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1111 Introduction

1.11.11.11.1 Summary

The deliverable presents the design of the high-level architecture for the Configurer Tool and 
the  Skill  Composer  tool-chain.  First  the  review  of  the  user  roles,  interactions,  and  the 
subsequent  requirements  is  presented.  The  requirements  are  mapped  into  a  modular 
architecture organized around an ontology based knowledge base, interfaced functionally to 
all kinds of foreseen users. Architecture modules are described shortly, then the algorithmic 
methodology providing the main functions of the system is shown in detail and summarized 
with respect to the components, the data formats, and the availability.

1.21.21.21.2 Purpose of document 

The  aim  of  the  document  is  to  present  high-level  design  of  the  decision  support  tools 
conceived in the Technical Annex (WP35), with general requirements summarized in the 
D35.10  "Requirements".  The  architecture  builds  upon  the  design  of  the  Skill  Model 
Knowledge Base, reported in the D13.11 "Skill Model Knowledge Base (tentative)", and now, 
in  the  D13.12.  "Skill  Model  Knowledge  Base  (final)",  as  its  central  component,  with  the 
accompanying  functional  components  providing  means  to  solve  configuration  related 
problems, drafted in the D13.20 "Configuration Model".

1.31.31.31.3 Partners involved

Partners and Contribution
Short Name Contribution
BME Architecture, analysis, review of methods and tools, conclusions

....
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2222 Decision support system - the aims

In the WP35 the development of two skill related decision support tools was planned, namely 
the Configuration Tool and the Skill  Composer Tool (R5-COP D35.10). The Configuration 
Tool was meant to provide the application user with the skill level configuration solution to the 
robotic system able to solve the application. The Skill Composer decision support system 
was intended to be the tool of robotic system designer, who would be able to experiment with 
various (software and hardware) implementation variants to obtain a realizable system. Both 
decision support systems were expected to be interactive,  to provide explanations to the 
decisions, and to provide tools to refine, re-configure the proposals when the conditions of 
the  posed  problems  (application  specification,  software/  hardware  component  supply) 
change.

Configuration Tool

The task of matching abstract application requirements to the available systemic software 
and hardware resources is decomposed into two mutually interdependent steps. First the 
skill configuration is developed, realizing abstractly the application requirements. This step is 
supported  by  the  Configuration  Tool.  An  available  skill  configuration  means  that  the 
application can be "solved" into a functioning robotic system (at least in theory), furthermore 
the  obtained  skill  configuration  serves  as  a  backbone  to  develop  feasible  component 
configurations. It also makes it possible to evaluate robotic configurations equivalent at the 
skill  level,  but  drawing  on  from  different  component  sets.  The  required  knowledge  is 
encapsulated in an ontology-based core knowledge base, the Skill Model Knowledge Base 
(SMKB),  equipped  with  services  supporting  ontology  reviewing,  transformation,  and 
reasoning. Skill modeling, in general, and the requirements for the Skill Model Knowledge 
Base  were  reviewed  and  summarized  in  the  D13.11.  Formal  model  of  the  Skill  Model 
Knowledge Base and its architecture is reported in the D13.12.

Skill Composer

Skill  Composer  is  a  decision  support  tool  to  find  out  suitable  software  and  hardware 
components realizing a given skill. The problem is involved due to a variety of available and 
mutually replaceable components and the natural hierarchy of skill  notion. In addition the 
numerical  parameters  appearing  naturally  in  the  component  specification  (for  example, 
execution time, power related requirements etc.) should be taken into account, aggregated to 
evaluate skills for efficiency and resource spending, elevating the usefulness of the decision 
support.

From the point of view of designing a full robotic system the services of the Configuration 
Tool and the Skill Composer functionally complement each other and to obtain a full view of 
how an application could be implemented as a robotic system (configuration), the services of 
both of them are needed.

With a sufficiently elaborated knowledge base and algorithmic background Skill Composer 
can  provide  a  software/hardware  instantiation  of  the  skill  configurations  proposed  by 
Configuration Tool. To achieve it the skill configurations (outputs of the Configuration Tool) 
must be passed over (by the user, or in some other way automatically) to the Skill Composer 
tool (see Fig. 1).

R5-COP_D35.20_v1.doc © R5-COP consortium Page 6 of 35





3333 Requirements and design decisions

In an abstract way the working of a decision support system can be conceived as:

problem in user format ⇒ problem in tool format

query in user format ⇒  query in tool format
tool query processing

solution in user format ⇐  solution in tool format

So  the  basic  requirements  should  address  the  kinds  of  users,  the  interfaces,  the 
transformations, and the processing.

Every knowledge intensive system has at  least  two kinds of  users:  system administrator 
responsible for keeping the knowledge (and other system services) ready to be used, and 
the true user bringing to the system problems to be solved (Sect 4).

Both users interact with the system in different way and require specific and different system 
interfaces (Sect 6). The interfaces interplay in the process of transforming the description of 
the problem on the user terms (as the user understands and handles it) to (and back) the 
description of the problem assumed by the built-in processing facilities (Sect 7).

Technically the typical processing services of an ontology based knowledge base (the Skill 
Model Knowledge Base is built from integrated ontology modules) is tracing the inheritance 
chains, establishing the existence of particular relations, and identifying concepts and entities 
based on queried concepts and relations (Sect 7.1). 

For the intended application field it is not enough. From the application point of view the Skill 
Model Knowledge Base (SMKB) should facilitate the configuration and the re-configuration of 
the robotic systems where typical inferences could be to evaluate the realizability of skills in 
particular  circumstances  (variants  in  system components),  or  to  identify  analogous skills 
feasible in  the modified circumstances.  To this aim the typical ontology based reasoning 
should be complemented and integrated with numerical evaluation capabilities (Sect 7.2), 
considering that skill or HW/SW components can possess numerical attributes to be matched 
with the similarly numerical attributes of the application.

Lastly in a number of less structured application we can bring the user problem format to the 
system format so close that the format transformation is almost trivial and does not constitute 
a design difficulty. Not so here. In the robotic field the user operates with various structured 
semi-graphic models of different semantic content, and the ontology knowledge base also 
means structured models (with no matching semantic content). So the question of the user 
format-to-system format transformation (and back) is far from trivial (Sect 7.4).

