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1 Introduction 

1.1 Summary (abstract) 

WP34 of R5-COP aims at supporting the off-line and on-line verification of the behaviour of 
R5-COP systems by elaborating methods and tools for incremental testing and runtime moni-
toring. In a design or maintenance phase reconfiguration not all behaviour is affected by a 
change, therefore not all functionality needs to be re-tested. By excluding tests checking un-
modified parts significant effort can be spared. In WP34 methods and tools are developed for 
selecting, adapting and extending test cases from existing test suites in an incremental way, 
in order to check the changed components or properties. The gaps in the coverage of the 
existing test suites are identified, which drives the adaptation of existing test cases and the 
generation of new test cases to cover the changes. 

Deliverable D34.101 described the languages that are proposed for the description of the 
relation of test cases, system components and properties. A generic model was described 
that can represent requirements (e.g. in scenarios), the context of the system (e.g. in context 
ontologies and metamodels), and the internal components (e.g. in architecture and capability 
models). 

The current deliverable D32.20 summarizes the results of Task 34.2: finalization of the mod-
els and approach, development of a prototype tool implementing the incremental testing, and 
preliminary evaluation of the tool. 

1.2 Purpose of Document  

The document describes the generic model designed for representing testing related arte-
facts (e.g. context, configurations, requirements and existing tests). It presents the approach 
to categorize existing tests after a reconfiguration. Next, the deliverable details a tool imple-
menting the incremental testing method. Finally, the applicability and scalability of the tool 
are evaluated using examples connected to the demonstrators. 

The incremental testing tool will be used in demonstrators (motivating examples are also 
described in this deliverable). The application of incremental testing will be evaluated in Task 
34.5: Integration and assessment, and described in deliverable D34.50 Assessment of the 
on-line verification and incremental testing. 

1.3 Partners Involved 

 

Partners and Contribution 

Short Name Contribution 

BME Definition, implementation and evaluation of the approach 

PIAP Review of the document 

 

                                                

1 Note: to be self-contained this deliverable will contain the relevant parts of D34.10. 
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2 Overview 

This section describes the general concept of incremental testing in order to put into context 
the selection and definition of the description languages presented in the subsequent sec-
tions of the document. 

2.1 Background 

Quality has always been a crucial aspect of software systems development. The employment 
of different verification and validation techniques is a possible way of achieving higher quali-
ty. One of the most commonly used techniques is testing, which intends to evaluate whether 
the behavior of the system under test meets its requirements. As the system develops, 
changes are introduced, which may require re-testing functions of the system. In these cases 
regression testing could be used as a solution. 

The kind of incremental testing approach planned in the project is usually referred as regres-
sion testing in the literature. Regression testing is the “selective re-testing of a system or 
component to verify that modifications have not caused unintended effects and that the sys-
tem or component still complies with its specified requirements” [1]. Regression testing can 
be performed on any testing level (i.e., module, integration, etc.), and it can cover both func-
tional and non-functional requirements. Re-running every test after each modification is re-
source and time-consuming. Thus a trade-off must be made between the confidence gained 
from regression testing and resources used. For this reason, several regression testing tech-
niques were proposed over the years, particularly to select only a subset of the test suite, 
what is relevant for the current change, or to identify those new parts of the system, which 
are not covered by existing tests. To discuss test selection and identification, in this docu-
ment we use the categorization of tests introduced by Leung and White [22]: 

 Re-usable: tests that exercise unmodified parts of the system. 

 Re-testable: tests that are changed or are able to cover changed parts in the system. 

 Obsolete: tests that cannot be used anymore due to changed specification or system 
structure. 

 New structure: tests that contribute to the overall coverage of the current, new system 
structure. 

 New specification: tests that verify new elements in the current specification. 

Three common approaches exist for regression testing. Test Prioritization [23] comes in 
sight, when the total execution time of tests is not relevant, however discoverable errors shall 
be highlighted as soon as possible. By using Test Suite Minimization (TSM)[18][20] or Re-
gression Test Selection (RTS) [28][29] the goal is to reduce the number of executed tests, 
especially when re-testing the whole system requires significant amount of time. Moreover, 
RTS uses optimization for selecting the minimal subset of these tests that have maximal test 
coverage with minimal associated execution cost. This document focuses on RTS, which 
uses the actual changes as an input to identify re-testable tests. 

One testing criteria of RTS is reaching the maximal coverage possible. In the domain of RTS 
for source code, numerous approaches have been presented that define various coverage 
metrics: code executed by tests [2] , dynamic slicing [3], graph-based representation [19]. 
Several tools exist implementing RTS for source code. For example, SoDA [32] is a tool for 
C/C++ repositories, while ChOPSJ [31] is available for code written in Java. 

In the past decade, the increasing adoption of models as development artefacts led to the 
birth of a new approach called Model-Driven Development (MDD). MDD “is a development 
paradigm that uses models as the primary artifact of the development process” [8]. These 
models are commonly composed using domain-specific languages (DSL). DSLs are special 
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languages for a particular problem domain. The model artefacts describe the system itself 
and could also serve as inputs for the testing process. Development of a system can be 
started by creating these models, however, for an existing robotic system theses model arte-
facts can be also produced afterwards. (The list of required model types will be detailed in 
Section 2.2.3.) 

As MDD is conducted in an incremental manner, model artefacts – similarly to the source 
code – tend to change in time. The changes in the model artefacts influence the system func-
tions and properties (as models drive the synthesis of software, hardware, configuration, pa-
rameterization etc. of the system), this way these changes can be used to trigger re-testing 
the influenced parts of the system. In an MDD setting, having the relation between (changed) 
model artefacts and system parts, regression test selection can be applied on model level 
rather than on the generated code. 

Numerous approaches have been presented tackling this problem, still most of them is tied 
to specific models (e.g., UML [34][9] or finite state machines [20]) that requires reimplemen-
tation of the RTS algorithms for different domains. 

2.2 Incremental Testing of Autonomous Robots2 

To create reconfigurable robotic systems, not only the development but also the verification 
and testing activities have to take into account reconfiguration and changes. Time and re-
sources required for testing can be reduced if testing is performed incrementally. 

