
R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 1 of 52

R5-COP

Reconfigurable ROS-based Resilient Reasoning Robotic Cooperating
Systems

Assessment of
the On-line Verification

and Incremental Testing

BME

Project R5-COP Grant agreement no. 621447

Deliverable D34.50 Date 31/01/2017

Contact Person Istvan Majzik Organisation BME

E-Mail majzik@mit.bme.hu Diss. Level PU

mailto:majzik@mit.bme.hu

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 2 of 52

Document History

Ver. Date Changes Author

0.1 18/11/2016 Initial structure of the content I. Majzik (BME)

0.2 15/01/2017 Integration of the overview of on-line
verification

I Majzik, A. Vörös and others
(BME)

0.3 17/01/2017 Integration of the chapter on on-line
V&V using SIL methodology

J. Bicevskis, A. Gaujens
(IMCS)

0.4 23/01/2017 Integration of the SWOT analysis for
on-line verification

I. Majzik (BME)

0.5 24/01/2017 Integration of the chapter about incre-
mental testing

Z. Micskei, D. Honfi (BME)

0.6 25/01/2017 Additional parts about performance
evaluation

A. Vörös, D. Honfi, I. Majzik, Z.
Micskei and others (BME)

0.7 31/01/2017 Corrections and extensions I. Majzik, Z. Micskei, A. Vörös
(BME)

1.0 03/02/2017 Version for internal review I. Majzik (BME)

1.1 15/02/2017 Corrections after internal review M. Spisländer (FAU), I. Majzik
(BME)

Note: Filename should be

“R5-COP_D##_#.doc”, e.g. „R5-COP_D91.1_v0.1_TUBS.doc“

Fields are defined as follow

1. Deliverable number *.*

2. Revision number:

 draft version v

 approved a

 version sequence (two digits) *.*

3. Company identification (Partner acronym) *

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 3 of 52

Content

1 Introduction ... 8

1.1 Summary (abstract) .. 8

1.2 Purpose of document ... 8

1.3 Partners involved .. 8

2 The Assessment Approach ... 9

2.1 The SWOT Analysis Method .. 9

3 Assessment of On-line Verification ..10

3.1 Summary of the Method and its Novelties ...10

3.1.1 The Concept of the Monitoring Infrastructure ..10

3.1.2 The Tool Support ..11

3.1.3 The Main Novelties ...15

3.2 SWOT Analysis ...17

3.2.1 Strengths ..17

3.2.2 Weaknesses ...18

3.2.3 Opportunities ...19

3.2.4 Threats ..19

3.3 Assessment of Capabilities and Efficiency ...20

3.3.1 Monitor Integration and Evaluation ..20

3.3.2 Performance and Overhead of Monitoring ...24

4 Assessment of On-line V&V using SIL methodology ..29

4.1 Summary of the Method and its Novelties ...29

4.1.1 The SIL Methodology ..29

4.1.2 Implementation of on-line V&V in the SIL model ...30

4.1.3 Novelties of the Approach ...31

4.2 SWOT Analysis ...32

4.3 Assessment of Capabilities and Efficiency ...33

4.3.1 Usability ..33

4.3.2 Overhead ..33

4.3.3 Efficiency ..33

5 Assessment of Incremental Testing ...35

5.1 Summary of the Method and its Novelties ...35

5.2 SWOT Analysis ...36

5.2.1 Strengths ..36

5.2.2 Weaknesses ...37

5.2.3 Opportunities ...37

5.2.4 Threats ..37

5.3 Assessment of Capabilities and Efficiency ...38

5.3.1 Application in Demonstrators ..38

5.3.2 The Test Classification Framework ...40

5.3.3 The Test Context Generator Tool ..42

5.3.4 Efficiency of Incremental Testing (An Example) ..44

6 Standardization Aspects ..46

6.1 Incremental Testing in Safety Standards ...46

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 4 of 52

6.2 On-Line Verification in Safety Standards ...47

6.3 Run-Time Certification ...48

7 Conclusions ...49

8 References ..50

9 Appendix A ..52

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 5 of 52

List of Figures

Figure 1. The monitoring infrastructure ...11

Figure 2. Overview of monitor development process ..11

Figure 3. Specification of the monitored property as a statechart in the Yakindu tool12

Figure 4. Intermediate statechart model ...12

Figure 5. The set of input and generated models..13

Figure 6. Specification of the monitored property as sequence diagram in the Papyrus tool .13

Figure 7. Context model and related patterns ...14

Figure 8. Timeout specified in a statechart diagram ...16

Figure 9. Time constraints specified in a sequence diagram ..16

Figure 10. The SWOT table of the on-line verification framework ...17

Figure 11. The reference statechart belonging to Scout ...20

Figure 12. The events observed and checked by the monitor belonging to Scout.................21

Figure 13. Integration of the monitor into Scout ..21

Figure 14. Error detected by the monitor in Scenario 1 (Emergency stop)22

Figure 15. Error detected by the monitor in Scenario 2 (Autonomy drive)23

Figure 16. Execution times (ns) of checking an event by statechart based monitors24

Figure 17. Memory usage of statechart based monitors ...25

Figure 18. Monitor execution time (ms) in comparison with the term rewriting approach26

Figure 19. Monitor execution time (ms) in comparison with the alternating automata
approach ..26

Figure 20. Program code overhead in case of various monitoring techniques28

Figure 21. Execution time overhead in case of various monitoring techniques28

Figure 22. Closed loop control system ..30

Figure 23. Example Monitor process ..31

Figure 24. Safe mode operation process ..31

Figure 25. SWOT analysis of the SIL methodology ..32

Figure 26. The incremental testing methods ...35

Figure 27. SWOT-based analysis of behaviour testing method ..36

Figure 28. Exercises on NIST test lane [32] ..38

Figure 29. Modelling in the demonstrator: context (left) and configuration (right)39

Figure 30. Context models created for the demonstrator and result of test analysis39

Figure 31. Configuration models created for the demonstrator and result of test analysis40

Figure 32. Creating the robot configuration metamodel ..41

Figure 33. User interface of the tool: “Execute CP” and “Calculate Diffs” buttons41

Figure 34. Scalability assessment of the incremental testing tool ...42

Figure 35. Test context generation approach ...42

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 6 of 52

Figure 36. Test context metamodel ..43

Figure 37. Coverage criterion expressed as context pattern ...43

Figure 38. Definition of the test objective functions ...44

Figure 39. Test context models ..44

Figure 40. Example context instance model ...45

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 7 of 52

List of Acronyms

CaTL Context-aware Timed Propositional Linear Temporal Logic

CTL Computational Tree Logic

EB Evaluation Block

EMF Eclipse Modelling Framework

LSC Live Sequence Chart

LTL Linear Temporal Logic

MSC Message Sequence Chart

OCL Object Constraint Language

PLTL Propositional Linear Temporal Logic

PSL Property Specification Language

R3-COP Resilient Reasoning Robotic Cooperative Systems

ROS Robot Operating System

UML Unified Modelling Language

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 8 of 52

1 Introduction

1.1 Summary (abstract)

WP34 of R5-COP aims at supporting the off-line and on-line verification of the behaviour of
R5-COP systems by elaborating methods and tools for incremental testing and runtime moni-
toring. Incremental testing focuses on checking the permanent effects of reconfiguration on
basic safety and robustness properties, while runtime monitoring focuses also on checking
the effects of runtime errors.

Incremental testing of the behaviour is relevant in the design phase and in maintenance
phases (to check the behaviour of a changed or reconfigured version), utilizing existing test
suites. Runtime monitoring addresses the detection of errors and malfunctions that manifest
themselves in runtime, e.g., due to random hardware faults, configuration faults, operator
faults, faults in adaptation and self-healing.

To support these activities, in the previous tasks and deliverables the following activities
were performed and documented:

 Description languages were developed to capture those properties of the system that
characterise its correct behaviour.

 Algorithms and tools were developed for monitor synthesis on the basis of the de-
scribed properties.

 Algorithms and tools were developed for test classification and test selection in in-
cremental testing on the basis of changed requirements, context or configuration.

The topic of this deliverable is the assessment of on-line verification and incremental testing.
In case of on-line verification, the usability and efficiency of the monitoring infrastructure
(supporting tools) is assessed and the application is evaluated. In case of incremental test-
ing, the selection and generation of new tests is evaluated. The assessment is completed by
the analysis of standardization aspects.

1.2 Purpose of document

This deliverable aims at the assessment of the methods and tools elaborated in the previous
tasks of WP34. Since the R5-COP demonstrator applications are presented in their corre-
sponding deliverables (in SP4), this report will not focus on demonstrator environments and
uses cases but mainly on the generic properties and capabilities of the monitoring and in-
cremental testing methods and tools, presenting demonstrator applications as examples.

1.3 Partners involved

Partners and Contribution

Short Name Contribution

BME Assessment activities

FAU Review of the document

IMCS Assessment activities

PIAP Integration and evaluation in case of the Scout robot

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 9 of 52

2 The Assessment Approach

The assessment is performed on the following methods:

 On-line verification (Section 3),

 On-line V&V using SIL methodology (Section 4),

 Incremental testing (Section 5).

The assessment includes the following aspects:

 Summary of the method and its novelties.

 SWOT analysis that describes the strengths, weaknesses, opportunities and threats
of the method and its application.

 Evaluation of capabilities and efficiency.

According to this approach, separate sections are devoted to the three methods and related
subsections for the assessment aspects.

The deliverable is closed by Section 6 that discusses the role of these methods according to
the development standards of safety critical systems.

2.1 The SWOT Analysis Method

As a specific step in the assessment, we adopted a so-called expert evaluation approach to
judge the capabilities of the developed new V&V methodologies. In particular, a SWOT-
based analysis was performed to identify the different helpful or harmful factors affecting the
newly developed method and tools. The factors were identified by the members of the team
who developed and applied the new techniques and tools.

The SWOT (Strengths, Weaknesses, Opportunities, and Threats) method [24] is a method
developed for strategic business planning that analyses the external and internal factors af-
fecting a company, a department or an actual product. The factors are categorized as helpful
or harmful ones, and depending on whether they are external or internal ones, they are listed
as

 Strengths: helpful, internal,

 Weaknesses: harmful, internal,

 Opportunities: helpful, external,

 Threats: harmful, external.

The collected factors are typically aligned in a 2x2 matrix to visualize the results of the
SWOT analysis.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 10 of 52

3 Assessment of On-line Verification

The topic of this section is the assessment of the on-line verification method developed in
WP34. On-line (runtime) verification aims at checking system execution against formally
specified behavioural properties. The development of on-line verification methods typically
addresses the definition of description languages for specifying the properties to be moni-
tored (see in deliverable D34.10), the corresponding checking algorithms (see in D34.31),
the required instrumentation for accessing observations necessary for checking, and the de-
velopment of the related tool environment (see in D34.32).

3.1 Summary of the Method and its Novelties

The monitoring infrastructure (method and tool support) that was developed allows automat-
ed construction of monitor components by the synthesis of their source code. In this subsec-
tion the concept, the tool support, and the main novelties are summarized.

3.1.1 The Concept of the Monitoring Infrastructure

The concept of the monitoring infrastructure is presented in Figure 1.

