-
tracts in .Net Framework 4.5 provides an efficient language to do runtime analysis. Basic
language elements are the following.

 Preconditions are expressed by using the method Contract.Requires. For example,
the following example expresses that the parameter “y” must not be zero.

Contract.Requires(y != 0);

 Postconditions are contracts for the state of a method when it terminates. For exam-
ple, the following example expresses that the parameter “y” must be less or equal ze-
ro upon termination.

Contract.Ensures(this.y <= 0);

 Invariants are conditions that should hold (evaluate to true) during the life cycle of the
object. For example, the following invariant expresses that the parameter “y” must be
less or equal to zero at every time point of the life cycle of the object (this).

Contract.Invariant(this.y <= 0);

A restriction regarding the called functions of the contracts is that they must be pure: they
must not modify/update any pre-existing state. Pure methods are only allowed to modify ob-
jects that have been created after the entry into the pure method.

.Net code contracts can define special conditions called exceptional postcondition ensuring
that some conditions hold when an exception is thrown.

5.5.1.2 Code Contracts in C

Microsoft Research developed a static verification tool Verifier for Concurrent C (VCC), which
is an automated verifier [89]. VCC takes a C program, annotated with function specifications,
data invariants, loop invariants, and ghost code, and tries to prove the correctness of these
annotations. If it succeeds, VCC promises that the program meets its specifications. By using
the language of VCC, the contracts can be transformed to running code, generating in this
way assertions for runtime verification. Figure 32 presents the main components of this ap-
proach. As it turns out, aspect-oriented programming is used to integrate the checking of the
code contracts with the original code.

Code Contract
language of VCC

Aspect Oriented
Programming

Runtime verification

Figure 32. Overview of the components of the VCC on-line verification approach

In the following, the main concepts of the VCC code contract language are exemplified.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 63 of 89

The following source code presents the definition of a binary_search function and its code
contracts. The keyword requires defines the preconditions to be fulfilled by the context calling
the method. In the example, a first order logic expression states that for all indices, the input
buffer is ordered. The keyword ensures is used to define postconditions.

unsigned binary_search(int val, int *buf, unsigned len)
_(requires \forall unsigned i, j; i < j && j < len ==> buf[i] <= buf[j]) // buffer sorted
_(ensures \result != UINT_MAX ==> buf[\result] == val) // val found
_(ensures \result == UINT_MAX ==> \forall unsigned i; i < len ==> buf[i] != val) // val not found

The contract language of VCC also supports the definition of invariant properties of the sys-
tem. For this purpose the invariant keyword is used. In the example below a loop invariant is
defined to establish a relation between two variables.

low = 0; high = len;
while (low < high)
 _(invariant high <= len)

This invariant construct is difficult to verify on-line due to the fact that it has to be examined
as many times as the loop is executed.

The contract language of VCC introduces the assert keyword to define simple guarantees
during the program. In the following example an assertion is defined to establish a relation
between two variables (similarly to the former example).

_(assert high <= len)

The advantage of the contract language of VCC is that it is formalised using the Z3 SMT
solver.

5.5.2 The Language for Describing Code Contracts

On the basis of the language constructs demonstrated by the examples, we define below our
language for describing code contracts. This is based on a subset of the contract language of
VCC and includes the elements that are needed for specifying properties for on-line monitor-
ing (and excludes elements that are relevant for correctness proofs but are not easy to check
on-line).

The expressions of the language are similar to first order logic. Function parameters and
return values can be referred in the expressions, using arithmetic and Boolean logic opera-
tors, together with quantification. The roles of expressions (precondition, postcondition, invar-
iant or assertion) are given by predefined keywords. Besides some basic built-in types, the
types of the C language can be used. As the expressions are intended to be used for speci-
fying properties, only pure expressions are defined, without any side-effect.

The language is defined by the following set of rules:

Conditions:

Precondition: _(requires expression)

Postcondition: _(ensures expression)

Invariant: _(invariant expression)

Assertion: _(assert expression)

Expressions:

 Quantifiers:

\forall type variable;

\exists type variable;

 Operators:

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 64 of 89

/
*
%
+
-
<<
>>
<=
=>
<
>
==
!=
&
ˆ
|
&&
||
<==
==>
<==>
\result

 Types:

\bool

\natural

\integer

C primitive types

 Variables

C variables

Note that C signed types can be cast to \integer and unsigned integral types can be cast to
\natural in an obvious way. The comparison operators (<, >, <=, >=, ==, and !=) have the
same precedence as in C. The logical operators have the following precedence: &&, ||, <==,
==>, <==>.

Note that contracts may be given in a separate module, this way the declaration of a compo-
nent (referring to a software element of the configuration model) is necessary.

This contract language will be used to describe expected properties for on-line verification.
The contracts (conditions) will be transformed to executable code which verifies the actual
behaviour of the system in runtime. Synthesising verification code from first order logic for-
mulae has a long standing history in the literature, so the code generation on the basis of this
restricted set of code contracts is viable.

5.6 Describing Reference Behaviour using Statecharts

To enable convenient graphical modelling of reference automata (see in Section 5.3), we
suggest the use of the statechart formalism in the form of a subset of the UML State Machine
model elements, extended with guards and actions as specified by the reference automata
language. The subset supports the following features:

 hierarchy (OR-states) and submachine states,

 concurrency (AND-states) and synchronization,

 communication via structured signal events,

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 65 of 89

 timing via timed events,

 inter-level transitions,

 variables and data manipulation.

A skeleton of the abstract syntax of the language is depicted in Figure 33. The concrete
graphical syntax is the same as in case of UML 2 State Machine diagrams, this way existing
tools can be used. Guards and actions (effects) are expressed using the Constraint language
presented in Section 5.3.1.

The semantics of this statechart formalism is given by a structure-preserving mapping to the
System specification language of the reference automaton (see in Section 5.3.2) on the basis
of the formal semantics developed in [62]. Expressions used as guards and actions used as
effects are handled by a straightforward mapping to the Constraint specification language
(see in Section 5.3.1).

Figure 33. Abstract syntax (metamodel) of the statechart language

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 66 of 89

5.7 Describing Scenarios

Scenarios are used to specify high-level behavioural properties. According to the approach
presented in Section 5.1, these are mapped to reference automata or temporal logic proper-
ties that form the basis of generating the source code of on-line monitors.

5.7.1 Syntax of the Language

The scenario formalism is summarized in Section 3.2. The language has two parts: message
view and context view. The message view is a modified version of a Sequence Diagram,
while the context view consists of zero or more context fragments expressed as Objects Dia-
grams. The message view contains (by convention) a trigger part (pre-chart) and an assert
part (main chart).

