
Budapesti M¶szaki és Gazdaságtudományi Egyetem

Méréstechnika és Információs Rendszerek Tanszék

A framework for the Dependability analysis
of UML-based system designs with

maintenance

Diplomaterv

Készítette Konzulens
Hegedüs Ábel Dr. Varró Dániel

Prof. Andrea Bondavalli
Gönczy László
Dr. Paolo Lollini

May 20, 2009

Budapesti M¶szaki és Gazdaságtudományi Egyetem

Méréstechnika és Információs Rendszerek Tanszék

DIPLOMATERV FELADAT (ezt adják. . .)

Hegedüs Ábel
szigorló villamosmérnök hallgató részére
(nappali tagozat villamosmérnöki szak)

A framework for the Dependability analysis of UML-based system
designs with maintenance

(a feladat szövege a mellékletben)

A tervfeladatot összeállította és a tervfeladat tanszéki konzulense:

Vég Béla
adjunktus

A záróvizsga tárgyai: Els® tárgy
Második tárgy
Harmadik tárgy

A tervfeladat kiadásának napja:
A tervfeladat beadásának határideje:

dr. Diplomatervfelel®s András dr. Tanszékvezet® Gábor
adjunktus, diplomaterv felel®s egyetemi tanár, tanszékvezet®

A tervet bevette:
A terv beadásának dátuma:
A terv bírálója:

MELLÉKLET

A framework for the Dependability analysis of UML-based system
designs with maintenance

A feladatkiírást a tanszéki adminisztrációban lehet átvenni, és a leadott munkába ere-
deti, tanszéki pecséttel ellátott és a tanszékvezet® által aláírt lapot kell belef¶zni (ezen
oldal helyett, ez az oldal csak útmutatás. Fénymásolat nem jó, ezért mindenki igényeljen
megfelel® számú eredeti iratot az adminisztrációban).

Dr. Varró Dániel
adjunktus

HALLGATÓI NYILATKOZAT

Alulírott Hegedüs Ábel, a Budapesti M¶szaki és Gazdaságtudományi Egyetem hallgatója
kijelentem, hogy ezt a diplomatervet meg nem engedett segítség nélkül, saját magam
készítettem, és a diplomatervben csak a megadott forrásokat használtam fel. Minden
olyan részt, amelyet szó szerint, vagy azonos értelemben, de átfogalmazva más forrásból
átvettem, egyértelm¶en, a forrás megadásával megjelöltem.
Tudomásul veszem, hogy az elkészült diplomatervben található eredményeket a Bu-

dapesti M¶szaki és Gazdaságtudományi Egyetem, a feladatot kiíró egyetemi intézmény
saját céljaira felhasználhatja.

Budapest, May 20, 2009

Hegedüs Ábel
hallgató

Contents

Contents

Contents VII

Kivonat XI

Abstract XIII

Introduction 1

1 Preliminaries 5
1.1 System lifecycle . 5

1.1.1 Faults, errors and failures . 5
1.1.2 Maintenance . 6
1.1.3 Monitoring . 6

1.2 System modeling . 7
1.2.1 Uni�ed Modeling Language (UML) 7
1.2.2 UML pro�les . 8
1.2.3 Modeling and Analysis of Real-time and Embedded systems 8
1.2.4 Service-Oriented Pro�le (UML4SOA) 8

1.3 Dependability properties of systems . 10
1.4 Dependability modeling . 11

1.4.1 Petri Nets (PN) . 11
1.4.2 Multiple-Phased Systems (MPS) . 13
1.4.3 Dependability Evaluation of MPS (DEEM) 14

1.5 Reactor Protection System case study . 14
1.5.1 System description . 15
1.5.2 Failure possibilities of the RPS . 16
1.5.3 Maintenance policy of the RPS . 16

1.6 Financial case study . 17

2 Related methods and techniques 19
2.1 Modeling and analyzing dependability properties with UML 19
2.2 Analysis tools . 21

3 Modeling Systems with Maintenance in UML 23
3.1 Overview of the complete pro�le . 23
3.2 Extension model for MARTE . 25
3.3 The core metamodel . 26
3.4 System package . 26
3.5 Maintenance package . 28
3.6 Model Library . 29
3.7 Extending the UML4SOA pro�le with dependability and maintenance . . . 30

VII

Contents

3.7.1 Non-functional service contracts . 30
3.7.2 Provider Dependability Characteristics 31
3.7.3 Provider Maintenance Characteristics 32

