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1 Introduction 

1.1 Summary (abstract) 

WP34 of R5-COP aims at supporting the off-line and on-line verification of the behaviour of 
R5-COP systems by elaborating methods and tools for incremental testing and runtime moni-
toring. Incremental testing focuses on checking the permanent effects of reconfiguration on 
basic safety and robustness properties, while runtime monitoring focuses also on checking 
the effects of runtime errors. 

Incremental testing of the behaviour is relevant in the design phase and in maintenance 
phases (to check the behaviour of a changed or reconfigured version), utilizing existing test 
suites. Runtime monitoring addresses the detection of errors and malfunctions that manifest 
themselves in runtime, e.g., due to random hardware faults, configuration faults, operator 
faults, faults in adaptation and self-healing. 

To support these activities, in the previous tasks and deliverables the following activities 
were performed and documented: 

 Description languages were developed to capture those properties of the system that 
characterise its correct behaviour. 

 Algorithms and tools were developed for monitor synthesis on the basis of the de-
scribed properties. 

 Algorithms and tools were developed for test classification and test selection in in-
cremental testing on the basis of changed requirements, context or configuration. 

The topic of this deliverable is the assessment of on-line verification and incremental testing. 
In case of on-line verification, the usability and efficiency of the monitoring infrastructure 
(supporting tools) is assessed and the application is evaluated. In case of incremental test-
ing, the selection and generation of new tests is evaluated. The assessment is completed by 
the analysis of standardization aspects. 

1.2 Purpose of document  

This deliverable aims at the assessment of the methods and tools elaborated in the previous 
tasks of WP34. Since the R5-COP demonstrator applications are presented in their corre-
sponding deliverables (in SP4), this report will not focus on demonstrator environments and 
uses cases but mainly on the generic properties and capabilities of the monitoring and in-
cremental testing methods and tools, presenting demonstrator applications as examples. 

1.3 Partners involved 

Partners and Contribution 

Short Name Contribution 

BME Assessment activities 

FAU Review of the document 

IMCS Assessment activities 

PIAP Integration and evaluation in case of the Scout robot 
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2 The Assessment Approach 

The assessment is performed on the following methods: 

 On-line verification (Section 3), 

 On-line V&V using SIL methodology (Section 4), 

 Incremental testing (Section 5). 

The assessment includes the following aspects: 

 Summary of the method and its novelties. 

 SWOT analysis that describes the strengths, weaknesses, opportunities and threats 
of the method and its application. 

 Evaluation of capabilities and efficiency. 

According to this approach, separate sections are devoted to the three methods and related 
subsections for the assessment aspects. 

The deliverable is closed by Section 6 that discusses the role of these methods according to 
the development standards of safety critical systems. 

2.1 The SWOT Analysis Method 

As a specific step in the assessment, we adopted a so-called expert evaluation approach to 
judge the capabilities of the developed new V&V methodologies. In particular, a SWOT-
based analysis was performed to identify the different helpful or harmful factors affecting the 
newly developed method and tools. The factors were identified by the members of the team 
who developed and applied the new techniques and tools. 

The SWOT (Strengths, Weaknesses, Opportunities, and Threats) method [24] is a method 
developed for strategic business planning that analyses the external and internal factors af-
fecting a company, a department or an actual product. The factors are categorized as helpful 
or harmful ones, and depending on whether they are external or internal ones, they are listed 
as  

 Strengths: helpful, internal, 

 Weaknesses: harmful, internal, 

 Opportunities: helpful, external, 

 Threats: harmful, external. 

The collected factors are typically aligned in a 2x2 matrix to visualize the results of the 
SWOT analysis. 
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3 Assessment of On-line Verification 

The topic of this section is the assessment of the on-line verification method developed in 
WP34. On-line (runtime) verification aims at checking system execution against formally 
specified behavioural properties. The development of on-line verification methods typically 
addresses the definition of description languages for specifying the properties to be moni-
tored (see in deliverable D34.10), the corresponding checking algorithms (see in D34.31), 
the required instrumentation for accessing observations necessary for checking, and the de-
velopment of the related tool environment (see in D34.32). 

3.1 Summary of the Method and its Novelties 

The monitoring infrastructure (method and tool support) that was developed allows automat-
ed construction of monitor components by the synthesis of their source code. In this subsec-
tion the concept, the tool support, and the main novelties are summarized. 

3.1.1 The Concept of the Monitoring Infrastructure 

The concept of the monitoring infrastructure is presented in Figure 1. 

The monitors perform online verification by observing the behaviour of the robot components 
(i.e., the trace of their events, actions, and the perceived context) to detect the hazardous 
situations and trigger a reaction (e.g., to stop the robot to maintain safety). The potential 
hazardous situations (e.g., the sequence of events and interactions among components) are 
specified using a high-level language: state machine diagram, sequence diagram, or tem-
poral patterns. Accordingly, three tool-chains were developed that generate the source code 
on the basis of this specification automatically. These tool-chains offer a flexible framework 
to specify properties according to the focus and level of completeness of the behaviour to be 
checked, and effectively support the generation of the monitor components: 

 Monitor synthesis on the basis of behaviour specification, using UML2 statecharts ex-
tended with timeouts and context/configuration related events. This tool is especially 
useful when the designer wants to specify complete reference behaviour. The monitor 
is responsible to detect and signal any behaviour that is different from this reference 
behaviour considering the sequence of input events. 

 Monitor synthesis on the basis of scenario specification, using UML2 sequence dia-
grams, extended with timing and context/configuration dependency. This tool is useful 
when the designer wants to specify conditions (including context/configuration frag-
ments) and the related required or forbidden sequence of input events and output ac-
tions. The monitor is responsible for matching the observed behaviour with the condi-
tion part of the scenario and detect if subsequently the required behaviour is missing 
or the forbidden behaviour occurs. The behaviours that do not match the condition 
part are not checked by the monitor, this way the focus of monitoring is only on the 
specified scenarios. 

 Monitor synthesis on the basis of temporal specification, using a library of extensible 
safety and liveness behaviour patterns. This tool is useful when a declarative specifi-
cation of properties is needed (especially in case of invariant properties that shall be 
always satisfied to guarantee safe operation). The monitor is responsible for detecting 
an error when the sequence of observed events does not satisfy the temporal proper-
ty. All behaviours are checked (there is no explicit condition part in the properties) but 
focusing only on the events that are included in the specified property. 
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Figure 1. The monitoring infrastructure 

3.1.2 The Tool Support 

Figure 2 summarizes the tools and steps in the monitor development which will be detailed in 
the following subsections. 

 

Figure 2. Overview of monitor development process 

Statechart-based monitor generation 

Our approach supports monitor source code generation from statechart based property spec-
ification. The developer can design the model using the popular Yakindu Statecharts Tool 
(Figure 3). 
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Figure 3. Specification of the monitored property as a statechart in the Yakindu tool 

By right clicking on the diagram, the context menu first offers the generation of the so-called 
intermediate statechart model. Note that this representation (Figure 4) can also be used to 
design the monitor directly when the designer prefers textual modelling. We provided an 
Eclipse-based editor to support the developer to construct/edit this intermediate model. The 
editor provides syntax highlighting and content assist. 

 

Figure 4. Intermediate statechart model 
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In addition to the generation of the textual intermediate model (with extension .statechart), 
this step also produces the EMF-based model (with extension .statechartmodel) and tracea-
bility links (with extension .y2ttraceability) related to the statechart diagram to support back-
tracking. The resulting files (in case of the MIR_Charging statechart specification) are shown 
in Figure 5. The model generation steps from the statechart diagram to the intermediate 
model and the EMF-based model are implemented with the help of precise model transfor-
mations. 

 

Figure 5. The set of input and generated models 

The intermediate language is based on an XText grammar and has precise semantics (in the 
same way as the statechart diagram). It is the direct input of the monitor source code genera-
tion that can also be started from the context menu of the tool. 

In case of the Yakindu Statechart based modelling, the designer can use all statechart ele-
ments except priorities and parameterized events. Pseudo states, hierarchy, parallel regions, 
user defined guard functions are supported by the transformations, model validations and the 
monitor generation algorithm. 

Sequence diagram based monitor generation 

A rich subset of sequence diagrams can also be used to specify the property to be moni-
tored. The sequence diagrams can be constructed in the Papyrus tool, which is a widely 
used open-source UML model editor (Figure 6). 

 

Figure 6. Specification of the monitored property as sequence diagram in the Papyrus tool 

From the sequence diagram based monitor specification a built-in transformation generates 
the intermediate statechart model (the same intermediate model that was used in case of 
statechart diagram based property specifications), from which an additional step generates 
the source code of the monitor component. 



ARTEMIS-2013-1  R5-COP 

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 14 of 52 

Besides modelling events and actions, the following elements of sequence diagrams are 
supported: alternative, loop, and assert fragments, and guard expressions. Timing aspects 
can be expressed as time intervals with minimum and maximum durations. 

Context and configuration description based generation of guard functions 

The statechart and sequence diagram models can refer to so-called guard functions that 
specify in which context an event is acceptable. The source code of these guard functions is 
generated by a separate tool. Its inputs are a context metamodel (that specifies the artefacts 
in the context of the robot) and context patterns that give the context configurations that shall 
be matched by the observed context to have a true guard. The context metamodel can be 
specified using structure modelling in form of EMF metamodel, while patterns can be speci-
fied using a query language (the VIATRA1 Query language). 

  

Figure 7. Context model and related patterns 

The tool is presented by an example depicted in Figure 7. 

 The metamodel of the context that specifies the types of objects in the context and 
their relations is given by a metamodel constructed in the EMF editor (left part of Fig-
ure 7) as a class diagram. 