Functionally the system should realize services for the system administrator for:

� the maintenance of the SMKB itself: inserting, deleting, expanding, verifying skills and 
other descriptions and knowledge chunks,

� the  maintenance  of  the  database  components:  inserting,  deleting,  expanding, 
verifying component descriptions and other documents,

� the  maintenance  of  skill  descriptions  at  the  software/hardware  component  level: 
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inserting, deleting, expanding, verifying skill implementations with software/hardware 
components.

For the application user the realized services should be:

� provide easy to understand (native in the robotic design field) tools and interfaces to 
introduce the description of the problem to the system (the decision support tools),

� developing skill configuration for an application,

� summarizing/computing features of the software/hardware component coverage for a 
given skill,

� summarizing missing sub-skills and components, 

� computing/qualifying some feasibility measures of implementing an application with 
the proposed skill configuration and components,

� searching SMKB for skills by activity, resources, conditions, etc.

� checking a given robot skill capabilities (i.e. given a software/hardware configuration, 
which skills can be implemented, "skill discovery").

The listed issues were already partly taken into account in the design of the Skill  Model 
Knowledge Base where the following decisions were adopted (R5-COP D13.12):

� to integrate the skill model with the component model,

� to put the RA (Robotic and Automation) Ontology as the high level ontology over the 
skill model (Schlenoff 2012), (IEEE1872, 2015),

� to include a non-trivial option (i.e. going beyond the options defined in the standard 
OWL) for the numerical parameter modeling over components and skills.
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4444 Users

We can foresee three categories of users interacting with the system. System administrator, 
who is a knowledge engineer, but not necessarily knowledgeable in robotics, maintain the 
usability  of  the  knowledge-base  of  the  system.  An  ontology  knowledge  base  is 
technologically complicated and even when we will use already predefined public modules, 
like Protege plug-ins and embedded description logic reasoners, maintaining ontologies is 
not a task for the robot designers. 

Knowledge Engineer (KE) system administrator  oversees the up-dating of the ontology 
and checking it  for consistency.  He also technically oversees updating and verification of 
other  knowledge/data  storage.  He  is  responsibly  for  periodical  system  tests  and  for 
identifying causes of the erroneous functioning.

Taking  into  account  that  the  Upper  level  ontology  is  the  IEEE  Standard  Robotic  and 
Automation  ontology  (ORA),  which  is  under  continuous  development  (R5-COP D13.12), 
upon any new release of the standard the KE system administrator has to up-load it to the 
SMKB. The most involved task next is to "stitch" it with the lower level ontology components. 

Consider e.g. that in the current release of the ORA an individual robotic system "Care-O-
bot-3 " is connected to the concept of "semiAutonomousRobot", but the future release of the 
ORA will  already  contain  the  notion  of  "householdRobot",  or  "serviceRobot",  with  some 
specialized features. It is in the interest of more efficient reasoning to reconnect the Care-O-
bot-3 to the serviceRobot node, however it is retrograde in the inheritance and cannot be 
done automatically. Only and expert in the ontology and an expert in the robotics can do this 
task adequately. The KE system administrator can be both, but it is safer to assume that 
there is another  Robot Designer (RD) system administrator , who knows insides of the 
knowledge base to the point of efficiently cooperating with the Knowledge Engineer, but also 
provides domain knowledge. Besides helping  refining the connection between the Upper 
Level and the Middle Level ontologies (for details see the D13.12) RD system administrator 
is  responsible  for  maintaining  the  actuality  of  the  component  knowledge  and  database 
(introduction  of  the  new  classes  of  software  and  hardware  components,  introducing 
advanced versions of the existing components,  eliminating obsolete choices, refining skill 
and component descriptions). The simple addition of the new knowledge (individuals) to the 
knowledge base is relatively straightforward. It is the refinement which is more involved, can 
lead to inconsistencies, and demands the cooperation of the Knowledge Engineer and the 
Robot Designer system administrators.

A part of the Robot Designer system administrator task can be outsourced to the robotic 
community. Newly developed applications can introduce demands for skills not present in the 
system knowledge base, neither familiar to the RD system administrator himself. These new 
needs can be described in a controlled way and introduced into a remote (internet) database, 
from where they will be occasionally read, verified, and if sound, introduced in time into the 
system knowledge base.

The third category of users is the application user, i.e. a Robot Designer user , who asks for 
the decision support.  Robot Designer user in his own interest  can maintain four kinds of 
interactions with system. Robot Designer can learn about the task and the prospects of using 
the system by studying various documents provided by the system, manuals, data sheets, 
component descriptions, etc. Perhaps the most important of them will be a concise dictionary 
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5555 Interactions

Working  session  of  a  Robot  Designer  user  is  organized  around  three kinds  of  queries: 
queries revealing to the user system services and the GUI know-how,  application model 
building queries and the substantive queries about configurations and implementations.

5.15.15.15.1 Querying know-how

It would be advisable to provide the user the following informative queries, essentially based 
on the browsing of the system knowledge and data bases:

� browsing definitions of the RA ontology concepts,

� reviewing  the  skills,  the  component  classes,  etc.  names  used/accepted  by  the 
system,

� reviewing  particular  skill  definitions  based  on  their  relations  to  other  ontology 
concepts (presenting ontology chunks in a readable natural language),

� reviewing  the  collections  and descriptions  of  software  and hardware  components 
known to the system,

� reading FAQs, manuals, various repositories of suggested interactions,

� posing notes and questions to the system administrator.

The aim behind these services is to make the user familiar with the vocabulary accepted by 
the system and to help him to formulate legal models (i.e. unambiguously interpreted by the 
system).

5.25.25.25.2 Querying knowledge base for applications

After the user grasped the decision support functions offered by the system, the application 
designing session can start. First the user must introduce to the system the model of his 
problem,  building  it  from  scratch,  or  recalling  a  stored  model  for  extensions  and 
modifications.

Once the model of the user application is stored in the system and represented in the form 
native  to  the  system  reasoning,  this  model  can  be  matched  to  the  system  knowledge 
structures and particular questions can be answered on this basis. 

The system will probably keep an annotated trace of the user's session with the storage of 
the intermediate results, to be able to suspend it temporarily and to pick it up later, or to step 
back in time to make it possible for the user to introduce better models, knowledge, or to 
reformulate queries.

In the following RD stands for the Robot Designer user, and DS stands for the Decision 
Support system.