4 From UML designs to Intermediate Dependability Models 35
4.1 Intermediate Model (IM) . 35

4.1.1 Nodes . 36
4.1.2 Structures . 37
4.1.3 Maintenance . 39
4.1.4 Relations . 41

4.2 From the UML models to the Intermediate Model 41
4.2.1 Creating Structure Elements of the IM 42
4.2.2 Creating Fault-tolerance Elements of the IM 43
4.2.3 Creating Maintenance Elements of the IM 44
4.2.4 Creating Relations between Structural Elements 45
4.2.5 Automatic Fault-tree creation . 46

4.3 Intermediate model from non-functional service contract 48
4.3.1 IM elements for the Provider dependability characteristic 48
4.3.2 IM elements for the Provider maintenance characteristic 49

5 From the Intermediate Model to the Dependability Model 51
5.1 Deriving the Phase Net from the IM . 51

5.1.1 De�nition of the Maintenance Schedule Table(MST) 51
5.1.2 The MST creating algorithm . 52
5.1.3 Production of the Phase Net from the MST 53

5.2 Creating the System Net subnets from the IM 54
5.2.1 Basic subnets . 55
5.2.2 Fault-tolerance structure subnets . 55
5.2.3 Maintenance subnets . 60
5.2.4 Propagation subnets and repair constraints 65

6 Implementation 69
6.1 Metamodeling . 70
6.2 Graph transformation . 71
6.3 VIATRA2 model transformation framework 73

6.3.1 Modelspace . 73
6.3.2 Navigation in the modelspace . 74

6.4 UML-IM transformation . 75
6.4.1 Metamodels . 75
6.4.2 UML-IM Transformation structure 76

6.5 IM-DSPN transformation . 77
6.5.1 DSPN metamodel . 77
6.5.2 IM-DSPN Reference metamodel . 78
6.5.3 IM-DSPN Transformation structure 79

7 Dependability model generation for the case study 83
7.1 Reactor Protection System Case Study . 83

7.1.1 UML models of the RPS . 83
7.1.2 IM model created from the UML models of the RPS 85
7.1.3 Dependability model created from the IM model of the RPS 88

7.2 Financial Case Study . 90

VIII

7.2.1 Intermediate model of the Balance Validation service 90
7.2.2 Dependability model of the Balance Validation service 91
7.2.3 Dependability property for the case study 92

8 Conclusion and future work 93
8.1 Concluding remarks . 93
8.2 Possible future enhancements and extensions 94

Nomenclature 97

Bibliography 99

IX

Contents

X

Kivonat

Kivonat

Dolgozatomban egy olyan keretrendszert alakítottam ki, amely képes annotált UML-alapú

rendszerek megbízhatósági analízis végrehajtásához használható modelljeinek automatikus

létrehozására. A módszer �gyelembe veszi a rendszerkomponensek egyéni megbízhatósági

paramétereit továbbá a rendszerben de�niált karbantartási stratégiákat és tevékenységeket.

Napjaink összetett rendszerei olyan komplexitással rendelkeznek, hogy a fejleszt®knek

szükségük van olyan eszközökre, amelyek lehet®vé teszik ezen rendszerek magas szint¶ funk-

cionális leírását és a megfelel® viselkedés speci�kálását. Fontos tényez® továbbá ezen rend-

szerek tervezésekor a végleges termék megbízhatósági tulajdonságainak ismerete. Azonban

a megbízhatósági tulajdonságok számításához precíz matematikai (megbízhatósági) mo-

dellekre van szükség amelyeken mennyiségi analízis végezhet®.

Tekintve, hogy ezeket a számításokat tervezési id®ben kell elvégezni, a megbízhatósági

modelleket a rendszer speci�kációja alapján kell létrehozni. A modellek létrehozásához

azonban olyan szakemberre van szükség, akinek megfelel® ismeretei vannak mind a spe-

ci�kációs, mind a matematikai modellek formalizmusából. Nagyméret¶ rendszerek esetén

azonban még ezen ismeretek birtokában is fáradságos feladat a megbízhatósági modell

létrehozása, továbbá sok a hibalehet®ség. Ezért szükség van olyan módszerekre amelyek

képesek automatikusan létrehozni a megbízhatósági modellt a speci�kációs modellb®l, ezzel

áthidalva a két modell közti szakadékot.

A dolgozatban de�niált keretrendszer egy olyan új UML pro�l használatát javasolja,

amely a beágyazott és valós-idej¶ rendszerek tervezéséhez segítséget adó, széleskörben hasz-

nált MARTE pro�lt terjeszti ki a rendszer karbantartásának és monitorozásának leírására

alkalmas elemekkel. Továbbá a dolgozatban de�niálok olyan karakterisztikákat, amelyek-

kel a szolgáltatás-orientált rendszerek tervezéséhez használható UML4SOA pro�l alapján

készített nem-funkcionális szolgáltatási szerz®déseket kiegészítve lehet®vé válik ezen rend-

szerek megbízhatósági analízise.