To handle the trigger and assert part, a more general concept can be introduced which is
inspired by the Live Sequence Chart (LSC) formalism [58]. A so-called modality can be add-
ed to the model elements (by introducing a new superclass for the InteractionFragment met-
aclass in the UML metamodel). The modality can be hot or cold, meaning mandatory or op-
tional behaviour, respectively. This way of addition of modality to Sequence Diagrams is
based on Modal Sequence Diagrams [18] and results a flexible way of defining preconditions
of behaviour. If a cold InteractionFragment cannot be matched with the behaviour of the sys-
tem, then the requirement is neither satisfied, nor violated: it is called inconclusive. The trig-
ger part and the assert part can be translated to this extended form by giving cold modality to
all fragments in the pre-chart and hot modality to the fragments in the main chart. Giving hot
modality to all InteractionFragment results a classical Sequence Diagrams. In the following,
we will use these modalities when the semantics of the language are described.

References to context fragments (used in initial, interim or final contexts) are expressed as
StateInvariants placed on the Lifeline in the form of {Context : ContextFragmentName}.

Here we present 3 basic examples of the graphical requirement specification language.

 The first example (Figure 34) shows a simple Sequence Diagram with a and b com-
ponents, where a condition is given (the x property of the a component shall be 5)
and two messages are exchanged.

Figure 34. Example of the graphical requirement specification language

 The second example (Figure 35) shows a requirement with a reference to the C1 con-
text fragment which is defined by an object diagram.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 67 of 89

Figure 35. Example requirement with a referenced context fragment: Event view (left) and

Context view (right)

 The third example (Figure 36) depicts the use of cold conditions (pre-chart), meaning
that if the x property of a is not 5, then this requirement shall not be checked.

Figure 36. Example of the usage of cold conditions (condition in blue)

The semantics of the scenario language is defined by giving a translation algorithm first to
observer automata, then to temporal logic formalism.

5.7.2 Semantics

To define the semantics, an observer automaton is created for each lifeline in the scenario.
The role of the automaton is to observe the behaviour of the monitored system and accept
the specified behaviour. Note that even though a scenario may include multiple components
(lifelines), the semantics is defined only for a single component that is monitored. According-
ly, in this section a recursive unwinding algorithm is presented, which takes one lifeline (with
the associated events, constraints and other fragments) and translates it to an automaton.
The algorithm covers all considered LSC fragments (alt, opt, loop, break, neg) and not only
the ones that are used for specifying properties for on-line verification (see in Section 3.2).

The observer automata can be represented using the language introduced for describing
reference automata (Section 5.3), this way directly forming the input for the generation of the
source code of monitors.

5.7.2.1 Translation of component-level requirements

The unwinding algorithm generates an automaton, which will observe the behaviour of the
component and will accept only those runs, which satisfy the requirement. A decision over a
requirement can be one of the following:

 Accept: The requirement is satisfied, all hot conditions are met and the automaton
observed the expected behaviour.

 Reject: The requirement is violated.

 Inconclusive: The automaton did not observe the preconditions of the requirement
(cold conditions), therefore the requirement was not violated, but was not checked ei-
ther.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 68 of 89

An automaton is defined with the following tuple:

AM = (, Q, q0, Fa. qinconclusive, T, VarE)

where

 is the set of transition labels with predicates (it can use variables from the VarE

sets),

 Q is the set of states.

 q0 is the initial state of the automaton.

 Fa Q is the set of accepting states, where if the automaton stops, the requirement
will be accepted.

 qinconclusive Q is a state, where if the automaton stops, then the requirement was nei-
ther accepted nor rejected (the matched run was inconclusive).

 T Q Q is the set of transitions.

 VarE is a set of context variables, extracted from the graphical requirement. It contains
all context variables which appear on the lifeline. All context variables are instances
of M.

 M is a context metamodel, which is the common metamodel for all contexts defined in
the requirement.

5.7.2.2 The Unwinding Algorithm

To define the unwinding algorithm some terms are expected to be known from the metamod-
el of the UML Sequence Diagram. A quick informal overview of the most important terms can
be found below.

 Interaction: A list of interaction fragments with lifelines and messages. A requirement
is one interaction.

 Lifeline: A line, which connects all events and constrains concerning one component.

 Interaction fragment: Anything which can appear on a lifeline. An InteractionFragment
can cover one or more lifelines.

 Combined fragment: InteractionFragment, which has multiple nested interaction
fragments (e.g., alt or loop).

The top level translation algorithm (Figure 37) creates an automaton from an interaction
fragment by executing the methods defined later in this section.

The translation first initializes the automaton by creating the first (start) and the final states
and initializing some structures. In the initialization, a transition is created between the initial
state and the final state. This transition will be deleted later by the other methods. Afterwards
it executes the unwinding algorithm (by calling the Unwind method, which is given as Algo-
rithm 2 in Figure 38). After it is done, it calls the Postprocess method, which adds loop transi-
tions to the automaton (Algorithm 8 in Figure 44).

The Unwinding algorithm has four inputs:

 an f interaction fragment with an l lifeline and an F list of interaction fragments,

 an A automaton to populate with new states and transitions,

 a p state in A, which is a temporal state for the interaction to unwind, and

 a P map which store the assignments between fragments and states.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 69 of 89

Figure 37. The translation algorithm

The algorithm will recursively unwind the provided interaction and replace the temporal p
state. As Figure 38 shows, the combined fragments are handled by the algorithm as well.
The algorithm will create the Q set of states recursively by maintaining the U set of not yet
unwound interaction fragments assigned to a temporal state in Q. Therefore U contains (f, q)
pairs, where f is the fragment, which is unwound (it is either an interaction or a combined
fragment) and q is the temporarily created state, which represents the f fragment at this mo-
ment.

The handleCombined(k, q, A, P) algorithm is a large switch-case structure, which executes
one of five methods depending on the type of the k interaction fragment (see Algorithms 3 to
7, presented in Figure 39 to Figure 43).

After the unwinding algorithm is executed additional postprocessing steps are necessary,
which add loop edges to the generated observer automaton. It is necessary, as if a message
does not appear on the requirement at all, but is observed, it should be ignored. If the devel-
oper explicitly wants to denote that no message of a given kind was observed, then she/he
should use the neg fragment. The postprocessing is done with the steps shown in Algorithm
8 (Figure 44).