Presenting the problem  

RD introduces, through the designated interfaces, models of the application (see Sect 7.4), 
as semi-graphic SysML models supplemented by natural language texts interpretable by the 
system (Sect 7.3). It is information about the:

� environment, 

� tasks, 

� mission, 

� constraints, 

� performance demands, etc.

DS  evaluates the data and asks (if needed) for details. 

RD supplies further details. 

(DS transforms the models into the internal (OWL compatible) format, see (OWL))

Result: an internal representation of the problem stored for further analysis.

Developing skill configuration

RD identifies a stored problem, then asks for its skill-based evaluation. 

DS performs analysis (reasoning) and presents a list of feasible skill configurations. 

RD asks for ordering the list acc. to the supplied criteria, or RD asks for the best option acc. 
to the supplied filter (reasoning). 

RD asks for the resource and performance summary (reasoning).

Result: qualified feasible skill configurations for the problem (stored).

Implementing skill

RD identifies a skill, then asks for its component implementation. 

(RD can indicate some obligatory components to be taken into account in the evaluation).

DS performs analysis (reasoning) and presents a list of feasible skill implementations. 

RD asks for ordering the list acc. to the supplied criteria, or RD asks for the best option acc. 
to the supplied filter (reasoning). 

RD asks for the resource and performance summary (reasoning).

Result: qualified feasible skill implementation (stored).

Presenting robot system with variability options

RD  introduces  through  the  designated  interfaces  (as  semi-graphic  SysML  models 
supplemented by natural language texts interpretable by the system), robot specification with 
all alternative sensor/ actuator/ etc. component configurations.

DS asks (if needed) for details. 

RD supplies details. 

Result:  internal  representation  of  the  robot  system,  implicitly  together  with  all  its  system 
configurations, stored for further analysis.



Verifications

RAD asks to recall a particular problem and robot description.

RD asks whether this robot can solve the problem. 

DS recovers skill configurations found for the problem. 

DS compares (reasoning) possible skill configurations with the available robot configurations 
and presents a qualified list (acc. to performance demands). 

RD selects options and asks for resource and performance summary. 

RD asks for the summary, how the selected robot configuration relates to the actual settings 
(case of reconfiguration).

DS: If  no match possible,  DS presents the summary of the most essential  discrepancies 
between the problem requirements and the robot capabilities.

Result: internal representation of the robot configuration(s) suited to solve the problem, or 
optionally indications why the solution cannot be reached.

Remodelling the problem

RD asks to recover a particular problem. 

DS presents its input forms. 

RD introduces changes and asks for storage. 

DS verifies that the original skill configuration solution is valid/not valid for the changes and 
modifies it if needed (reasoning). 

If no configuration is valid, DS initiates (Developing skill configuration).

Result:  internal  representation  of  the  modified  problem  stored  for  further  analysis,  and 
optionally qualified feasible skill configurations for the modified problem..

Remodelling the robot

RD asks to recover a particular robot specification. 

DS presents input forms with content. 

RD introduces modifications and ask for storage. 

DS evaluates  the  modification  and remakes the  robot  internal  representation  (less/more 
configurations).

Result:  internal  representation  of  the  modified  robot  together  with  all  its  system 
configurations.

5.35.35.35.3 Querying system maintenance

Similarly a number of interactions must be provided for the system administrators.

KE system administrator, possessing deep knowledge about the system, does not require 
formatted  queries.  He  must  be  able  to  reach  the  internal  levels  of  the  representation 



(ontology) and processing (rules) directly. He can be helped by the purpose oriented editors, 
but such tools are already known and can be adopted here (Protégé).

RD system administrator is less knowledgeable and perhaps it would not be wise to give him 
rights to fumble with the deep components of the system. As his duty is primarily to advice 
the KE system administrator and to introduce new component and skill information, he may 
be provided by properly crafted input forms with the option that if  their information is not 
acceptable to the system, it is put aside to be consulted with the KE administrator.



6666 System architecture

6.16.16.16.1 Components

In the following we give a high-level design of the proposed system architecture. An open 
question not addressed in the design is to what extend make this system distributed. There 
are many options from the client-server kind of architecture to the downloadable stand-alone 
applications. The client side can be a simple web form based, or can be a downloadable 
component performing non-trival preprocessing and formatting. The following main compon-

ents of the system were identified (see their relations in Figure 4):

Knowledge Base

The primary knowledge repository of the system comprising ontologies, ontological axioms, 
and reasoning rules.  The principal  component  of this knowledge base is the Skill  Model 
Knowledge Base described in the deliverables D13.11 and D13.12. (R5-COP D13.11), (R5-
COP D13.12)

Document Database

The collection of  forms for providing descriptions and queries.  Storage of user sessions, 
results, and configurations. Storage for the information on individuals (software, hardware 
components), component data sheets. Storage of various documents, manuals, dictionaries, 
etc.

OWL Reasoner

Description Logic (DL) based reasoning component - an embedded fully functional Pellet 
reasoner (Baader 2005), (Horrock 1999), (Pellet).

Rule Reasoner

Emerald rule reasoner (Emerald) working with the SWRL rules (about the SWRL rules and 
their role in the OWL based reasoning see D13.12, and Sect 7.1, 7.2), but also with flexible 
numerical extensions and able to perform numerical computations over the DL reasoning 
level and to integrate them with logic based reasoning.

Skill Engine

Component transforming skill related user queries into the internal representation conform 
with that used in the knowledge base (i.e. ontology chunks in the OWL format, with numerical 
attributes).

Vocabulary and Grammar Dictionary

Collection  of  the  acceptable  vocabularies,  dictionary  definitions,  and grammar chunks to 
support the controlled natural language entries. (acceptable vocabularies bridge the officially 
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sanctioned notions from the ORA ontology standard, the notions proposed in various robotic 
glossaries (for more detail  see the D13.12) and the concept names used in the ontology 
definition in the knowledge base).

Natural Language Support

Controlled natural language interpreter and generator. Partially supported by the predictive 
text principle.

Skill Composer/ Configuration Query

The primary  user  GUI  to  conduct  sessions.  It  yields  the  possibility  to  formulate  queries 
addressing system knowledge base, previously introduced application and robot models, the 
relations of them, earlier results of the session, particular parameter data.

Application Model Builder

Component  responsible  for  the  administration  of  the  (UML/SysML  based)  models 
transformed into the internal OWL format of the knowledge base. 