The monitors perform online verification by observing the behaviour of the robot components
(i.e., the trace of their events, actions, and the perceived context) to detect the hazardous
situations and trigger a reaction (e.g., to stop the robot to maintain safety). The potential
hazardous situations (e.g., the sequence of events and interactions among components) are
specified using a high-level language: state machine diagram, sequence diagram, or tem-
poral patterns. Accordingly, three tool-chains were developed that generate the source code
on the basis of this specification automatically. These tool-chains offer a flexible framework
to specify properties according to the focus and level of completeness of the behaviour to be
checked, and effectively support the generation of the monitor components:

 Monitor synthesis on the basis of behaviour specification, using UML2 statecharts ex-
tended with timeouts and context/configuration related events. This tool is especially
useful when the designer wants to specify complete reference behaviour. The monitor
is responsible to detect and signal any behaviour that is different from this reference
behaviour considering the sequence of input events.

 Monitor synthesis on the basis of scenario specification, using UML2 sequence dia-
grams, extended with timing and context/configuration dependency. This tool is useful
when the designer wants to specify conditions (including context/configuration frag-
ments) and the related required or forbidden sequence of input events and output ac-
tions. The monitor is responsible for matching the observed behaviour with the condi-
tion part of the scenario and detect if subsequently the required behaviour is missing
or the forbidden behaviour occurs. The behaviours that do not match the condition
part are not checked by the monitor, this way the focus of monitoring is only on the
specified scenarios.

 Monitor synthesis on the basis of temporal specification, using a library of extensible
safety and liveness behaviour patterns. This tool is useful when a declarative specifi-
cation of properties is needed (especially in case of invariant properties that shall be
always satisfied to guarantee safe operation). The monitor is responsible for detecting
an error when the sequence of observed events does not satisfy the temporal proper-
ty. All behaviours are checked (there is no explicit condition part in the properties) but
focusing only on the events that are included in the specified property.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 11 of 52

Monitor
source code
generator

Behavior specification

Monitor source code

 Matching events
 Matching context
 Matching configuration

Statechart
diagram

Scenario specification

Sequence
diagram

Input sources Monitor source code generator tool Output

Event
definitions

Temporal specification

Context
fragment

Temporal
pattern

Context
fragment

Action
definitions

Event
definitions

Event
definitions

Monitor interfacing

 ROS topics
 Instrumentation

Figure 1. The monitoring infrastructure

3.1.2 The Tool Support

Figure 2 summarizes the tools and steps in the monitor development which will be detailed in
the following subsections.

Figure 2. Overview of monitor development process

Statechart-based monitor generation

Our approach supports monitor source code generation from statechart based property spec-
ification. The developer can design the model using the popular Yakindu Statecharts Tool
(Figure 3).

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 12 of 52

Figure 3. Specification of the monitored property as a statechart in the Yakindu tool

By right clicking on the diagram, the context menu first offers the generation of the so-called
intermediate statechart model. Note that this representation (Figure 4) can also be used to
design the monitor directly when the designer prefers textual modelling. We provided an
Eclipse-based editor to support the developer to construct/edit this intermediate model. The
editor provides syntax highlighting and content assist.

Figure 4. Intermediate statechart model

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 13 of 52

In addition to the generation of the textual intermediate model (with extension .statechart),
this step also produces the EMF-based model (with extension .statechartmodel) and tracea-
bility links (with extension .y2ttraceability) related to the statechart diagram to support back-
tracking. The resulting files (in case of the MIR_Charging statechart specification) are shown
in Figure 5. The model generation steps from the statechart diagram to the intermediate
model and the EMF-based model are implemented with the help of precise model transfor-
mations.

Figure 5. The set of input and generated models

The intermediate language is based on an XText grammar and has precise semantics (in the
same way as the statechart diagram). It is the direct input of the monitor source code genera-
tion that can also be started from the context menu of the tool.

In case of the Yakindu Statechart based modelling, the designer can use all statechart ele-
ments except priorities and parameterized events. Pseudo states, hierarchy, parallel regions,
user defined guard functions are supported by the transformations, model validations and the
monitor generation algorithm.

Sequence diagram based monitor generation

A rich subset of sequence diagrams can also be used to specify the property to be moni-
tored. The sequence diagrams can be constructed in the Papyrus tool, which is a widely
used open-source UML model editor (Figure 6).

Figure 6. Specification of the monitored property as sequence diagram in the Papyrus tool

From the sequence diagram based monitor specification a built-in transformation generates
the intermediate statechart model (the same intermediate model that was used in case of
statechart diagram based property specifications), from which an additional step generates
the source code of the monitor component.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 14 of 52

Besides modelling events and actions, the following elements of sequence diagrams are
supported: alternative, loop, and assert fragments, and guard expressions. Timing aspects
can be expressed as time intervals with minimum and maximum durations.

Context and configuration description based generation of guard functions

The statechart and sequence diagram models can refer to so-called guard functions that
specify in which context an event is acceptable. The source code of these guard functions is
generated by a separate tool. Its inputs are a context metamodel (that specifies the artefacts
in the context of the robot) and context patterns that give the context configurations that shall
be matched by the observed context to have a true guard. The context metamodel can be
specified using structure modelling in form of EMF metamodel, while patterns can be speci-
fied using a query language (the VIATRA1 Query language).

Figure 7. Context model and related patterns

The tool is presented by an example depicted in Figure 7.

 The metamodel of the context that specifies the types of objects in the context and
their relations is given by a metamodel constructed in the EMF editor (left part of Fig-
ure 7) as a class diagram.

 The patterns to be matched that refer to the elements (instances) of the context met-
amodel are specified in a textual form using the VIATRA Query Language (right part
of Figure 7). Various features are supported such as embedded graph patterns, tran-
sitive closure, expressions and type constraints.

From the context metamodel and the query patterns, the source code of the corresponding
guard functions are generated with the help of VIATRA. The generated guard function (to be
called by the monitor) is responsible for matching the context pattern with the observed con-
text (where the sensors shall update the data structure generated on the basis of the context
metamodel). As mentioned above, these guard functions can be referred to both in statechart
models and in sequence diagram specifications.

Configuration dependency is handled similarly: instead of the context metamodel the configu-
ration metamodel is used, while the patterns refer to configurations in which the events are
acceptable. The guard function implements the matching between the configuration patterns
and the observed configuration (the corresponding data structure generated on the basis of
the configuration metamodel shall be updated during reconfiguration).

1
 http://www.eclipse.org/viatra/

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 15 of 52

3.1.3 The Main Novelties

In this section we highlight three main novelties of the monitoring infrastructure.

 Supporting of engineering languages. High level engineering languages are support-
ed through existing and widely used modelling tools as inputs of the monitor synthesis
(as presented in the preceding section). This way, instead of low-level mathematical
formalisms, the engineers are provided property specification languages they are fa-
miliar with. The Yakindu Statechart tools, Papyrus and Eclipse Modelling Framework
support the creation, editing, persisting and loading of the models in a standard way.
The monitor synthesis is integrated into these modelling tools as an additional context
menu item.

 Monitoring the timing aspects. In case of statechart diagrams (that are intended to
specify complete behaviour) time dependent behaviour can be specified using transi-
tions triggered by timeout events (in case of the statechart diagram presented in Fig-
ure 8, the transition labelled with “after PlanningTO ms” specifies a timeout where
PlanningTO is the constant representing the timeout for the planning activity). In case
of sequence diagrams (that are intended to specify conditional scenarios of event se-
quences) time constraints can be given in the form of time intervals with minimum and
maximum durations between events (in case of the sequence diagram presented in
Figure 9, the time constraints are given directly as durations, e.g., “(5..10)”). This is a
user-friendly and integrated way of describing timing aspects to be checked by the
monitor.

 Supporting the on-line verification of context and configuration dependency. Model
based specification of the context elements (in the form of a context metamodel) and
query based specification of context patterns is offered. An example is presented in
Figure 7. These specifications are used to generate the source code of guard func-
tions that perform the matching between the context patterns and the context ob-
served by the robot (updated by its sensors). Configuration dependency is handled
similarly. This way the engineer does not have to deal with the implementation of
complex graph matching functionality,

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 16 of 52

Figure 8. Timeout specified in a statechart diagram

Figure 9. Time constraints specified in a sequence diagram

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 17 of 52

3.2 SWOT Analysis

The strengths, weaknesses, opportunities and threats of the on-line verification infrastructure
are summarized in Figure 10 and detailed in the following subsections.

 Helpful Harmful

In
te

rn
a

l

 Precise property specification

 Monitoring of timing

 Monitoring context- and configuration-
dependent behaviour

 Systematic design of monitors with
different strategies

 Automatic tools

 Independent monitoring

Strengths

 Detailed semi-formal specification is needed

 Limits of scenarios as properties

 Overhead of monitoring

 Separate tool for specifying context and
configuration dependency

Weaknesses

E
x
te

rn
a

l

Opportunities

 Complexity of classic V&V

 V&V challenges in checking context-
aware behaviour

Threats

 Model-based design is not widespread

 Testing and debugging of monitor compo-
nents are difficult

Figure 10. The SWOT table of the on-line verification framework

3.2.1 Strengths

 Precise property specification: The properties to be monitored are specified in a pre-
cise way, using semi-formal engineering languages: statecharts, sequence diagrams
based scenarios and temporal patterns. We assigned semantics to these languages,
this way allowing the precise and systematic synthesis of the source code of the mon-
itor components, It can be emphasized, however, that these languages are close to
the engineering practice and does not mean “cryptic” formal mathematical languages
like low-level temporal logics.

 Monitoring of timing: The property specification languages mentioned in the previous
point are extended with language elements that allow the specification of timing. In
case of statecharts, timeout events can be used; in case of sequence diagram based
scenarios time intervals can be specified, while in case of temporal patterns clock var-
iables can be introduced.

 Monitoring context- and configuration-dependent behaviour: The property specifica-
tion languages are extended with the concept of guards that can be used to specify in
which case an event is acceptable or not. The source code of the guard can be gen-
erated by a separate tool in which the context and configuration dependency can be
specified. Namely, that context pattern or configuration pattern can be given that is to
be matched by the monitor (in the guard function) with the observed context or the
current configuration. This solution fits the model-based design approach and pro-
vides the complete synthesis of the source code of the monitor component.

 Systematic design of monitors with different strategies: The model-based solution of-
fers systematic monitor design starting from property specifications and providing
monitor synthesis, integrating the event-based property specification approach with
the guard condition based context- and configuration dependency specification ap-
proach. The supported strategies include the use of complete behaviour specification
(using statecharts), the light-weight scenario specification (using sequence diagrams)
or the declarative property specification (using temporal patterns). Selection among

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 18 of 52

these strategies can be based on the information available on the required behaviour
and the level of detail to be monitored.

 Automatic tools: The model-based design approach is supported by automatic tools
for specifying and managing the properties (by widely used off-the-shelf modelling
tools like Yakindu and Papyrus) and synthesis tools (developed in the project). The
synthesis tools are integrated into the property specification tools. For designers who
prefer textual languages over graphical languages, Xtext based intermediate
statechart language is provided to start the monitor synthesis directly from such prop-
erty specification.

 Independent monitoring: The monitor is designed and its interfaces are constructed to
allow independence from the observed components. On the one hand, the specifica-
tion of the property to be monitored in made independently of the design of the moni-
tored component (i.e., not the same design is used for the implementation of the mon-
itored component and its monitor). On the other hand, the monitor does not share var-
iables or other state information with the monitored component, but observes events
through ROS topics.