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 70 of 89

Figure 38. The unwinding algorithm

Figure 39. Handling an alt fragment

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 71 of 89

Figure 40. Handling an opt fragment

Figure 41. Handling a loop fragment

Figure 42. Handling a break fragment

Figure 43. Handling a neg fragment

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 72 of 89

Figure 44. The postprocessing algorithm

5.7.2.3 Demonstrating the Mapping to Observer Automaton

Figure 45 shows three example scenarios (requirements) defined with the scenario language
(for the sake of simplicity, only the lifeline of a single component is presented). Both the in-
formal meaning of these scenarios and the precise semantics with observer automata are
given below.

 The (a) scenario describes that an m message should be sent and an n message
should be received.

 The (b) scenario shows that either the robot is in ready state and sends an m mes-
sage or not ready but receives an n message.

 The (c) scenario describes the following behaviour: if the robot receives a start mes-
sage, there are two alternative cases. If it is ready, it should receive a doMagic mes-
sage and then it should be in the c context. The second option is that the robot is not
ready, therefore it sends a shutdown message. If the second case happens, this does
not require being in the c context after sending the shutdown message (due to the
break fragment).

The result of the translation algorithm is presented in Figure 46. The visualization of the au-
tomata in the figure uses the following conventions:

 circles are states,

 directed edges between circles are transitions,

 circle with q0 is the initial state,

 blue circle shows the inconclusively accepting state,

 green circles are accepting states,

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 73 of 89

 message sending is denoted with postfix !, while receiving is with postfix ?,

 guard conditions are between [and],

 context change asserts are denoted with context(c) text, where c is the new context.

(a) The first scenario

(b) The second scenario

(c) The third scenario

Figure 45. Example requirement scenarios

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 74 of 89

(a) Observer automaton for the first
scenario

(b) Observer automaton for the second
scenario

(c) Observer automata for the third scenario

Figure 46. Observer automata belonging to scenarios in Figure 45

5.7.3 Mapping to CaTL

This subsection gives a translation mechanism from the graphical scenario language to the
temporal logic CaTL (Section 5.4). This way on-line verification of a component (considering
the interaction fragments on its lifeline) can be provided by a monitor component that is syn-
thesized on the basis of the CaTL description.

The translation is defined indirectly, on the basis of the observer automaton which was de-
fined as the semantics of the graphical scenario.

To describe the translation, let us first introduce a function succState(s): Q 2Q that gives
the succeeding state for a given state s, where Q is the set of states. This function will not
only return all succeeding states but it will take into account how can those states be reached
from s.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 75 of 89

If no outgoing edges exist for the given state, then the function will return true if the state is
accepting and false if it is not accepting. The inconclusively accepting state will return an
inconclusive result which is denoted by <true>.

The succEdge(t) function will define how an edge t is translated to CaTL expressions>

succEdge(t) = X (label(t) succState(t.target))

The label(t) function translates the guard conditions, message checking and context asser-
tions to the CaTL-valid form, therefore the label(t) function takes a label of an edge and re-
turns an atomic formula. For example, if the t input label has a = 5 as guard condition and
requires the component to be in the e0 context (where c is a context variable), the label(t)

function will return a = 5 c e0.

After these functions are defined, it is fairly simple to translate an A automaton to a CaTL
formula.

 = succState(A, q0)

Here follows three examples of the translation. The three graphical scenarios are shown in
Figure 45 while the translated observer automata are found in Figure 46 (for the ease of
reading, the loop edges generated by the postprocessing algorithm are omitted). Figure 47
presents the CaTL expressions belonging to the main lifeline (robot component) of these
three scenarios.

(a) CaTL expression belonging to the first scenario

(b) CaTL expression belonging to the second scenario

(c) CaTL belonging to the third scenario

Figure 47. CaTL expressions belonging to scenarios in Figure 45

5.8 Describing Event Patterns

As formal specification languages like temporal logics or formal automata are often consid-
ered too low-level for the developers, a possible approach is the definition of easy-to-use
requirement patterns. They combine the precise textual description with a graphical and/or
formal representation (in a similar way like design patterns in OO architecture design).

In the following we

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 76 of 89

 identify the main patterns that are supported by our approach (as reported in [73],
over 90% of the practical properties that were investigated could be expressed using
these simple patterns),

 give the CaTL temporal logic based representation of these patterns (this is used to
construct the complete CaTL based representation of the properties for monitor
source code generation),

 propose an abstract syntax for a graphical pattern language (the concrete syntax can
be elaborated in agreement with the domain specific tools of the demonstrators).

5.8.1 The Pattern Library

In the following basic patterns are identified, giving the natural language representation to-
gether with the temporal logic formalization. In the description “events” mean all input or out-
put occurrences (i.e., elements of a monitored execution trace) that are relevant from the
point of view of property monitoring: function call, function return, input or output signal, mes-
sage received or sent, timer started or expired, state entered or left, predicate on a variable,
context change, configuration change etc.

The property patterns are divided into two groups: occurrence patterns and ordering patterns
(see below). The scopes of the patterns in an execution trace are illustrated in Figure 48.

Global:

Before Q:

Q Q Q

Q Q Q

After Q:

Q Q R

Between Q and R:

Q R

Figure 48. Scope of a pattern in a trace w.r.t. events Q and R

 Occurrence patterns describe the occurrence of a given event during execution. The
following basic patterns are in this group:

o Universality (also known as Always or Henceforth): It describes a (portion of)
execution which contains only steps that are characterized with event P.

Property with scope Formalized property in CaTL

Event P occurs in each step of the
execution.

Globally P

Event P occurs in each step of the
execution before event Q.

Eventually Q implies (P Until Q)

Event P occurs in each step of the
execution after event Q.

Globally (Q implies Globally P)

Event P occurs in each step of the
execution between events Q and R.

Globally ((Q and not R and Eventu-
ally R) implies (P Until R))

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 77 of 89

o Absence (also known as Never): It describes a (portion of) execution in which
a certain event P does not occur.

Event P does not occur in the execu-
tion globally.

Globally (not P)

Event P does not occur in the execu-
tion before event Q.

Eventually Q implies (not P Until Q)

Event P does not occur in the execu-
tion after event Q.

Globally (Q implies Globally (not P))

Event P does not occur in the execu-
tion between events Q and R.

Globally ((Q and not R and Eventu-
ally R) implies (not P Until R))

o Existence (also known as Eventually)7: It describes a (portion of) execution
that contains event P.