A keretrendszerben de�niált automatikus modellgenerálás lépéseit modelltranszformá-

ciók segítségével lehet megvalósítani. A transzformációk a VIATRA Eclipse-alapú modellt-

ranszformációs keretrendszerben kerülnek megvalósításra a VIATRA metamodellezésre és

transzformáció de�niálásra használható nyelveiben MDA alapon. Mind a VIATRA haszná-

lata, mind az MDA alapú megvalósítás garanciát ad a módszer jöv®beli kiterjeszthet®ségére

és integrálhatóságára.

XI

XII

Abstract

Abstract

In this document a novel framework is de�ned which can automatically generate models

for dependability analysis of annotated UML-based systems. The method is capable of

dealing with the dependability properties of the system component along with the mainte-

nance policies and activities de�ned for the system. Developers of complex systems today

use modeling languages like UML to specify, document and visualize the requirements,

functionality and behavior of their product. Often extension or pro�les are used to grasp

the characteristics of domain-speci�c systems. Furthermore the non-functional properties

such as availability or fault-tolerance are important especially in embedded and real-time

systems hence the quantitative evaluation of these properties are required at design-time.

However evaluation can only be carried out on precise mathematical models the creation of

which is not trivial and needs a modeling expert with insight to both the developed system

or its speci�cation language and the mathematical formalism used for the dependability

models.

In order to relieve the developer from the tiresome and error-prone task of model cre-

ation new methods have to be created to bridge the huge gap between the speci�cation and

dependability models. The method de�ned in this document provides automatic depend-

ability model generation through the usage of a novel UML pro�le. This pro�le extends the

industry standard MARTE pro�le which is widely used for the development of embedded

and real-time systems with the concepts of maintenance and monitoring. Additionally the

Service-Oriented Pro�le is extended by de�ning new characteristics for the non-functional

service-contracts and thus the method provides support for the dependability evaluation

of systems with service-oriented architecture.

The de�ned method is implemented in the Eclipse-based VIATRA model transformation

framework which provides tools for creating the metamodels and transformation de�nitions

required for the automatic model generation from the annotated UML models. The method

was created according to the Model-Driven Architecture (MDA) paradigm and involves an

intermediate model that acts as a transition between the speci�cation and dependability

models. Both the use of the VIATRA framework and the embracing of the MDA paradigm

assures the possibility of future extensions.

XIII

XIV

Introduction

Introduction

During the dawn of information technology the �rst applications created for the earliest

computers were small and simple due to the limited resources such as memory, storage and

processing power. As computers evolved, becoming more and more powerful, programming

languages were created to overcome the challenges of developing larger applications. During

the decades the computing power (or more speci�cally the number of transistors in a

processor) increased according to the famous Moore's Law. Simultaneously new languages

have appeared which strived to allow the description of applications on higher abstraction

levels.

In today's information society applications reached a complexity level which can not be

modeled using regular programming languages. In order to support developers in specify-

ing, documenting and constructing the artifacts of a complex product modeling languages

emerged. The Uni�ed Modeling Language (UML) [51] is an industry standard modeling

language of the Object Management Group (OMG). UML is widely used in software engi-

neering for modeling systems in development partly because its visualization capabilities

and support for creating abstract models. Additionally UML is created with the purpose

to provide a standard way for extending the core language for domain-speci�c needs.

Although UML can be used to describe the many aspects of an application, the system

models created using it only describe the structure and behavior of the system components.

While this information is su�cient for developing the application itself but it excludes

important aspects which are essential during the operation of the completed product. The

maintenance and monitoring aspects are often left out of the system model and are dealt

with once the product is ready. It is important to understand that these aspects have such

impact on the properties of the system that their inclusion is necessary for the correct

evaluation of the system model.

The developers of complex business applications quickly embraced the Service-Oriented

Architecture (SOA) paradigm [19] that introduces an infrastructure of loosely coupled

components which provide functionality through interoperable services. However to fully

exploit the full potential of these concepts modelers need to be able to describe the char-

acteristics of these systems in the UML language. Hence the Service-Oriented Pro�le

(UML4SOA) [33] was created to extend the UML language with the notion of SOA.

Apart from the increasing complexity of applications the estimation of non-functional

properties such as dependability and performance became a challenging task for the devel-

opers especially for embedded, fault-tolerant and high-availability systems. Low abstrac-

1

Introduction

tion level mathematical languages were invented to provide precise modeling capabilities

and to be the basis of qualitative and quantitative analysis.