3.2.2 Weaknesses

 Detailed semi-formal specification is needed: If a designer is not familiar with the
graphical or textual languages offered by the monitoring infrastructure then she/he
has to learn these languages (and also the related modelling tools), Note, however,
that these languages, as being included in the Unified Modelling Language, are now-
adays part of the electrical engineering and software engineering studies.

 Limits of scenarios as properties: The scenario based property specification using se-
quence diagrams does not provide a complete behaviour specification, as its goal is
only the specification of allowed or forbidden event sequence in case of a given con-
dition. Accordingly, complete behaviour can be specified by several scenarios that are
difficult to manage, Note, however, that for the purpose of complete behaviour speci-
fication the statechart language (also supported by the monitoring infrastructure) is of-
fered.

 Overhead of monitoring: On-line verification by monitoring involves an unavoidable
overhead as the monitor components need additional memory for code and data (re-
sulting in memory overhead) and also CPU time for execution (resulting in runtime
overhead). The overhead is optimized by the careful design of the monitoring algo-
rithms (that evaluate the sequence of events observed by the monitor) and the im-
plementation of the related data structure in the monitor. The monitor can be integrat-
ed into a system as an observer component that only accesses information by sub-
scribing and listening to ROS topics, in this way it does not need instrumentation of
the monitored component (reducing the direct overhead caused by the instrumenta-
tion). However, to access internal information and generate the related events for the
monitor, instrumentation may be necessary.

 Separate tool for specifying context and configuration dependency: The languages
that are used to specify the monitored properties in terms of event sequences, and
the languages that are used to define the guard conditions in terms of context or con-
figuration patterns, inherently differ. Namely, statechart diagrams, sequence diagrams
and temporal patterns are used to specify event sequences, while class diagrams and
related query languages are used to specify the guards. Accordingly, they need sepa-
rate tools that are not directly integrated with each other (just the guard functions are
referred by their names in the statechart and sequence diagrams), The integration is
performed on a source code level as the source code generated for evaluating event
sequences is linked with the source code generated by a separate tool for the guard
functions.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 19 of 52

3.2.3 Opportunities

 Complexity of classic V&V: The verification and validation of context dependent and
adaptive reconfigurable systems is a complex problem as it is difficult to predict the
potential contexts and configurations in design time. Typically, classic V&V aims at
checking the typical or critical scenarios estimated in design time, without guarantee-
ing the correctness or safety in case of other scenarios. The on-line verification of be-
haviour by monitoring offers a solution for the detection of erroneous events related to
(1) the violation of assumptions about the system context, (2) violation of expected
system properties due to operational faults, and (3) the deviation from expected ef-
fects of runtime actions like reconfiguration. A detected erroneous event may trigger
an intervention into the system to perform corrections (to ensure safe behaviour) and
recovery.

 V&V challenges in checking context-aware behaviour: As a specific aspect of the
problems mentioned in the previous point, the complexity and diversity of the context
of a system with context-dependent behaviour is a challenge for verification. Context
modelling with hierarchic structure of the types of context objects (e.g., the concept of
“furniture” covers the concepts of “table”, “chair” etc.) and abstract relations (e.g.,
“close to” and “far enough” in case of distance between obstacles and the robotic sys-
tem) allows a compact specification of context patterns that influence the correct/safe
behaviour of the system. In case of on-line verification, these context patterns are
matched with the actually observed context by the monitor (in guard functions),
providing this way a mechanism to detect diverse situations that may need corrective
actions triggered by the monitor.

3.2.4 Threats

 Model-based design is not widespread: Although model-based design is considered
as a way to address complexity and to provide understandability and unambiguity in
the design of modern computer based systems, it is not used in all companies. As
stable design tools are being available and the related training is being offered, this
threat is expected to disappear. To address this issue, a textual property specification
language is offered for designers who are not familiar with graphical (diagram based)
modelling languages.

 Testing and debugging of monitor components are difficult: Monitor components, as
the other components of a critical system, have to be tested and debugged/corrected
in case of their design or implementation faults. The difficulty of these activities is due
to the fact that monitors react to run-time faults, violation of assumptions about the
context, and erroneous changes in configurations of the monitored system. Accord-
ingly, the testing and debugging of the monitor components needs a specific envi-
ronment (e.g., the use of fault injection tools, context emulation tools, reconfiguration
support tools) in which the mentioned effects can be induced in the monitored system
and the related reaction of the monitor can be checked. Relaxing the need for testing
the monitor components embedded in their software context, specific simulation tools
can be used that generate only the events to be checked by the monitor.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 20 of 52

3.3 Assessment of Capabilities and Efficiency

In this section first practical experience of integrating the monitor into a demonstrator (WP42
PIAP Scout robot) is recalled then the overhead and performance of monitoring is measured.

3.3.1 Monitor Integration and Evaluation

Here we report the integration of the monitor generated by the source code generator tools
into the Scout robot developed by the Industrial Research Institute for Automation and
Measurements (PIAP). The goal of the monitor was verifying in runtime whether transitions
between different states of the robot are allowed. If there is an error, the monitor informs the
operator so she/he can take a proper action.

The specified properties

The monitor follows the state of the robot by receiving events about that change this state.
Before a state transition, the monitor evaluates the event and decides whether it is allowed or
not. If it is allowed then the state is changed. If not, a callback function is called and the op-
erator is informed (see the errorAction() function in Section 9 Appendix A). The allowed event
sequences are specified as state transitions in the form of a statechart diagram (Figure 11).

Figure 11. The reference statechart belonging to Scout

The events received by the monitor from the robot are summarized in Figure 12 (the names
of the events that identify the change of states are self-explanatory). Note that in case of
state Driving, a timeout velocity_to is used to transition to the Idle state.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 21 of 52

Figure 12. The events observed and checked by the monitor belonging to Scout

The models were constructed using the Yakindu Statechart tool and source code of the mon-
itor was generated in two iterations (correcting some specification and code generation mis-
takes during integration).

Overview of the integration

The monitor is running in a separate process on an operator’s console and it uses ROS for
communication with other components. The ROS topic /bmemonitor/status topic is used for
sending events from the console and from the robot, and the topic /bmemonitor/error is used
for sending information from the monitor to the operator. The integration is presented in Fig-
ure 13.

Figure 13. Integration of the monitor into Scout

Testing scenarios

The monitor with Scout was tested in two different scenarios in order to verify that the moni-
tor can provide useful information when something is wrong.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 22 of 52

Scenario 1: Emergency stop

In this scenario the robot was driving autonomously when the operator pressed the emer-
gency stop button in case of a safety hazard. Despite the emergency situation, the autonomy
module continued sending navigation commands requesting the robot to change its position.

The screenshot in Figure 14 shows that the monitor detected the error (incorrect behaviour
with respect to the statechart reference model presented above) and the proper message
was displayed for the operator.

Figure 14. Error detected by the monitor in Scenario 1 (Emergency stop)

Scenario 2: Autonomy drive

In this scenario the Scout robot was driving autonomously but the operator decided to control
the robot manually. In this case, the autonomy module should give up the control and switch
to the idle state. However, in this scenario the autonomy module continued sending naviga-
tion commands. As previously, the monitor discovered the incorrect behaviour (with respect
to the statechart model) and the callback function informed the operator (Figure 15).

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 23 of 52

Figure 15. Error detected by the monitor in Scenario 2 (Autonomy drive)

Evaluation

PIAP concluded the integration and testing with the following evaluation:

 The monitor was able to correctly detect invalid transitions between states so for ap-
plications with well-defined states and transitions it may prove very useful. It is espe-
cially valid if the design of the monitored application uses a state pattern for its core
functionality.

 In the case of Scout, the integration was cumbersome as the design did not use the
state pattern and the events had to be formed artificially by adding new functionality
to the application that was responsible for checking conditions and emitting a proper
event. This extra code (instrumentation) introduced additional complexity.

 The integration was particularly difficult in case of the autonomy module, since its in-
ternal state was not instrumented, this way it was not known whether the autonomy
module is active or not. If a request was sent by the operator to the autonomy module
to stop, the operator did not know when it will emit the autonomy_stop event so that
she/he can safely emit velocity_command to control the robot. The solution of this
problem would need additional code.

 The overhead of monitoring depends on the way the monitor is integrated with the
application. In this case there was a separate monitor process using ROS for com-
munication (see Figure 13), and the related ROS libraries were responsible for the
huge part of the memory footprint.

 In summary, the monitor may work very well with state based designs, but in case of
Scout (not following this pattern by design) the added value of a state-based monitor
did not fully justify the effort of difficult integration.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 24 of 52

3.3.2 Performance and Overhead of Monitoring

In case of monitoring, one of the important questions is the overhead (in memory and
runtime) and the performance of checking. In this section measurements results are provided
that allow the estimation of these characteristics in case of the different monitoring ap-
proaches.

Performance of the statechart and scenario based monitors

The monitors generated on the basis of statechart diagram and sequence diagram based
property specifications share the same intermediate formalism (the textual statechart model)
for code generation, this way these have similar performance. In the following we refer to
these monitors as statechart based monitors.

The internal execution engine of the monitor is triggered by the incoming events. To check
whether the incoming event triggers a transition (i.e., the event is a valid successor of the
previous event), the engine has to examine the outgoing transitions of the active state con-
figuration. This means that the execution time is mostly determined by the number of out-
going transitions from the state configurations.

To measure the effects of different number of outgoing transitions, we have generated
statechart models (as benchmarks) with the following characteristics:

 “Complete graph”: the number of states is n, each with n-1 outgoing transitions.

 “Cyclic graph”: the number of states is n, each with 1 outgoing transition.

 “Random graph”: the number of states is n, half of the states have 1, and the other
half of the states has more than n/4 transitions.

The statechart based monitors were generated from these test models and were compiled
using g++ with the -O3 flag set.

In the measurement setup, the monitor was driven by a test program where the calls to the
evaluation function of the monitor were made directly from a loop. The measurements were
done on an Intel Core i5-6500 CPU, where the monitor was executed on a dedicated core
running at 3.2 GHz. Execution times were measured using the standard C++11 chrono li-
brary’s high resolution clock functions. To minimize the possible effects caused by the oper-
ating system’s interrupts and scheduling, the loop of the evaluation calls was executed one
hundred thousand times (then the average execution time of the calls were calculated). Also
the measuring function ran multiple times, and the outliers in the results were eliminated by
averaging results in the 80 percentile.

The execution times for the test models can be found in Figure 16.

Results n = 10 n = 100 n = 1000 n = 10 000

Cyclic 69 ns 66 ns 61 ns 62 ns

Complete 92 ns 371 ns - -

Random 76 ns 211 ns - -

Figure 16. Execution times (ns) of checking an event by statechart based monitors

The complete models for n>=1000 would contain almost a million transitions. As the mapping
tool from statecharts to the intermediate representation for monitor synthesis is not prepared
to traverse such huge models, monitor generation is not currently supported for these model
sizes. The same holds for the random models. Note that this model size is not realistic to be
developed by hand.

The measurements were also performed on the monitor generated for the WP44 demonstra-
tor (i.e., based on the statechart model given in Figure 8). In this case the average execution
time of evaluating an incoming event by the monitor was 108 ns.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 25 of 52

We have also measured the execution time of guard functions that perform context matching.
We used a context model that contained all together 50 modelling elements. The context
patterns to be matched were similar to those of Figure 7. We have measured the average
time needed for context matching: the maximum execution time was 150 ms for the most
complex context pattern (containing an expensive transitive closure pattern) and the mini-
mum runtime was 10 ms for the simplest context pattern.