UML - OWL Transformation

Model transformer between robot related SysML (and other) models and the OWL format 
used  in  the knowledge base.  OWL-to-UML  transformation  is  easy  and is  built-in  on  the 
standard basis into the ontology management tools. Not so the UML-to-OWL transformation 
(see Sect xxx). A problem to solve, as a standard solution to this problem does not yet exist.

Model Importer

User GUI making it possible to import SysML (and other) application and robot models.

Query GUI

User GUI to formulate queries. Structured as web forms with controlled natural language 
inserts.

Skill Descriptor Editor

The GUI for independent external experts to provide the system their ideas about skill and 
the information related to them.

Skill Description Forms

An interface to a remote server  collecting  skill  related data from the prospective  system 
users.  The aim is  to  enroll  independent  robotic  experts  in  the  expansion  of  the  system 
knowledge.

Document Browser

Document browser is a tool for the KE administrator to screen the content of the document 
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6.26.26.26.2 Languages for data representation

In the following a summary of the data and knowledge description languages is presented. 

The OWL ontology language will be used to describe skill knowledge, the knowledge about 
components  types  and  hierarchy,  furthermore  the  knowledge  about  the  application  task 
environment. OWL will appear in textual or graphical form on the ontology editing interfaces, 
and it will also serve as an internal representation in the reasoning rules. The OWL ontology 
language comes with different syntax: OWL2 Functional Syntax, OWL2 XML Syntax, (user 
friendly)  Manchester  Syntax,  RDF/XML  Syntax,  and  RDF/Turtle  Syntax  (the  internal 
representation used in rules will draw form the user-friendly Manchester syntax).

SWRL is a logical rule language, which makes it possible to define Horn-clause (i.e. multiple 
positive  conjunctive  premisses  and  a  single  positive  consequence)  rules  for  the  OWL 
ontology.  Rules  are formulated in  an abstract  syntax  abstracting  from the abstract  OWL 
syntax, but can be also presented in human readable form. Rules will be used amplify the 
efficiency  of  the  logical  reasoning  in  incorporating  numerical  data,  needed  to  express 
quantitative aspects of the application requirements and the parameters of the software and 
hardware components.

SysML is a visual modeling extension (dialect) of the UML, semantically extending the set of 
the  UML  diagrams  to  a  general  purpose  (physical)  system  modeling  language,  more 
appropriate for engineering applications. Both OWL (any syntax) and UML (SysML included) 
can be transformed into XML based descriptions (XMI XML Meta Interchange) to facilitate 
the  knowledge  transfer.  SysML  (and derived  UML  profiles)  will  be  used  by  the  user  to 
describe application task requirements and the expectations on various robot components.

JSON is a handy text file format structured in the user friendly way, with standard, or easily 
adaptable processing tools. I  will  be used to establish a well  structured database on the 
concrete software and hardware components.

6.36.36.36.3 Summary of the components and technology

Component Input/Output Data
Format

Technology/
Algorithm

OTS/ Internally 
Developed

Knowledge Base OWL (XML) Logical  (DL)  reason-
ing

Internally developed

Document Database XML, PDF, TXT,
JSON, graphic
formats

File directory.
Respective file R/W 

OTS

OWL Reasoner OWL, internal formats Logical reasoning OTS (Pellet)

Rule Reasoner SWRL, OWL (XML) Rule interpreter OTS (Emerald)
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Skill Engine OWL (XML) XML processing Internally developed

Vocabulary and
Grammar Dictionary

XML, TXT XML processing partial OTS/ Internally 
developed

Natural Language
Support

XML, TXT
HTML

XML processing
Web form processing

partial OTS/ Internally 
developed

Skill Composer/ 
Configuration Query

OWL (XML) XML processing Internally developed

Application Model
Builder

OWL (XML) XML processing Internally developed

UML - OWL 
Transformation

SysML/ OWL XML processing partial OTS/ Internally 
developed

Model Importer SysML (XML)
HTML

UML editing
XML processing
Web form processing

OTS

Query GUI HTML, TXT Web form processing partial OTS/ Internally 
developed

Skill Descriptor Editor HTML, TXT Web form processing partial OTS/ Internally 
developed

Skill Description
Forms

XML
HTML

XML processing
Client-server  opera-
tions

Internally developed

Document Browser HTML Web form processing

Knowledge Base 
Editor

HTML
OWL (XML), SWRL

Web form processing
Logical reasoning

Internally developed
OTS (Protégé, Pellet)

Data Importer HTML, XML Client-server  opera-
tions, browsing

OTS/Internally  de-
veloped

External Database XML, PDF, JPG Web technology OTS
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7777 Services and Algorithms

In this section we present the summary of formal methods underlying various algorithms to 
be  implemented  in  the  tool  and  involved  in  the  reasoning  and  building  and  interpreting 
queries. A part of this material parallels section on reasoning from the D13.12.

7.17.17.17.1 Logical reasoning with OWL-based ontologies

Logical reasoning is main tool to handle state-of-the-art formal ontologies. Logical reasoning 
can compute derive new logical facts from the logical knowledge base, or can decide that 
some  proposed  facts  are  consistent  with  the  knowledge  base.  In  the  tool-chain  logical 
reasoning is needed in the Knowledge Base and the OWL Reasoner to compute answers to 
the user problems, and in the Knowledge Base Editor, to compute answers related to the 
consistency of the proposed extensions to the knowledge base.

The OWL and OWL2 ontology languages are equipped with proper formal semantics and 
this makes it possible to use logical reasoning to answer different inference problems with 
regard to an ontology. The most common inference problems are as following:

� Ontology Consistency: O ontology is consistent (or satisfiable) if a model of O exists.

� Ontology Entailment: O ontology entails O1 ontology if every model of O is a model of 
O1.

� Ontology Equivalence: O and O1 are equivalent if O entails O1 and O1 entails O.

� Class Expression Satisfiability: CE class expression is satisfiable w.r.t. O ontology if 
CE is not empty.

� Class Expression Subsumption: CE1 is subsumed by a class expression CE2 w.r.t. O 
if  the  CE1  class  expression  (concept)  is  a  subset  of  the  CE2  class  expression 
(concept).

� Instance Checking: if a particular instance is a member of a given concept.