Event P occurs in the execution. Eventually (P)

Event P occurs in the execution be-
fore event Q.

not Q Until* (P and not Q)

Event P occurs in the execution after
event Q.

Globally (not Q) or Eventually (Q
and Eventually P))

Event P occurs in the execution be-
tween events Q and R.

Globally (((Q and not R) and (Even-
tually R)) implies (not R Until* (P
and not R)))

o Bounded existence: It describes a (portion of) execution in which an event oc-
curs at most a specified number of times. Here the most typical case is con-
sidered when the specified number of times is 2 (where “2 times” means
“twice”).

Event P occurs at most 2 times in the
execution.

(not P Until* (P Until* (not P Until*
(P Until* Globally not P))))

Event P occurs at most 2 times in the
execution before event Q.

Eventually Q implies ((not P and not
Q) Until (Q or ((P and not Q) Until
(Q or ((not P and not Q) Until (Q or
((P and not Q) Until (Q or (not P
Until Q)))))))))

Event P occurs in the execution after
event Q.

Eventually Q implies (not Q Until (Q
and (not P Until* (P Until* (not P
Until* (P Until* Globally not P))))))

Event P occurs in the execution be-
tween events Q and R.

Globally ((Q and Eventually R) im-
plies ((not P and not R) Until (R or
((P and not R) Until (R or ((not P
and not R) Until (R or ((P and not
R) Until (R or (not P Until R))))))))))

7
 In the pattern library, in order to formalize the often used natural language constructs, in some cases patterns

and their negation are also considered (e.g., Absence and Existence).

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 78 of 89

 Ordering patterns describe the relative order in which multiple events occur during
execution. The following basic patterns are in this group:

o Precedence: It describes a pair of events where the occurrence of the first
event is a necessary pre-condition for an occurrence of the second event (i.e.,
the occurrence of the second event is enabled by an occurrence of the first
event). Note that a Precedence pattern allows causes to occur without subse-
quent effects.

Event S precedes P in the execution. Eventually P implies (not P Until* S)

Event S precedes P in the execution
before event Q.8

Eventually Q implies (not P Until (S
or Q))

Event S precedes P in the execution
after event Q.

Globally not Q or Eventually (Q and
(not P Until* S))

Event S precedes P in the execution
between events Q and R.

Globally ((Q and not R and Eventu-
ally R) implies (not P Until (S or R)))

o Response: It describes a pair of events where an occurrence of the first event
must be followed by, or happen together with an occurrence of the second
event (i.e., there is a cause-effect relationship between the first and the se-
cond event). Also known as Follows or Leads-to. Note that a Response pat-
tern allows effects to occur without causes (this way Precedence and Re-
sponse patterns are not equivalent, response is just a “converse” of Prece-
dence).

Event S responds to P in the execu-
tion.

Globally (P implies Eventually S)

Event S responds to P in the execu-
tion before event Q.

Eventually Q implies (P implies (not
Q Until (S and not Q))) Until Q

Event S responds to P in the execu-
tion after event Q.

Globally (Q implies Globally (P im-
plies Eventually S))

Event S responds to P in the execu-
tion between events Q and R.

Globally ((Q and not R and Eventu-
ally R) implies (P implies (not R
Until (S and not R))) Until R)

o Chain precedence: Chain patterns in general describe requirements related to
combinations of event relationships. In case of chain precedence, a prece-
dence relationship is described, consisting of (sequences of) individual
events. First a 2 cause – 1 effect chain precedence relationship pattern is pre-
sented.

8
 Note that here „before event Q”, „after event Q”, and „between events Q and R” are scopes of the properties as

defined at the beginning of this section

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 79 of 89

Events S followed by T precede P in
the execution.9

Eventually P implies (not P Until (S
and not P and Next (not P Until T)))

Events S followed by T precede P in
the execution before event Q.

Eventually Q implies (not P Until (Q
or (S and not P and Next (not P
Until T))))

Events S followed by T precede P in
the execution after event Q.

(Globally not Q) or (not Q Until (Q
and Eventually P implies (not P
Until (S and not P and Next (not P
Until T))))

Events S followed by T precede P in
the execution between events Q and
R.

Globally ((Q and Eventually R) im-
plies (not P Until (R or (S and not P
and Next (not P Until T)))))

Second, a 1 cause – 2 effects chain precedence relationship pattern is pre-
sented.

Event P precedes S followed by T in
the execution.

(Eventually (S and Next Eventually
T)) implies ((not S) Until P))

Event P precedes S followed by T in
the execution before event Q.

Eventually Q implies ((S and (not
Q) and Next (not Q Until (T and not
Q))) Until (Q or P))

Event P precedes S followed by T in
the execution after event Q.

(Globally not Q) or ((not Q) Until (Q
and ((Eventually (S and Next Even-
tually T)) implies ((not S) Until P)))

Event P precedes S followed by T in
the execution between events Q and
R.

Globally ((Q and Eventually R) im-
plies ((not(S and (not R) and Next
(not R Until (T and not R)))) Until (R
or P)))

o Chain response: It describes a response relationship, consisting of (sequenc-
es of) individual events. First, a 2 stimuli – 1 response chain response rela-
tionship pattern is presented.

Event P responds to (S followed by T)
in the execution.

(Eventually (S and Next Eventually
T)) implies ((not S) Until P))

Event P responds to (S followed by T)
in the execution before event Q.

Eventually Q implies ((not (S and
(not Q) and Next (not Q Until (T and
not Q)))) Until (Q or P))

Event P responds to (S followed by T)
in the execution after event Q.

(Globally not Q) or ((not Q) Until (Q
and ((Eventually (S and Next Even-
tually T)) implies ((not S) Until P)))

Event P responds to (S followed by T)
in the execution between events Q
and R.

Globally ((Q and Eventually R) im-
plies ((not (S and (not R) and Next
(not R Until (T and not R)))) Until (R
or P)))

9
 In other words, it is not allowed that P occurs before S followed by T.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 80 of 89

Second, a 1 stimulus - 2 responses chain is presented:

Events S followed by T respond to P
in the execution.

Globally (P implies Eventually (S
and Next Eventually T))

Events S followed by T respond to P
in the execution before event Q.

Eventually Q implies (P implies (not
Q Until (S and not Q and Next (not
Q Until T)))) Until Q

Events S followed by T respond to P
in the execution after event Q.

Globally (Q implies Globally (P im-
plies (S and Next Eventually T)))

Events S followed by T respond to P
in the execution between events Q
and R.