 The patterns to be matched that refer to the elements (instances) of the context met-
amodel are specified in a textual form using the VIATRA Query Language (right part 
of Figure 7). Various features are supported such as embedded graph patterns, tran-
sitive closure, expressions and type constraints. 

From the context metamodel and the query patterns, the source code of the corresponding 
guard functions are generated with the help of VIATRA. The generated guard function (to be 
called by the monitor) is responsible for matching the context pattern with the observed con-
text (where the sensors shall update the data structure generated on the basis of the context 
metamodel). As mentioned above, these guard functions can be referred to both in statechart 
models and in sequence diagram specifications. 

Configuration dependency is handled similarly: instead of the context metamodel the configu-
ration metamodel is used, while the patterns refer to configurations in which the events are 
acceptable. The guard function implements the matching between the configuration patterns 
and the observed configuration (the corresponding data structure generated on the basis of 
the configuration metamodel shall be updated during reconfiguration). 

                                                
1
 http://www.eclipse.org/viatra/ 
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3.1.3 The Main Novelties 

In this section we highlight three main novelties of the monitoring infrastructure. 

 Supporting of engineering languages. High level engineering languages are support-
ed through existing and widely used modelling tools as inputs of the monitor synthesis 
(as presented in the preceding section). This way, instead of low-level mathematical 
formalisms, the engineers are provided property specification languages they are fa-
miliar with. The Yakindu Statechart tools, Papyrus and Eclipse Modelling Framework 
support the creation, editing, persisting and loading of the models in a standard way. 
The monitor synthesis is integrated into these modelling tools as an additional context 
menu item. 

 Monitoring the timing aspects. In case of statechart diagrams (that are intended to 
specify complete behaviour) time dependent behaviour can be specified using transi-
tions triggered by timeout events (in case of the statechart diagram presented in Fig-
ure 8, the transition labelled with “after PlanningTO ms” specifies a timeout where 
PlanningTO is the constant representing the timeout for the planning activity). In case 
of sequence diagrams (that are intended to specify conditional scenarios of event se-
quences) time constraints can be given in the form of time intervals with minimum and 
maximum durations between events (in case of the sequence diagram presented in 
Figure 9, the time constraints are given directly as durations, e.g., “(5..10)”). This is a 
user-friendly and integrated way of describing timing aspects to be checked by the 
monitor. 

 Supporting the on-line verification of context and configuration dependency. Model 
based specification of the context elements (in the form of a context metamodel) and 
query based specification of context patterns is offered. An example is presented in 
Figure 7. These specifications are used to generate the source code of guard func-
tions that perform the matching between the context patterns and the context ob-
served by the robot (updated by its sensors). Configuration dependency is handled 
similarly. This way the engineer does not have to deal with the implementation of 
complex graph matching functionality, 
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Figure 8. Timeout specified in a statechart diagram 

 

Figure 9. Time constraints specified in a sequence diagram 
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3.2 SWOT Analysis 

The strengths, weaknesses, opportunities and threats of the on-line verification infrastructure 
are summarized in Figure 10 and detailed in the following subsections. 

 Helpful Harmful 

In
te

rn
a

l 

 Precise property specification 

 Monitoring of timing 

 Monitoring context- and configuration-
dependent behaviour 

 Systematic design of monitors with 
different strategies 

 Automatic tools 

 Independent monitoring 

Strengths 

 Detailed semi-formal specification is needed 

 Limits of scenarios as properties 

 Overhead of monitoring 

 Separate tool for specifying context and 
configuration dependency 

 
 
 

Weaknesses 

E
x
te

rn
a

l 

Opportunities 

 Complexity of classic V&V 

 V&V challenges in checking context-
aware behaviour 

Threats 

 Model-based design is not widespread 

 Testing and debugging of monitor compo-
nents are difficult 

 

Figure 10. The SWOT table of the on-line verification framework 

3.2.1 Strengths 

 Precise property specification: The properties to be monitored are specified in a pre-
cise way, using semi-formal engineering languages: statecharts, sequence diagrams 
based scenarios and temporal patterns. We assigned semantics to these languages, 
this way allowing the precise and systematic synthesis of the source code of the mon-
itor components, It can be emphasized, however, that these languages are close to 
the engineering practice and does not mean “cryptic” formal mathematical languages 
like low-level temporal logics. 

 Monitoring of timing: The property specification languages mentioned in the previous 
point are extended with language elements that allow the specification of timing. In 
case of statecharts, timeout events can be used; in case of sequence diagram based 
scenarios time intervals can be specified, while in case of temporal patterns clock var-
iables can be introduced. 

 Monitoring context- and configuration-dependent behaviour: The property specifica-
tion languages are extended with the concept of guards that can be used to specify in 
which case an event is acceptable or not. The source code of the guard can be gen-
erated by a separate tool in which the context and configuration dependency can be 
specified. Namely, that context pattern or configuration pattern can be given that is to 
be matched by the monitor (in the guard function) with the observed context or the 
current configuration. This solution fits the model-based design approach and pro-
vides the complete synthesis of the source code of the monitor component. 

 Systematic design of monitors with different strategies: The model-based solution of-
fers systematic monitor design starting from property specifications and providing 
monitor synthesis, integrating the event-based property specification approach with 
the guard condition based context- and configuration dependency specification ap-
proach. The supported strategies include the use of complete behaviour specification 
(using statecharts), the light-weight scenario specification (using sequence diagrams) 
or the declarative property specification (using temporal patterns). Selection among 
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these strategies can be based on the information available on the required behaviour 
and the level of detail to be monitored. 

 Automatic tools: The model-based design approach is supported by automatic tools 
for specifying and managing the properties (by widely used off-the-shelf modelling 
tools like Yakindu and Papyrus) and synthesis tools (developed in the project). The 
synthesis tools are integrated into the property specification tools. For designers who 
prefer textual languages over graphical languages, Xtext based intermediate 
statechart language is provided to start the monitor synthesis directly from such prop-
erty specification. 

 Independent monitoring: The monitor is designed and its interfaces are constructed to 
allow independence from the observed components. On the one hand, the specifica-
tion of the property to be monitored in made independently of the design of the moni-
tored component (i.e., not the same design is used for the implementation of the mon-
itored component and its monitor). On the other hand, the monitor does not share var-
iables or other state information with the monitored component, but observes events 
through ROS topics. 

3.2.2 Weaknesses 

 Detailed semi-formal specification is needed: If a designer is not familiar with the 
graphical or textual languages offered by the monitoring infrastructure then she/he 
has to learn these languages (and also the related modelling tools), Note, however, 
that these languages, as being included in the Unified Modelling Language, are now-
adays part of the electrical engineering and software engineering studies. 

 Limits of scenarios as properties: The scenario based property specification using se-
quence diagrams does not provide a complete behaviour specification, as its goal is 
only the specification of allowed or forbidden event sequence in case of a given con-
dition. Accordingly, complete behaviour can be specified by several scenarios that are 
difficult to manage, Note, however, that for the purpose of complete behaviour speci-
fication the statechart language (also supported by the monitoring infrastructure) is of-
fered. 

 Overhead of monitoring: On-line verification by monitoring involves an unavoidable 
overhead as the monitor components need additional memory for code and data (re-
sulting in memory overhead) and also CPU time for execution (resulting in runtime 
overhead). The overhead is optimized by the careful design of the monitoring algo-
rithms (that evaluate the sequence of events observed by the monitor) and the im-
plementation of the related data structure in the monitor. The monitor can be integrat-
ed into a system as an observer component that only accesses information by sub-
scribing and listening to ROS topics, in this way it does not need instrumentation of 
the monitored component (reducing the direct overhead caused by the instrumenta-
tion). However, to access internal information and generate the related events for the 
monitor, instrumentation may be necessary. 

 Separate tool for specifying context and configuration dependency: The languages 
that are used to specify the monitored properties in terms of event sequences, and 
the languages that are used to define the guard conditions in terms of context or con-
figuration patterns, inherently differ. Namely, statechart diagrams, sequence diagrams 
and temporal patterns are used to specify event sequences, while class diagrams and 
related query languages are used to specify the guards. Accordingly, they need sepa-
rate tools that are not directly integrated with each other (just the guard functions are 
referred by their names in the statechart and sequence diagrams), The integration is 
performed on a source code level as the source code generated for evaluating event 
sequences is linked with the source code generated by a separate tool for the guard 
functions. 
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3.2.3 Opportunities 

 Complexity of classic V&V: The verification and validation of context dependent and 
adaptive reconfigurable systems is a complex problem as it is difficult to predict the 
potential contexts and configurations in design time. Typically, classic V&V aims at 
checking the typical or critical scenarios estimated in design time, without guarantee-
ing the correctness or safety in case of other scenarios. The on-line verification of be-
haviour by monitoring offers a solution for the detection of erroneous events related to 
(1) the violation of assumptions about the system context, (2) violation of expected 
system properties due to operational faults, and (3) the deviation from expected ef-
fects of runtime actions like reconfiguration. A detected erroneous event may trigger 
an intervention into the system to perform corrections (to ensure safe behaviour) and 
recovery. 

 V&V challenges in checking context-aware behaviour: As a specific aspect of the 
problems mentioned in the previous point, the complexity and diversity of the context 
of a system with context-dependent behaviour is a challenge for verification. Context 
modelling with hierarchic structure of the types of context objects (e.g., the concept of 
“furniture” covers the concepts of “table”, “chair” etc.) and abstract relations (e.g., 
“close to” and “far enough” in case of distance between obstacles and the robotic sys-
tem) allows a compact specification of context patterns that influence the correct/safe 
behaviour of the system. In case of on-line verification, these context patterns are 
matched with the actually observed context by the monitor (in guard functions), 
providing this way a mechanism to detect diverse situations that may need corrective 
actions triggered by the monitor. 