Real-time and embedded systems represent a special domain where reliability, fault-

tolerance and timing properties are of utmost importance and these aspects have to be

considered during the speci�cation and development. The Modeling and Analysis of Real-

time and Embedded systems (MARTE) pro�le [38] extends the core UML language with

the elements required to express these systems.

It is important to note that the non-functional properties required from safety-critical

services and high-availability embedded or real-time systems are very similar hence MARTE

is often used for modeling service-oriented systems as well along with the Service-Oriented

Pro�le when applied. Furthermore the designing of embedded and mission-critical systems

(e.g. aerospace applications) are converging towards a service-based paradigm as well.

Motivation

Non-functional properties of critical systems carry such importance that they have to be

calculated in design-time in order to assure the proper characteristics for the developed

system. Mathematical models can be used for evaluating these properties but only a

modeling expert familiar with both the developed system model and the mathematical

language is able to create the required models by hand.

In order to free system modelers from the need to have a deep knowledge of mathemat-

ical languages and to provide support for the quantitative dependability analysis of UML

models these mathematical models should be created automatically instead of by hand.

However it is not su�cient to generate a dependability model from the UML models

without assuring that the created model is a sound approximation of the concrete system.

The results of the dependability evaluation performed on models created from known

systems must resemble the dependability properties of these systems and also be close to

the results acquired from the analysis of hand-made models created by modeling experts.

Furthermore to ensure the correct evaluation of a system designed in UML the state-of-

the-art pro�les (MARTE and UML4SOA) have to be extended with the ability to model

maintenance and monitoring aspects of these systems.

Problem

The UML models are high-level abstract models using numerous diagrams with explicit and

implicit, semantic and syntactic connections between elements while dependability models

are low-level mathematical models with a limited building blocks (i.e. usable elements).

Since the creation of dependability models is a di�cult task even for a given system and

hand-made by modeling experts novel methods are required to bridge the gap between

the system and dependability models. Automatic methods should be used to create de-

pendability models from a more abstract, high-level description without the participation

of the system designer. Although the creation of the dependability model requires addi-

2

Introduction

tional information about the system, this information should be represented in the system

modeling language that the designer is already familiar with.

Innovation

The main topic of this document is the de�nition of a framework which can be used for

the automated generation of dependability models from annotated UML diagrams. The

method possesses the following important features:

• UML diagrams which are annotated with the stereotypes de�ned in a new

pro�le are used. This pro�le extends the MARTE pro�le with maintenance and

monitoring capabilities. By de�ning these elements the information required for the

dependability evaluation can be represented in UML.

• Non-functional service contracts are extended with dependability and

maintenance characteristics. This extension provides the designers of SOA appli-

cations with the ability to evaluate their system with the inclusion of the properties

of external or internal services.

• Intermediate model is de�ned as a transition between the UML and de-

pendability models. The intermediate model includes elements to represent the

maintenance and failure characteristics of the system. The fault-tolerance is repre-

sented using fault-trees.

• The transformation steps are de�ned both from UML to the intermediate

model and from that to the dependability model. The steps are described in

great detail to include every construct of the models.

• A novel algorithm is de�ned for creating a perfectly staggered mainte-

nance schedule. The algorithm is able to synchronize the many maintenance poli-

cies de�ned for the system components.

• The framework for automatic execution is described along with the imple-
mentation steps. The metamodels and transformations required for the method

are speci�ed.

Approach

The novel method de�ned in this document is created using the Model-driven Architecture

paradigm. The UML pro�le de�ning the stereotypes used for annotating the system mod-

els is created in compliance with the Eclipse Modeling Framework (EMF) [12] and thus it

is modeling tool independent as long as the tool complies with EMF. The UML models

created in an appropriate modeling tool are imported in the modelspace of the VIATRA2

model transformation framework. The VIATRA2 framework provides metamodeling and

3

Introduction

graph transformation capabilities which are used to create the metamodels for the inter-

mediate and dependability models and the transformations responsible for creating these

models from the UML models.

The imported UML model is �rst transformed to an intermediate model which works

as general model representing every information about the system that is required for the

dependability evaluation. Furthermore a reference model is created to store the connection

between the elements in the UML model and the intermediate model.

Next the intermediate model is transformed into the chosen dependability model (Multiple-

Phased Systems are used in the document) and an other reference model is created to

store the relation between the intermediate model elements and the dependability model

elements. Finally the dependability model is exported in the input format of the analysis

tool using a code generation transformation.

Structure of the thesis

The document is structured as follows:

• The related technologies and theory are introduced in Chapter 1 along with the

description of one of the case studies used as a running example throughout the

document.

• In Chapter 2 the related literature, methods and techniques are introduced.