The OWL ontology language is equivalent  with  a particular  kind of  so called Description 
Logic (DL) (SHOIN), see (Baader 2005), (Horrock 1999). In the DL knowledge base there are 
schema (terminological) and data axioms. In its simplest form, terminological axioms can be 
used to introduce names (abbreviations) for complex descriptions. A TBox is constituted by a 
finite set of terminological axioms which define subsumption and equivalence relations on 
classes and properties. The assertional formalism (ABox) can be used to state properties of 
individuals. Assertional axioms or Assertions introduce Individuals, i.e. instances of a class, 
into  the  knowledge  base  and  relate  individuals  with  each  other  and  the  introduced 
terminology. A knowledge base for the reasoning is just a TBox plus an Abox (see Fig. xx).

The atomic reasoning options for the TBox and the ABox make it possible to implement the 
reasoning schemes addressing the ontology and listed above.
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Tbox contains terminology axioms: definition axioms, e.g.:

ServiceRobot ≐ Robot ⊓ ¬ IndustrialRobot, 

or  General Concept Inclusion axioms, like:

ServiceRobot ⊑ ∃ CONTROLS.User

Abox contains individual information, e.g.: ServiceRobot(care-o-bot-3) or

CONTROLS.User (john, care-o-bot-3)

In the Tbox we can check the satisfiability, the subsumption, the equivalence, the disjunctive-

ness. In the Abox we can check the consistency, the instance check, the instance retrieval, 
the individual realisation, and the satisfiability of a concept.

Fig. 5. Tbox and Abox knowledge base in the DL logic.

Reasoning schemes for the Tbox and the Abox can be model based (tableaux methods) or 
proof based (resolution method). The essence of the tableaux method is to construct the 
model of the negated query from the structure of the query itself. The construction branches 
out, but if every branch leads to contradiction, the negated query cannot be satisfied, which 
can be used to decide the subsumption of the examined concepts. The tableaux method is 
complete, sound, and terminating. As a result it builds a graph - a  model of the query, which 
contains built-in individual information which can be used to answer the query.

Another option is to use the general proof schemes of the first order logic (resolution). The 
resolution is contradiction complete, i.e. can proof a contradiction whenever one exists. To 
use the resolution we must thus to negate the query, and when the contradiction is found, it 
means that the query is true. The individual information is usually found in the unification and 
substitution needed to perform the resolution step.

There  are  many  OWL  reasoners  available.  They  may  have  different  computational 
characteristics as they take a different approach in the inference problem. The most notables 
are  (Pellet),  (HermiT)  and  (Fact++),  all  supporting  the  OWL API,  a  Java  programming 
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interface for OWL ontologies and reasoners.

Reasoning with rules in OWL implementation
Due to the nature of OWL, complex domain knowledge cannot be represented easily. To 
overcome limitations of OWL, the integration of description logics (DLs) and rule languages 
(typically Datalog) was investigated  (Krotzsch 2011). There are several approaches which 
allow syntactically combining both OWL axioms and rules in ontologies and the combined 
formal semantics defines how the hybrid language is understood.

Semantic Web Rule Language (SWRL) is a proposal for extending OWL knowledge bases 
with the Unary/Binary Datalog RuleML sub languages of the Rule Markup Language (Rule-

Markup). The proposal extends the set of OWL axioms to include Horn-like rules. It  thus 
enables Horn-like rules to be combined with an OWL knowledge base. SWRL rules are an 
implication between an antecedent and consequent, both consisting of zero or more atoms. 
Atoms can be of the form C(x), P(x, y), sameAs(x, y) or differentFrom(x, y), where C is an 
arbitrary  OWL class  expression,  P  is  an  OWL property  expression,  and x,  y  are  either 
variables, OWL individuals or OWL data values.

Extending OWL with SWRL rules results in a non-decidable logical formalism: there is no 
algorithm  that  can,  in  finite  time,  compute  whether  an  axiom  is  entailed  by  a  SWRL 
knowledge base. To overcome this limitation, SWRL has an alternative interpretation with 
limited expressive power: the DL-safe semantics. DL safety is a simple idea which is implicit 
in many rule systems and has been used in other contexts to regain decidability: variables in 
DL-safe rules bind only to explicitly named individuals in the ontology. Adding this restriction 
is sufficient to make SWRL rules decidable.

When extending the DL reasoner with rule-based reasoning capability one could create a 
hybrid  reasoning  engine,  where  the  two  knowledge  bases  are  synchronized  after  each 
inference step. A popular implementation of a hybrid DL reasoner is the SWRLJessTab plug-
in (Jess-Protégé) that  supports the execution of  SWRL rules using the Jess rule engine 
(Jess).  A serious limitation of this approach besides performance considerations is that the 
rule engine may not capture all OWL axioms and as a result possibly inconsistent knowledge 
can be inferred by the hybrid system.

A cleaner approach is a rule engine specifically designed to work on OWL knowledge bases.

In this case rule inferences are carried out by constantly querying the DL reasoner, hence all

data is stored in a single location. The SWRL reasoner implemented inside Pellet is designed

accordingly.  In  the  tool-chain  such  rule  interpreter  is  embedded  into  the  Emerald  rule 
interpreter (Emerald) (Sect 7.2), which will be used in the Rule Reasoner component.

7.27.27.27.2 Numeric types and numerical reasoning

At the reasoning level one of the main problems is the semantically sound integration of the 
conceptual logic reasoning with the parametric numerical reasoning. Consider an example 
from Fig. 6. The walking skill requires among others a working motor, which in turn requires 
energy (battery).  So the skill  in  principle  can be implemented,  and the  application  level 
requirement  for  walking  can  be  satisfied.  But  the  devil  is  in  detail.  The  application 
requirement specify 1h walking (or 10 km walking). Is the problem solved? Not really. The 
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battery capacity, coupled with the motor energy consumption numerically qualifies the skill, 
which  only  then is  comparable  to  the application  demands.  So without  certain  ability  to 
handle numerical knowledge, answering the user queries would be pointless.

The description logic behind OWL has very limited inference capabilities for numeric values, 
but has very good means in defining the value space for complex data models, also with 
numeric properties.  More advanced calculations can be implemented with rule languages 
built on top of the OWL data model. (this Section parallels the respective section from the 
D13.12).

In the tool-chain the numerical evaluation (numerical reasoning) is built-in into the Emerald 
Rule Interpreter (Emerald), the primary reasoning engine of the system (used in the Rule 
Reasoner component). Emerald has its own rule language (based on SWRL) with a concrete 
syntax derived from OWL Manchester syntax and the semantic is an extension of SWRL DL-
safe language semantics.