3.2.4 Threats 

 Model-based design is not widespread: Although model-based design is considered 
as a way to address complexity and to provide understandability and unambiguity in 
the design of modern computer based systems, it is not used in all companies. As 
stable design tools are being available and the related training is being offered, this 
threat is expected to disappear. To address this issue, a textual property specification 
language is offered for designers who are not familiar with graphical (diagram based) 
modelling languages. 

 Testing and debugging of monitor components are difficult: Monitor components, as 
the other components of a critical system, have to be tested and debugged/corrected 
in case of their design or implementation faults. The difficulty of these activities is due 
to the fact that monitors react to run-time faults, violation of assumptions about the 
context, and erroneous changes in configurations of the monitored system. Accord-
ingly, the testing and debugging of the monitor components needs a specific envi-
ronment (e.g., the use of fault injection tools, context emulation tools, reconfiguration 
support tools) in which the mentioned effects can be induced in the monitored system 
and the related reaction of the monitor can be checked. Relaxing the need for testing 
the monitor components embedded in their software context, specific simulation tools 
can be used that generate only the events to be checked by the monitor. 
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3.3 Assessment of Capabilities and Efficiency 

In this section first practical experience of integrating the monitor into a demonstrator (WP42 
PIAP Scout robot) is recalled then the overhead and performance of monitoring is measured. 

3.3.1 Monitor Integration and Evaluation 

Here we report the integration of the monitor generated by the source code generator tools 
into the Scout robot developed by the Industrial Research Institute for Automation and 
Measurements (PIAP). The goal of the monitor was verifying in runtime whether transitions 
between different states of the robot are allowed. If there is an error, the monitor informs the 
operator so she/he can take a proper action. 

The specified properties 

The monitor follows the state of the robot by receiving events about that change this state. 
Before a state transition, the monitor evaluates the event and decides whether it is allowed or 
not. If it is allowed then the state is changed. If not, a callback function is called and the op-
erator is informed (see the errorAction() function in Section 9 Appendix A). The allowed event 
sequences are specified as state transitions in the form of a statechart diagram (Figure 11). 

 

Figure 11. The reference statechart belonging to Scout 

The events received by the monitor from the robot are summarized in Figure 12 (the names 
of the events that identify the change of states are self-explanatory). Note that in case of 
state Driving, a timeout velocity_to is used to transition to the Idle state. 
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Figure 12. The events observed and checked by the monitor belonging to Scout 

The models were constructed using the Yakindu Statechart tool and source code of the mon-
itor was generated in two iterations (correcting some specification and code generation mis-
takes during integration). 

Overview of the integration 

The monitor is running in a separate process on an operator’s console and it uses ROS for 
communication with other components. The ROS topic /bmemonitor/status topic is used for 
sending events from the console and from the robot, and the topic /bmemonitor/error is used 
for sending information from the monitor to the operator. The integration is presented in Fig-
ure 13. 

 

Figure 13. Integration of the monitor into Scout 

Testing scenarios 

The monitor with Scout was tested in two different scenarios in order to verify that the moni-
tor can provide useful information when something is wrong. 
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Scenario 1: Emergency stop 

In this scenario the robot was driving autonomously when the operator pressed the emer-
gency stop button in case of a safety hazard. Despite the emergency situation, the autonomy 
module continued sending navigation commands requesting the robot to change its position. 

The screenshot in Figure 14 shows that the monitor detected the error (incorrect behaviour 
with respect to the statechart reference model presented above) and the proper message 
was displayed for the operator. 

 

Figure 14. Error detected by the monitor in Scenario 1 (Emergency stop) 

Scenario 2: Autonomy drive 

In this scenario the Scout robot was driving autonomously but the operator decided to control 
the robot manually. In this case, the autonomy module should give up the control and switch 
to the idle state. However, in this scenario the autonomy module continued sending naviga-
tion commands. As previously, the monitor discovered the incorrect behaviour (with respect 
to the statechart model) and the callback function informed the operator (Figure 15). 
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Figure 15. Error detected by the monitor in Scenario 2 (Autonomy drive) 

Evaluation 

PIAP concluded the integration and testing with the following evaluation: 

 The monitor was able to correctly detect invalid transitions between states so for ap-
plications with well-defined states and transitions it may prove very useful. It is espe-
cially valid if the design of the monitored application uses a state pattern for its core 
functionality. 

 In the case of Scout, the integration was cumbersome as the design did not use the 
state pattern and the events had to be formed artificially by adding new functionality 
to the application that was responsible for checking conditions and emitting a proper 
event. This extra code (instrumentation) introduced additional complexity. 

 The integration was particularly difficult in case of the autonomy module, since its in-
ternal state was not instrumented, this way it was not known whether the autonomy 
module is active or not. If a request was sent by the operator to the autonomy module 
to stop, the operator did not know when it will emit the autonomy_stop event so that 
she/he can safely emit velocity_command to control the robot. The solution of this 
problem would need additional code. 

 The overhead of monitoring depends on the way the monitor is integrated with the 
application. In this case there was a separate monitor process using ROS for com-
munication (see Figure 13), and the related ROS libraries were responsible for the 
huge part of the memory footprint. 

 In summary, the monitor may work very well with state based designs, but in case of 
Scout (not following this pattern by design) the added value of a state-based monitor 
did not fully justify the effort of difficult integration. 
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3.3.2 Performance and Overhead of Monitoring 

In case of monitoring, one of the important questions is the overhead (in memory and 
runtime) and the performance of checking. In this section measurements results are provided 
that allow the estimation of these characteristics in case of the different monitoring ap-
proaches. 

Performance of the statechart and scenario based monitors 

The monitors generated on the basis of statechart diagram and sequence diagram based 
property specifications share the same intermediate formalism (the textual statechart model) 
for code generation, this way these have similar performance. In the following we refer to 
these monitors as statechart based monitors. 

The internal execution engine of the monitor is triggered by the incoming events. To check 
whether the incoming event triggers a transition (i.e., the event is a valid successor of the 
previous event), the engine has to examine the outgoing transitions of the active state con-
figuration. This means that the execution time is mostly determined by the number of out-
going transitions from the state configurations. 

To measure the effects of different number of outgoing transitions, we have generated 
statechart models (as benchmarks) with the following characteristics: 

 “Complete graph”: the number of states is n, each with n-1 outgoing transitions. 

 “Cyclic graph”: the number of states is n, each with 1 outgoing transition. 

 “Random graph”: the number of states is n, half of the states have 1, and the other 
half of the states has more than n/4 transitions. 

The statechart based monitors were generated from these test models and were compiled 
using g++ with the -O3 flag set. 

In the measurement setup, the monitor was driven by a test program where the calls to the 
evaluation function of the monitor were made directly from a loop. The measurements were 
done on an Intel Core i5-6500 CPU, where the monitor was executed on a dedicated core 
running at 3.2 GHz. Execution times were measured using the standard C++11 chrono li-
brary’s high resolution clock functions. To minimize the possible effects caused by the oper-
ating system’s interrupts and scheduling, the loop of the evaluation calls was executed one 
hundred thousand times (then the average execution time of the calls were calculated). Also 
the measuring function ran multiple times, and the outliers in the results were eliminated by 
averaging results in the 80 percentile. 

The execution times for the test models can be found in Figure 16. 

 

Results n = 10 n = 100 n = 1000 n = 10 000 

Cyclic 69 ns 66 ns 61 ns 62 ns 

Complete 92 ns 371 ns - - 

Random 76 ns 211 ns - - 

Figure 16. Execution times (ns) of checking an event by statechart based monitors 

The complete models for n>=1000 would contain almost a million transitions. As the mapping 
tool from statecharts to the intermediate representation for monitor synthesis is not prepared 
to traverse such huge models, monitor generation is not currently supported for these model 
sizes. The same holds for the random models. Note that this model size is not realistic to be 
developed by hand. 

The measurements were also performed on the monitor generated for the WP44 demonstra-
tor (i.e., based on the statechart model given in Figure 8). In this case the average execution 
time of evaluating an incoming event by the monitor was 108 ns. 
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We have also measured the execution time of guard functions that perform context matching. 
We used a context model that contained all together 50 modelling elements. The context 
patterns to be matched were similar to those of Figure 7. We have measured the average 
time needed for context matching: the maximum execution time was 150 ms for the most 
complex context pattern (containing an expensive transitive closure pattern) and the mini-
mum runtime was 10 ms for the simplest context pattern. 

Memory usage of the statechart and scenario based monitors 

The memory usage of the monitor is affected by the number of states and transitions in the 
statechart model that specifies the property to be monitored. 

Memory consumption of the monitors was measured using the same models as were used 
for the execution time measurements. The monitor executables were compiled using g++ 
with the -O3 flag specified. The -O3 flag might not provide the best optimizations for memory 
usage, but developers typically opt for the speed increase versus the minor free memory 
gained. 

The size of the used memory was measured with the Linux tool ps. The platform overhead of 
g++ and Linux were taken into account by calculating the difference of the memory usage of 
the monitors and a simple one-line program realizing an infinite loop (which is typically over 1 
MB). 

The memory usage of the monitors with different settings is presented in Figure 17. 

 

Results n = 10 n = 100 n = 1000 n = 10 000 

Cyclic 4 kB 28 kB 40 kB 2356 kB 

Complete 24 kB 1744 kB - - 

Random 12 kB 921 kB - - 

Figure 17. Memory usage of statechart based monitors 

Note that the names of the events and states are stored as strings by the monitor for error 
reporting and logging purposes, thus the memory usage is influenced by the lengths of the 
names. For environments with ultra-low resources, the monitors may be modified by storing 
only IDs and references (that are used by the evaluation function), which would reduce 
memory consumption. 