In classical software engineering terminology, the re-use of previous tests and test results is 
denoted as “regression testing”. Here “incremental testing” is used to address the stepwise 
extension/change of the functional scope of the subject under test throughout successive 
testing phases. To increase efficiency in testing, the previous tests and test results are re-
used and testing is focused on the changed part of the reconfigured system. 

2.2.1 Basis of the Approach 

In the preceding R3-COP project, BME developed a model-based system level testing meth-
od for testing the context-aware behaviour of an autonomous robot [24]. The test goal is to 
check the safe execution of a robot mission (e.g., transportation of goods without collision) in 
various contexts (e.g., in the presence of obstacles, humans, other robots and various envi-
ronment objects). Accordingly, test contexts (arrangements of objects, obstacles etc.) shall 
be constructed systematically. To do this, we model the scenarios (describing the require-
ments against the robot) and the potential contexts of the robot (environment object types 
with their relations and constraints). On the basis of these models, our tool generates sys-
tematically the models of test contexts in which the mission of the robot can be checked. 
These generated test context models can be mapped to the configuration of a real test envi-
ronment, a simulated environment (like in ROS+Gazebo), or internal representation of per-
ceived context of the robot in ROS (depending on the implementation). Various test genera-
tion strategies can be supported, like generating extreme contexts for robustness testing. 

Figure 1 presents an example from an autonomous forklift. The left hand side depicts the 
context model representing that a forklift can move on segments and can interact with peo-
ple, pallets and other forklifts. On the bottom left a scenario states that if a person moves 
close to the robot (it is in the so called “warning” range), then the robot has to react with an 
alarm sound. Another requirement is that if the person is too close (in the “danger” range), 
then the robot has to stop. From these models the test generator tool creates models de-
scribing test contexts (one of them is depicted on the bottom of Figure 1). Test context mod-
els place different objects and persons around the robot to verify that it can handle multiple, 

                                                

2 Text from D34.10 
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possibly conflicting requirements (e.g., when one person is in warning range, and another is 
in danger range). 

 

 

  

 

Figure 1. Creating test data (at the bottom) from context models (at the top) 

2.2.2 Reconfiguration 

In a reconfiguration, the context or the configuration of the robot can change. For example, a 
new type of object can appear in the environment, a requirement is modified, or a new type 
of sensor is added to the robot. In these cases the most basic strategy is to run all previous 
tests (called retest-all). However, this is not an optimal solution, as some of the previous 
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tests are re-usable, re-testable or obsolete. Moreover, new tests may be needed, i.e., it has 
to be identified which new tests are required after a reconfiguration. 

The following possible reconfiguration scenarios are investigated: 

 The context or the requirements of the robot changed: In this case the related models 
are changed and it is identified (1) which previously generated test data are invalid 
now, and (2) which part of the new context model is not covered by the existing tests. 
Figure 2 presents an example: part of the context model is removed (e.g., the robot 
will be used in a different context), thus one of the previous tests is obsolete. 

 

Test is 

obsolete

New test is 

needed
 

Figure 2. Change in tests due to reconfiguration in the context or environment 

 

Figure 3. Effects of change in the robot configuration 

 The configuration of the robot changes: For example, a new type of sensor or naviga-
tion method is added to the robot. In this case, if there is a mapping between the tests 
and the components/skills exercised by these tests (e.g., when during a given test the 
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robot uses a laser sensor then a mapping between the test and the laser sensor is 
recorded), then based on the description of the configuration the tests can also be 
classified. (Note that the description of the configuration could be obtained from the 
skill composer tool of WP 3.5.) Figure 3 presents a simplified example. 

2.2.3 Inputs and Outputs 

In order to perform this kind of analysis in a demonstrator, the following inputs are needed: 

 Description of the demonstrator’s components: list of the major components and the 
dependencies between them (e.g., details of the architecture or the skill models de-
veloped in the project). 

 Description of tests: mapping of existing tests to components (e.g., an integration test 
suite checking the communication between the sensors and the navigation module). 

 Description of context: description of the environment of the robot used in testing. 

The outcome is a method for  

 the identification of the tests that need to be executed after a reconfiguration, 

 the identification of those parts of the system which are not covered by the existing 
tests. 

2.3 Required Descriptions and Languages 

Several types of artefacts shall be captured to form the inputs for test analysis for incremen-
tal testing. These (types of) artefacts can be grouped into two categories as follows: 

1. The so-called common artefacts that have to be captured for test analysis: 

 Context elements: As the verification of context-aware autonomous behaviour 
is addressed, the context elements include environment objects, their proper-
ties, the potential relations among them (e.g., abstract relations as “close to”, 
“lying on”), and the constraints among them (including physical constraints as 
well as domain-specific logic constraints). 

 Configurations: As re-configuration is a key concept both for incremental test-
ing and on-line verification, the (current) configuration of the system and its 
changes shall be captured. Configuration can be considered as a hierarchical 
structure of skills (from which an application is built), software components 
(that realize one or more skill), and hardware devices (that are used by the 
software components using specific interfaces). 

2. The specific artefacts that are relevant for incremental testing: 

 Tests: Tests are captured as basic entities. 

 Testables: The term testable is a common artefact that includes everything 
that can be addressed (covered) by a test: Context fragments (relevant subset 
of context elements), requirements, configuration fragments (relevant subset 
of configuration elements), source code snippets, etc. are represented under 
this common term. 

 Mapping: The mapping is a relation “tests” among tests and testables. 
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3 Approach for Incremental Testing3 

This section introduces the elaborated approach of incremental testing for autonomous ro-
bots by presenting the vision and the detailed description.  

3.1 The Envisaged Approach 

The existing tools and approaches usually concentrated on one programming or modelling 
language as the input source for incremental testing. However, as we have seen in the pre-
vious sections, in R5-COP there could be multiple levels and types of reconfiguration. In-
stead of performing incremental testing separately for each of the change types, we could 
apply a unified approach, as basically they all belong to the same problem. 

Incremental 
Testing 
Analysis

Context

(other sources)

Analysis results
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 not covered elements

Specification for new 
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Configuration
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Figure 4. Overview of the incremental testing methods 

We recommend to develop a common, general incremental testing approach, and connect 
the specific test types (test contexts from context models, module/integration tests for com-
ponents, etc.) using special adapters to this core. Figure 4 depicts the approach in detail. 