Memory usage of the statechart and scenario based monitors

The memory usage of the monitor is affected by the number of states and transitions in the
statechart model that specifies the property to be monitored.

Memory consumption of the monitors was measured using the same models as were used
for the execution time measurements. The monitor executables were compiled using g++
with the -O3 flag specified. The -O3 flag might not provide the best optimizations for memory
usage, but developers typically opt for the speed increase versus the minor free memory
gained.

The size of the used memory was measured with the Linux tool ps. The platform overhead of
g++ and Linux were taken into account by calculating the difference of the memory usage of
the monitors and a simple one-line program realizing an infinite loop (which is typically over 1
MB).

The memory usage of the monitors with different settings is presented in Figure 17.

Results n = 10 n = 100 n = 1000 n = 10 000

Cyclic 4 kB 28 kB 40 kB 2356 kB

Complete 24 kB 1744 kB - -

Random 12 kB 921 kB - -

Figure 17. Memory usage of statechart based monitors

Note that the names of the events and states are stored as strings by the monitor for error
reporting and logging purposes, thus the memory usage is influenced by the lengths of the
names. For environments with ultra-low resources, the monitors may be modified by storing
only IDs and references (that are used by the evaluation function), which would reduce
memory consumption.

The measurements were also performed on the monitor generated for the WP44 demonstra-
tor (Figure 8). In this case the memory usage of the monitor core was 4 kB.

Performance of temporal pattern based monitoring

We have compared the execution time of our monitor implementation with the classic ap-
proaches of term-rewriting using the Maude engine (H&R, [25]) and the source code genera-
tion based on alternating automata (F&S, [26]). We have used the formulae and traces sug-
gested in these papers. The evaluation trace was created by iterative repetition of the (a; b;
a; b; a; c; a; a; b; g; f; h; c; b; a) event sequence. The measurements were carried out on a
low-end platform (Intel processor core running at 2.2 GHz).

Figure 18 presents the execution times for evaluating two formulae on various trace lengths
(note that the evaluation of the formulae requires the analysis of the entire trace), in compari-
son with the term rewriting approach [25].

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 26 of 52

 Formula 1

G(bF c)

Formula 2

F(G(bF c))

Trace
length

H&R term
rewriting

Our
approach

H&R term
rewriting

Our
approach

1500 20 0.53 110 0.62

3000 40 1,10 220 1.25

4500 60 1.64 320 1.87

6000 80 2.20 420 2.64

7500 100 2.70 530 3.29

9000 120 3.70 640 3.84

10500 140 4.00 760 4.47

12000 160 4.50 860 5.50

13500 180 5.10 970 6.00

15000 200 5.60 1100 6.60

Figure 18. Monitor execution time (ms) in comparison with the term rewriting approach

Figure 19 presents execution times for evaluating three formulae in comparison with the al-
ternating automata approach [26].

Formula Trace
length

F&S alternating
automaton (BFS)

Our
approach

F1 1000 78 0.57

2000 54 1.13

3000 76 1.84

4000 99 2.46

5000 123 3.22

F2 1000 82 0.66

2000 52 1.39

3000 73 2.07

4000 94 3.40

5000 117 3.66

F3 1000 876 0.95

2000 1660 1.93

3000 2377 2.96

4000 3244 4.08

5000 4034 6.73

Figure 19. Monitor execution time (ms) in comparison
with the alternating automata approach

The explanation of the speedup is the effective implementation of sub-expression evaluation
and the inherently programming-oriented nature of our approach: the entire solution is tar-
geted for code generation, the data structures and algorithms seamlessly fit to C/C++ pro-

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 27 of 52

gramming languages resulting in a straightforward code generation step and a high perfor-
mance application.

The code generation time was also measured using temporal logic formula of increasing
length (i.e., increasing number of temporal operators by the conjunction of (r => p U d) ex-
pressions in context of a G operator). The longest formula contained 8+1 temporal operators,
in this case the code generation was performed in still less than 1 second. Note that in case
of typical safety patterns (see in D34.10) the number of temporal operators is less than 4.

Memory usage of temporal pattern based monitoring

The memory consumed by the monitor for evaluating a set of properties on a trace of n ob-
served events involves the program code implementing the base algorithms (creating and
managing evaluation blocks) and the memory used for storing evaluation block instances
(see in D34.31). Since the base algorithms can be implemented in a few lines of code, the
memory usage is dominated by the evaluation blocks. This is investigated below in case of
C++ implementation.

An evaluation block instance maintains the values stored on its interfaces and the pointer to
the previous instance. The “registers” on the interfaces of evaluation block instances can be
implemented by bit vectors: storing the values of atomic expressions on the left interfaces
require a single bit per expression while ternary values on the top and bottom interfaces
need at least two bits per expression (storing bit patterns is supported by C bit-fields, the
C++ bitset data type template, etc.). The pointer to the previous instance is obviously imple-
mented as a programming language level pointer or reference construct. In case of the C++
programming language chosen for our prototype implementation, no explicit metadata or
type information is stored, only in case of classes with virtual functions a single pointer to the
virtual function pointer table.

Let us consider a 32 bit architecture where a pointer is 4 bytes long. In worst case (when
different events are observed in each step), the number of bytes required for the evaluation
of the expression “Globally r implies p Until d“ with events r, p and d, on a trace of n steps is
as follows:

1*(4 + 1 + 1 + 1 + 4) + (n-1)*(4 + 1 + 1 + 1 + 4) bytes

For example, in case of 1000 steps it results in 11.000 bytes. In asymptotic aspects, the
memory consumption is a linear function with the number of trace steps when different
events are observed in each step of the trace (worsts case); otherwise repeated (successive)
events can be checked by the same evaluation node this way the memory need is reduced.

Comparison of different monitoring approaches

We also performed direct comparison of three monitors:

 Monitor for checking the local control flow of the application. This is a reference case
with an expected high overhead as the monitor checks each node of the program
control flow graph (CFG) by instrumenting each branch-free statement block of the
program (sending signatures identifying the node to the monitor that checks on the
basis of the reference CFG whether the signature is allowed successor of the previ-
ous one).

 Monitor for checking statechart based property specification.

 Monitor for observing and checking the system behaviour defined as scenario dia-
gram.

We measured the code overhead and execution time overhead of monitoring a control mod-
ule implemented on a simple mbed NXP LPC1768 microcontroller platform2 with ARM Cor-
tex-M3 running at 96 MHz (the goal was the comparison of overhead and not explicit time

2
 https://developer.mbed.org/handbook/mbed-Microcontrollers

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 28 of 52

measurements). The local CFG monitor was deployed as a local process executed on the
same microcontroller. The statechart and scenario based monitors were deployed on a sepa-
rate microcontroller using the Ethernet based communication capabilities of the microcontrol-
lers.

To get the highest overhead possible, as extreme reference case we modified the control
module by removing the statements belonging to the interactions with other modules of the
application, this way practically have only the program control flow skeleton of the module.

Memory overhead

The program code overhead is presented in Figure 20. The overhead turned to be accepta-
ble: instrumentation for local control flow checking introduced 1.3% overhead, statechart and
scenario based checking needed about 0.5% and 0.7% more code, this way the instrumenta-
tion for all checking possibilities resulted in less than 3% code overhead.

Figure 20. Program code overhead in case of various monitoring techniques

Execution time

Figure 21 presents the execution time overhead. In case of the control module that imple-
ments the control logic and performs interactions with other modules of the application, the
run-time overhead for all checking was less than 12%. In the extreme reference case having
the code skeleton only, the time required to provide information to the monitor modules dom-
inated the execution time (especially in case of the local CFG monitoring) and the overhead
reached far more than 100%. Note that in order to have the same scale on the vertical axis of
diagrams in Figure 21, different number of state changes were measured in case of the full
code and the skeleton code.

Figure 21. Execution time overhead in case of various monitoring techniques

98,5%

99,0%

99,5%

100,0%

100,5%

101,0%

101,5%

102,0%

102,5%

With interaction and control functions

No instrumentation

Local CFG monitoring

Statechart monitoring

Scenario monitoring

All monitoring

0 s

10 s

20 s

30 s

40 s

50 s

60 s

Code skeleton only

No
instrumentation

Local CFG
monitoring

Statechart
monitoring

Scenario
monitoring

All monitoring
0 s

10 s

20 s

30 s

40 s

50 s

60 s

With interactions and
control functions

(50.000 state changes)

(500.000 state changes)

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 29 of 52

4 Assessment of On-line V&V using SIL methodology

The topic of this chapter is assessment of the on-line V&V used in a Software-In-the-Loop
(SIL) approach to check the collaboration between autonomous Rotorcraft Unmanned Aerial
Vehicles (RUAV) and Wireless Sensor Networks (WSN).

Like described in the previous chapter, the goal for on-line V&V used in a Software-In-the-
Loop (SIL) approach is the on-line verification of the behaviour of R5-COP systems (RUAV)
by elaborating methods and tools for runtime monitoring. Nevertheless, in this case the tech-
nical approach is different from the automated construction of monitor components by the
synthesis of their source code from high level property description. The SIL approach pro-
vides the simulation model of the RUAV, from which the source code for the real application
can be automatically generated. As the simulation environment MATLAB/Simulink provides
the simulation language Extended Finite State Machine (EFSM) and the possibility to transfer
the code to real environment, then also the on-line V&V functionality is included in the simu-
lated model and simultaneously in the software transferred to RUAV. This approach allows
on-line V&V tools to be used in the full life cycle of the developed application, from SIL model
to deployment in real time environment.

4.1 Summary of the Method and its Novelties

The task T43.2 (and T34.4) was devoted to building a SIL model for a demonstration task:
Model of an autonomous robot cooperating with WSN. Such a model is built early in the ap-
plication development process, when no real hardware or code is available. The idea was to
implement on-line verification ideas and integration tools early, using the SIL model and to
assess what advantages of such approach can be observed.

4.1.1 The SIL Methodology

Software-in-the-loop (SIL) is a system development methodology for embedded control sys-
tems, where special simulation model is built for hardware and environment simulation
around the embedded code, which is, in this case, the system-under-test (SUT). Such SIL
model then allows the real time embedded program (SUT) to be tested not only in the real
environment but also with this model in simulated environment without using dedicated
hardware.

In-the-loop means that the control system is in a closed-loop (inputs are driven by outputs,
see in Figure 22). All types of the Field robots are good examples of such systems.

Such model based methodology can be used for a wide range of real time systems, but is
also extremely popular for robotics [27] including field robots and RUAV [28]. In case of
RUAV, the RUAV hardware is simulated and the environment, where the RUAV flies, is also
simulated. For environment simulation many possible virtual reality simulation tools may be
used. Mandatory is the camera simulation from this virtual reality, as it is one of the main
tools for RUAV during a mission.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 30 of 52

Figure 22. Closed loop control system

Usually such model based methodology includes different stages of producing and testing
code: Model-in-the-loop (MIL), SIL, Hardware-in-the-loop (HIL), Processor-in-the-loop (PIL)
[6]. To implement full loop (especially HIL platform) is an expensive and time consuming pro-
cess, which is more suitable for large companies in aerospace and automotive industry using
expensive chain of hardware and software tools (NI, dSpace [29]).