The measurements were also performed on the monitor generated for the WP44 demonstra-
tor (Figure 8). In this case the memory usage of the monitor core was 4 kB. 

Performance of temporal pattern based monitoring  

We have compared the execution time of our monitor implementation with the classic ap-
proaches of term-rewriting using the Maude engine (H&R, [25]) and the source code genera-
tion based on alternating automata (F&S, [26]). We have used the formulae and traces sug-
gested in these papers. The evaluation trace was created by iterative repetition of the (a; b; 
a; b; a; c; a; a; b; g; f; h; c; b; a) event sequence. The measurements were carried out on a 
low-end platform (Intel processor core running at 2.2 GHz). 

Figure 18 presents the execution times for evaluating two formulae on various trace lengths 
(note that the evaluation of the formulae requires the analysis of the entire trace), in compari-
son with the term rewriting approach [25]. 
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 Formula 1 

G(bF c) 

Formula 2 

F(G(bF c)) 

Trace 
length 

H&R term 
rewriting 

Our  
approach 

H&R term 
rewriting 

Our  
approach 

1500 20 0.53 110 0.62 

3000 40 1,10 220 1.25 

4500 60 1.64 320 1.87 

6000 80 2.20 420 2.64 

7500 100 2.70 530 3.29 

9000 120 3.70 640 3.84 

10500 140 4.00 760 4.47 

12000 160 4.50 860 5.50 

13500 180 5.10 970 6.00 

15000 200 5.60 1100 6.60 

Figure 18. Monitor execution time (ms) in comparison with the term rewriting approach 

Figure 19 presents execution times for evaluating three formulae in comparison with the al-
ternating automata approach [26]. 

 

Formula Trace 
length 

F&S alternating 
automaton (BFS) 

Our  
approach 

F1 1000 78 0.57 

2000 54 1.13 

3000 76 1.84 

4000 99 2.46 

5000 123 3.22 

F2 1000 82 0.66 

2000 52 1.39 

3000 73 2.07 

4000 94 3.40 

5000 117 3.66 

F3 1000 876 0.95 

2000 1660 1.93 

3000 2377 2.96 

4000 3244 4.08 

5000 4034 6.73 

Figure 19. Monitor execution time (ms) in comparison  
with the alternating automata approach 

The explanation of the speedup is the effective implementation of sub-expression evaluation 
and the inherently programming-oriented nature of our approach: the entire solution is tar-
geted for code generation, the data structures and algorithms seamlessly fit to C/C++ pro-
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gramming languages resulting in a straightforward code generation step and a high perfor-
mance application. 

The code generation time was also measured using temporal logic formula of increasing 
length (i.e., increasing number of temporal operators by the conjunction of (r => p U d) ex-
pressions in context of a G operator). The longest formula contained 8+1 temporal operators, 
in this case the code generation was performed in still less than 1 second. Note that in case 
of typical safety patterns (see in D34.10) the number of temporal operators is less than 4. 

Memory usage of temporal pattern based monitoring 

The memory consumed by the monitor for evaluating a set of properties on a trace of n ob-
served events involves the program code implementing the base algorithms (creating and 
managing evaluation blocks) and the memory used for storing evaluation block instances 
(see in D34.31). Since the base algorithms can be implemented in a few lines of code, the 
memory usage is dominated by the evaluation blocks. This is investigated below in case of 
C++ implementation. 

An evaluation block instance maintains the values stored on its interfaces and the pointer to 
the previous instance. The “registers” on the interfaces of evaluation block instances can be 
implemented by bit vectors: storing the values of atomic expressions on the left interfaces 
require a single bit per expression while ternary values on the top and bottom interfaces 
need at least two bits per expression (storing bit patterns is supported by C bit-fields, the 
C++ bitset data type template, etc.). The pointer to the previous instance is obviously imple-
mented as a programming language level pointer or reference construct. In case of the C++ 
programming language chosen for our prototype implementation, no explicit metadata or 
type information is stored, only in case of classes with virtual functions a single pointer to the 
virtual function pointer table. 

Let us consider a 32 bit architecture where a pointer is 4 bytes long. In worst case (when 
different events are observed in each step), the number of bytes required for the evaluation 
of the expression “Globally r implies p Until d“ with events r, p and d, on a trace of n steps is 
as follows: 

1*(4 + 1 + 1 + 1 + 4) + (n-1)*(4 + 1 + 1 + 1 + 4) bytes 

For example, in case of 1000 steps it results in 11.000 bytes. In asymptotic aspects, the 
memory consumption is a linear function with the number of trace steps when different 
events are observed in each step of the trace (worsts case); otherwise repeated (successive) 
events can be checked by the same evaluation node this way the memory need is reduced. 

Comparison of different monitoring approaches 

We also performed direct comparison of three monitors: 

 Monitor for checking the local control flow of the application. This is a reference case 
with an expected high overhead as the monitor checks each node of the program 
control flow graph (CFG) by instrumenting each branch-free statement block of the 
program (sending signatures identifying the node to the monitor that checks on the 
basis of the reference CFG whether the signature is allowed successor of the previ-
ous one). 

 Monitor for checking statechart based property specification. 

 Monitor for observing and checking the system behaviour defined as scenario dia-
gram. 

We measured the code overhead and execution time overhead of monitoring a control mod-
ule implemented on a simple mbed NXP LPC1768 microcontroller platform2 with ARM Cor-
tex-M3 running at 96 MHz (the goal was the comparison of overhead and not explicit time 

                                                
2
 https://developer.mbed.org/handbook/mbed-Microcontrollers 
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measurements). The local CFG monitor was deployed as a local process executed on the 
same microcontroller. The statechart and scenario based monitors were deployed on a sepa-
rate microcontroller using the Ethernet based communication capabilities of the microcontrol-
lers. 

To get the highest overhead possible, as extreme reference case we modified the control 
module by removing the statements belonging to the interactions with other modules of the 
application, this way practically have only the program control flow skeleton of the module. 

Memory overhead 

The program code overhead is presented in Figure 20. The overhead turned to be accepta-
ble: instrumentation for local control flow checking introduced 1.3% overhead, statechart and 
scenario based checking needed about 0.5% and 0.7% more code, this way the instrumenta-
tion for all checking possibilities resulted in less than 3% code overhead. 

 

Figure 20. Program code overhead in case of various monitoring techniques 

Execution time 

Figure 21 presents the execution time overhead. In case of the control module that imple-
ments the control logic and performs interactions with other modules of the application, the 
run-time overhead for all checking was less than 12%. In the extreme reference case having 
the code skeleton only, the time required to provide information to the monitor modules dom-
inated the execution time (especially in case of the local CFG monitoring) and the overhead 
reached far more than 100%. Note that in order to have the same scale on the vertical axis of 
diagrams in Figure 21, different number of state changes were measured in case of the full 
code and the skeleton code. 

 

Figure 21. Execution time overhead in case of various monitoring techniques 
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4 Assessment of On-line V&V using SIL methodology 

The topic of this chapter is assessment of the on-line V&V used in a Software-In-the-Loop 
(SIL) approach to check the collaboration between autonomous Rotorcraft Unmanned Aerial 
Vehicles (RUAV) and Wireless Sensor Networks (WSN). 

Like described in the previous chapter, the goal for on-line V&V used in a Software-In-the-
Loop (SIL) approach is the on-line verification of the behaviour of R5-COP systems (RUAV) 
by elaborating methods and tools for runtime monitoring. Nevertheless, in this case the tech-
nical approach is different from the automated construction of monitor components by the 
synthesis of their source code from high level property description. The SIL approach pro-
vides the simulation model of the RUAV, from which the source code for the real application 
can be automatically generated. As the simulation environment MATLAB/Simulink provides 
the simulation language Extended Finite State Machine (EFSM) and the possibility to transfer 
the code to real environment, then also the on-line V&V functionality is included in the simu-
lated model and simultaneously in the software transferred to RUAV. This approach allows 
on-line V&V tools to be used in the full life cycle of the developed application, from SIL model 
to deployment in real time environment. 

4.1 Summary of the Method and its Novelties 

The task T43.2 (and T34.4) was devoted to building a SIL model for a demonstration task: 
Model of an autonomous robot cooperating with WSN. Such a model is built early in the ap-
plication development process, when no real hardware or code is available. The idea was to 
implement on-line verification ideas and integration tools early, using the SIL model and to 
assess what advantages of such approach can be observed. 

4.1.1 The SIL Methodology 

Software-in-the-loop (SIL) is a system development methodology for embedded control sys-
tems, where special simulation model is built for hardware and environment simulation 
around the embedded code, which is, in this case, the system-under-test (SUT). Such SIL 
model then allows the real time embedded program (SUT) to be tested not only in the real 
environment but also with this model in simulated environment without using dedicated 
hardware. 

In-the-loop means that the control system is in a closed-loop (inputs are driven by outputs, 
see in Figure 22). All types of the Field robots are good examples of such systems. 

Such model based methodology can be used for a wide range of real time systems, but is 
also extremely popular for robotics [27] including field robots and RUAV [28]. In case of 
RUAV, the RUAV hardware is simulated and the environment, where the RUAV flies, is also 
simulated. For environment simulation many possible virtual reality simulation tools may be 
used. Mandatory is the camera simulation from this virtual reality, as it is one of the main 
tools for RUAV during a mission. 
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Figure 22. Closed loop control system 

Usually such model based methodology includes different stages of producing and testing 
code: Model-in-the-loop (MIL), SIL, Hardware-in-the-loop (HIL), Processor-in-the-loop (PIL) 
[6]. To implement full loop (especially HIL platform) is an expensive and time consuming pro-
cess, which is more suitable for large companies in aerospace and automotive industry using 
expensive chain of hardware and software tools (NI, dSpace [29]). 