 The incremental testing analysis component is the central element of the approach. It 
defines a very general model for representing the tests and tested elements. The regres-
sion testing algorithms (test selection or coverage identification described in the previous 
section) work on this general model. 

 A model adapter is responsible for connecting the different sources, like context or con-
figuration models and tests to the general analysis component. This adapter should be 
developed for each source type and is responsible for converting the models and tests to 
the internal representation of the analysis component. This component is also responsi-
ble for detecting changes in the sources. 

 The outcome of the analysis is a classification of tests as described in Section 2 and the 
coverage information of the source elements (e.g. there is a class in the context model 

                                                

3 Text mainly from D34.10, but the generic model is updated with new elements. 
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that is not present in any of the existing test contexts). This information can later be used 
to create new tests either manually or automatically.  

The next section will detail the required description formats for these elements. 

3.2 Description for Incremental Testing 

In this section, we provide a detailed description of the generic model for our incremental 
testing approach. The section also presents the main concepts and the required inputs for 
genericity and incrementality. 

3.2.1 Generic Model for Incremental Testing 

 

Figure 5. Metamodel for describing incremental testing 

As described in the previous sections, three concepts are relevant in case of incremental 
testing: 1) elements in the system, 2) tests that exercise parts of the system and 3) a cover-
age relation that drives the selection process. Our proposed generic RTS model contains 
four main concepts that is eligible to describe the underlying artefacts of arbitrary systems for 
the RTS algorithm. 

 Testable: an abstract element that is verified by tests. 

 Component: a type of Testable that supports dependencies, changing a component 
triggers all dependents to be re-tested. 

 Conditional: a special type of Testable that represents a conditional element in the 
system, which requires individual handling during the RTS process. 

 Test: represents an executable test case in the system. 

Other crucial concepts are also used in the whole generic RTS model, which is shown in 
Figure 5. Metamodel for describing incremental testing. The main component of the generic 
model is the system. A system consists of testables, test suites and coverage groups. A test-
able instance could be a component or a conditional element, which were already presented. 
Components can depend on each other, thus there is a self-association defined. A test suite 
consists of tests connected to testables through coverage relations of coverage groups. A 
coverage relation connects a testable and a test (denoted with association). An instance of 
coverage relation could be conditional coverage or simple test coverage. Simple test cover-
age defines no special conditions on the notion of coverage, thus can be fulfilled by simply 
covering an element. On the contrary, conditional coverage also covers elements but uses a 
conditional element additionally (marked with association), that requires individual handling 
of condition values during regression test selection. A coverage group hold together relations 
that have similar meaning in the domain being used, which alleviates their handling. Fur-
thermore, testables, test suites, tests and coverage relations are modifiable meaning that 
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they store whether the given element in the system has been changed since the last run or 
not. This change is represented in the generic RTS model using a special attribute. 

3.2.2 General Mapping of Input Models 

In order to produce this generic model a mapping is needed where the inputs are the system 
and test models, and the result is the generic model itself. The transformation should use 
unique identifiers to trace back elements to the original models. This transformation is partial-
ly specific to the domain actually used in order to have a domain-independent RTS model. 

Notice that changes in the original models shall be represented in the generic RTS model. To 
tackle this question, our approach employs checkpointing of models, which is a common 
model versioning technique [5]. Hence, when a checkpoint during the model development is 
reached, the automatic mapping to the common RTS model is triggered with calculating the 
changes between checkpoints. These changes are applied to the RTS model incrementally 
and indicated on each modifiable element using the according attribute without intervention 
of the user. 

By using the mapping, the selection becomes independent from the input models. The im-
plementation of the RTS is bound to the generic RTS model this way it is not necessary to 
(re-)implement it on the basis of the specific model artefacts and coverage models. 

3.2.3 Using Context Models as an Input for Incremental Testing 

When the reconfiguration is performed in the environment or application domain of the robot, 
it can be reflected with changes in its context model. In this case, the incremental testing 
analysis should find those test contexts, which  

 contain instances of modified context model elements, 

 are invalid, because they contain instances, whose type has been deleted. 

Moreover, the approach should identify not covered context model elements. 

Context models are basically class models, which describe the environment of the robot un-
der tests. The requirements for using contexts models as input sources for incremental test-
ing are the followings. 

 Context models should be specified as UML class diagrams or Eclipse Ecore models. 

 Test contexts should be specified as instances of the context model. 

 The mapping of tests and testable is not required to be given separately, as the in-
stanceOf relation between an instance objects and its meta-element can be used for 
this purpose. 

Thus, in case of context model, it is relatively straightforward to use them as inputs for the 
envisaged incremental testing approach. 

3.2.4 Using Configuration Models as an Input for Incremental Testing 

When the reconfiguration is in the capabilities or components of the robot, then it can be cap-
tured with changes in the configuration or skill model. As the skill model of R5-COP is still in 
development, we could not yet use directly it, but the following general requirements can be 
formulated. 

 The configuration model (components, skills, etc.) should be given as a graph-based 
model, preferably a UML or Ecore model. It should describe the hierarchy and de-
pendency relations between the configuration elements. 

 The list of test projects, test suites or individual test cases should be specified.  
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 The mapping of tests and configuration elements needs to be specified. A relation 
should exist between a test and a configuration element, when 

o the test checks directly the element (e.g. a module test is written for a given 
component), 

o the test needs the given element for its execution (e.g. an integration test re-
quires also the service provided by the component to start). 

If the configuration model is given as a UML element, then the list of tests and the mapping 
can also be incorporated in the model. Otherwise, the mapping can be specified in a textual 
format, e.g. an XML file. 

3.2.5 Description of Change and Reconfiguration 

So far the models describe only one given context or configuration. However, a crucial part is 
to include the changes induced by a reconfiguration of the systems. Thus, the concept of 
“change” should somehow appear in the descriptions used in incremental testing. There are 
three fundamental ways to achieve this. 

1. Annotate the model: annotate the source models with tags or stereotypes describing 
new, changed or deleted elements. 

2. Trigger-based support: if the modelling environment supports hooks and triggers to 
notify about model manipulation, then the changes can be detected in this way. 