4.1.2 Implementation of on-line V&V in the SIL model

The solution offered by WP34.4 implies the construction of an external process verification
mechanism: verification by observing processes from aside without intervention into the exe-
cution of these base processes. Events confirming process step executions are collected and
verified. All events are detected by event agents and sent to monitors for verification. Agents
are instrumented model components where the events occur. Monitors are separate pro-
cesses in the SIL model. Agents and monitors are developed and implemented for different
components and are part of SIL model.

The MATLAB/Simulink executes the SIL model in so called ticks. An execution of a tick can
result with a transition to the next state (one step) or staying in the current state. During the
execution of a tick, processes send information to other processes/components of the model
including the hardware simulators and on-line V&V monitors. The simulators perform activi-
ties similar to that would be performed by real hardware and return new values of common
variables. The loop can be run for long time to simulate continuous actions of RUAV, GCS
(Ground Control Station) and WSN.

In Figure 23 a Monitor process is shown that checks several events:

 ROS message regularity,

 Hardware parameters of the motor (energy, status, flying time, etc.),

 Software (state consistency with motor parameters).

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 31 of 52

Figure 23. Example Monitor process

The RUAV embedded code includes error processing. It is available for the on-line checker
(the Monitor) and it consists of:

 Error warning event propagation,

 Safe mode of operation (see in Figure 24), robust and safe execution in critical situa-
tions, including immediate landing or going home.

Figure 24. Safe mode operation process

4.1.3 Novelties of the Approach

The SIL technology was developed by large automotive and aero companies, at first for inner
use of the companies, later also as commercial software. Those tools are expensive and
mostly available for industrial companies. Use of MATLAB/Simulink for those purposes is
popular in academic context.

If the SIL model is produced only for one product it can be too expensive, because the model
is complicated and time consuming to develop. But if one has the technology ready, where
the model is adopted for several products, then its use is very cost effective. For autonomous

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 32 of 52

devices requiring specially built test environments, SIL approach provides possibility to trans-
fer large part of the field tests to laboratory environment, thus making large resource savings.

The implementation platform of our SIL approach is based on a State Machine, using for
modelling the Stateflow language. That allows parallel processes, this way the embedded
code does not extensively use processor (time) resources.

As the monitor is seamlessly integrated into the State Machine, it is allowed to use (in case
of detecting an error) the built-in general error handling methods. For example, in case of
serious errors, the State Machine can be put into Safe mode. Also for communication with
GCS existing communication channel in ROS can be used. That allows also double checking
of on-line verification on GCS, or saving events and using post mortem verification.

The main novelty of the SIL approach is that on-line verification tools are started to develop
at the same time as the code is developed; on-line testing and monitoring is also performed
from the start. Being in the Stateflow model, they are in the code during the testing and re-
main also after deploying. Tools are closely interconnected with existing code. On-line testing
then covers hardware checking, environment checking, and software on-line verification.

4.2 SWOT Analysis

Figure 25 presents the SWOT analysis of the on-line V&V using SIL methodology introduced
in deliverable D34.41 and implemented in the MATLAB/Simulink/Stateflow environment.

 Helpful Harmful

In
te

rn
a

l

 Universal methodology

 MATLAB/Simulink as universal simu-
lation platform

 Large number of ready-made tools

 Modelling by Finite State Machine

 Parallel execution of processes

 Automatic model transition to hard-
ware

Strengths

 High level model

 Resources for monitors cause overhead

 Restricted applicability for real time systems

Weaknesses

E
x
te

rn
a

l Opportunities

 On-line V&V model in one PC

 On-line V&V model transition to hard-
ware

Threats

 Real time restrictions

 Environment complexity restricts applicabil-
ity of the methodology

Figure 25. SWOT analysis of the SIL methodology

Strengths

 The SIL methodology is universal and provides MATLAB/Simulink based universal
solution for V&V for collaboration of several autonomous systems.

 The methodology is based on MATLAB/Simulink which is an universal simulation
platform containing large number of ready-made tools.

 The simulation language is the Extended Finite State Machine (EFSM), which is used
in this SIL methodology. It provides the possibility to develop high level abstract mod-
els and include there C code and modules developed by 3rd parties.

 The MATLAB/Simulink platform provides parallel processes, which allows executing
on-line V&V in one process with basic processes.

 Agents are incorporated in code with automatic transfer of events to the monitoring
process.

 The MATLAB/Simulink platform contains tools for transferring model to real time
code.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 33 of 52

Weaknesses

 The methodology is applicable to on-line V&V of autonomous systems on a high lev-
el.

 Lot of separate V&V monitors can be implemented, that results in overhead.

 The borders and limitations of the usage of SIL methodology are not well defined.

Opportunities

 The broad functionality of MATLAB/Simulink/Stateflow gives users the opportunity to
make an on-line V&V model with relatively small resources, containing essential part
of autonomous mobile system functionality. It can be simulated, executed, validated
and verified on one PC without using real HW.

 MATLAB/Simulink contains several tools for transferring model based on-line V&V to
real code, which subsequently can be used with real hardware.

Threats

 The simulation of autonomous systems and their collaboration in MATLAB/Simulink
does not replace hard real time testing. For that one must do also hardware-in-the-
loop testing and tests with real hardware.

 Environment complexity (weather conditions, visibility, etc.) and quality of its simula-
tion can limit the truthfulness of the results and usage of this methodology.

4.3 Assessment of Capabilities and Efficiency

4.3.1 Usability

The SIL methodology provides many possibilities for developing autonomous systems. As
first step, developing simulation model is provided by the Stateflow simulation language with
high level of abstraction and with option to include C-code in the model. That allows using
wide range of ready-made programs, decreasing the amount of necessary new code. The
developed model for autonomous objects can be simulated in MATLAB/Simulink environ-
ment verifying the correctness of the model.

Other essential feature of the SIL methodology is a possibility of close integration of MATLAB
with ROS, which is strongly enhanced in the last years. ROS provides standard interfaces for
various devices and large number of open source components for processing the information
from those devices. As the MATLAB/Simulink environment provides tools for using the ROS
features, the usability of this SIL methodology is increased.

4.3.2 Overhead

On-line V&V using SIL methodology uses the Stateflow features to execute parallel process-
es. The on-line monitor is built as a parallel process, which executes in parallel with the basic
functionality of the RUAV. In case of RUAV collaboration with WSN the overhead is small,
but in more complex and more time critical applications the overhead can cause problems.
Information about the environment processes, required for on-line monitoring, is included as
part of standard interface signals, and respectively it is not a source of large overhead.

4.3.3 Efficiency

The SIL methodology provides several interlinked steps for application development. As a
first step, the simulation model is built for MATLAB/Simulink environment. Interfaces between
devices are provided by ROS, which is supported in MATLAB/Simulink environment. After
the simulation for verification of the model, it is transferred to real environment. That is done
automatically by MATLAB tools, keeping the functionality of the model. It is possible that the
automatically generated code is not so efficient as a code written by experienced developer.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 34 of 52

But such technics always allows returning to the SIL model, make changes there, re-test the
model there and start a new code generation. That strongly increases the efficiency of mak-
ing changes in the application and testing them. Slight decrease of the efficiency of the gen-
erated code for most applications is not serious (as in case of RUAV and WSN collaboration
in our demonstrator).

We can conclude that in case of development costs, the solution of using SIL model with built
in on-line V&V tools, is very effective as it uses Simulink with its well developed and ap-
proved platform, for providing simulation model on high level of abstraction, with automatic
generation of real code.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 35 of 52

5 Assessment of Incremental Testing

In this chapter the method is assessed that can be used for the selection, adaptation and
extension of test cases in an incremental testing workflow.

5.1 Summary of the Method and its Novelties

The existing tools and approaches presented in the literature usually concentrate on one
programming or modelling language as the input source for incremental testing. However, in
R5-COP there could be multiple levels and types of reconfigurations and changes in which
case incremental testing is needed. Instead of performing incremental testing separately for
each of the change types, we could apply a unified approach, as basically they all can be
handled in a similar way.

Incremental
Testing
Analysis

Context

(other sources)

Analysis results

 classification of tests
 not covered elements

Specification for new
tests

Context
model

Existing test
contexts

Mapping

Configuration

Configuration
model

Existing
tests

Mapping

M
o

d
el

 a
d

ap
te

r
C

h
an

ge
 d

et
ec

ti
o

n
Input sources Incremental testing tool Output

Figure 26. The incremental testing methods

Accordingly, we developed a common, general incremental testing approach, and connected
the specific test types (test contexts from context models, module/integration tests for com-
ponents, etc.) using special adapters to this core. Figure 26 depicts the approach.

 The incremental testing analysis component is the central element of the approach. It
defines a general model for representing the tests and tested elements. The regres-
sion testing algorithms (test selection or coverage identification described in delivera-
ble D34.20) work on this general model.

 A model adapter is responsible for connecting the different sources, like context or
configuration models and tests to the general analysis component. This adapter is
developed for each source type and is responsible for converting the models and
tests to the internal representation of the analysis component. This component is also
responsible for detecting changes in the sources.

 The outcome of the analysis is a classification of tests and the coverage information
of the source elements (e.g., to detect that there is a class in the context model that is
not present in any of the existing test contexts). This information can be used later to
create new tests either manually or automatically.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 36 of 52

In summary, this method is driven by the analysis of the new requirements (formalized in
scenarios), the changes in the context of the system (formalized in context metamodels), and
the changes in the internal components (formalized in architecture and capability models).
The gaps in the coverage of the existing test suites are identified, which drives the adaptation
of existing test cases and the generation of new test cases to cover the changes.

The main contributions and novelties of the work are the following:

 A general concept of test analysis was introduced and the corresponding languages
to capture tests (test cases) and testables (context and configuration elements) and
their mapping were defined.

 A tool was designed that can perform the incremental testing analysis. Using model
adapters the core incremental analysis component is independent from the actual
domain, and only the light-weight adapters had to be created when new types of arte-
facts and related changes has to be handled. A tool implementation was also devel-
oped that is based on the Eclipse framework, the de facto modelling environment
widely used in industry.

 Evaluation of the applicability and scalability of the method and the tool was per-
formed. The evaluation used context and capability model used in WP42 and inspired
by the DHS-NIST-ASTM International Standard Test Methods for Response Robots
(ASTM International Standards Committee on Homeland Security Applications; Op-
erational Equipment; Robots E54.08.01).

5.2 SWOT Analysis

Figure 27 presents the SWOT-based analysis of the incremental testing method.

 Helpful Harmful

In
te

rn
a
l

 Core methodology is domain-
independent

 Automated incremental testing
analysis tool

 Usable at different testing levels

 Attributes of tests and testables are
currently limited

 Tool is in prototype phase

Strengths Weaknesses

E
x
te

rn
a

l

Opportunities Threats

 High cost of retesting every-
thing

 Reconfiguration is frequent

 Rapidly changing requirements
and context

 Model-based culture not widespread

 Lack of unified representations

Figure 27. SWOT-based analysis of behaviour testing method

5.2.1 Strengths

 Core methodology is domain-independent: The core of the incremental testing meth-
odology (the metamodel, the impact analysis algorithm and tooling) is generic and is
independent of the actual robot and its domain. Therefore, only a subset (the model
adapters) has to be created for each new use case.