Globally ((Q and Eventually R) im-
plies (P implies (not R Until (S and
not R and Next (not R Until T))))
Until R)

As it turns out, the CaTL expressions provide a precise description (that is needed for moni-
tor source code generation), but their interpretation is difficult without some experience with
temporal logics. The natural language description helps the designer to select the corre-
sponding formalized property and understand its formalization. However, the natural lan-
guage description is often less precise, for example, in case of the property “Event P occurs
in each step of the execution before event Q”, the existence of Q is necessary for the satis-
faction of this property, but this is not evident from the natural language description (one may
consider that the property is satisfied when Q never occurs only a sequence of P).

An example of an application of a pattern is the following:

 Application specific property: For the Control component of a remotely controlled sur-
veillance robot, receiving a StopCommand message from the Remote Operator guar-
antees that the StopAction signal will sent to the Motor component of the Robot.

 Pattern: Response with global scope: “Event S responds to P in the execution.”

 Instantiation of the pattern: S is the StopAction (signal), P is the StopCommand (mes-
sage).

 CaTL formalization of the property: Globally (StopCommand implies Eventually
StopAction)

The above listed patterns focused on the most frequently used temporal properties. These
can be extended with timing (e.g., to capture the time between stimulus and response) using
the timing extensions of the CaTL language.

5.8.2 Abstract Syntax for a Graphical Pattern Language

To describe and re-use patterns, we also propose a language (with its abstract syntax) that is
inspired by [71]. It allows the developer to describe properties over the system or its compo-
nents by using a combination of quantifiers, temporal patterns, and structural patterns on the
domain model(s). Accordingly, the language consists of four parts.

 Quantification of the formula (Figure 49). Here forAll or exists quantifiers can be used
together with the corresponding structural patterns (see below). Accordingly, the
property must be satisfied for all, or for one (depending on the quantifier) matches of
the structural pattern. Quantification patterns can be nested, or can contain a tem-
poral pattern.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 81 of 89

Pattern

quantifier: Quantifier

QuantifiedPattern

StructuralPattern

forAll
exists

<<enumeration>>

Quantifier

TemporalPattern

Figure 49. The quantification of the formula

 Temporal patterns (Figure 50). The temporal patterns consists of the typical occur-
rence patterns (absence, universality, existence, bounded existence) and ordering
patterns (response, precedence, chain response, chain precedence) together with a
scope (globally, before, after, between). As presented in Figure 49, these temporal
patterns refer to structural patterns.

n: Integer

BoundedExistence

OrderingPattern

TemporalPattern

Response

Globally

Scope

Absence

ExistenceUniversality Precedence

UpperBoundedLowerBounded

After Between Before

Chain response
Chain

precedence

OccurrencePattern

Figure 50. The temporal patterns

 Structural patterns (Figure 51) can be used in quantification or in a temporal pattern.
A structural pattern means a query on a model (by a pattern matching algorithm). In
quantification it returns all bound variables in found matches, while in case of a tem-
poral pattern it returns true if at least one match is found or false when no match is
found. The patterns presented in Figure 51 can be extended with additional language
constructs if needed (the presented set of patterns is sufficient to represent the major-
ity of practical properties).

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 82 of 89

BinaryPattern SimplePattern

OrPattern

name: String
isNegative: Boolean=false
condition: Condition=true
dynamic: Boolean

StructuralPattern

UnaryPattern

NotPattern

label: String

ModelElement

AndPattern ImpliesPattern

Figure 51. The structural pattern

 Pattern elements (Figure 52). A generic model element (ModelElement) serves as the
superclass for pattern elements that are specific to the metamodel of the domain
modelling language. In Figure 52 the root metamodel of statecharts is included to-
gether with specific model elements for events and actions. A straightforward exten-
sion is the inclusion of context fragments and configuration fragments as pattern ele-
ments, this way the context and configuration metamodel elements should be insert-
ed. All classes are subclasses of ModelElement and have a label (for binding varia-
bles) and a condition.

Container

name: String
isDefault: Boolean=false

State

label: String
condition: Condition

ModelElement

guard: Condition=true
trigger: Condition=true

Transition

Basic Composite Orthogonal

Event Action

Figure 52. The pattern elements

The concrete syntax of this property language depends mainly on the concrete syntax of the
domain model (context and configuration models) and the software artefacts (in this latter
case the use of UML 2 model elements is a natural solution). In case of the quantifiers, tem-
poral and structural operators, graphical as well as natural language representation can be
used.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 83 of 89

6 Conclusions

This deliverable aimed at the selection and definition of description languages that can be
used for (1) capturing the properties to be checked by on-line verification and (2) describing
the relation of components, properties and test cases for incremental testing. These lan-
guages allow the formalization of capabilities and restrictions, safety rules, function contracts,
temporal or trace-based reference behaviour, as well as test coverage with respect to com-
ponents and specified properties.

The main contributions are the following:

 Languages were selected to describe contexts (environment), scenarios (safety re-
quirements), and configurations (hierarchical setup of skills, software components
and hardware components). These are needed both for incremental testing and on-
line verification as the target systems are context-aware and reconfigurable systems
with safety-relevant behaviour.

 A general concept of test analysis was introduced and the corresponding languages
to capture tests (test cases) and testables (context and configuration elements) and
their mapping were defined.

 An approach was presented to specify properties for on-line verification (monitoring)
using graphical engineering languages that are automatically mapped to low-level
formal languages. The engineering languages are easy to use and understand, while
the low-level formal languages are precise and simple, being suitable for automated
processing and source code generation for the monitor components.

o On the basis of an analysis of the literature of runtime verification and property
description approaches, the statecharts language and the scenario language
were selected as graphical engineering languages.

o A new temporal logic variant, the Context-aware Timed Propositional Linear
Temporal Logic (CaTL) was defined as a low-level formal language to capture
context-dependent timed properties that can be checked by trace-based moni-
toring.

o A powerful constraint and system specification language was defined as a
low-level formal language to capture reference behaviour (reference automa-
ton) that can be checked by state-based monitoring.

These languages form the basis of incremental test selection and monitoring. In case of in-
cremental testing, the description of the relation of test cases, system components and prop-
erties is used by the methods and tools for selecting, adapting and extending test cases from
existing test suites in an incremental way, in order to check the changed components or
properties. In case of runtime monitoring, the description of the properties is used by the
methods and tools for monitor synthesis, i.e., an automated construction of software monitors
to check the specified system properties. These developments will be the topic of later tasks
and deliverables (D34.20 “Incremental testing of behaviour”, and D34.31/32 “Design of the
monitoring infrastructure”). The use of these languages will be evaluated in D34.50 “As-
sessment of the on-line verification and incremental testing” at the end of the project.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 84 of 89

7 References

[1] Yoo, S. and Harman, M.: Regression testing minimization, selection and prioritization: a
survey. In: Software Testing, Verification and Reliability 22.2 (2012), pp. 67–120. doi:
10.1002/stvr.430.