3. Calculate diff between models: if an old and new version of the model is given, then 
the difference can be calculated   

The first solution could be quite cumbersome. For a simple model, annotating it by hand 
could be done once, but maintaining the annotations through several changes in a large 
model is not preferable. 

The second solution could only be used, if the input sources (context or configuration mod-
els) are created in a modelling tool, and the tooling supports change detection. Such func-
tionality exists for instance in the Eclipse-based modelling tooling. 

The third option can be used without any special modelling environment support and it does 
not require extra effort from the user either. However, calculating differences in large graph 
models in not trivial. 
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4 Implementation of the Approach 

4.1 Overview of the Architecture 

 

Figure 6. Architecture of the prototype tool 

The approach presented in the previous sections is implemented in a tool using the Eclipse 
Modeling Framework. To ensure independence between the input models and the RTS, the 
tool was given a layered architecture as shown in Figure 6. 

As the input models can be arbitrary, adapters are required for defining the mapping to the 
generic RTS model. A Model Adapter consists of transformations that map the domain mod-
els to the RTS model. The tool provides interfaces for these transformations, hence only the 
knowledge of domain models is enough to implement them. For transformations, the adapt-
ers use VIATRA, a state-of-the-art incremental model transformation framework [7]. 

The model checkpointing technique, which is used in the presented approach demands for 
another layer in the architecture; the Checkpointing and Change Detector component pro-
vides the ability to create checkpoints during model development. At each checkpoint, this 
layer is also responsible for detecting changes in input models and indicating them on ele-
ments of the generic RTS model. This process is performed with unique identifiers of ele-
ments that allows tracing between the input models and the generic RTS model. The proto-
type implementation currently uses the file system with time stamps for model versioning. 
However, this layer can be developed further to collaborate with the well-known version con-
trol systems like Git and SVN.  

The third layer of the tool is the RTS engine. This layer performs the generic RTS by using a 
replaceable algorithm subcomponent making the prototype tool more flexible. The algorithm 
yields the identification of elements in the RTS model, which are affected by changes in a 
checkpoint. Then, the algorithm selects test cases that are able to cover changed parts in the 
system. Also, the layer reports the uncoverable (but changed) and uncovered elements. 

4.2 Possible Use Cases 

The approach can be used in two phases of an MDD development.  

First, the approach is intended to be used by Test Engineers during the development and 
maintenance phase of models as their common tasks are  

1) identifying untested elements in the system,  

2) performing analysis of impact to identify the effects of particular changes,  

3) re-testing the system after changes have been applied.  

Re-testing time should be reduced as low as possible along with maintaining the same fault-
detection capability of the test suites.  

This is where the presented approach emerges by  

1) highlighting untested parts of the system calculated from the coverage relationships  
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2) detecting changes and impacts through dependencies of components and  

3) selecting tests to re-run.  

Test engineers only employ the approach and do not develop or extend it.  

Second, the presented approach shall also be used by developers of domain-specific lan-
guages as their frequent tasks include  

1) identifying elements of the DSL that correspond to tests and testables,  

2) identifying how test coverage could be defined from elements and  

3) implementing a transformation to a specific test model.  

These tasks are supported by providing the definition of the main concepts in the presented 
approach for generic regression test selection. In an MDD setting, developers of domain-
specific languages shall define the mappings and transformations to the RTS optimization 
model, that can be used later by the test engineers. 

4.3 Details of the Implementation 

This section gives insights into the prototype implementation of the generic incremental test-
ing approach. 

4.3.1 General Structure 

The Eclipse Modeling Framework (EMF) is commonly used as one of the "de facto standard" 
toolkits for model-driven development projects. Hence, for wide-range applicability, the proto-
type tool also uses EMF for handling domain and RTS optimization models. 

The prototype tool is built using the popular Eclipse framework due to the fact that EMF is 
also an extension of Eclipse. Eclipse allows implementation and addition of plug-ins as bun-
dles that can be loaded into the framework runtime. All layers of the implemented tool are 
bundles and have their own level of isolation inside the framework. Bundles are able to pro-
vide services and extension points, thus the prototype tool is easily extensible. 

The tool is implemented using eclipse Plugins. Since Eclipse version 3, the platform is based 
on an OSGi framework implementation, Equinox. This has recently become the reference 
implementation of OSGi. The previously mentioned Eclipse plug-ins are OSGi bundles. 

An OSGi framework extends the Java Virtual Machine with a dynamic component model. An 
OSGi bundle has its own classloader and memory space, so bundles provide a level of isola-
tion inside the framework. Bundles can also provide services, export packages, and express 
dependencies to import the packages that another bundle exported. 

Eclipse plug-ins provide further extension points that dependant plug-ins can register to. 
These extension points are used e.g. to derive menu contributions in the user interface. Each 
plug-in implemented has a containing project, this way the source code is easily reusable, 
and the scope of the dependencies can be limited to the code that uses it. 

4.3.2 Layout of the Projects 

Complying with Eclipse conventions, all plugin are named using a fully qualified name, with a 
prefix indicating the authors and the tool. 

Plugins ending with suffix “.model” contain the EMF models created. EMF provides support 
for automated generation of graphical editors, they are contained in edit and editor projects. 

Separate projects have been created for IncQuery patterns (“.queries” suffix). The aim of this 
separation is that these projects need IncQuery dependency, not all the projects invoking it. 
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The core logic of the tool is implemented in plugins with suffix “.tool”, the “.tool.changes” 
plugin contains integration code for the IncQuery patterns, similarly “tool.ui.button” contains 
the UI controls contributed to the IDE. 