• Next the new UML pro�le de�ned to include maintenance and monitoring is described

in Chapter 3 along with the extension to the non-functional service-contracts of the

UML4SOA pro�le.

• The de�nition of the intermediate model and the transformation steps generating the

intermediate model from the UML models are de�ned in Chapter 4

• The transformation steps generating the dependability model from the intermedi-

ate model and the algorithm for creating the maintenance schedule are de�ned in

Chapter 5.

• The application of the method is illustrated on the two case studies together with

possible dependability properties de�ned for evaluation in Chapter 7.

• Finally the conclusion of the document and some possible future extensions are dis-

cussed in Chapter 8.

4

Chapter 1

Preliminaries

The method de�ned in this document is built on numerous standards, methods and theo-

retical topics which are introduced in this chapter to ease the understanding of the details

of the method and the basic ontology used throughout the document. First the topic of

system lifecycle is introduced brie�y in Section 1.1 along with the possible malicious events

(i.e. faults and failures) and the techniques used to detect and correct them. Next the

paradigm of modeling is described along with the introduction of the Uni�ed Modeling

Language which is a modeling standard in Section 1.2. After that the properties used for

describing the dependability of a system are introduced in Section 1.3 which is followed by

Section 1.4 containing the introduction to the mathematical models capable of capturing

the characteristics of systems and evaluating their dependability properties. Finally a Case

Study is described in Section 1.5 which will be used as a running example throughout the

document.

1.1 System lifecycle

The lifecycle of a system includes all phases of its existence from design and development,

through production, operation and maintenance to phase-out or disposal. When engineer-

ing a system it is important to plan for the phases of the lifecycle after implementation

and production is �nished and the system starts its operation. In order to prepare for the

support and maintenance of the system the possible faults, errors and failures have to be

considered, the strategies dealing with their occurrence have to be de�ned and dedicated

monitoring systems have to be planned for detecting the events indicating the state changes

in the system.

1.1.1 Faults, errors and failures

A failure of a system or its part is a state or condition of not meeting a speci�ed objective.

An element that failed can no longer operate correctly or generate correct responses to

requests. An error is the part of the state or condition of the system that may cause a

subsequent failure, the failure occurs when an error reaches the service interface and alters

the service. An error is detected if its presence in the system is indicated by an error

5

1. Preliminaries

message or error signal that originates within the system. Errors that are present but not

detected are latent errors. A fault is the supposed cause of an error and is called active

when it produces the error and dormant otherwise. The fault can be either random or

intentional, permanent or transient and it may originate from a human or physical source.

The origin of the fault can also be internal or external and introduced in the system during

design or operation. It is also important to note that this classi�cation is a function of

the system hierarchy level. A failure in the lower level appears as a fault on the level

above [50].

1.1.2 Maintenance

The practice of preventing malfunctioning of a system, performing routine actions which

keep the system functioning and correcting any failure or error as it occurs is called main-

tenance. The maintenance policy de�nes when the maintenance is carried out or how often

and how long the system remains during maintenance. A corrective policy indicates that

maintenance on the system or its components is performed after a failure is detected but

preferably before it reaches the boundary of the system (i.e. before the system fails). A

preventive policy is aimed to uncover and remove faults before they might cause errors

during normal operation. These latter faults may have occurred since the last preventive

maintenance actions, or can be design faults that have led to errors in other similar systems

[50]. A maintenance policy is also often referred to as a strategy.

A maintenance policy de�ned for a system contains an arbitrary number of activities

which specify the actual tasks that are executed on the system or a component when it is

under maintenance. An activity may consist of �nding and eliminating the fault or error

in a component (repair), exchanging the failed component to a new one without searching

for the error (replace) or executing a series of tests and checks to determine the existence

of an error and correcting it if found (overhaul).

1.1.3 Monitoring

While maintenance can be executed to keep the system running correctly, corrective main-

tenance can only operate with e�ciency if the state of the system and its components are

known at any time with high accuracy. The process of dynamic collection, interpretation

and representation of information concerning the functional state of the system and its

components is called monitoring [30]. In order to describe the monitoring of a system,

both the dedicated data collector, parser, inspector systems and the mode of the monitor-

ing have to be de�ned. The data can be gathered on a time or event-driven base and it can

be done automatically or with human intervention. The monitoring of a given informa-

tion or component can be either continuous (for example a measured value is constantly

watched) or intermittent (for example a heartbeat signal is sent periodically to a compo-

nent). The monitoring and maintenance of a system is highly interconnected and both

have to be considered when designing the system.