[2] Engström, E., Runeson, P., Skoglund, M.: A systematic review on regression test se-
lection techniques, Information and Software Technology, Volume 52, Issue 1, January
2010, Pages 14-30, doi: 10.1016/j.infsof.2009.07.001.

[3] Institute of Electrical and Electronics Engineers.: Systems and software engineering –
Vocabulary. Standard 24765:2010. 2010, pp.1–418. doi:
10.1109/IEEESTD.2010.5733835.

[4] Rothermel, G. and Harrold, M.J.: Analyzing Regression Test Selection Techniques,
IEEE Trans. Software Eng., vol. 22, no. 8, pp. 529-551, Aug. 1996.

[5] Rothermel, G., Untch, R. H., Chu, C., Harrold, M.J.: Prioritizing Test Cases For Re-
gression Testing, IEEE Transactions on Software Engineering, vol. 27, no. 10, pp. 929-
948, October, 2001.

[6] Tsai, J., Fang, K., Chen, H., and Bi, Y.: A noninterference monitoring and replay mech-
anism for real-time software testing and debugging. IEEE Transactions on Software
Engineering, 16(8):897–916, 1990.

[7] Chodrow, S., Jahanian, F., Donner, M.: Runtime monitoring of real-time systems. In
IEEE Real-Time Systems Symposium, pages 74–83, 1991.

[8] Havelund, K., Rosu, G.: Synthesizing monitors for safety properties. In Tools and Algo-
rithms for Construction and Analysis of Systems, pages 342–356, 2002.

[9] Arafat, O., Bauer, A., Leucker, M., Schallhart, C.: Runtime verification revisited. Tech-
nical Report TUM-I05, Technical University of Munich, October 2005.

[10] Sankar, S., Mandal, M.: Concurrent runtime monitoring of formally specified programs.
IEEE Computer, 26(3):32–41, 1993.

[11] Pellizzoni, R., Meredith, P., Caccamo, M., Rosu, G.: Hardware runtime monitoring for
dependable COTS-based real-time embedded systems. In RTSS’08: Proceedings of
the 29th IEEE Real-Time System Symposium, pages 481–491, 2008.

[12] Bhargavan, K., Chandra, S., McCann, P., Gunter, C.A.: What packets may come: Au-
tomata for network monitoring. SIGPLAN Notices, 35(3):209–219, 2001.

[13] Bhargavan, K., Gunter, C. A.: Requirement for a practical network event recognition
language. Electronic Notes in Theoretical Computer Science, 70(4):1–20, 2002.

[14] Kim, M., Viswanathan, M., Ben-Abdallah, H., Kannan, S., Lee, I., Sokolsky, O.: Formal-
ly specified monitoring of temporal properties. In 11th Euromicro Conference on Real-
Time Systems, pages 114–122, 1999.

[15] Lee, I., Kannan, S., Kim, M., Sokolsky, O., Viswanathan, M.: Runtime assurance based
on formal specifications. In International Conference on Parallel and Distributed Pro-
cessing Techniques and Applications, pages 279–287, 1999.

[16] Bhargavan, K., Gunter, C. A., Kim, M., Lee, I., Obradovic, D., Sokolsky, O., Viswana-
than, M.: Verisim: Formal analysis of network simulations. IEEE Transactions on Soft-
ware Engineering, 28(2):129–145, 2002.

[17] Kim, M., Lee, I., Sammapun, U., Shin, J., Sokolsky, O.: Monitoring, checking, and
steering of real-time systems. Proceedings of 2nd International Conference on Runtime
Verification, Electronic Notes in Theoretical Computer Science, 70(4), 2002.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 85 of 89

[18] Sokolsky, O., Sammapun, U., Lee, I., and Kim, J.: Run-time checking of dynamic prop-
erties. Proceedings of 5th International Conference on Runtime Verification, Electronic
Notes in Theoretical Computer Science, 144(4):91–108, 2005.

[19] Sen, K., Vardhan, A., Agha, G., Rosu, G.: Efficient decentralized monitoring of safety in
distributed systems. In ICSE’04: Proceedings of 6th International Conference on Soft-
ware Engineering, pages 418–427, 2004.

[20] Bauer, A., Leucker, M., Schallhart, C.: Model-based runtime analysis of distributed re-
active systems. In Proceedings of the 2006 Australian Software Engineering Confer-
ence (ASWEC), Sydney, Australia, April 2006. IEEE Computer Society.

[21] Meredith, P., Jin, D., Griffith, D., Chen, F., Rosu, G.: An overview of the MOP runtime
verification framework. Software Tools for Technology Transfer, Special Section on
Runtime Verification (2011)

[22] Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verification. In:
Proceedings of 5th International Conference on Verification, Model Checking and Ab-
stract Interpretation (VMCAI’04). LNCS, vol. 2937, pp. 44–57, January 2004

[23] Barringer, H., Rydeheard, D., Havelund, K.: Rule systems for runtime monitoring: From
Eagle to RuleR. In: Proceedings of the 7th Workshop on Runtime Verification (RV’07).
LNCS, vol. 4839, pp. 111–125, March 2007

[24] Havelund, K., Rosu, G.: Monitoring Java programs with JavaPathExplorer. In: Proceed-
ings of the 1st Workshop on Runtime Verification. Electronic Notes in Theoretical
Computer Science, vol. 55, Elsevier Publishing (2001)

[25] Kim, M., Kannan, S., Lee, I., Sokolsky, O., Viswanathan,M.: Java-MaC: a run-time as-
surance approach for Java programs. Formal Methods Syst. Des. 24(2), 129–155
(2004)

[26] Bodden, E.: A lightweight LTL runtime verification tool for Java. In: 9th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’04), pp. 306–307, October 2004

[27] Havelund, K.. Runtime verification of C programs. In Proc. of TestCom/FATES, Lecture
Notes in Computer Science 5047, Springer-Verlag, 2008

[28] Meyer, B.: Object-Oriented Software Construction. Prentice Hall, Englewood Cliffs
(1988)

[29] Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: an overview.
In: Workshop on Construction and Analysis of Safe, Secure, and Interoperable Smart
Devices (CASSIS’04). LNCS, vol. 3362, March 2004