 

Figure 7. Component model of the core plugins in the implemented tool 

4.3.3 Model Adapters 

Our generic approach requires model adapters in order to work independently from the do-
main models. These adapters describe model-to-model mappings and can be implemented 
using the interfaces provided by the prototype tool. The adapters are registered into the tool 
via metadata files indicating the type of model and adapter to use. The adapters use VIA-
TRA, an EMF-based model transformation framework in order to conduct the conversion 
from the domain models to the generic RTS optimization model. We decided to choose VIA-
TRA as it is considered one of the state-of-the-art incremental model transformation frame-
works. As the tool uses graphs in the background algorithms, arbitrary domain models and 
languages can be handled. Using VIATRA requires the definition of patterns that can be 
matched to different domain model elements. A simple example is shown below, where the 
first pattern searches for modified elements in the mode, and next, the second patterns finds 
the tests that that are re-testable. 

pattern hasChanged(obj : Modifiable) { 

    Modifiable.modification(obj, ::Change); 

} 

 

pattern testToBeReRun(test : Test) { 

    // test has changed 

    find hasChanged(test); 

} or { 

    // tests may be re-run for changed components 

   find tests(testable, test); 

   find componentToBeReTested(testable); 

} 

Then, a transformation with VIATRA can be defined for each match of the patterns, hence 
making able to map input model elements to new elements of the RTS optimization model. 
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The checkpointing layer is also an extensible part of the system. The prototype implementa-
tion in the tool currently uses the file system with time stamps for model versioning. However, 
this layer can be developed further to collaborate with the well-known version control sys-
tems like Git and SVN.  

The detection of changes between checkpoints is conducted by comparison. The prototype 
tool compares all of the input models in the last checkpoint to the current versions to indicate 
the changes in the already generated RTS optimization model. The comparison process us-
es EMF-Compare, which is a model comparator API for EMF provided by the modelling 
framework natively. One may notice that only the different versions of the optimization mod-
els could be enough to compare instead of all the inputs, however the RTS optimization 
models do not provide information about changed. For this reason, the tool implements a 
generic algorithm to compare all the input model elements between checkpoints and to indi-
cate changes in the optimization model using the unique identifiers. The result of the compar-
ison may yield four different outcomes: none, addition, deletion or change. The changes are 
indicated in the optimization model using a simplified model manipulator API provided by 
VIATRA 

4.3.4 RTS Engine 

The RTS engine layer is responsible for conducting the RTS. The prototype tool uses a sim-
ple set cover approximation algorithm to solve this problem shown on Figure 8). As the Set 
Cover Problem is known to be NP-hard, this algorithm has a greedy nature: it would always 
select the next minimal covering subset, thus can turn out to be suboptimal. The approxima-
tion factor of the algorithm is ln(n+1), where n denotes the size of the optimization model. 
This value can be acceptable even for many changes in large models. The layer is also flexi-
ble, hence new algorithms can easily be implemented to solve the problem of RTS. 

 

Figure 8. Greedy approximation algorithm for the Set Cover Problem 

4.3.5 Implementation of the UI 

In the current phase of the implementation, both the IncQuery engine and the test selection 
are started from the GUI by the user. To provide controls for the user, We have implemented 
a separate project, with suffix “ui.button”. To register the buttons, we have used the Com-
mand API of Eclipse. The key idea of the API is to separate the configuration into reusable 
parts: 

 Command: a declarative description of the component 

 Handlers: responsible for the actual behaviour (i.e., it is the Java code being called) 
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 Menu Contributions: declarative definition of menu entries, be it the main menu or a 
context menu entry. Even buttons on the toolbar are defined this way. The placement 
and the nature of the menu contribution is defined via a special URL. 

With these parts, for a command a single handler could be called from multiple menu contri-
butions, e.g., from the toolbar and also from the context menu. 

4.3.6 Summary of Details 

This section described how the tool is implemented in the Eclipse framework. Figure 7 shows 
the plugins responsible for the core functionality and their relationships with each other. So 
far the prototype of the tool with all of its plugins, including the model builders and transform-
ers, consists of 23 plugins. 
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5 Detailed Examples of the Approach 

This section intends to present the elaborated approach through detailed examples. The ex-
amples use a predefined metamodel set, which we specially defined for demonstrational 
purposes. 

5.1 Preliminaries 

 

Figure 9. The robot metamodel used during the examples 

We designed several metamodels and instance models in order to present the application of 
the approach. First, we elaborated a robot metamodel, which could be general enough for 
demonstrational purposes. The metamodel on the robot is found on Figure 9. The model 
includes both hardware and software elements and the dependencies amongst them. Ac-
cording to the model a robot has slots where hardware elements (e.g., sensor, actuator, mo-
tor) can be mounted. Robots also have several different software elements installed that con-
trol hardware elements. Figure 10 shows the simplified capability model of the designed 
sample robot, which is used during the following examples. 
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Figure 10. The example robot instance on a simplified representation 

The robot model contains both hardware and software elements. The robot itself has four 
slots (left, right, motor, equipment). The motor slot is connected to the motor, which enables 
the robot to move. The right slot is connected to an arm that has a gripper to grasp objects. 
The left slot has an arm connected, which holds a camera. The camera is plugged into the 
equipment slot. Both actuators (camera arm, gripper) and the motor are controlled by a 
movement controller through a movement driver software. The camera has an image recog-
nition software that communicates with the sensor using a special driver software. 

 

Figure 11. The NIST context metamodel 

We defined a context metamodel based on the guidelines for autonomous robot test rooms 
created by the National Institute of Standards and Technology (NIST) [6][25]. Note this 
standard is used also elsewhere in the project, e.g. for the validation of HMI interfaces pre-
sented in D24.40 “Usage patterns, tests and validation results”. 

We extracted the main concept from the guidelines and the attached examples. The elabo-
rated metamodel is found on Figure 11. The main element of a test room metamodel is the 
exercise, which can be: 
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 a specific type of terrain tile, on which the robot under test moves, 

 a gap between terrain tiles, 

 a sign on the wall or on a tile, 

 a custom exercise that is defined during the design of a concrete instance. 

We defined 7 different types of terrain tiles, which are the following: 

 Crossing ramp: a small-heighted ramp passes across the tile covering a cable tunnel. 

 Continuous ramp: a ramp, which connects two tiles with different heights. 

 Stepfield: a tile filled small steps with the same heights. 

 Stairs: a tile with stairs that connects two tiles with different heights. 

 FlatLineFollowing: a simple flat, plastic tile with a line that can be followed. 

 Sand: a tile filled with sand. 

 

Figure 12. Mapping metamodel for different context elements and the capabilities of the robot 

In order to have a coverage definition in our generic incremental test selection model, a 
mapping metamodel shall be designed first to connect the concepts of the context and the 
components under test. The elaborated metamodel is found on Figure 12. The main element 
is a container that stores mappings. A mapping consists of exactly one capability reference 
and one context reference. These references are pointing to corresponding model elements 
by their identifiers. 