6

1.2. System modeling

1.2 System modeling

The engineers of large enterprise applications and complex, embedded or safety-critical sys-

tems required a process that enabled them to express these systems in a way that enables

scalability, security, and robust execution under stressful conditions. Furthermore their

structure - frequently referred to as their architecture - must be de�ned clearly enough

that maintenance programmers can �nd and �x a bug that shows up long after the original

authors have moved on to other projects [51]. Modeling is the designing of the system or

application before production or implementation. In this section UML, the OMG mod-

eling standard of software engineering is introduced with further focus on its extension

possibilities called pro�les.

1.2.1 Uni�ed Modeling Language (UML)

The Uni�ed Modeling Language is modeling standard that provides engineers with the

expressive power to specify, visualize and documents models of systems including their

structure and design. The UML 1.3 standard has been released by OMG in 2001 and saw

several updates in the following years [52]. The UML 2.0 standard has been released in 2005

[53] and extended the earlier versions, for the sake of simplicity the abbreviation UML will

always refer to the 2.x version from now on. The �exibility of UML allows the modeling

of applications including any type of software and hardware elements operating on any

operating system, implemented in any programming language and communicating on any

network. UML also supports the Model-Driven Architecture (MDA) software engineering

paradigm which enables engineers to create composable, cross-platform and middleware

independent applications [40].

The UML standard specify a thirteen types of diagrams that can be divided into three

categories. However it is important to remember that there is a di�erence between an

UML model and the set of diagrams it contains. While the diagram is only an abstracted

graphical representation of the system the model contains deeper semantic information as

well such as documentation attached and the implicit connections between the diagrams [6].

The three categories are the following:

• Structure diagrams that represent the static application structure including the

various software and hardware elements of the system, their attributes and relation-

ships.

• Behavior diagrams can be used to model the dynamic behavior of the system

and its elements, also representing the di�erent requirements toward the system, the

overall �ow of control in the system and the internal changes of state of components.

• Interaction diagrams which describe the data and control �ow between the dif-

ferent elements of the system as well as specifying the timing constraints and the

sequence of messages during the lifespan of the collaborating elements.

7

1. Preliminaries

1.2.2 UML pro�les

The UML standard includes a generic extension mechanism called pro�le to customize mod-

els for speci�c platforms or domains such as �nancial applications or systems in aerospace

or healthcare environments. The de�nition of a pro�le can contain stereotypes, tagged

values and constraints that restrict the model elements they are applied to. It can also

identify a subset of the UML metamodel, specify additional semantics expressed in natural

language and common model elements expressed in the terms of the pro�le.

Some standard pro�le examples include pro�les for CORBA, Enterprise Application

Integration, Quality of Service and Fault Tolerance Characteristics, Schedulability, Perfor-

mance, Time and System Engineering [42].

1.2.3 Modeling and Analysis of Real-time and Embedded systems

The Modeling and Analysis of Real-time and Embedded systems (MARTE) pro�le adds ca-

pabilities to UML for model-driven development of real-time and embedded systems (RTES)

and provides support for speci�cation, design, and veri�cation/validation stages. The mod-

eling parts provide support required from speci�cation to detailed design of real-time and

embedded characteristics of systems. The model-based analysis is also a concern and

MARTE provides facilities to annotate models with information required to perform spe-

ci�c analysis [38].

The advantages of using MARTE are the following:

• It introduces a common modeling style for both the hardware and software aspects

of a RTES for improving the communication between developers.

• It enables interoperability between development tools used for speci�cation, design,

veri�cation, etc.

• It provides means to construct models that may be used to perform quantitative

analysis of systems. Both the hardware and software characteristics and the real-

time and embedded features of the system can be taken into account.

Figure 1.1 shows the architecture of the MARTE pro�le. The two concerns of the pro�le,

the design model that provides support for modeling the real-time and embedded systems

and the analysis model which is used to annotate the models to support veri�cation and

validation, both share commons concerns. These are included in the shared MARTE foun-

dations package which contains the pro�les for describing time and the use of concurrent

resources. The annexes package contains extension pro�les and a prede�ned library that

can be used by engineers to denote their real-time and embedded applications.

1.2.4 Service-Oriented Pro�le (UML4SOA)

The Service-Oriented Architecture provides methods for the development and integration

of software systems whose functionality is provided by interoperable services. The use of

services introduces an infrastructure of loosely coupled components that interact with each

8

1.2. System modeling

Figure 1.1: The architecture of the MARTE pro�le [38]

other through service operations. In order to provide engineers and modelers with means

to exploit the full potential of these concepts, the UML standard had to be extended with

speci�c elements which are geared towards expressing the new concepts on the right level of

abstraction [33]. The SENSORIA research project is an IST project funded by the EU with

the aim to develop a novel comprehensive approach to the engineering of software systems

for service-oriented architectures where foundational theories, techniques and methods are

fully integrated in a pragmatic software engineering approach [48].