4.1.2 Implementation of on-line V&V in the SIL model 

The solution offered by WP34.4 implies the construction of an external process verification 
mechanism: verification by observing processes from aside without intervention into the exe-
cution of these base processes. Events confirming process step executions are collected and 
verified. All events are detected by event agents and sent to monitors for verification. Agents 
are instrumented model components where the events occur. Monitors are separate pro-
cesses in the SIL model. Agents and monitors are developed and implemented for different 
components and are part of SIL model. 

The MATLAB/Simulink executes the SIL model in so called ticks. An execution of a tick can 
result with a transition to the next state (one step) or staying in the current state. During the 
execution of a tick, processes send information to other processes/components of the model 
including the hardware simulators and on-line V&V monitors. The simulators perform activi-
ties similar to that would be performed by real hardware and return new values of common 
variables. The loop can be run for long time to simulate continuous actions of RUAV, GCS 
(Ground Control Station) and WSN. 

In Figure 23 a Monitor process is shown that checks several events: 

 ROS message regularity, 

 Hardware parameters of the motor (energy, status, flying time, etc.), 

 Software (state consistency with motor parameters). 
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Figure 23. Example Monitor process 

The RUAV embedded code includes error processing. It is available for the on-line checker 
(the Monitor) and it consists of: 

 Error warning event propagation, 

 Safe mode of operation (see in Figure 24), robust and safe execution in critical situa-
tions, including immediate landing or going home. 

 

Figure 24. Safe mode operation process 

4.1.3 Novelties of the Approach 

The SIL technology was developed by large automotive and aero companies, at first for inner 
use of the companies, later also as commercial software. Those tools are expensive and 
mostly available for industrial companies. Use of MATLAB/Simulink for those purposes is 
popular in academic context. 

If the SIL model is produced only for one product it can be too expensive, because the model 
is complicated and time consuming to develop. But if one has the technology ready, where 
the model is adopted for several products, then its use is very cost effective. For autonomous 
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devices requiring specially built test environments, SIL approach provides possibility to trans-
fer large part of the field tests to laboratory environment, thus making large resource savings. 

The implementation platform of our SIL approach is based on a State Machine, using for 
modelling the Stateflow language. That allows parallel processes, this way the embedded 
code does not extensively use processor (time) resources. 

As the monitor is seamlessly integrated into the State Machine, it is allowed to use (in case 
of detecting an error) the built-in general error handling methods. For example, in case of 
serious errors, the State Machine can be put into Safe mode. Also for communication with 
GCS existing communication channel in ROS can be used. That allows also double checking 
of on-line verification on GCS, or saving events and using post mortem verification. 

The main novelty of the SIL approach is that on-line verification tools are started to develop 
at the same time as the code is developed; on-line testing and monitoring is also performed 
from the start. Being in the Stateflow model, they are in the code during the testing and re-
main also after deploying. Tools are closely interconnected with existing code. On-line testing 
then covers hardware checking, environment checking, and software on-line verification. 

4.2 SWOT Analysis 

Figure 25 presents the SWOT analysis of the on-line V&V using SIL methodology introduced 
in deliverable D34.41 and implemented in the MATLAB/Simulink/Stateflow environment. 

 

 Helpful Harmful 
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 Universal methodology 

 MATLAB/Simulink as universal simu-
lation platform  

 Large number of ready-made tools  

 Modelling by Finite State Machine 

 Parallel execution of processes 

 Automatic model transition to hard-
ware 

Strengths 

 High level model 

 Resources for monitors cause overhead 

 Restricted applicability for real time systems 
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 Environment complexity restricts applicabil-
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Figure 25. SWOT analysis of the SIL methodology 

Strengths 

 The SIL methodology is universal and provides MATLAB/Simulink based universal 
solution for V&V for collaboration of several autonomous systems. 

 The methodology is based on MATLAB/Simulink which is an universal simulation 
platform containing large number of ready-made tools. 

 The simulation language is the Extended Finite State Machine (EFSM), which is used 
in this SIL methodology. It provides the possibility to develop high level abstract mod-
els and include there C code and modules developed by 3rd parties. 

 The MATLAB/Simulink platform provides parallel processes, which allows executing 
on-line V&V in one process with basic processes. 

 Agents are incorporated in code with automatic transfer of events to the monitoring 
process. 

 The MATLAB/Simulink platform contains tools for transferring model to real time 
code. 
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Weaknesses 

 The methodology is applicable to on-line V&V of autonomous systems on a high lev-
el. 

 Lot of separate V&V monitors can be implemented, that results in overhead. 

 The borders and limitations of the usage of SIL methodology are not well defined. 

Opportunities 

 The broad functionality of MATLAB/Simulink/Stateflow gives users the opportunity to 
make an on-line V&V model with relatively small resources, containing essential part 
of autonomous mobile system functionality. It can be simulated, executed, validated 
and verified on one PC without using real HW. 

 MATLAB/Simulink contains several tools for transferring model based on-line V&V to 
real code, which subsequently can be used with real hardware. 

Threats 

 The simulation of autonomous systems and their collaboration in MATLAB/Simulink 
does not replace hard real time testing. For that one must do also hardware-in-the-
loop testing and tests with real hardware. 

 Environment complexity (weather conditions, visibility, etc.) and quality of its simula-
tion can limit the truthfulness of the results and usage of this methodology. 

 

4.3 Assessment of Capabilities and Efficiency 

4.3.1 Usability 

The SIL methodology provides many possibilities for developing autonomous systems. As 
first step, developing simulation model is provided by the Stateflow simulation language with 
high level of abstraction and with option to include C-code in the model. That allows using 
wide range of ready-made programs, decreasing the amount of necessary new code. The 
developed model for autonomous objects can be simulated in MATLAB/Simulink environ-
ment verifying the correctness of the model. 

Other essential feature of the SIL methodology is a possibility of close integration of MATLAB 
with ROS, which is strongly enhanced in the last years. ROS provides standard interfaces for 
various devices and large number of open source components for processing the information 
from those devices. As the MATLAB/Simulink environment provides tools for using the ROS 
features, the usability of this SIL methodology is increased. 

4.3.2 Overhead 

On-line V&V using SIL methodology uses the Stateflow features to execute parallel process-
es. The on-line monitor is built as a parallel process, which executes in parallel with the basic 
functionality of the RUAV. In case of RUAV collaboration with WSN the overhead is small, 
but in more complex and more time critical applications the overhead can cause problems. 
Information about the environment processes, required for on-line monitoring, is included as 
part of standard interface signals, and respectively it is not a source of large overhead. 

4.3.3 Efficiency 

The SIL methodology provides several interlinked steps for application development. As a 
first step, the simulation model is built for MATLAB/Simulink environment. Interfaces between 
devices are provided by ROS, which is supported in MATLAB/Simulink environment. After 
the simulation for verification of the model, it is transferred to real environment. That is done 
automatically by MATLAB tools, keeping the functionality of the model. It is possible that the 
automatically generated code is not so efficient as a code written by experienced developer. 
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But such technics always allows returning to the SIL model, make changes there, re-test the 
model there and start a new code generation. That strongly increases the efficiency of mak-
ing changes in the application and testing them. Slight decrease of the efficiency of the gen-
erated code for most applications is not serious (as in case of RUAV and WSN collaboration 
in our demonstrator). 

We can conclude that in case of development costs, the solution of using SIL model with built 
in on-line V&V tools, is very effective as it uses Simulink with its well developed and ap-
proved platform, for providing simulation model on high level of abstraction, with automatic 
generation of real code. 
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5 Assessment of Incremental Testing 

In this chapter the method is assessed that can be used for the selection, adaptation and 
extension of test cases in an incremental testing workflow. 

5.1 Summary of the Method and its Novelties 

The existing tools and approaches presented in the literature usually concentrate on one 
programming or modelling language as the input source for incremental testing. However, in 
R5-COP there could be multiple levels and types of reconfigurations and changes in which 
case incremental testing is needed. Instead of performing incremental testing separately for 
each of the change types, we could apply a unified approach, as basically they all can be 
handled in a similar way. 
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Figure 26. The incremental testing methods 

Accordingly, we developed a common, general incremental testing approach, and connected 
the specific test types (test contexts from context models, module/integration tests for com-
ponents, etc.) using special adapters to this core. Figure 26 depicts the approach. 

 The incremental testing analysis component is the central element of the approach. It 
defines a general model for representing the tests and tested elements. The regres-
sion testing algorithms (test selection or coverage identification described in delivera-
ble D34.20) work on this general model. 

 A model adapter is responsible for connecting the different sources, like context or 
configuration models and tests to the general analysis component. This adapter is 
developed for each source type and is responsible for converting the models and 
tests to the internal representation of the analysis component. This component is also 
responsible for detecting changes in the sources. 

 The outcome of the analysis is a classification of tests and the coverage information 
of the source elements (e.g., to detect that there is a class in the context model that is 
not present in any of the existing test contexts). This information can be used later to 
create new tests either manually or automatically. 
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In summary, this method is driven by the analysis of the new requirements (formalized in 
scenarios), the changes in the context of the system (formalized in context metamodels), and 
the changes in the internal components (formalized in architecture and capability models). 
The gaps in the coverage of the existing test suites are identified, which drives the adaptation 
of existing test cases and the generation of new test cases to cover the changes. 

The main contributions and novelties of the work are the following: 

 A general concept of test analysis was introduced and the corresponding languages 
to capture tests (test cases) and testables (context and configuration elements) and 
their mapping were defined. 