Data types in OWL

OWL DL uses the XML Schema Definition Language (XSD) (OWL2-Syntax Sec. 4, W3C-
XSD) for data type definitions and semantics. The most frequently used primitive data types 
for numerical data are decimal, integer, float and double.

Decimal  is the set of numbers that can be obtained by dividing an integer by a non-negative 
power  of  ten.  The  lexical  space  for  decimal  numbers  can  be  defined  by  the  regular 
expression: “(\+|-)?([0-9]+(\.[0-9]*)?|\.[0-9]+)”.

Integer  is  derived  from decimal  by  having  no fraction  digits  and disallowing  the  trailing 
decimal point, resulting in the standard mathematical concept of the integer numbers.

The value space of integer is the infinite set {...,-2,-1,0,1,2,...}.

The float  data type is patterned after the IEEE single-precision 32-bit floating point data type, 
and similarly  double  is patterned after the IEEE double-precision 64-bit floating point data 
type, well known from many programming languages. Floating point numbers are often used 
to approximate arbitrary real numbers.

OWL2 defines two additional numeric data types, owl:real  and owl:rational , with the value 
spaces “all real numbers” and “all  rational numbers”, respectively.  The owl:real data type 
does not directly provide a lexical representation, while owl:rational has a simple lexical form 
defined by the grammar

numerator '/' denominator

where both numerator and denominator are integers.

Data  types  similar  to  numeric  values  include  booleans  (xsd:boolean)  and  time  instants 
(xsd:dateTime, xsd:dateTimeStamp).

Boolean  represents the values of two-valued logic: {true, false}.
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Declaration(NamedIndividual(r5:Object1))

DataPropertyAssertion(r5:position r5:Object1 "[10,0,20]"^^r5:vector)

DataPropertyAssertion(r5:rotation r5:Object1

"[[0.5,0.866,0],[-0.866,0.5,0],[0,0,1]]"^^r5:matrix))

The value space of the data type can be restricted with a data type definition, but according 
to the OWL specification such data types have empty lexical spaces. The language does not 
allow such data types to occur in literals. Hence either one defines the allowed values of the 
data type in a data type restriction, e.g. using a regular expression:

DatatypeDefinition(r5:vector DatatypeRestriction(

xsd:string xsd:pattern "\[[0-9]*(\.[0-9]+)?(,[0-9]*(\.[0-9]+)?)*\]"))

Or the datatype can be used in literals, e.g. to introduce data property values:

DataPropertyAssertion(r5:rotation r5:Object1 

"[[0.5,0.866,0],[-0.866,0.5,0],[0,0,1]]"^^r5:matrix)

Since we introduce the data type to store data, we should skip the restrictions from the onto-
logy and enforce valid values with our custom reasoner.

Inferencing with numeric values in DL using facets

Facets are the only way to introduce constraints on the values on numeric data in OWL DL. 
The language has four constructs to bound the value space for a data type according to the 
data type’s ordering:

• maxInclusive: inclusive upper bound, e.g. xsd:integer[<= 10]

• maxExclusive: exclusive upper bound, e.g. xsd:integer[< 10]

• minInclusive: inclusive lower bound, e.g. xsd:integer[>= 10]

• minExclusive: exclusive lower bound, e.g. xsd:integer[> 10]

The bounding values of facets are strictly constants. As an example, one can define an adult 
as follows:

Class: Adult

EquivalentTo: Person and (age some xsd:integer[>= 18])

Two data-property values of the same instance cannot be compared in OWL DL.

Rule extensions and numeric inferences

SWRL allows for complex conditions combining data-property values, as variables may be 
bound to these values, and n-ary predicates can be used to evaluate functions. E.g. the area 
of  a  square  can  be  defined  in  the  following  SWRL  rule,  using  the  built-in  function 
“swrlb:multiply”:

Rectangle(?r), hasHeight(?r, ?h), hasWidth(?r, ?w), 

swrlb:multiply(?h, ?w, ?a) -> hasArea(?r, ?a)
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SWRL built-in functions

SWRL includes built-in functions that operate on the standard data types of OWL. These 
built-ins are based on the reuse of existing built-ins in XQuery and XPath.

Built-ins area divided into groups: comparisons, math, boolean, strings, etc. The previous 
example included a math built-in for multiplication. As an example, a comparison built-in can 
be used to define squares as rectangles with equal sizes, a definition beyond the expressive 
power of OWL:

Rectangle(?r), hasHeight(?r, ?h), hasWidth(?r, ?w), swrlb:equal(?h, ?w) -> Square(?r)

Math Built-Ins cover addition, subtraction, multiplication, division, integer division, modulo, 
power,  unary addition,  unary minus,  absolute value,  ceiling and floor limits,  two kinds of 
rounding, sine, cosine, and tangent.
Some reasoning engines allow for the extension of SWRL built-ins. With this mechanism, 
one  can  extend  the  numeric  capabilities  of  the  language  to  custom data  types.  As  an 
example, matrix multiplication can be defined as a custom built-in function in Pellet with the 
following Java class:

private static class MatrixMultiply implements GeneralFunction {

    public boolean apply(ABox abox, Literal[] args) {

        // first two arguments are the matrices to multiply

        Matrix A = new Matrix(args[0].getLexicalValue());

        Matrix B = new Matrix(args[1].getLexicalValue());

        Matrix AB = A.multiply(B);

        // the 3rd argument is the result of the multiplication

      args[2] = abox.addLiteral(ATermUtils.makeTypedLiteral(AB.toString(), MATRIX));

    }

    public boolean isApplicable(boolean[] boundPositions) {

        //the built-in is applicable for three arguments only

        return boundPositions.length == 3;

    }}

Emerald built-in functions

Emerald is an expert system built on top of OWL and SWRL, with a custom rule language 
with  additional  capabilities (Emerald).  The system also  allows  for  automated information 
collection from an end user by asking for relevant information wrt. a goal statement.

In Emerald functions can have object variables, and the whole ontology is accessible from 
within the function implementation. As a result functions are not limited by their fixed arity, 
but can query arbitrary-sized complex data structures. 