 Automated incremental testing analysis tool: The incremental testing is implemented
in an automated tool that categorizes existing tests cases with respect to a change,

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 37 of 52

and can help to select a necessary subset of all the tests. The inner working of the
method is hidden from the user, only the changed parts of the model have to be
marked, and the tool computes automatically the test classification.

 Usable at different testing levels: The method and the tool can be used in many dif-
ferent settings; tests can represent “virtual world” descriptions for simulators or man-
ual test setups for real world environments. Depending on the actual robot use case
and testing priorities, input models can represent the different configurations of the
robot or the context in which the robot operates, broadening the applicability of the
method.

5.2.2 Weaknesses

 Attributes of tests and testables are currently limited: Currently a basic relation is cap-
tured in the models, namely that a given test case “tests” a testable (a module or a
context element). However, further attributes could be added to enhance the test de-
scriptors, e.g., cost or duration of the tests. The metamodel was designed to be flexi-
ble, thus such changes could be incorporated. The test selection and classification
algorithm has to be adjusted, similarly to the algorithms presented in the literature
[30].

 Tool is in prototype phase: The tool is currently in prototype phase with a basic user
interface. Users not familiar with the Eclipse framework and its editors could require
more time to create the models. However, domain-specific graphical editors could be
easily created to support users not familiar with the Eclipse modelling technologies.

5.2.3 Opportunities

 High cost of retesting all: Running all tests (either simulated or real) for every modifi-
cation is extraordinarily costly, and in several cases it is not even possible (e.g., exe-
cuting all tests on the standardized NIST test stands requires days). Therefore, identi-
fying and running only a subset of the required tests could offer significant time and
resource savings.

 Reconfiguration is frequent: With today’s modern robots, reconfiguration could be a
frequent activity; hence retesting new configurations is necessary.

 Rapidly changing requirements and context: Not only the configuration of the robot,
but its requirements and operational context could change rapidly, which makes re-
testing a non-optional activity that requires support and advanced methods to be cost-
effective.

5.2.4 Threats

 Model-based culture is not widespread: The incremental testing method is based on
creating good context and configuration models for the application domains. This ac-
tivity has to be supported by modelling experts as domain experts usually do not have
the necessary modelling experience. Before the developed test approach could be
applied, first the model-based thinking has to be accepted in the company or team re-
sponsible for the verification of autonomous systems (e.g., models are not just visual
documentation of already written code). Unfortunately, model-based approaches are
not yet a common industrial practice. However, in certain industries model-based ap-
proaches are gaining a lot of traction (e.g., AUTOSAR in the automotive domain).

 Lack of unified representations: The configuration and context models and their
adapters have to be created for each new robot as currently there are many different
possible representations. However, the skill model developed in R5-COP could offer
a common representation that can be applied in several domains.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 38 of 52

The goal of this assessment was to collect the advantages and limitations of the methods
and tools developed for incremental testing of reconfigurable autonomous systems. The
SWOT analysis identified several strengths (e.g., generic approach, automated tooling), but
has also found limitations. Some of the limitations were found because the developed tools
were only prototypes, and were only applied in the first case studies with the demonstrators.

5.3 Assessment of Capabilities and Efficiency

This section summarizes the final capabilities of the incremental testing methods and the
lessons learnt about its usability and efficiency.

5.3.1 Application in Demonstrators

The incremental testing method has been applied to the WP42 mobile robot demonstrator by
PIAP. PIAP recently introduced NIST-standardized test stands into its test process. The
NIST guideline [31] describes how to make the test rooms comparable. The guidelines use
ASTM (American Society for Testing and Materials) standard objects for describing the lay-
out of the rooms. These include different types of terrains and obstacles. Various terrains
exist especially for mobility exercises, such as ramps, steps, sand, gravel or mud. Obstacles
can be used to test different capabilities of the robot like gaps in the floor or signs on the wall.

BME visited PIAP in Warsaw to discuss their testing process and observe the test environ-
ments for their robots. After the meeting in the first iteration, we considered the test stand
elements (e.g., ramp or wall) as elements of the context model and created a mapping model
between robot modules and context elements, e.g. that a ramp tests the capabilities of the
motor. This approach was presented in detail in deliverable D34.20. The incremental testing
tool was able to select from different test room layouts those ones that are relevant for a
change.

However, after revisiting the models with the experts from the PIAP, we concluded that a
different modelling approach would be more suitable for their use case. As they have only 3
fixed test lanes (lane 1, 2 and 3 from [32]) then number of different, possible layouts is lim-
ited. Variability and numerous testing combinations are introduced by performing different
exercises on a fixed lane.

Figure 28. Exercises on NIST test lane [32]

For example, Figure 28 presents parts of test lane 1. Basic manoeuvring and pattern recog-
nition can be tested with the line following exercise in the beginning of the lane. More ad-
vanced manoeuvring can be inspected in the middle of the lane by a tight turning. Finally,
manipulator dexterity can be tested in the end zone by grasping and rotating objects. The full
lane offers much more exercises and testing combinations (e.g. varying lightning, robot
movement directions, placement of objects, signs to observe, etc.). However, not all exercis-
es are needed for each reconfiguration (change in the robot’s configuration or skills).

Therefore, in the second iteration in the modelling we focused (1) on the exercises and tasks
for a given lane and (2) on the skills and components of the robot (Figure 29).

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 39 of 52

Figure 29. Modelling in the demonstrator: context (left) and configuration (right)

Focusing on exercises and tasks: Figure 30 presents the artefacts created for modelling the
context of the robot. In the central part the context metamodel can be seen with elements like
lane, exercise or tasks (tasks are a valid combination of exercises along a path for the robot).
In the lower left part an excerpt from the mapping model is depicted connecting the exercises
in the test lane and the skills of the robot.

Figure 30. Context models created for the demonstrator and result of test analysis

Focusing on skills and components: Figure 31 presents the artefacts created for modelling
the configuration of the robot. The revised metamodel in the centre part contains just high-
level elements (mount point, skill component). An instance model of this metamodel should
capture the actual configuration of the model (lower left). After changing some part of the
model (e.g., modifying a component), the tool calculates all affected elements (e.g., skills
affected by the component), and based on the context model descriptions selects those
tasks that need to be retested (at the minimum). As it can be seen from the tool’s output in
the lower right part, the tool can detect that with the currently modelled tasks some of the
skills cannot be tested and records these uncovered elements. Moreover, the tool can be
parametrized to select only one test for a given component or select all the tests relevant for
the component. This can be useful to balance the testing effort and the confidence gained
from testing.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 40 of 52

Figure 31. Configuration models created for the demonstrator and result of test analysis

5.3.2 The Test Classification Framework

This section briefly summarizes the capabilities of the tools developed for test classification
based on previous experiments.

Support to the designer/user: The usage of the test classification framework can be sepa-
rated into two distinct phases:

I. Define what to model, create metamodel to capture concepts and create initial in-
stance models (by robot designers).

II. Modify the instance models according to the current change or reconfiguration, calcu-
late test classification (by robot user).

The first phase is done usually in collaboration between modelling and domain experts (like
in the case of the demonstrator with BME and PIAP), while in the second phase the created
models can be modified and the tool can be used without extensive modelling or Eclipse ex-
pertise.

The following steps need to be performed in the first, preparation phase:

1. Creating the domain metamodels for test context, configurations or any other testing
artefacts relevant for the test classification. Models need to be created as plain EMF
models either with the Ecore tree editor or with Sirius graphical editor. Figure 32 pre-
sents an example screenshot for creating the robot configuration metamodel.

2. Creating the queries and code for transforming metamodel elements to the internal
test model representation (this defines what is considered a test or a testable element
in the domain metamodels and how are they connected). Transformations are cur-
rently defined using the VIATRA model transformation framework3.

3. Finally, initial instance models could be created to show how the metamodels can be
used later by the tool users.

In the second phase, the normal tool usage is as follows:

1. Creating an initial checkpoint (CP) representing the current state of the models (this
can be achieved by just pushing a button, see Figure 33).

3
 http://www.eclipse.org/viatra/

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 41 of 52

2. Modifying the model to perform changes: adding or deleting elements, modifying ele-
ment properties, etc.

3. After all changes are done, calculating a new checkpoint.

4. Finally, calculating the differences between the two model checkpoints: the tool will
identify changed model elements and select necessary tests to cover those elements.
This is again done by pushing a button; the user of the test classification tool does not
have to be familiar with the internal workings of the tool.

Figure 32. Creating the robot configuration metamodel

Figure 33. User interface of the tool: “Execute CP” and “Calculate Diffs” buttons

Genericity: The test classification framework offers common tools for different models. The
domain metamodels can represent anything relevant from a testing point of view. For exam-
ple, in case of the PIAP demonstrator models can represent tasks and exercises in a physi-
cal test room, while for other robots models can also represent test context data for simulat-
ed or real environments (see in Section 5.3.3).

Scalability: Scalability of tools was analysed in deliverable D34.20 in detail. Figure 34 pre-
sents some of the main findings. The tool was able to handle models with 500 elements and
changes with 30 elements in seconds. The models created for the demonstrators consisted
of usually 30-50 elements, therefore this order of magnitude for the handled elements is
more than satisfactory for the envisioned use cases. Moreover, the underlying technologies
(Eclipse EMF, VIATRA and VIATRA Query) proved to scale to thousands of model elements,
therefore we see no threats towards scalability of the tooling.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 42 of 52

Figure 34. Scalability assessment of the incremental testing tool

5.3.3 The Test Context Generator Tool

In Section 5.3.2 we mentioned that the Test Classification Framework can be used together
with test context models by analysing the changes and triggering the generation of new test
contexts. In this section we present the related Test Context Generator tool that constructs
test context models specifying setups for real or simulated environments. Figure 35 over-
views the main steps of the test context generation approach.

In the first step of the test context generation workflow, the test engineers have to define the
following artefacts:

 Context information, i.e., the relevant environmental and physical configuration that
form the context of the system under test.

 Coverage criteria which specify the required properties of the generated test suite, for
example to cover potential types of obstacles that can occur in the environment.

 Test objectives to express the properties which should be satisfied by the test suite,
for example the obstacle avoidance in case of multiple obstacles with the minimum
path of the robot.

Figure 35. Test context generation approach

Context information defines the types of objects of the environment such as furniture, obsta-
cles, actors etc. and their properties. In addition, context information defines also the basic

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 43 of 52

constraints how all these objects can be arranged. The test generator tool supports the defi-
nition of the context information in the form of an EMF metamodel in the Eclipse framework.

Coverage criteria can be provided for the system under test in order to define which parts
from the context model should be included in the test suite (while the other parts will only be
covered in an ad-hoc manner). Coverage criteria can be expressed with the help of the VIA-
TRA Query language by defining patterns: the models resulting from the test generation will
cover the possible instantiations of the prescribed patterns.

Test objectives define the property of the test suite so that the test generation algorithm will
try to minimize the value of this property. This helps guiding the test generation algorithm to
provide relevant and low cost tests for the system. A test objective can be defined as result
of a test objective function which is specified using the VIATRA Query language and Java.
Various kinds of test objective skeletons are provided, this way even complex objective func-
tions can be defined with relatively small effort.