Figure 1.2: Main concepts in the Service-Oriented Architecture Pro�le [33]

The Service-Oriented Pro�le de�nes a domain-speci�c language for service-oriented sys-

tems. The main concepts introduced by SOAs are shown in Figure 1.2, which illustrates

both the overview of the structural and behavioral aspects. The following concepts are

introduced for the structural and behavioral view of such systems:

• Services are a de�ned set of functionality which is implemented by the component

that provides the service and which is used by components that require the service.

• Components are software elements of the system that provide services by imple-

menting them as ports and require services by using their functionality.

9

1. Preliminaries

• Interfaces contain the operations of the services, a provided interface contains oper-

ations implemented by the service itself while required interfaces contain operations

that the service uses and which must be implemented by other services.

• Protocols which de�ne the behavior of their associated service.

• Implementations that de�ne the internal behavior of components they implement.

However it is not enough to cover only the structural and behavioral view of the SOAs as

they are used for modeling and implementing complex business applications. Therefore the

business goals, policies and non-functional properties of services are also covered. Great

emphasis is placed on the composition, or orchestration, of services and the UML4SOA

pro�le provides elements for modeling the complete behavior speci�cation of a composed

service.

1.3 Dependability properties of systems

The dependability of a system is the collective term that describes the availability perfor-

mance of a system and its in�uencing factors: reliability, maintainability and maintenance

support performance [28]. These non-functional properties are highly important for both

RTES and SOA systems as they are designed to operate in environments where failure to

provide functionality or service can have enormous cost both from �nancial, in�uential or

physical aspects. Therefore it is essential that these properties are calculated as precisely

as possible during the design and operation of such systems. The most common properties

used are reliability and availability.

Reliability is the ability of a system or component to provide its required functionality

or services under given conditions for a speci�ed period of time [29]. Reliability is often

de�ned as a probability which can be expressed as (1.1), where f(t) is the failure density

function and t is the length of the period of time. The cumulative distribution function of

T is represented by F (t).

R(t) = Pr{T > t} =
∫ ∞
t

f(x)dx = 1− F (t), where F (t) =
∫ u

−∞
f(u)du (1.1)

It is important to note that reliability is restricted to given conditions and a period of time

because no system can be designed for every condition and for in�nite time. A system that

is above a certain complexity level is certain to fail eventually in given conditions.

Availability is the ratio of total time the a system or a component is functional (ie.

provides its services and capable of being used) during a speci�ed period and the length of

the period. Availability can represented by de�ning the status function Fs(t) as (1.2) then
availability A(t) and steady-state availability A can be expressed by (1.3).

Fs(t) =
{

1,functions at time of t

0,otherwise

}
(1.2)

10

1.4. Dependability modeling

A(t) = Pr{Fs(t) = 1}, A = lim
t→∞

A(t) (1.3)

The steady-state availability property is often used as the measure for the quality of a

service or system. When partners agree on a service contract, the provider of the service

agrees to a certain level of availability and a given fee that it will pay if it can not meet the

requirement. On the other hand, the requester of the service agrees to pay for the service

as long as it functions on the agreed level.

Other properties can be de�ned such as maintainability, safety, integrity or survivabil-

ity. Maintainability can be speci�ed as the probability that a component or system will be

restored to a given condition within a period of time. Safety is described as the absence

of serious consequences on the user or environment in case of failure. Integrity can be

speci�ed as the absence of improper alterations on the target system or component. Sur-

vivability can be de�ned as the ability of the system to remain functional after a natural

or man-made disturbance (ie. disasters or physical damage).

1.4 Dependability modeling

As already mentioned knowing the dependability properties of a system is essential, in

many cases before the system is completed. Furthermore the properties of the components

used to construct the system are important in order to create a system with a given quality

level. Many modeling techniques were developed for describing systems on an abstract,

mathematical level where analysis and evaluation can be performed. In this section the

paradigm of Petri Nets is introduced along with its di�erent extensions.

1.4.1 Petri Nets (PN)

The Petri Net is a widely used mathematical modeling language for the description of

discrete distributed systems. A Petri Net consists of places, transitions and arcs that

connect places and transitions, have a direction and never run between places or between

transitions. The places from which an arc leads to a transition are called input places of

that transition and such arcs will be referred to as inbound arcs. The places to which an

arc leads from a transition are called the output places of the transition and such arcs will

be referred to as outbound arcs. Places may contain a non-negative number of tokens and

the distribution of tokens over the places is called the marking of the net. A transition

is enabled whenever there is a token at the end of each inbound arc. It may �re when

it is enabled and by �ring it consumes these tokens and places tokens on the end of each

outbound arc. Firing is atomic and the order of �ring multiple enabled transitions is non-

deterministic. This characteristic makes the Petri Net well suited for modeling concurrent

behavior. An example of a Petri Net using the traditional graphical notation is shown on

Figure 1.3.