In summary, we defined three metamodels for the examples:  

1) a capability model that describes the robots being developed and tested, 

2) a context model that represent test rooms for the robots under test, and  

3) a mapping metamodel, which is able to connect the elements of the contexts with the 
capabilities of the robots. 
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5.2 Example with a NIST test room 

In this example, we present a scenario, where the elaborated incremental testing approach 
for model-based system testing may help reducing execution time and cost. The test room 
depicted on Figure 13 consists of 8 tiles separated with a wall (indicated with orange line). 
The first tile has a simple gravel terrain and serves as the starting point for the robots. Tile 2 
is a staircase with increasing height in the direction of the arrow. The third and seventh tile is 
a simple gravel terrain similarly to tile 1. The fourth tile is a simple ramp with increasing 
height. Tile 5 consists only of a crossing ramp. Tile 6 has a sand terrain and contains a cone 
as an exercise. Tile 8 has gravel as its terrain and contains a red button as exercise, where 
the robot finishes the test room. Each tile and exercise on a tile may serve as a test case for 
the robot being tested. Note that due to using ramps and staircases a real test room based 
on this scenario should have different vertical levels but the current abstract context meta-
model does not contain this information. These details could be later added in a concretiza-
tion step [24]. 

 

Figure 13. Schematic layout of Test Room 1 

In order to complete the overview of the scenario, a mapping shall be made between the 
elements of the robot and the exercises in the test room. For this example, we define this 
mapping as follows. The other parts of the context and the capabilities are out of scope for 
the example. 

 motor  tile_2 

 motor  tile_4 

 motor  tile_5 

 gripper  red_button 

 gripper  cone 

Using the implemented incremental testing tool, we defined this mapping as an instance 
model using references of context elements and robot capabilities. This results in a coverage 
relation that is used during the incremental test selection procedure. 

This initial state of the 3 instance models (robot, context, mapping) forms the very first 
checkpoint of the system development. We used the tool to mark this state as initial. For the 
purpose of this example, we considered that the specification of some parts of the robot must 
be changed at some point during the development. More specifically, the motor and the grip-
per is replaced to a newer version, thus re-testing gains priority to ensure conforming behav-
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iour. Without any test selection, the changed parts would trigger re-running all considered 
test cases (tile_2, tile_4, tile_5, red_button, cone). 

Thus, to demonstrate the potential of incremental testing, we introduced the two modifica-
tions to the robot instance model and executed a development checkpoint using the imple-
mented tool. The creation of the checkpoint triggers the instantiation of a new generic RTS 
model indicating the changes carried out in the robot model instance. This model is depicted 
on Figure 14. 

 

Figure 14. Part of the generated test selection model 

The final step of the example is to calculate the tests to re-run for this specific modification. 
We executed this function of the incremental testing tool, and obtained the following results: 
only tests tile_4 (marked with Test 4 on figure) and cone (Test cone) must be re-run to re-test 
both components. Therefore, instead of manoeuvring through the whole room, the robot can 
be placed on tile 4 and just directed to grab the cone, this shorter path would exercise the 
changed functionality. 

Note the example was simplified for demonstrational purposes, but with adding further con-
straints to the model more realistic setups can be analysed, i.e. tile_2 and tile_2 testing dif-
ferent capabilities of the motor. 

5.3 Example with two NIST test layouts 

Consider the following situation. A test facility has only one test room, which always must be 
organized into different layouts for different test situations. In these cases, frequent changes 
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of the robot under test demands for repeated reorganizations that consume large amount of 
time and effort. The current example illustrates this problematic situation. On Figure 15, the 
first test room layout is depicted. The first and second tile is a simple terrain with gravel and 
sand, respectively. The third tile is also a gravel, however it contains a cone, which must be 
placed out of the way by the robot. 

 

Figure 15. Example NIST test room layout 1. 

The second layout of the test room is found on Figure 16. The first two tiles in the room have 
gravel terrain, while the last one has sand. Furthermore, the second tile contains a radioac-
tivity sign that must be recognized by the robot in order to pass the test suite. 

 

Figure 16. Example NIST test room layout 2. 

Similarly to the first example (Section 5.2), a mapping between the context and robot ele-
ments must be given. This results in the following coverage relations. 

 motor  testRoom1.tile_2 

 motor  testRoom2.tile_3 

 gripper  testRoom1.cone 

 imgRecognizer  testRoom.radioActivitySign 

For the purpose of this example, we introduced the same modifications as in the previous 
example, namely the gripper and the motor is upgraded. 

Without any incremental testing, the re-testing all approach must be applied, which requires 
reorganizations of the one and only test room. 

In order to alleviate this situation, we employed the incremental testing tool by defining the 
two test room instance models and their mapping with the capabilities of the example robot. 
The crucial part of the yielded generic RTS instance model – generated by thee tool – can be 
found on Figure 17. 

In order to obtain the results from the tool, we executed the regression test calculation. The 
results are shown on Figure 18. Note that only the two test cases must be re-run to cover the 
modifications. Both tests are found in layout 2, thus only the second layout must be orga-
nized in the test room. 
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Figure 17. Part of the generated test selection model for the two layouts 

 

Figure 18. The output of the tool for the room with two layouts 

5.4 Example with a demonstrator context 

To demonstrate the generic applicability of the tool, we created another context meta-model, 
in which mobile industrial robots (like the robots of the project partner MIR) are involved.  

The meta-model (Figure 19) considers the main concept of the context: walls, different types 
of floors, and objects like boxes or humans. The main element of the model is the TestRoom. 
A room consists of building blocks (walls and floors) and floor groups. A test room always 
has a starting and ending floor tile. The floor can contain different test objects. These can be 
the following: Box, Human, Robot. Note that this metamodel is extensible and is only created 
for demonstrational purposes. 