 A tool was designed that can perform the incremental testing analysis. Using model 
adapters the core incremental analysis component is independent from the actual 
domain, and only the light-weight adapters had to be created when new types of arte-
facts and related changes has to be handled. A tool implementation was also devel-
oped that is based on the Eclipse framework, the de facto modelling environment 
widely used in industry. 

 Evaluation of the applicability and scalability of the method and the tool was per-
formed. The evaluation used context and capability model used in WP42 and inspired 
by the DHS-NIST-ASTM International Standard Test Methods for Response Robots 
(ASTM International Standards Committee on Homeland Security Applications; Op-
erational Equipment; Robots E54.08.01). 

 

5.2 SWOT Analysis 

Figure 27 presents the SWOT-based analysis of the incremental testing method. 
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Figure 27. SWOT-based analysis of behaviour testing method 

5.2.1 Strengths 

 Core methodology is domain-independent: The core of the incremental testing meth-
odology (the metamodel, the impact analysis algorithm and tooling) is generic and is 
independent of the actual robot and its domain. Therefore, only a subset (the model 
adapters) has to be created for each new use case. 

 Automated incremental testing analysis tool: The incremental testing is implemented 
in an automated tool that categorizes existing tests cases with respect to a change, 



ARTEMIS-2013-1  R5-COP 

R5-COP_D34.50_a1.1_BME.doc © R5-COP consortium Page 37 of 52 

and can help to select a necessary subset of all the tests. The inner working of the 
method is hidden from the user, only the changed parts of the model have to be 
marked, and the tool computes automatically the test classification. 

 Usable at different testing levels: The method and the tool can be used in many dif-
ferent settings; tests can represent “virtual world” descriptions for simulators or man-
ual test setups for real world environments. Depending on the actual robot use case 
and testing priorities, input models can represent the different configurations of the 
robot or the context in which the robot operates, broadening the applicability of the 
method. 

5.2.2 Weaknesses 

 Attributes of tests and testables are currently limited: Currently a basic relation is cap-
tured in the models, namely that a given test case “tests” a testable (a module or a 
context element). However, further attributes could be added to enhance the test de-
scriptors, e.g., cost or duration of the tests. The metamodel was designed to be flexi-
ble, thus such changes could be incorporated. The test selection and classification 
algorithm has to be adjusted, similarly to the algorithms presented in the literature 
[30]. 

 Tool is in prototype phase: The tool is currently in prototype phase with a basic user 
interface. Users not familiar with the Eclipse framework and its editors could require 
more time to create the models. However, domain-specific graphical editors could be 
easily created to support users not familiar with the Eclipse modelling technologies. 

5.2.3 Opportunities 

 High cost of retesting all: Running all tests (either simulated or real) for every modifi-
cation is extraordinarily costly, and in several cases it is not even possible (e.g., exe-
cuting all tests on the standardized NIST test stands requires days). Therefore, identi-
fying and running only a subset of the required tests could offer significant time and 
resource savings. 

 Reconfiguration is frequent: With today’s modern robots, reconfiguration could be a 
frequent activity; hence retesting new configurations is necessary. 

 Rapidly changing requirements and context: Not only the configuration of the robot, 
but its requirements and operational context could change rapidly, which makes re-
testing a non-optional activity that requires support and advanced methods to be cost-
effective. 

5.2.4 Threats 

 Model-based culture is not widespread: The incremental testing method is based on 
creating good context and configuration models for the application domains. This ac-
tivity has to be supported by modelling experts as domain experts usually do not have 
the necessary modelling experience. Before the developed test approach could be 
applied, first the model-based thinking has to be accepted in the company or team re-
sponsible for the verification of autonomous systems (e.g., models are not just visual 
documentation of already written code). Unfortunately, model-based approaches are 
not yet a common industrial practice. However, in certain industries model-based ap-
proaches are gaining a lot of traction (e.g., AUTOSAR in the automotive domain).  

 Lack of unified representations: The configuration and context models and their 
adapters have to be created for each new robot as currently there are many different 
possible representations. However, the skill model developed in R5-COP could offer 
a common representation that can be applied in several domains. 
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The goal of this assessment was to collect the advantages and limitations of the methods 
and tools developed for incremental testing of reconfigurable autonomous systems. The 
SWOT analysis identified several strengths (e.g., generic approach, automated tooling), but 
has also found limitations. Some of the limitations were found because the developed tools 
were only prototypes, and were only applied in the first case studies with the demonstrators. 

5.3 Assessment of Capabilities and Efficiency 

This section summarizes the final capabilities of the incremental testing methods and the 
lessons learnt about its usability and efficiency. 

5.3.1 Application in Demonstrators 

The incremental testing method has been applied to the WP42 mobile robot demonstrator by 
PIAP. PIAP recently introduced NIST-standardized test stands into its test process. The 
NIST guideline [31] describes how to make the test rooms comparable. The guidelines use 
ASTM (American Society for Testing and Materials) standard objects for describing the lay-
out of the rooms. These include different types of terrains and obstacles. Various terrains 
exist especially for mobility exercises, such as ramps, steps, sand, gravel or mud. Obstacles 
can be used to test different capabilities of the robot like gaps in the floor or signs on the wall. 

BME visited PIAP in Warsaw to discuss their testing process and observe the test environ-
ments for their robots. After the meeting in the first iteration, we considered the test stand 
elements (e.g., ramp or wall) as elements of the context model and created a mapping model 
between robot modules and context elements, e.g. that a ramp tests the capabilities of the 
motor. This approach was presented in detail in deliverable D34.20. The incremental testing 
tool was able to select from different test room layouts those ones that are relevant for a 
change. 

However, after revisiting the models with the experts from the PIAP, we concluded that a 
different modelling approach would be more suitable for their use case. As they have only 3 
fixed test lanes (lane 1, 2 and 3 from [32]) then number of different, possible layouts is lim-
ited. Variability and numerous testing combinations are introduced by performing different 
exercises on a fixed lane. 

 

Figure 28. Exercises on NIST test lane [32]  

For example, Figure 28 presents parts of test lane 1. Basic manoeuvring and pattern recog-
nition can be tested with the line following exercise in the beginning of the lane. More ad-
vanced manoeuvring can be inspected in the middle of the lane by a tight turning. Finally, 
manipulator dexterity can be tested in the end zone by grasping and rotating objects. The full 
lane offers much more exercises and testing combinations (e.g. varying lightning, robot 
movement directions, placement of objects, signs to observe, etc.). However, not all exercis-
es are needed for each reconfiguration (change in the robot’s configuration or skills). 

Therefore, in the second iteration in the modelling we focused (1) on the exercises and tasks 
for a given lane and (2) on the skills and components of the robot (Figure 29). 
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Figure 29. Modelling in the demonstrator: context (left) and configuration (right) 

Focusing on exercises and tasks: Figure 30 presents the artefacts created for modelling the 
context of the robot. In the central part the context metamodel can be seen with elements like 
lane, exercise or tasks (tasks are a valid combination of exercises along a path for the robot). 
In the lower left part an excerpt from the mapping model is depicted connecting the exercises 
in the test lane and the skills of the robot. 

 

Figure 30. Context models created for the demonstrator and result of test analysis 

Focusing on skills and components: Figure 31 presents the artefacts created for modelling 
the configuration of the robot. The revised metamodel in the centre part contains just high-
level elements (mount point, skill component). An instance model of this metamodel should 
capture the actual configuration of the model (lower left). After changing some part of the 
model (e.g., modifying a component), the tool calculates all affected elements (e.g., skills 
affected by the component), and based on the context model descriptions selects those 
tasks that need to be retested (at the minimum). As it can be seen from the tool’s output in 
the lower right part, the tool can detect that with the currently modelled tasks some of the 
skills cannot be tested and records these uncovered elements. Moreover, the tool can be 
parametrized to select only one test for a given component or select all the tests relevant for 
the component. This can be useful to balance the testing effort and the confidence gained 
from testing. 
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Figure 31. Configuration models created for the demonstrator and result of test analysis 

5.3.2 The Test Classification Framework 

This section briefly summarizes the capabilities of the tools developed for test classification 
based on previous experiments. 

Support to the designer/user: The usage of the test classification framework can be sepa-
rated into two distinct phases: 

I. Define what to model, create metamodel to capture concepts and create initial in-
stance models (by robot designers). 

II. Modify the instance models according to the current change or reconfiguration, calcu-
late test classification (by robot user). 

The first phase is done usually in collaboration between modelling and domain experts (like 
in the case of the demonstrator with BME and PIAP), while in the second phase the created 
models can be modified and the tool can be used without extensive modelling or Eclipse ex-
pertise. 

The following steps need to be performed in the first, preparation phase: 

1. Creating the domain metamodels for test context, configurations or any other testing 
artefacts relevant for the test classification. Models need to be created as plain EMF 
models either with the Ecore tree editor or with Sirius graphical editor. Figure 32 pre-
sents an example screenshot for creating the robot configuration metamodel. 

2. Creating the queries and code for transforming metamodel elements to the internal 
test model representation (this defines what is considered a test or a testable element 
in the domain metamodels and how are they connected). Transformations are cur-
rently defined using the VIATRA model transformation framework3. 

3. Finally, initial instance models could be created to show how the metamodels can be 
used later by the tool users. 

In the second phase, the normal tool usage is as follows: 

1. Creating an initial checkpoint (CP) representing the current state of the models (this 
can be achieved by just pushing a button, see Figure 33). 

                                                
3
 http://www.eclipse.org/viatra/ 
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2. Modifying the model to perform changes: adding or deleting elements, modifying ele-
ment properties, etc. 