7.37.37.37.3 Controlled natural language processing

Controlled natural  language is  an approach to bring closer the natural  and contradictory 
requirements  of  the  human user  interacting  at  the system interface with  the information 
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system. Human user has command of a flexible, universal and informal language tool, the 
computer system has command of equally universal formal language tool.  The controlled 
natural language connect both worlds and can be used as an effective input and output tool. 
In the tool-chain in can be used at any user interface (Skill Description Editor, Query GUI, 
Model  Interpreter,  Document Browser,  Knowledge Base Editor,  Data Importer)  where the 
user is given the possibility to introduce free textual descriptions.

Controlled natural language is such artificial language which in the interest of the successful 
computer processing limits the vocabulary, the grammar, and the semantics, yet keeping the 
natural language character of the developed language.

An important property of the controlled languages is that they retain the natural character. 
Sentences written in the controlled language are easy to understand, to interpret by humans. 
In case of controlled languages tailored for particular  application the grammar can shrink 
even to some tens  of  rules.  A vocabulary of  a hundred (let  it  be a  thousand)  words  is 
generally enough for every serious application (but the controlled languages are of course 
expandable).

In a number of the controlled natural languages the design of the grammar rules and the 
vocabulary is  aimed not  only  at  the  easy computer  processing,  but  at  the unambiguous 
knowledge  representation  also.  Sentences  formulated  in  such  logic  based  controlled 
natural  languages  can  be  transformed  into  first  order  logic  sentences.  The  primary 
application field for such languages is the design of knowledge repositories (ontologies) and 
the  facilitation  of  the  knowledge  base  development  for  designers  not  versed  in  formal 
methods. Such languages frequently contain built-in knowledge query grammar rules and are 
equipped with reasoning engines.

Rabbit language can be used to edit ontologies in the OWL format (Rabbit). Similar tool is 
the Sydney OWL Syntax (SOS), which not only makes it possible to design OWL ontologies 
by people not versed in its details, but also makes it possible to translate the ontologies into 
plain English. Let us mention still the Controlled Language for Ontology Editing (CLOnE).

In the planned decision support  tool the role of  the controlled language is  envisaged as 
follows.  Minimally  it  can be used to generate comprehensible descriptions about various 
knowledge chunks and data stored in the system knowledge and data bases. The true gain 
will  be  if  the  controlled  language  would  help  at  the  input,  facilitating  for  the  user  the 
unambiguous introduction  of  the textual  information assisting  the  semi-graphical  models, 
towards a better transformation into the system internal formats. The mentioned option that 
the logic based controlled languages are directly representable in logic which is also in the 
background of the ontologies could help much.

7.47.47.47.4 Model transformations

The greatest  challenge in the design of the present decision support  tool is perhaps the 
Robot Designer user interface (in the Model Importer component). The thinking of the user is 
structured and governed by various diagrammatic models. To divert him from them would 
mean a serious handicap and the possibility that the model of the application will be distorted 
and/or under-defined.

One  could  develop  a  well  structured  GUI,  with  structured  input  forms,  where  specific 
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information  should  be  introduced  being  controlled  by  the  form structures,  captions,  and 
controlled language. To design such GUI well, to obtain a meaningful user input, would mean 
however in practice that the GUI designer reproduces informally the user models.

User models are formulated in the UML and in the UML extension SysML. The decision 
support system works internally with the OWL. The transformation between the OWL models 
to the UML models is solved and is a built-in feature of the ontology editors. Not so the 
transformation from the UML models to the OWL models.

There is a number of reasons, why such transformation is not a trivial one (Kiko 2008). The 
main issue is  that  these languages were devised to fulfil  different  purposes.  While OWL 
supports the representation of knowledge about a system, UML was developed primarily to 
support  the  construction  of  a  (software)  system.  UML  schemes  are  models,  but  the 
ontologies are not models in the same sense. As a result (Kiko 2008):

� Models focus on realization (ontologies do not)

� Ontologies are for run-time knowledge exploitation (models are not)

� Ontologies are for Representing Web Based Information (models are not)

� Ontologies are formal (models are not)

� Ontologies can support reasoning (models can not).

There are further differences also:

� Global scope and first-class status properties (In the OWL the general semantics of 
the properties is independent of a specific domain and range context. The UML does 
not sanction global scope of attributes and associations because of the closed-world 
interpretation placed on these constructs)

� Unique  Name  Assumption  and  Synonyms  (OWL  meets  these  requirements  by 
allowing the definition of synonyms for classes, properties and individual descriptions, 
UML does not)

� Open-World  vs.  Closed-World  Assumption  (The  UML  is  oriented  towards  data 
modeling and system construction so the represented knowledge is implicitly viewed 
as being complete. OWL, in contrast,  interprets models as potentially representing 
partial knowledge).

� Profiles (The UML has the concept of a profile. The OWL does not)

� OWL  does  not  use  an  extra  packaging  construct  to  separate  terminological 
knowledge from extensional knowledge.

� Sufficient conditions and defined vs. primitive concepts (The OWL implements this 
feature by applying two terminological axioms, distinguishing the defining statement 
from the  defined expression,  and using  anonymous class  descriptions.  The UML 
does not provide native assistance in the definition of sufficient conditions or defined 
classes,  since  the  UML  is  intended  to  define  constraints  that  have  to  hold  in  a 
concrete version of a represented system).

� Meta classes (The UML does not support meta-classes directly).

� Associations (The UML does possess some representation-oriented constructs that 
are  not  directly  available  in  OWL:  n-ary  associations,  qualified  associations, 
bidirectional  associations,  and  association  classes.  Two  UML  constructs  – 
aggregation and composition – are not translatable to OWL).

The different assumptions used with OWL and UML often lead to different interpretations of 
common language constructs. As a result, it is impossible to translate OWL ontologies into 
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UML models and vice versa without the loss or corruption of information (Kiko 2008).

The situation is difficult but far from hopeless. There are multiple approaches and attempts to 
solve this problem, assuming some constraints minimizing the listed difficulties (Viademonte 
2010), (Zedlitz 2012a,b). As both the UML and the OWL are organized around the hierarchy 
of abstractions (meta models, domain models, concrete models) there are attempts to build 
the transformation at the meta level (Zedlitz 2012a,b, 213), i.e. transform a concrete model to 
its meta level, via meta levels to the other side, then to the concrete model. Such approach 
bears  advantage  of  being  particular  representation  independent  (like  Functional-Style 
Syntax,  Turtle  Syntax,  OWL/XML  Syntax,  Manchester  Syntax,  etc.  (OWL)),  however 
semantic finesses, which disappear at the meta level are difficult to be ported.