As the next step in the test context generation workflow, the partial context models are gen-
erated. This set of models is conformant to the context metamodel and they fulfil the cover-
age criteria. From this set of partial models, the test generation algorithm generates the test
contexts according to the test objective function. The result of the procedure is a set of test
context models which satisfy the coverage criteria and minimize the objective function.

As an example, let us consider a test context generation problem in case of the WP44 de-
monstrator (MIR robot that shall autonomously drive into an elevator).

Figure 36. Test context metamodel

Figure 36 presents the context in form of an EMF metamodel. It defines the basic building
blocks of the environment such as floors, walls and obstacles such as boxes, robots, trolleys
and humans. In addition, containment and other structural constraints are also represented in
the metamodel.

On the basis of this metamodel, we can specify coverage criteria with the help of the VIATRA
Query language. As for now our goal is to cover all the arrangements in an elevator (into
which the robot shall drive), we defined the VIATRA Query pattern depicted in Figure 37.
This pattern will help us generate possible elevator configurations in which there are two
boxes (obstacles) in the elevator at various places.

Figure 37. Coverage criterion expressed as context pattern

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 44 of 52

As test objective function, we show the generation of test context models which try to mini-
mize the number of places that were not reached by the robot, in other words, to maximize
the trajectory of the robot by placing objects into its way. In Figure 38, the definition includes
the following: (1) generate test models trying to maximize the length of the robot trajectory to
reach its goal, (2) use boxes to prevent the robot in reaching its goal, but (3) limit the number
of boxes.

Figure 38. Definition of the test objective functions

On the basis of the context metamodel (Figure 36), the coverage criterion (Figure 37) and
the test objective functions (Figure 38), the test context generation algorithm produces more
than 126 different test setups. Some of them are depicted in Figure 39. The graphical syntax
of the test contexts can be interpreted as follows: the robot pictogram represents the initial
place of the robot (to start its mission), the elevator space is at the bottom of the figure (8
places) with an elevator sign representing an admissible goal place, boxes represent physi-
cal obstacles the robot has to avoid. All the test contexts have different elevator configura-
tions.

Figure 39. Test context models

Using different test objective functions various other test goals can be supported. The gener-
ated test contexts can also be inspected by test engineers to select situations which seem to
be interesting for simulator based testing or testing in a real physical environment. In case of
changing the metamodel, the existing test suite can be classified by the Test Classification
Framework in order to identify obsolete test contexts.

5.3.4 Efficiency of Incremental Testing (An Example)

In order to show the efficiency of incremental testing, we present an example that emphasiz-
es the importance of test selection in case of changes in the robot.

The context contains three main blocks as shown on the left of Figure 29. The middle ele-
ment is a path that can have six different tasks on it:

 line following,

 narrow line following,

 zigzag,

 low light line following,

 low light narrow line following,

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 45 of 52

 low light zigzag.

Each of them exercises a slightly overlapping set of skills. In the start and end blocks, exer-
cises are placed as well that must be finished for successful testing. These can be the follow-
ing three:

 inspection,

 inspection in low light conditions,

 grabbing a cone.

A full test execution in this context requires re-testing all combinations of these exercises,
which would mean re-testing of 54 tasks (3 different tasks on start and end blocks, and 6
different tasks on the middle block). This would require significant amount of time and effort
to perform, even not counting the fact that changing the layout of the test room also requires
a measureable effort.

The example instance model of the context can be found on Figure 40.

Figure 40. Example context instance model

The presented approach requires an instance model of the robot on which components can
be changed that trigger re-execution of some tests. Then, these components must be
mapped to skills of the robot. These skills are connected to specific exercises in the context.
For example, the cone grabbing exercise uses the manipulator arm with the gripper. For the
purpose of this example we used a robot instance model with various components and skills
(e.g., gripping skill – gripper arm, distance calculation skill – ultrasound sensor, etc.). Also,
for example purposes, we created a mapping between the skills and the exercises found in
the context. The mapping connects gripping skill of the robot with the cone grabbing exer-
cise.

Let us consider a development scenario, when the gripper on the robot is changed. Without
incremental test selection, this would trigger re-execution of all 54 tasks. However, employing
our approach on this problem may tackle this by reducing the number of tests to execute.
The approach involves two different kinds of test selection procedures as mentioned previ-
ously. In the current case this would mean the following.

 Without test selection: re-execution of 45 tasks

 With test selection (re-test one): re-execution of 1 task (e.g., inspect – zigzag – grab)

 With test selection (re-test all): re-execution of 18 tasks (all tasks where grabbing can
be an exercise on one of the blocks).

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 46 of 52

6 Standardization Aspects

In this chapter the standardization and certification related aspects of the methods are sum-
marized. Standardization is especially important in case of safety-critical systems where the
development process shall typically follow the requirement of standards in order to assure
certification.

In general, safety certification follows two complementary approaches:

 The standard-based approach means that the designer is recommended or required
to follow certain guidelines. These specify the development and verification & valida-
tion techniques that should be used, the intermediate artefacts to be produced (speci-
fications, designs, test plans etc.), the kinds of reviews, tests, and analyses that
should be performed, and the corresponding documentation.

 The safety case approach provides an argument that a system is safe. The notion of
“safe” is made precise in suitable claims about the system and its context, and the
argument is intended to support these claims, based on evidence concerning the sys-
tem, its design, implementation, verification and validation. The approach can be ap-
plied recursively, so that claims about subsystems can be used as evidences in an
upper level argumentation.

Note that these approaches are not fundamentally different as the prescriptions of standards
and guidelines can be considered as constructing a generic safety case: the required docu-
mentation of the processes and artefacts for a given system provides the evidence for an
“instantiation” of this generic safety case, and the argumentation is implicit in the standards-
based approach. Standards are often considered as conservative and not well-tuned to novel
characteristics of systems like context-awareness, adaptiveness, etc. An explicit safety case
can be customized very precisely for a given system, and may provide assurance at lower
cost than a standards-based approach. However, systematic processes and well-defined
artefacts are needed to provide confidence in the soundness of a given safety case – this is
where systematic procedures and techniques based on formal models come into considera-
tion, like in our case model-based incremental testing, and on-line verification with monitors
constructed on the basis of formalized properties.

In the following first the role of incremental testing and on-line verification in standard-based
approach is discussed (Section 6.1 and 6.1), then the on-line verification is considered as
providing an evidence in a safety case, leading to the idea of “runtime certification” (Section
6.3).

6.1 Incremental Testing in Safety Standards

The notion of “incremental testing” is not included explicitly in standards. However, in case of
changes and modifications in a system, regression testing is mentioned as one of the related
techniques. Efficient regression testing needs similar test classification techniques that are
developed in WP34.

IEC 61508, the basic standard for functional safety of electrical / electronic / programmable
electronic safety related systems includes the concept of regression validation that is rec-
ommended (R) for safety integrity level (SIL) 1, and highly recommended (HR) for SIL 2, 3,
and 4 (see Part 3, Requirement 7.8.2, Table A.8 – Modification, and Part 7, C5.25).

In case of software modification, regression testing and verification is required, and regres-
sion validation is used to ensure that valid conclusions are drawn from regression testing. It
is admitted that complete regression testing of large or complex system usually requires
much effort and time. When possible, it is desirable to restrict the regression testing to cover
only the system aspects of direct interest (e.g., affected by a modification). In this partial re-
gression testing scenario it is essential to have a clear understanding of the scope of the
partial testing and to draw valid conclusions regarding the tested status of the system.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 47 of 52

Regarding our approach (Section 5), the following can be highlighted:

 Our approach to test classification directly supports the requirement to have a clear
understanding of the scope of the partial testing. Having performed the impact analy-
sis, that is necessary part of regression validation, the model based test classification
framework can precisely represent and automatically select the test cases that are
linked to the software parts that are impacted (and this way these tests shall be re-
executed). Tests classified as redundant can be omitted this way reducing the efforts
and time of re-testing.

 The role of test classification framework is extended: not only the changes in software
parts, but also changes in the context and configuration can be handled and the re-
lated tests can be classified. This way regression testing is supported even in the
case when there is no change in the software source code but in the environment as-
sumptions and component configuration.

 Considering the properties for systematic safety integrity, it is noted that evaluation of
results and regression test suites is a key benefit of model based testing (MBT). In
our solution, MBT approach was followed also in case of context and configuration
modelling and the related test generation and test classification. As rigorous model-
ling approach was applied with regard to context and configurations, objective evi-
dence of coverage is possible. By using the test classification and executing tests
classified as re-testable, coverage is retained even in case of changes.

6.2 On-Line Verification in Safety Standards

On-line verification is a classic method that is included in safety standards. IEC 61508, the
basic standard for functional safety of electrical / electronic / programmable electronic safety
related systems contains several requirements and techniques that are related to the con-
cept of on-line monitoring.

For the control of random hardware failures:

 Part 7, Technique A.1.1. Failure detection by on-line monitoring. To detect failures by
monitoring the behaviour of the E/E/PE safety-related system in response to the nor-
mal (on-line) operation of the equipment under control (EUC).

 Part 7, Technique A.6.4: Monitored outputs: To detect individual failures, failures
caused by external influences, timing failures, addressing failures, drift failures and
transient failures.

 Part 7, Technique A.9.3: Logical monitoring of program sequence: To monitor the cor-
rect sequence of the individual program sections.

 Part 7, Technique A.9.4: Combination of temporal and logical monitoring of program
sequences: To monitor the behaviour and the correct sequence of the individual pro-
gram sections.

 Part 7, Technique A.9.5: Temporal monitoring with on-line check: To detect faults by
temporal monitoring.

For achieving software safety integrity:

 Part 3, Requirement 7.2.2.8: The software safety requirements specification shall
consider (among others) software self-monitoring.

 Part 3, Requirement 7.4.2.7: The software design shall include, commensurate with
the required safety integrity level, self-monitoring of control and data flow. On failure
detection, appropriate actions shall be taken.

 Part 3, Table A.2 for software design and development - software architecture design:
Diverse monitoring techniques are recommended (R) for SIL 2 and SIL 3, and (on
separated computer) highly recommended (HR) for SIL 4.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 48 of 52

 Part 7, Technique C.3.4: Diverse monitoring: It is used to protect against residual
specification and implementation faults in software which adversely affect safety.

It is noted that diverse monitoring techniques (with independence between the monitor and
the monitored function in the same computer) increase software complexity.

Considering properties for systematic safety integrity, the application of diverse monitor tech-
niques on the same computer are characterized (with medium level of rigour, i.e., with objec-
tive acceptance criteria that give a high level of confidence that the property is achieved) as
providing freedom from intrinsic design faults, simplicity and understandability, predictability
of behaviour, and verifiable and testable design by implementing the minimum safety re-
quirements.

Regarding our approach (Section 3), the following can be highlighted:

 Our approach implements diverse monitoring because the monitor is generated on
the basis of a property specification that is separated from the design models. Using
our monitor, checking of events related to program sequence, inputs and outputs can
be achieved, combined with temporal monitoring. Our method even extends this by
offering the monitoring of context dependency and configuration dependency.

 Another characteristic of our approach is the use of engineering languages with for-
mal semantics, to specify the properties to be monitored and to form the basis of au-
tomated monitor synthesis. According to the standard, the application of formal meth-
ods is characterized with completeness and correctness with respect to the safety
needs to be addressed, freedom from intrinsic specification faults including freedom
from ambiguity, understandability of safety requirements (as the languages are user-
and application-friendly), and capability of providing a basis for verification and valida-
tion.