3. After all changes are done, calculating a new checkpoint. 

4. Finally, calculating the differences between the two model checkpoints: the tool will 
identify changed model elements and select necessary tests to cover those elements. 
This is again done by pushing a button; the user of the test classification tool does not 
have to be familiar with the internal workings of the tool. 

 

Figure 32. Creating the robot configuration metamodel  

 

Figure 33. User interface of the tool: “Execute CP” and “Calculate Diffs” buttons 

Genericity: The test classification framework offers common tools for different models. The 
domain metamodels can represent anything relevant from a testing point of view. For exam-
ple, in case of the PIAP demonstrator models can represent tasks and exercises in a physi-
cal test room, while for other robots models can also represent test context data for simulat-
ed or real environments (see in Section 5.3.3). 

Scalability: Scalability of tools was analysed in deliverable D34.20 in detail. Figure 34 pre-
sents some of the main findings. The tool was able to handle models with 500 elements and 
changes with 30 elements in seconds. The models created for the demonstrators consisted 
of usually 30-50 elements, therefore this order of magnitude for the handled elements is 
more than satisfactory for the envisioned use cases. Moreover, the underlying technologies 
(Eclipse EMF, VIATRA and VIATRA Query) proved to scale to thousands of model elements, 
therefore we see no threats towards scalability of the tooling. 
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Figure 34. Scalability assessment of the incremental testing tool 

 

5.3.3 The Test Context Generator Tool 

In Section 5.3.2 we mentioned that the Test Classification Framework can be used together 
with test context models by analysing the changes and triggering the generation of new test 
contexts. In this section we present the related Test Context Generator tool that constructs 
test context models specifying setups for real or simulated environments. Figure 35 over-
views the main steps of the test context generation approach. 

In the first step of the test context generation workflow, the test engineers have to define the 
following artefacts: 

 Context information, i.e., the relevant environmental and physical configuration that 
form the context of the system under test. 

 Coverage criteria which specify the required properties of the generated test suite, for 
example to cover potential types of obstacles that can occur in the environment. 

 Test objectives to express the properties which should be satisfied by the test suite, 
for example the obstacle avoidance in case of multiple obstacles with the minimum 
path of the robot. 

 

Figure 35. Test context generation approach 

Context information defines the types of objects of the environment such as furniture, obsta-
cles, actors etc. and their properties. In addition, context information defines also the basic 
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constraints how all these objects can be arranged. The test generator tool supports the defi-
nition of the context information in the form of an EMF metamodel in the Eclipse framework. 

Coverage criteria can be provided for the system under test in order to define which parts 
from the context model should be included in the test suite (while the other parts will only be 
covered in an ad-hoc manner). Coverage criteria can be expressed with the help of the VIA-
TRA Query language by defining patterns: the models resulting from the test generation will 
cover the possible instantiations of the prescribed patterns. 

Test objectives define the property of the test suite so that the test generation algorithm will 
try to minimize the value of this property. This helps guiding the test generation algorithm to 
provide relevant and low cost tests for the system. A test objective can be defined as result 
of a test objective function which is specified using the VIATRA Query language and Java. 
Various kinds of test objective skeletons are provided, this way even complex objective func-
tions can be defined with relatively small effort. 

As the next step in the test context generation workflow, the partial context models are gen-
erated. This set of models is conformant to the context metamodel and they fulfil the cover-
age criteria. From this set of partial models, the test generation algorithm generates the test 
contexts according to the test objective function. The result of the procedure is a set of test 
context models which satisfy the coverage criteria and minimize the objective function. 

As an example, let us consider a test context generation problem in case of the WP44 de-
monstrator (MIR robot that shall autonomously drive into an elevator). 

 

Figure 36. Test context metamodel 

Figure 36 presents the context in form of an EMF metamodel. It defines the basic building 
blocks of the environment such as floors, walls and obstacles such as boxes, robots, trolleys 
and humans. In addition, containment and other structural constraints are also represented in 
the metamodel. 

On the basis of this metamodel, we can specify coverage criteria with the help of the VIATRA 
Query language. As for now our goal is to cover all the arrangements in an elevator (into 
which the robot shall drive), we defined the VIATRA Query pattern depicted in Figure 37. 
This pattern will help us generate possible elevator configurations in which there are two 
boxes (obstacles) in the elevator at various places. 

  

Figure 37. Coverage criterion expressed as context pattern 
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As test objective function, we show the generation of test context models which try to mini-
mize the number of places that were not reached by the robot, in other words, to maximize 
the trajectory of the robot by placing objects into its way. In Figure 38, the definition includes 
the following: (1) generate test models trying to maximize the length of the robot trajectory to 
reach its goal, (2) use boxes to prevent the robot in reaching its goal, but (3) limit the number 
of boxes. 

 

Figure 38. Definition of the test objective functions 

On the basis of the context metamodel (Figure 36), the coverage criterion (Figure 37) and 
the test objective functions (Figure 38), the test context generation algorithm produces more 
than 126 different test setups. Some of them are depicted in Figure 39. The graphical syntax 
of the test contexts can be interpreted as follows: the robot pictogram represents the initial 
place of the robot (to start its mission), the elevator space is at the bottom of the figure (8 
places) with an elevator sign representing an admissible goal place, boxes represent physi-
cal obstacles the robot has to avoid. All the test contexts have different elevator configura-
tions. 

   

   

Figure 39. Test context models 

Using different test objective functions various other test goals can be supported. The gener-
ated test contexts can also be inspected by test engineers to select situations which seem to 
be interesting for simulator based testing or testing in a real physical environment. In case of 
changing the metamodel, the existing test suite can be classified by the Test Classification 
Framework in order to identify obsolete test contexts. 

5.3.4 Efficiency of Incremental Testing (An Example) 

In order to show the efficiency of incremental testing, we present an example that emphasiz-
es the importance of test selection in case of changes in the robot. 

The context contains three main blocks as shown on the left of Figure 29. The middle ele-
ment is a path that can have six different tasks on it:  

 line following,  

 narrow line following,  

 zigzag,  

 low light line following,  

 low light narrow line following,  
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 low light zigzag. 

Each of them exercises a slightly overlapping set of skills. In the start and end blocks, exer-
cises are placed as well that must be finished for successful testing. These can be the follow-
ing three:  

 inspection,  

 inspection in low light conditions,  

 grabbing a cone. 

A full test execution in this context requires re-testing all combinations of these exercises, 
which would mean re-testing of 54 tasks (3 different tasks on start and end blocks, and 6 
different tasks on the middle block). This would require significant amount of time and effort 
to perform, even not counting the fact that changing the layout of the test room also requires 
a measureable effort. 

The example instance model of the context can be found on Figure 40. 

 

Figure 40. Example context instance model 

The presented approach requires an instance model of the robot on which components can 
be changed that trigger re-execution of some tests. Then, these components must be 
mapped to skills of the robot. These skills are connected to specific exercises in the context. 
For example, the cone grabbing exercise uses the manipulator arm with the gripper. For the 
purpose of this example we used a robot instance model with various components and skills 
(e.g., gripping skill – gripper arm, distance calculation skill – ultrasound sensor, etc.). Also, 
for example purposes, we created a mapping between the skills and the exercises found in 
the context. The mapping connects gripping skill of the robot with the cone grabbing exer-
cise. 

Let us consider a development scenario, when the gripper on the robot is changed. Without 
incremental test selection, this would trigger re-execution of all 54 tasks. However, employing 
our approach on this problem may tackle this by reducing the number of tests to execute. 
The approach involves two different kinds of test selection procedures as mentioned previ-
ously. In the current case this would mean the following. 

 Without test selection: re-execution of 45 tasks 

 With test selection (re-test one): re-execution of 1 task (e.g., inspect – zigzag – grab) 

 With test selection (re-test all): re-execution of 18 tasks (all tasks where grabbing can 
be an exercise on one of the blocks). 
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6 Standardization Aspects 

In this chapter the standardization and certification related aspects of the methods are sum-
marized. Standardization is especially important in case of safety-critical systems where the 
development process shall typically follow the requirement of standards in order to assure 
certification. 

In general, safety certification follows two complementary approaches: 

 The standard-based approach means that the designer is recommended or required 
to follow certain guidelines. These specify the development and verification & valida-
tion techniques that should be used, the intermediate artefacts to be produced (speci-
fications, designs, test plans etc.), the kinds of reviews, tests, and analyses that 
should be performed, and the corresponding documentation. 

 The safety case approach provides an argument that a system is safe. The notion of 
“safe” is made precise in suitable claims about the system and its context, and the 
argument is intended to support these claims, based on evidence concerning the sys-
tem, its design, implementation, verification and validation. The approach can be ap-
plied recursively, so that claims about subsystems can be used as evidences in an 
upper level argumentation. 

Note that these approaches are not fundamentally different as the prescriptions of standards 
and guidelines can be considered as constructing a generic safety case: the required docu-
mentation of the processes and artefacts for a given system provides the evidence for an 
“instantiation” of this generic safety case, and the argumentation is implicit in the standards-
based approach. Standards are often considered as conservative and not well-tuned to novel 
characteristics of systems like context-awareness, adaptiveness, etc. An explicit safety case 
can be customized very precisely for a given system, and may provide assurance at lower 
cost than a standards-based approach. However, systematic processes and well-defined 
artefacts are needed to provide confidence in the soundness of a given safety case – this is 
where systematic procedures and techniques based on formal models come into considera-
tion, like in our case model-based incremental testing, and on-line verification with monitors 
constructed on the basis of formalized properties. 

In the following first the role of incremental testing and on-line verification in standard-based 
approach is discussed (Section 6.1 and 6.1), then the on-line verification is considered as 
providing an evidence in a safety case, leading to the idea of “runtime certification” (Section 
6.3). 