 
Fig. 7.  The Ontology UML profile class-oriented stereotypes (from (Kuo 2011))

To be successful the authors made an interesting simplification. They restricted the UML 
class models. They were interested in the structural schema of an information system and 
did not have to take the behavioral schema into account.

The UML models can be focused on a particular domain by the mechanism of the profiles 
and stereotypes. In (Viademonte 2010) authors made a low level approach, designing UML-
OWL transformation for a particular (enterprise model) profile. They built the correspondence 
between the needed UML and OWL concepts,  but  encountered difficulties with  some of 
them. An additional reported difficulty was the dependence of the designed transformation on 
the specific UML modeling tools. It was necessary for them to hard code specific features, 
subject to specific software platform, XML encoding versions and namespaces as well. It was 
also  necessary to take into  account  the  discrepancies  among distinct  APIs  for  ontology 
processing and ontology editors.
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Fig. 8   XSLT principle: extensions of present UML tools for ontology development (from 

(Gasevic 2004), (Djuric 2005))

In  (Gasevic 2004), (Djuric 2005)) (see also  (Bridging-UML-and-OWL)) the authors built the 
Ontology Definition Metamodel (ODM) and the Ontology UML Profile (OUP) – a UML Profile 
that supports UML notation for ontology definition. They organized the transformation via the 
two-way mappings between OWL and ODM, ODM and OUP, and from OUP to other UML 
profiles. Their OUP used the standard UML extension and customization mechanisms, like 
stereotypes,  tag definitions, tagged values,  and constraints. Stereotypes enabled defining 
virtual subclasses of UML meta-classes, assigning them additional semantics. The authors 
expected that the designed OUP will:

� offer  stereotypes  and  tags  for  all  recurring  ontology  design  elements,  such  as 
classes, individuals, properties, complements, unions, etc.;

� make specific  ontology modeling  and design elements easy  to represent  in  UML 
diagrams;

� encapsulate ontological knowledge in an easy-to-read format;

� make  possible  evaluation  of  ontology  UML  diagrams  e.g.  for  the  possible 
inconsistencies;

� support ODM, hence be able to represent all ODM concepts.

The mapping from the OUP models to the OWL was realized via the XSLT with a set of rules 
(i.e. XSLT templates) matching XMI constructs and transforming them into equivalent OWL 
primitives. Some of the additional difficulties are reported in (Gasevic 2004).

An important  add-on is  the work  of  (Zedlitz  2013) on data formats,  because the known 
approaches for UML-to-OWL (and reverse) transformations have neglected the problem of 
minute but important differences in data mapping. 

Before we go further one must notice that nobody as yet attempted to transform from the 
ULM to the OWL models of the complexity adequate to describe the robotic systems.

What can we learn from the literature for the design of the user GUI? First of all that the 
transformation is possible, but it would be an errorr to be too general. The reported difficulties 
are substantial. The current approach (under detailed design) is of (Gasevic 2004) with the 
definition of a specialized OUP for the SysML schemes, and the careful choice of (Zedlitz 
2012a,b)  not  to  tackle  all  kinds  of  the  SysML  models  (leave  out  the  behavior),  then to 
account for finesses and the difficulties in the properly tailored model transformation. The 
design tool will be a special purpose SysML(static)-to-OWL tool, not general, but well tailored 
to the needs of the configuration modeling.
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8888 Conclusions and open questions

The deliverable proposes a high-level architecture design for the decision support tool chain 
intended to help the robotic application designer in the configuration and verification of the 
robotic system solution. The scope of the application problems was drawn from the use case 
descriptions in the D11.10 and the abstraction level of the decision support is focused on the 
notion of robotic skills and system components realizing those skills. For this purpose Skill 
Model  Knowledge Base was analyzed and developed in  D13.11 and D13.12.  The initial 
requirements regarding the tools were established in the D35.10 and further developed here. 
The scope of the configuration and verification problems is treated in the D13.20, and it is 
also where from the view of the user side modeling tools and user-system interactions came.

The system is to be implemented in the T35.4 and T35.5, and will be reported in the D35.40. 
The expected test environment for the tool-chain will be a robotic system configuration sub-
problem dealing with various configurations and implementations of object handling (object 
detection, object recognition) capability. Such sub-problem lies at the heart of every robotic 
problem, where the robot must interact with the object rich environment, and can be realized 
with a variety of sensors and information processing algorithms. For the testing purposes the 
required  knowledge  base  elements  and  component  database  items  will  be  introduced 
manually into the tool-chain.

The tool-chain design brought into light also a number of difficult issues and open questions 
influencing the development and the implementation of the decision support tool-chain:

� The planned system is in many aspects experimental and pioneering. In the field of 
robotics there are no (known) similar developments on the decision support for an 
automated or semi-automated configuration and re-configuration.

� Many  methodological  aspects  are  new,  with  no  experience  for  problems  and 
solutions.  Good  trade-offs  are  unknown  and  perhaps  one  of  the  most  important 
implicit aims of the present development is to gain enough experience.

� As mentioned before, ontologies evolve, and especially the ORA ontology evolves. 
Considering that the ORA ontology is in the core of the designed system, it is to be 
expected  that  the  system  will  be  (has  to  be)  regularly  up-dated,  modified,  and 
changed. 

� Not  everything  (interaction)  is  equally  well  algorithmizable,  not  every  conceivable 
algorithm is  equally efficient.  The logical reasoning is knowingly hard in time and 
memory (Horn clause rules fare better), and there is the exciting and key question of 
the model transformations.

� Even the partial solution to the SysML-to-OWL transformation problem will be one of 
the most important results obtained during the support tool design.

� It must be noted that for a moment  free-hand in handling skills (names, definitions, 
relation to other skills, relation to the robotic system components) is actually possible 
because these notions are not yet regulated by any conceptual standard. However if 
such  standard  will  appear,  the  system  (knowledge  base,  reasoning,  model 
transformations) must be corrected and adjusted, consequently the system must be 
re-designed.

� Lastly it must be also mentioned, that although the proposed architecture covers with 
its components the required functionality of the tool-chain, particular components can 
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be designed at varying level of complexity, leading to different versions of the tool-
chain.  For  example  there  could  be  a  version  without  the  Skill  Description  Editor 
components,  or  without  the option for  the transfer of  data from the external  data 
bases. The spectrum of the file formats in the storage can also be limited, etc.
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