[30] Fähndrich, M., Barnett, M., Logozzo, F.: Embedded contract languages. In: Proceed-
ings of the 2010 ACM Symposium on Applied Computing (SAC’10), pp. 2103–2110
(2010)

[31] Barringer, H., Havelund, K.: TraceContract: a Scala DSL for trace analysis. In: Pro-
ceedings of 17th International Symposium on Formal Methods(FM’11). LNCS, vol.
6664, June 2011

[32] Burdy, L., Cheon, Y., Cok, D., Ernst,M., Kiniry, J., Leavens, G.T., Leino, K.R.M., Poll,
E.: An overview of JML tools and applications. Int. J. Softw. Tools Technol. Transf.
7(3), 212–232 (2005)

[33] Bartetzko, D., Fischer, C., Möller, M., Wehrheim, H.: Jass—Java with assertions. In:
Proceedings of the 1st Workshop on Runtime Verification (RV’01), July 2001

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 86 of 89

[34] Bodden, E.: A lightweight LTL runtime verification tool for Java. In: 9th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’04), pp. 306–307, October 2004

[35] D’Amorim, M., Havelund, K.: Event-based runtime verification of Java programs. In:
Workshop on Dynamic Program Analysis (WODA’05). ACM Sigsoft Software Engineer-
ing Notes, vol. 30, pp. 1–7 (2005)

[36] Allan, C., Avgustinov, P., Kuzins, S., de Moor, O., Sereni, D., Sittampalam, G., Tibble,
J., Christensen, A.S., Hendren, L., Lhoták, O.: Adding trace matching with free varia-
bles to AspectJ. In: Proceedings of the 20th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications (OOPSLA’05), pp. 345–
364, October 2005

[37] Colombo, C., Pace, G., Abela, P.: Compensation-aware runtime monitoring. In: Pro-
ceedings of the 1st International Conference on Runtime Verification (RV’10). LNCS,
vol. 6418, pp. 214–228, November 2010

[38] Seyster, J., Dixit, K., Huang, X., Grosu, R., Havelund, K., Smolka, S.A., Stoller, S.D.,
Zadok, E.: Aspect-oriented instrumentation with GCC. In: Proceedings of the 1st Inter-
national Conference on Runtime Verification. LNCS, vol. 6418, pp. 405–420, Novem-
ber 2010

[39] Bodden E., Hendren, L.: The Clara framework for hybrid typestate analysis. Software
Tools for Technology Transfer, Special Section on Runtime Verification, in this volume
(2011)

[40] Harel, D.: Statecharts: a visual formalism for complex systems. Science of Computer
Programming, 8(3):231{274, 1987.

[41] ISO/IEC 19505-2:2012 information technology – Object Management Group Unified
Modeling Language (OMG UML) – Part 2: Superstructure, 2012.
http://www.omg.org/spec/UML/ISO/19505-2/PDF

[42] Latella, D., Majzik, I, and Massink, M.: Towards a formal operational semantics of UML
statechart diagrams. In Proceedings of the IFIP TC6/WG6.1 Third International Confer-
ence on Formal Methods for Open Object-Based Distributed Systems (FMOODS),
pages 465{481. Kluwer, B.V., 1999.

[43] Plat, N and Larsen, P. G.: An overview of the ISO/VDM-SL standard. ACM SIGPLAN
Notices, 27(8):76{82, 1992.

[44] Almeida, J. B., Frade, M. J., Pinto, J. S. and de Sousa, S, M.: An overview of formal
methods tools and techniques. In Rigorous Software Development, Undergraduate
Topics in Computer Science, pp 15-44. Springer London, 2011.

[45] Larsen, P. G., Lausdahl, K., Fitzgerald, J. and Wolff, S.: VDM-10 Language Manual,
Ouverture Technical Report Series, TR-001, Ouverture, 2011.

[46] ISO/IEC 13568:2002 standard, 2002.

[47] Amalio, N., Polack, F. and Stepney, S.: UML + Z: UML augmented with Z. In Marc
Frappier and Henri Habrias, editors, Software Specification Methods - An Overview Us-
ing a Case Study, new edition. Hermes Science Publishing, 2006.

[48] Thompson, J. M., Heimdahl, M. P. E. and Miller, S.P.: Specification-based prototyping
for embedded systems. SIGSOFT Softw. Eng. Notes, 24(6):163-179, 1999.

[49] Heimdahl, M. P. E., Whalen, M. W.: Reduction and slicing of hierarchical state ma-
chines. In Mehdi Jazayeri and Helmut Schauer, editors, Software Engineering {
ESEC/FSE'97, volume 1301 of Lecture Notes in Computer Science, pp 450-467.
Springer, 1997.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 87 of 89

[50] Choi, Y. and Heimdahl, M. P. E.: Model checking RSML-e requirements. In Proceedings
of the 7th IEEE/IEICE International Symposium on High Assurance Systems Engineer-
ing (HASE), pages 109-118. IEEE Computer Society, 2002.

[51] Leveson, N. G., Heimdahl, M. P. E. and Reese, J. D.: Designing specification lan-
guages for process control systems: Lessons learned and steps to the future. In Oscar
Nierstrasz and Michel Lemoine, editors, Software Engineering ESEC/FSE 99, volume
1687 of Lecture Notes in Computer Science, pages 127-146. Springer, 1999.

[52] Braberman, V., Kicillof, N. and Olivero, A.: A scenario matching approach to the de-
scription and model checking of real-time properties. IEEE Transactions on Software
Engineering, 31(12):1028-1041, 2005.

[53] Dillon, L. K., Kutty, G., Moser, L. E., Melliar-Smith, P. M., and Ramakrishna, Y. S.: A
graphical interval logic for specifying concurrent systems. ACM Trans. Softw. Eng.
Methodol., 3(2):131-165, 1994.

[54] Foster, H., Maschner, E. and Wolfsthal, Y.: IEEE 1850 PSL: The next generation. In
Proceedings of Design and Verification Conference and Exhibition (DVCON), 2005.

[55] IEEE 1850-2010 - IEEE standard for Property Specification Language (PSL), 2010.

[56] Harel, D. and Thiagarajan, P. S.: Message sequence charts. In UML for real, pp 77-
105. Kluwer Academic Publishers, 2003.

[57] ITU-T. ITU-T Z.120 recommendation: Formal description techniques (FDT) - Message
sequence chart (MSC), 2011.

[58] Damm, W. and Harel, D.: LSCs: Breathing life into message sequence charts. Formal
Methods in System Design, 19(1):45-80, 2001.