The next step of the new context model integration was to create an example model. We 
modelled the following simple test room for this purpose. The test room has three tiles (as 
shown on Figure 20), tile 1 has another robot placed onto, tile 2 is empty, while tile 3 has a 
box on it. The starting tile is tile1, while the end is tile 3. The test room has the robot and the 
box as its exercises. Thus, we created the mapping between the robot capabilities and these 
exercises in the following way. 

 gripper  box1 

 imgRecognizer  robot1 
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Figure 19. Meta-model of the demonstrator context 

 

Figure 20. Example instance of the demonstrator context 

Consider that a change is introduced to the gripper of the robot under test. Without test se-
lection, both the robot1 and box1 shall be re-tested (complying with the re-test all approach). 
To avoid this, we applied our prototype generic incremental testing tool. We created the 
model instances for the new context and for the mapping between the robot capabilities and 
the elements of the context accordingly to the previously described mapping. In the first 
model development checkpoint (without any modification on the gripper), the generic regres-
sion test selection instance model is generated by the tool. This model instance can be found 
on Figure 21. 
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Figure 21. The generic test selection model for the example with the demonstrator context 

Note that the only difference between this and the previous test selection models is that the 
tests are changed. This greatly emphasizes the genericity of the approach as it hides the 
specific attributes of the context and just copes with concepts that regression test selection 
algorithms use. 

As we modified the gripper in the instance model of the robot under test and executed a 
checkpoint, the change was indicated in the generic test selection model. Then, we executed 
the test selection algorithm, which yielded the result found on Figure 22. Thus, the technique 
spared time and effort by avoiding the run of the robot1 test. 

 

Figure 22. The output for the example with the demonstrator context 
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6 Evaluation of Scalability 

As no repositories are maintained, where models and tests generated from test models are 
collected systematically, we decided to employ our own model for motivational purposes.  

The verification of autonomous robot systems is an essential part of their development pro-
cess due to their safety-critical nature. For example, an emergency response robot is a spe-
cial type of mobile robots that is capable of performing certain activities in an environment 
that may possess the risk of human injury (e.g., critical tasks in handling explosives). The 
verification process of the completely built robots is usually conducted in a special test room. 
These rooms are able to pose challenges for different capabilities of the robot [6][25]. 

The occurrence of changes in the requirements of the robots may trigger the modifications of 
the test rooms. This is very similar to the maintenance of the test suites of software, hence 
regression testing could be applied also in this domain: the robot can be thought as the sys-
tem under test, while a particular element of a test room is a test case for the robot. This test-
ing approach [24] is an example for model-based system-level black-box testing. 

As the goal of this section is to demonstrate the importance of regression test selection and 
its applicability, a representation is needed first that describes the problem domain. This rep-
resentation shall be able to describe both the capabilities of the robots and the test rooms. 
Based on the guidelines of NIST [25], we defined the following main types of model elements 
for test rooms. 1) mobility terrain, 2) mobility obstacle, 3) visual target. 

Note that we used the metamodels that were presented in Section 5.1. The evaluation uses 
the robot instance model also introduced in Section 5.1 (Figure 10). 

 

Figure 23. The example room instances 

The test rooms are described using a simplified model (Figure 23). The terrain in the first 
room (room1) is sand, which is located between two walls (left and right). The left wall has a 
flammable warning sign, while the right one has a radioactivity sign on it. The second room 
(room2) has a gravel terrain and contains a ramp. 

Furthermore, the definition of test cases requires a coverage mapping, which connects the 
objects in test rooms with the capabilities of the robot. This mapping is defined for the current 
example as follows: 1) motor  sand, 2) motor  ramp, 3) imgRecognizer  leftWall, 4) 
imgRecognizer  rightWall. Thus, the four test cases that exercise different capabilities of 
the robot are the following: sand, ramp, leftWall, rightWall. 
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In order to evaluate the scalability of the approach, we employed the instance models de-
scribed in the beginning of this section. In this evaluation our intention is to answer the fol-
lowing question. 

Could the prototype of the approach scale up to models 
found in the autonomous robots domain? 

Answering the question demands for the mapping of domain models to the generic RTS 
model. For the purpose of this study, one transformation was defined for the model of robot 

capabilities, which transformed every element into a Component in the generic RTS model. 

Additionally, the test rooms were transformed into test suites and tests: 1) TestRoom  

TestSuite, 2) {Wall,Sign,Gravel,Ramp}  Test. One may notice that we used 

TestRooms as test suites, though they can be handled differently as the level of abstraction 
is changed (e.g., using only a layout of few elements as a test suite instead of the whole 
room). Using this mapping, larger instance models of robots and test rooms are employed to 
conduct various measurements of scalability. Note that we used upscaled model instances of 
the example without the second room (room2). 

6.1 Setup 

In order to measure the scalability, the change detection and test selection capabilities are 
evaluated. Evaluating the change detection requires the input models to change between two 
checkpoints. The evaluation of test selection also uses the generic RTS model, which can be 
extended and scaled up in three ways: 1) components, 2) tests and 3) coverage. Moreover, 
the RTS evaluation demands for creating elements with predefined connections (coverage), 
thus making it a more complex scenario. 

The change detection can be evaluated from two aspects: 1) size of the input models to 
compare, 2) size of the change. Six different sizes of input models are defined for the evalua-
tion: 16, 32, 64, 128, 256 and 512. These models were created by adding new component 
instances to the robot. Note that these sizes are the numbers of newly added components to 
the original robot instance model seen on Figure 10. Additionally sizes of the changes are 
defined in a smaller scale for this experiment: 1, 2, 4, 8, 16 and 32. According to the industri-
al partners in the R5-COP research project, these model sizes can be relevant in the auton-
omous robot domain. A significant aspect of the scalability is that how much time does it take 
to detect changes with different sizes of models and changes. Hence the evaluation ad-
dresses the following comparisons: 1) execution time with different sizes of inputs (number of 
changes here is 1), 2) execution time with different number of changes between checkpoints 
(size of input models here is set to 512). 

The time that RTS takes during the test selection is a crucial part of the approach as it should 
not take unfeasible amount of time (e.g. running RTS and the selected tests should not take 
longer than re-running the whole test suite). Thus, the generic RTS model with 512 elements 
is used in this part of the evaluation with various amount of changes ranging from 1 to 512 on 
a logarithmic scale. Furthermore, the number of dependencies to a changed component may 
affect the time required for running the RTS. This analysis also uses the model with 512 ele-
ments with the number of changes tied to one. However, the number of dependants to a sin-
gle component is modified on a logarithmic scale from 1 to 512. 