6.1 Incremental Testing in Safety Standards 

The notion of “incremental testing” is not included explicitly in standards. However, in case of 
changes and modifications in a system, regression testing is mentioned as one of the related 
techniques. Efficient regression testing needs similar test classification techniques that are 
developed in WP34. 

IEC 61508, the basic standard for functional safety of electrical / electronic / programmable 
electronic safety related systems includes the concept of regression validation that is rec-
ommended (R) for safety integrity level (SIL) 1, and highly recommended (HR) for SIL 2, 3, 
and 4 (see Part 3, Requirement 7.8.2, Table A.8 – Modification, and Part 7, C5.25). 

In case of software modification, regression testing and verification is required, and regres-
sion validation is used to ensure that valid conclusions are drawn from regression testing. It 
is admitted that complete regression testing of large or complex system usually requires 
much effort and time. When possible, it is desirable to restrict the regression testing to cover 
only the system aspects of direct interest (e.g., affected by a modification). In this partial re-
gression testing scenario it is essential to have a clear understanding of the scope of the 
partial testing and to draw valid conclusions regarding the tested status of the system. 
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Regarding our approach (Section 5), the following can be highlighted: 

 Our approach to test classification directly supports the requirement to have a clear 
understanding of the scope of the partial testing. Having performed the impact analy-
sis, that is necessary part of regression validation, the model based test classification 
framework can precisely represent and automatically select the test cases that are 
linked to the software parts that are impacted (and this way these tests shall be re-
executed). Tests classified as redundant can be omitted this way reducing the efforts 
and time of re-testing. 

 The role of test classification framework is extended: not only the changes in software 
parts, but also changes in the context and configuration can be handled and the re-
lated tests can be classified. This way regression testing is supported even in the 
case when there is no change in the software source code but in the environment as-
sumptions and component configuration. 

 Considering the properties for systematic safety integrity, it is noted that evaluation of 
results and regression test suites is a key benefit of model based testing (MBT). In 
our solution, MBT approach was followed also in case of context and configuration 
modelling and the related test generation and test classification. As rigorous model-
ling approach was applied with regard to context and configurations, objective evi-
dence of coverage is possible. By using the test classification and executing tests 
classified as re-testable, coverage is retained even in case of changes. 

 

6.2 On-Line Verification in Safety Standards 

On-line verification is a classic method that is included in safety standards. IEC 61508, the 
basic standard for functional safety of electrical / electronic / programmable electronic safety 
related systems contains several requirements and techniques that are related to the con-
cept of on-line monitoring. 

For the control of random hardware failures: 

 Part 7, Technique A.1.1. Failure detection by on-line monitoring. To detect failures by 
monitoring the behaviour of the E/E/PE safety-related system in response to the nor-
mal (on-line) operation of the equipment under control (EUC). 

 Part 7, Technique A.6.4: Monitored outputs: To detect individual failures, failures 
caused by external influences, timing failures, addressing failures, drift failures and 
transient failures. 

 Part 7, Technique A.9.3: Logical monitoring of program sequence: To monitor the cor-
rect sequence of the individual program sections. 

 Part 7, Technique A.9.4: Combination of temporal and logical monitoring of program 
sequences: To monitor the behaviour and the correct sequence of the individual pro-
gram sections. 

 Part 7, Technique A.9.5: Temporal monitoring with on-line check: To detect faults by 
temporal monitoring. 

For achieving software safety integrity: 

 Part 3, Requirement 7.2.2.8: The software safety requirements specification shall 
consider (among others) software self-monitoring. 

 Part 3, Requirement 7.4.2.7: The software design shall include, commensurate with 
the required safety integrity level, self-monitoring of control and data flow. On failure 
detection, appropriate actions shall be taken. 

 Part 3, Table A.2 for software design and development - software architecture design: 
Diverse monitoring techniques are recommended (R) for SIL 2 and SIL 3, and (on 
separated computer) highly recommended (HR) for SIL 4. 
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 Part 7, Technique C.3.4: Diverse monitoring: It is used to protect against residual 
specification and implementation faults in software which adversely affect safety. 

It is noted that diverse monitoring techniques (with independence between the monitor and 
the monitored function in the same computer) increase software complexity. 

Considering properties for systematic safety integrity, the application of diverse monitor tech-
niques on the same computer are characterized (with medium level of rigour, i.e., with objec-
tive acceptance criteria that give a high level of confidence that the property is achieved) as 
providing freedom from intrinsic design faults, simplicity and understandability, predictability 
of behaviour, and verifiable and testable design by implementing the minimum safety re-
quirements. 

Regarding our approach (Section 3), the following can be highlighted: 

 Our approach implements diverse monitoring because the monitor is generated on 
the basis of a property specification that is separated from the design models. Using 
our monitor, checking of events related to program sequence, inputs and outputs can 
be achieved, combined with temporal monitoring. Our method even extends this by 
offering the monitoring of context dependency and configuration dependency. 

 Another characteristic of our approach is the use of engineering languages with for-
mal semantics, to specify the properties to be monitored and to form the basis of au-
tomated monitor synthesis. According to the standard, the application of formal meth-
ods is characterized with completeness and correctness with respect to the safety 
needs to be addressed, freedom from intrinsic specification faults including freedom 
from ambiguity, understandability of safety requirements (as the languages are user-
and application-friendly), and capability of providing a basis for verification and valida-
tion. 

 

6.3 Run-Time Certification 

If the overall argumentation in a safety case is sound, it allows focusing on the evidences 
and assumptions that support the argument. The validity of certain kinds of evidences and 
assumptions can be assured by monitoring these at runtime. Moreover, if these assumptions 
and properties are formalized then construction of monitors can be automated, leading to the 
idea of runtime verification. 

Runtime verification can be used in the construction of evidence and argumentation with re-
spect to explicit safety goals. This approach of runtime certification is a relatively recent initia-
tive [22]: monitors that guarantee certain properties can be considered as evidence for the 
assurance case. 

This approach is especially usable in case of adaptive robotic systems operating in dynamic 
environments, where the monitors can detect any anomalies, invalid assumptions, or viola-
tion of essential safety properties. Thus reconfigurable, resilient, reasoning robotic systems 
(R5-COP systems) present a new application area for run-time verification and certification, 
especially focusing on reconfiguration and fault handling policies. The methods developed in 
WP34 may effectively support this approach. 
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7 Conclusions 

R5-COP progressed beyond the state-of-the-art by the provision of new V&V techniques that 
may also support safety certification. In concordance with the Technical Annex (Description 
of Work), the main results are as follows: 

 On-line (runtime) verification of reconfigurable systems. The difficulties of verifying a 
great variety of interactions and the adaptive behaviour are resolved by proper inte-
gration of design-time and run-time verification activities: design-time verification 
techniques are extended with novel run-time verification techniques that focus on 
monitoring those properties, especially robustness and safety ones, that cannot be 
guaranteed by design time verification due to unpredictable environment, variability of 
interactions, and run-time faults. The design time modelling and requirement specifi-
cation formalisms are adapted and extended to express the properties to be moni-
tored and this way to support the automated synthesis of monitors that are responsi-
ble for application monitoring, state evaluation, checking reconfiguration processes, 
and supervising adaptive fault handling. The on-line verification open ways towards 
runtime certification, in which certification related safety goals, evidences and argu-
ments are supported by the on-line verification activities. 

 Retesting of reconfigured systems. In the case of reconfigurable systems, test optimi-
zation regarding the re-testing of a new version can be supported by systematically 
re-using and adapting existing test cases that were developed for another configura-
tion of the same system. Selection, adaptation, and extension of test cases are sup-
ported by a novel model based method that is able to analyse the changes in re-
quirements (formalized in requirement models), the changes in the context of the sys-
tem (formalized in context models), and the changes in the internal components (for-
malized in configuration models). On the basis of this incremental analysis, redundant 
test cases, and gaps in the existing test suites are identified according to predefined 
coverage metrics, and this way the test adaptation and generation of new tests are 
triggered. This new method can be used in the design phase (to check configuration 
possibilities) as well as in maintenance phases (to check the behaviour of a concrete 
reconfigured version). 
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9 Appendix A 

The integration of the monitor into the Scout robot needed the following functions: 

std::mutex mutex; 

std::map<std::string,std::shared_ptr<bool>> timers; 

extern std::unique_ptr<ros::Publisher> publisher; 

 

void timer(std::shared_ptr<bool> active, int timeout, std::function<void()> 

callback) 

{ 

    std::this_thread::sleep_for(std::chrono::milliseconds(timeout)); 

    { 

        std::lock_guard<std::mutex> lock(mutex); 

        if (!*active) 

        { 

            return; 

        } 

    } 

    callback(); 

} 

 

void setTimeout(const char* event, int timeout) 

{ 

    if (timers.find(event) != timers.end() && *timers[event]) 

    { 

        std::cerr << "Overwriting timer: " << event << std::endl; 

        cancelTimeout(event); 

    } 

    timers[event] = std::make_shared<bool>(true); 

    std::string name(event); 

    auto callback = [name](){ evaluate(name.data()); }; 

    std::thread t(timer, timers[event], timeout, callback); 

    t.detach(); 

} 

 

void cancelTimeout(const char* event) 

{ 

    if (timers.find(event) == timers.end()) 

    { 

        std::cerr << "Timer does not exists: " << event << std::endl; 

        return; 

    } 

    std::lock_guard<std::mutex> lock(mutex); 

    *timers[event] = false; 

} 

 

void errorAction(const char* current, const char* last) 

{ 

    if (publisher) 

    { 

        std_msgs::String msg; 

        std::stringstream ss; 

        ss << "Event '" << current << "' is not allowed after '" << last << "'"; 

        msg.data = ss.str(); 

        publisher->publish(msg); 

    } 

} 

 