[59] Autili, M., Inverardi, P. and Pelliccione, P.: Graphical scenarios for specifying temporal
properties: an automated approach. Automated Software Eng., 14(3):293-340, 2007.

[60] Ziemann, P. and Gogolla, M.: OCL extended with temporal logic. In Manfred Broy and
Alexandre V. Zamulin, editors, Perspectives of System Informatics, volume 2890 of
Lecture Notes in Computer Science, pp 351-357. Springer, 2003.

[61] Meyers, B., Wimmer, M., Vangheluwe, H. and Denil, J.: Towards domain-specific prop-
erty languages: The ProMoBox approach. In Proceedings of the 2013 ACM Workshop
on Domain-specific Modeling, DSM '13, pages 39-44. ACM, 2013.

[62] Pintér, G.: Model Based Program Synthesis and Runtime Error Detection for Dependa-
ble Embedded Systems. PhD thesis, Budapest University of Technology and Econom-
ics, 2007.

[63] Mills, C.: Using Design by Contract in C. O’Reilly ONLamp.com, October 28, 2004.
http://www.onlamp.com/lpt/a/5288

[64] Pnueli, A: The temporal logic of programs. Foundations of Computer Science, 18th An-
nual Symposium, pages 46–57, 1977.

[65] Misra, J. and Roy, S.: A Decidable Timeout based Extension of Propositional Linear
Temporal Logic. ArXiv preprint, (1012.3704):1–29, 2010.

[66] Harel, E., Lichtenstein, O., and Pnueli, A.: Explicit Clock Temporal Logic. Logic in
Computer Science, 1990.

[67] Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time
Systems, 2(4):255–299, 1990.

[68] Alur, R., and Henzinger, T. A.: A Really Temporal Logic. Journal of the ACM (JACM),
(July), 1994.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 88 of 89

[69] R3-COP Consortium: Deliverable D4.2.1 “Models, Languages and Coverage Criteria
for Behaviour Testing of Individual Autonomous Systems – Part I: Behaviour Testing”.
April 30, 2013.

[70] R3-COP Consortium: Deliverable D4.2.2 “Behaviour Testing Strategies and Test Case
Generation – Part I: Behaviour Testing”. October 31, 2013.

[71] Meyers, B., Wimmer, M., Vangheluwe, H., and Denil, J.: Towards Domain-Specific
Property Languages: The ProMoBox Approach. In Proc. International Dependency and
Structure Modelling Conference (DSM 13), Indianapolis, USA, pp 39-44, 2013.

[72] Dwyer, M. B., Avrunin, G. S., and Corbett, J. C.: Property Specification Patterns for
Finite-state Verification. In Proceedings of the Second Workshop on Formal Methods in
Software Practice (FMSP), pp 7-15. ACM, 1998.

[73] Dwyer, M. B., Avrunin, G. S., and Corbett, J. C.: Patterns in Property Specifications for
Finite-State Verification. In Proc. International Conference on Software Engineering
(ICSE 1999), pp 411-420, 1999.

[74] About Specification Patterns. http://patterns.projects.cis.ksu.edu/ (accessed on January
6, 2015).

[75] Bitsch, F. Safety Patterns - The Key to Formal Specification of safety requirements. In
Proceedings of the 20th International Conference on Computer Safety, Reliability and
Security (SAFECOMP), pp 176-189. Springer-Verlag, 2001.

[76] Campos, J. C., Machado, J., and Seabra, E.: Property Patterns for the Formal Verifica-
tion of Automated Production Systems. In Proceedings of the 17th IFAC World Con-
gress, pp 5107-5112. IFAC, 2008.

[77] Campos, J. C., Machado, J.: Specification Patterns System for Discrete Event Systems
Analysis. International Journal of Advanced Robotic Systems, 10(315), 2013.

[78] Preusse, S., and Hanisch, H.-M.: Specification of technical plant behavior with a safety-
oriented technical language. In Proceedings of the 7th IEEE International Conference
on Industrial Informatics (INDIN), pp 632-637. IEEE, 2009.

[79] Meolic, R., Kapus, T., and Brezocnik, Z.: CTL and ACTL patterns. In Proceedings of
the International Conference on Trends in Communications (EUROCON), 2001.

[80] Holt, A., Klein, E.: A Semantically-derived Subset of English for Hardware Verification.
In Proceedings of the 37th Annual Meeting of the Association for Computational Lin-
guistics on Computational Linguistics (ACL), pp 451-456. Association for Computation-
al Linguistics, 1999.

[81] Kuhn, T.: A Survey and Classification of Controlled Natural Languages. Computational
Linguistics, 40(1):121-170, 2014.

[82] Sommerville, I.: Formal specification. In Software Engineering 9, chapter 27. Pearson
Education, 2011.

[83] Knight, J. C., DeJong, C. L., Gibble, M. S., and Nakano, L. G.: Why are formal methods
not used more widely? In C. Michael Holloway and Hayhurst Kelly J, editors, Fourth
NASA Langley Formal Methods Workshop (LFM), pages 1-12, 1997.

[84] DeJong, C. L., Gibble, M. S., Knight, J. C., and Nakano, L. G..: Formal specification: A
systematic evaluation. Computer Science Report CS-97-09, University of Virginia,
1997. http://www.cs.virginia.edu/~techrep/CS-97-09.ps.Z

[85] Sohn, S., and Seong, P. H.: A comparative study of formal methods for safety critical
software in nuclear power plant. Journal of the Korean Nuclear Society, 32:537-548,
2000.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.10_v1.0_BME.doc © R5-COP consortium Page 89 of 89

[86] Nobe, C. R., and Warner, W.E.: Lessons learned from a trial application of require-
ments modeling using statecharts. In Proceedings of the Second International Confer-
ence on Requirements Engineering, pp 86-93, 1996.

[87] Symbolic Analysis Laboratory. http://sal.csl.sri.com/ (accessed on January 6, 2015)

[88] Bertrand, M.: Object-Oriented Software Construction (2nd edition). Prentice-Hall, New
York, 1997.

[89] Dahlweid, M., Moskal, M., Santen, T., Tobies, S., and Schulte, W.: VCC: Contract-
based Modular Verification of Concurrent C. In 31st International Conference on Soft-
ware Engineering, ICSE 2009, IEEE Computer Society, 2008.

[90] Harel, D. and Naamad, A.: The STATEMATE Semantics of Statecharts. In: ACM
Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996,
pp 293-333, 1996.