6.2 Results 

The values presented in this section were obtained from executing the prototype tool on a 
notebook with a 2-core CPU running at 3.0 GHz and 8 GBs of RAM. During the evaluation, 
every measurement was repeated 30 times and the average values are presented here. Be-
fore each measurement a warm-up session was conducted in order to avoid outlier values 
caused by initialization processes in the Eclipse framework. The data analysis was per-
formed using R [27], while execution times were measured by using stopwatches in code. 
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Figure 24. Execution time of change detection with various model sizes 

Figure 24. Execution time of change detection with various model sizes presents the rela-
tionship between the number of model elements on a logarithmic scale and the change de-
tection time in milliseconds. The results show that as the size of the model is incremented, 
the detection time also increases. The growth seems to be exponential, however as the x-
axis is logarithmic while the y-axis is linear, this actually denotes a simple linear correlation 
between the two variables. 

Table 1 summarizes these values  including a confidence interval (CI) on 95% confidence 
level obtained using the one-sample t-test. The confidence intervals do not show large devia-
tions, and the border values of the CIs grow with the average times. The presented change 
detection times may be thought feasible in the domain of the study. We also measured 
change detection time on larger models in order to determine the effects on practical ap-
plicability. We used two models containing 8192 and 16384 elements, from which the results 
were 5,59 and 22,02 seconds respectively, which are still convenient response times. 

Size [# of elements] Average time [ms] CI 

16 12.56 [10.3, 14.83] 

32 12.7 [10.38, 15.02] 

64 13.33 [11.48, 15.18] 

128 20.73 [14.93, 26.53] 

256 25.7 [22.3, 29.1] 

512 48.23 [43.69, 52.78] 

Table 1: Change detection time with different model sizes 

In terms of the relationship between the size of changes and the execution time of change 
detection, the results are promising. Figure 25 also uses a logarithmic scale and shows that 
there is a clear linear correlation between the number of changed elements and the related 
execution time. This is due to the algorithm used in the background, which is a linear search. 
Changing this algorithm to a model pattern detection-based technique may improve the 
performance. 
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Figure 25. Execution time of change detection with various number of changes 

Table 2: Change detection time with different sizes of changes presents the results from the 
analysis of the relationship between the number of changes and the detection time. Note that 
the values are increasing linearly with the number of changes. Moreover, the confidence in-
tervals (CI) also show this relationship. The intervals were obtained again on 95% confidence 
level using the one-sample t-test. To sum up, these results show a clearly identifiable linear 
relationship between the number of changes and the change detection time. The maximum 
value was slightly more than one second even on the largest models used, thus can be 
thought as a promising and feasible result. 

Size [# of elements] Average time [ms] CI 

1 45.67 [41.70, 49.63] 

2 78.53 [75.6, 81.46] 

4 148.17 [144.82, 151.51] 

8 304.27 [285.24, 323.3] 

16 608.83 [584.84, 632.82] 

32 1196.53 [1151.51, 1241,56]] 

Table 2: Change detection time with different sizes of changes 

As mentioned earlier, the RTS execution time is also a crucial part of the process. To evalu-
ate its performance the execution time was measured with different number of changes on a 
previously used model in the case study (containing 512 elements). Figure 26. Execution 
time of RTS with various number of changes depicts the results from this evaluation with the 
sizes of changes on a logarithmic scale. It can be seen that no dependency exists between 
the number of changes and the RTS execution time because even when all the model ele-
ments were changed the time remained almost the same. 
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Figure 26. Execution time of RTS with various number of changes 

Table 3: RTS execution time with different sizes of changes reveals the details of this evalua-
tion containing the average times and their confidence intervals (CI) with the previously used 
one-sample t-test on 95% level of confidence. The values are almost equal in all cases and 
do not show large deviations. However larger CIs exists, which is due to the first and second 
measurements that had longer execution times as the modelling framework did not cache the 
required model elements until the third run (though a warm-up run was conducted to avoid 
this effect). In brief, these execution times are acceptable for the domain of autonomous ro-
bots even on relatively large models. 

Size [# of elements] Average time [ms] CI 

1 16.9 [10.63, 23.17]] 

2 14.73 [10.78, 18.68] 

8 14.33 [10.12, 18.55]] 

32 16.73 [12.1, 21.38] 

128 14.87 [10.2, 19.53] 

512 16.8 [9.12, 24.48] 

Table 3: RTS execution time with different sizes of changes 

As described previously, we also analysed how the RTS execution time is affected by the 
number of dependencies belonging to a changed component. Based on the results, the pat-
tern-based dependency analysis that is implemented in the prototype tool, turned out to be 
effective: the execution times were roughly the same that were presented in Table 3. Thus 
the execution time of RTS can be thought as independent from the number of dependencies 
to a component.  

The evaluation of these complex cases was performed to answer the RQ. The results pro-
duced by the prototype tool that implements the generic RTS approach are promising and 
scale up without significant increase of execution time even for these larger model sizes. 
Hence the presented approach and the prototype tool can scale to real models used in the 
autonomous robot domain. 
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7 Conclusions 

The deliverable elaborated a method that can be used for the selection, adaptation and ex-
tension of test cases. The operation of this method is driven by the analysis of the new re-
quirements (formalized in scenarios), the changes in the context of the system (formalized in 
context ontologies and metamodels), and the changes in the internal components (formal-
ized in architecture and capability models). The gaps in the coverage of the existing test 
suites are identified, which drives the adaptation of existing test cases and the generation of 
new test cases to cover the changes. 

The main contributions of the work were the following: 

 A general concept of test analysis was introduced and the corresponding languages 
to capture tests (test cases) and testables (context and configuration elements) and 
their mapping were defined. 

 A tool was designed that can perform the incremental testing analysis. Using model 
adapters the core incremental analysis component is independent from the actual 
domain, and only these light-weight adapters had to be created when testing a new 
system. A prototype implementation was also detailed that is based on the Eclipse 
framework, the de facto modelling environment used in industry. 

 Preliminary evaluation of the applicability and scalability of the method and the tool 
was presented. The evaluation used context and capability model inspired by the 
NIST autonomous robot test room standard. 

The use of approach will be further evaluated in D34.50 “Assessment of the on-line verifica-
tion and incremental testing” at the end of the project. 
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