6.3 Run-Time Certification

If the overall argumentation in a safety case is sound, it allows focusing on the evidences
and assumptions that support the argument. The validity of certain kinds of evidences and
assumptions can be assured by monitoring these at runtime. Moreover, if these assumptions
and properties are formalized then construction of monitors can be automated, leading to the
idea of runtime verification.

Runtime verification can be used in the construction of evidence and argumentation with re-
spect to explicit safety goals. This approach of runtime certification is a relatively recent initia-
tive [22]: monitors that guarantee certain properties can be considered as evidence for the
assurance case.

This approach is especially usable in case of adaptive robotic systems operating in dynamic
environments, where the monitors can detect any anomalies, invalid assumptions, or viola-
tion of essential safety properties. Thus reconfigurable, resilient, reasoning robotic systems
(R5-COP systems) present a new application area for run-time verification and certification,
especially focusing on reconfiguration and fault handling policies. The methods developed in
WP34 may effectively support this approach.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 49 of 52

7 Conclusions

R5-COP progressed beyond the state-of-the-art by the provision of new V&V techniques that
may also support safety certification. In concordance with the Technical Annex (Description
of Work), the main results are as follows:

 On-line (runtime) verification of reconfigurable systems. The difficulties of verifying a
great variety of interactions and the adaptive behaviour are resolved by proper inte-
gration of design-time and run-time verification activities: design-time verification
techniques are extended with novel run-time verification techniques that focus on
monitoring those properties, especially robustness and safety ones, that cannot be
guaranteed by design time verification due to unpredictable environment, variability of
interactions, and run-time faults. The design time modelling and requirement specifi-
cation formalisms are adapted and extended to express the properties to be moni-
tored and this way to support the automated synthesis of monitors that are responsi-
ble for application monitoring, state evaluation, checking reconfiguration processes,
and supervising adaptive fault handling. The on-line verification open ways towards
runtime certification, in which certification related safety goals, evidences and argu-
ments are supported by the on-line verification activities.

 Retesting of reconfigured systems. In the case of reconfigurable systems, test optimi-
zation regarding the re-testing of a new version can be supported by systematically
re-using and adapting existing test cases that were developed for another configura-
tion of the same system. Selection, adaptation, and extension of test cases are sup-
ported by a novel model based method that is able to analyse the changes in re-
quirements (formalized in requirement models), the changes in the context of the sys-
tem (formalized in context models), and the changes in the internal components (for-
malized in configuration models). On the basis of this incremental analysis, redundant
test cases, and gaps in the existing test suites are identified according to predefined
coverage metrics, and this way the test adaptation and generation of new tests are
triggered. This new method can be used in the design phase (to check configuration
possibilities) as well as in maintenance phases (to check the behaviour of a concrete
reconfigured version).

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 50 of 52

8 References

[1] Harel, D. and Thiagarajan, P. S.: Message sequence charts. In UML for real, pp 77-
105. Kluwer Academic Publishers, 2003.

[2] Damm, W. and Harel, D.: LSCs: Breathing life into message sequence charts. Formal
Methods in System Design, 19(1):45-80, 2001.

[3] Autili, M., Inverardi, P. and Pelliccione, P.: Graphical scenarios for specifying temporal
properties: an automated approach. Automated Software Eng., 14(3):293-340, 2007.

[4] R3-COP Consortium: Deliverable D4.2.1 “Models, Languages and Coverage Criteria
for Behaviour Testing of Individual Autonomous Systems – Part I: Behaviour Testing”.
April 30, 2013.

[5] R3-COP Consortium: Deliverable D4.2.2 “Behaviour Testing Strategies and Test Case
Generation – Part I: Behaviour Testing”. October 31, 2013.

[6] Dwyer, M. B., Avrunin, G. S., and Corbett, J. C.: Property Specification Patterns for
Finite-state Verification. In Proceedings of the Second Workshop on Formal Methods in
Software Practice (FMSP), pp 7-15. ACM, 1998.

[7] About Specification Patterns. http://patterns.projects.cis.ksu.edu/ (accessed on January
6, 2015).

[8] Pnueli, A: The temporal logic of programs. Foundations of Computer Science, 18th
Annual Symposium, pages 46–57, 1977.

[9] Misra, J. and Roy, S.: A Decidable Timeout based Extension of Propositional Linear
Temporal Logic. ArXiv preprint, (1012.3704):1–29, 2010.

[10] Pintér, G. and Majzik, I.: Automatic generation of executable assertions for runtime
checking temporal requirements. In Proc. of the 9th IEEE Int. Symposium on High-
Assurance Systems Engineering (HASE 2005), pp 111–120, IEEE CS, 2005.

[11] Decker, N., Leucker, M. and Thoma, D.: Monitoring modulo theories. Int. Journal on
Software Tools for Technology Transfer, pp. 1–21, Springer, 2015.

[12] Bauer, A., Leucker, M. and Schallhart, C.: Comparing LTL semantics for runtime verifi-
cation. J. Log. Comput., vol. 20, no. 3, pp. 651–674, 2010.

[13] Bauer, A., Leucker, M. and Schallhart, C.: Monitoring of real-time properties. In Proc.
26th Int. Conf. on Foundations of Software Technology and Theoretical Computer Sci-
ence (FSTTCS 2006), LNCS 4337. pp. 260–272, Springer, 2006.

[14] Barringer, H., Rydeheard, D. E. and Havelund, K.: Rule systems for run-time monitor-
ing: From Eagle to Ruler. In Proc. 7th Int. Workshop on Runtime Verification (RV
2007), Vancouver, Canada, March 13, 2007, LNCS 4839. pp. 111–125, Springer,
2007.

[15] Bauer, A., Leucker, M. and Schallhart, C.: Runtime verification for LTL and TLTL. ACM
Trans. Software Eng. Methodology, vol. 20, no. 4, p. 14, 2011.

[16] Horányi, G., Micskei, Z. and Majzik, I.: Scenario-based Automated Evaluation of Test
Traces of Autonomous Systems. In Proc. Workshop on Dependable Embedded and
Cyber-physical Systems (DECS@SAFECOMP 2013), Toulouse, France, 2013.

[17] Messmer, B. T., Bunke, H.: Efficient Subgraph Isomorphism Detection : A Decomposi-
tion Approach. Knowledge Creation Diffusion Utilization, 12(2):307–323, 2000.

[18] Horányi, G.: Monitor synthesis for runtime checking of context-aware applications.
Master’s thesis, Budapest University of Technology and Economics, 2014.

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 51 of 52

[19] Hélene Waeselynck, Zoltán Micskei, Nicolas Riviere, Áron Hamvas, Irina Nitu: TER-
MOS: a Formal Language for Scenarios in Mobile Computing Systems. In Proc. 7th In-
ternational ICST Conference on Mobile and Ubiquitous Systems (MobiQuitous 2010),
Sydney, Australia, 6-9 December 2010.

[20] J. Klose: Live Sequence Charts: A Graphical Formalism for the Specification of Com-
munication Behavior. PhD thesis, C. v.O. Universitat Oldenburg, 2003.

[21] B. Dutertre and M. Sorea, Modeling and Verification of a Fault-Tolerant Real-Time
Startup Protocol using Calendar Automata. In Proc. FORMATS/FTRTFT'04, Grenoble,
France, September 2004.

[22] J. Rushby: Runtime Certification. In Proc. 8th Workshop on Runtime Verification
(RV08), Springer Verlag Lecture Notes in Computer Science, vol. 5289, pp. 21{35.
2008.

[23] O. Sokolsky, K. Havelund, I. Lee: Introduction to the special section on runtime verifica-
tion. In: International Journal on Software Tools for Technology Transfer, June 2012,
Volume 14, Issue 3, pp 243-247, Springer Verlag, 2012.

[24] D. W. Pickton, S. Wright: W’at's SWOT in strategic analysis?. Strat. Change, 7: 101–
109. DOI: 10.1002/(SICI)1099-1697(199803/04)7:2<101::AID-JSC332>3.0.CO;2-6,
1998

[25] K. Havelund, G. Rosu: Testing Linear Temporal Logic Formulae on Finite Execution
Traces. Technical report, RIACS, 2000.

[26] B. Finkbeiner, H. Sipma: Checking Finite Traces Using Alternating Automata. In Formal
Methods in System Design, 24(2):101-127, 2004.

[27] http://se.mathworks.com/company/user_stories/festo-develops-innovative-robotic-arm-
using-model-based-design.html

[28] M. Saggiani, R. Pretolani, B. Teodorani, F. Zanetti: Developing a hardware-in-the-loop
simulator for the rotary wing unmanned aerial vehicle, University of Bologna, School of
Engineeting Forli, http://sine.ni.com/cs/app/doc/p/id/cs-12188

[29] K. Lamberg, P. Wältermann: Using HIL Simulation to Test Mechatronic Components in
Automotive Engineering. dSPACE GmbH, Paderborn,
http://www.dspace.de/ftp/papers/HdT00_e.pdf

[30] [25] S. Yoo, M. Harman. Regression testing minimization, selection and prioriza-
tion: a sur-vey. STVR 22:67-120, 2012. DOI: 10.1002/stvr.430

[31] [26] National Institute of Standards and Technology. Guide for evaluating, purchas-
ing, and training with response robots using DHS-NIST-ASTM international standard
test meth-ods. Technical report [Online]. Available:
http://www.nist.gov/el/isd/ms/upload/DHS NIST ASTM Robot Test Methods-2.pdf

[32] [27] National Institute of Standards and Technology. Counter-Improvised Explosive
Device Training Using Standard Test Methods for Response Robots. Document 18370
[Online], Available: https://www.nist.gov/document-18370

http://www.dspace.de/ftp/papers/HdT00_e.pdf

ARTEMIS-2013-1 R5-COP

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 52 of 52

9 Appendix A

The integration of the monitor into the Scout robot needed the following functions:

std::mutex mutex;

std::map<std::string,std::shared_ptr<bool>> timers;

extern std::unique_ptr<ros::Publisher> publisher;

void timer(std::shared_ptr<bool> active, int timeout, std::function<void()>

callback)

{

 std::this_thread::sleep_for(std::chrono::milliseconds(timeout));

 {

 std::lock_guard<std::mutex> lock(mutex);

 if (!*active)

 {

 return;

 }

 }

 callback();

}

void setTimeout(const char* event, int timeout)

{

 if (timers.find(event) != timers.end() && *timers[event])

 {

 std::cerr << "Overwriting timer: " << event << std::endl;

 cancelTimeout(event);

 }

 timers[event] = std::make_shared<bool>(true);

 std::string name(event);

 auto callback = [name](){ evaluate(name.data()); };

 std::thread t(timer, timers[event], timeout, callback);

 t.detach();

}

void cancelTimeout(const char* event)

{

 if (timers.find(event) == timers.end())

 {

 std::cerr << "Timer does not exists: " << event << std::endl;

 return;

 }

 std::lock_guard<std::mutex> lock(mutex);

 *timers[event] = false;

}

void errorAction(const char* current, const char* last)

{

 if (publisher)

 {

 std_msgs::String msg;

 std::stringstream ss;

 ss << "Event '" << current << "' is not allowed after '" << last << "'";

 msg.data = ss.str();

 publisher->publish(msg);

 }

}