According to the formal de�nition the Petri Net [45] is the 5-tuple PN = (P, T,E, w∗, M0)
where:

11

1. Preliminaries

Figure 1.3: An example Petri Net

• P = {p1, p2, ..., pπ} is the �nite set of places.

• T = {t1, t2, ..., tτ} is the �nite set of transitions, and P ∩ T = ∅.

• E ⊆ (P × T) ∪ (T × P) is the �nite set of inbound and outbound arcs.

• w∗ : E −→ N+ is the weight function used to specify multiple arcs between the same

place and transition.

• M0 : P −→ N+ is the initial marking of the places.

Priority and transition constraints in Petri Nets

The standard Petri Net de�nition can be extended with several additional features. The

transitions can have a priority value that de�nes a partial ordering between multiple en-

abled transitions. A transition can only �re if it is enabled and no transition with higher

probability is enabled. The weight of the arcs may have negative value with the meaning

that the transition can not �re as long as there is at least as many tokens in the input

place as the weight of the input arc. Arcs with negative weight are called inhibitor arcs.

The previous Petri Net example with priority and inhibitor arcs added is shown on Figure

1.4.

Figure 1.4: An example Petri Net with priority and inhibitor arcs

The formal de�nition of PN is extended as the following:

• Π = T −→ N is the �nite set of priorities associated with the transitions.

• w− : (P × T) −→ N− is the �nite set of inhibitor arcs.

Deterministic and Stochastic Petri Nets

An other widely used extension of Petri Nets is the introduction of timing constraints to

the �ring semantics of the transitions. Stochastic Petri Nets allow the use of transitions

12

1.4. Dependability modeling

with �ring delay based on exponential distribution. This extension provides a powerful

tool for modeling distributed systems where time plays a crucial part in performance and

task scheduling. Generalized Stochastic Petri Nets (GSPN) may contain both immediate

and exponential transitions [37].

In certain areas calculating the worst case scenario of system operation is in the center

of attention. Hence the maximal time for executing a task is given and the maximal

cycle time needs to be calculated. While the exponential distribution in the transition

�ring delays of GSPNs supplies timing properties it implies a random �ring delay instead

of a concrete delay. However deterministic transitions are de�ned with a concrete �ring

delay and are suited to model worst-case execution time. The Petri Nets that allow the

use of immediate, exponential and deterministic transitions are called Deterministic and

Stochastic Petri Nets (DSPN). The previously used Petri Net example extended with timed

transitions is shown on Figure 1.5.

Figure 1.5: An example Deterministic and Stochastic Petri Net

1.4.2 Multiple-Phased Systems (MPS)

The operational life of embedded systems often consists of a sequence of non-overlapping

periods called phases. Many of these systems are devoted to the control and management of

critical activities and which require the execution of a series of tasks in sequence. Although

the expressions Phased Mission Systems and Scheduled Maintenance Systems are often

used to describe them the concept of phased execution is applicable to a wider variety of

domains, systems and applications. Hence the nameMultiple-Phased Systems is introduced

to include all systems to which phased execution is applicable [9].

Phases can be characterized along many features for example the tasks performed within

di�erent phases, the performance or dependability requirements di�er from phase to phase,

the environment or the con�guration may change between phases. Additionally the suc-

cessful completion of a phase may have a di�erent cost or bene�t to the system with respect

to other phases.

As the behavior of a system is often modeled with Petri Nets the execution of phases

can be represented similarly. The phases themselves can be speci�ed with places and the

execution of a phase and the change to another can be illustrated with timed transitions.

An example for the representation of phased execution is shown on Figure 1.6.

13

1. Preliminaries

Figure 1.6: An example of phased execution as a DSPN

1.4.3 Dependability Evaluation of MPS (DEEM)

DEEM is a tool for the dependability evaluation of Multiple-Phased Systems. It uses

DSPN as the modeling formalism and its solution technique uses e�cient time-dependent

analysis of Markov Regenerative Processes. DEEM provides the modelers with the pos-

sibility to model phase dependent behaviors using conditions captured with logic clauses.

Modeling phase execution order and intra-phase behavior is also possible. Furthermore

DEEM is capable of performing general dependability analysis and evaluation of generic

performability measures with supporting the de�nition of reward structures. Reward struc-

tures allow the assigning of arbitrary reward values to states and events of the system. The

total accumulated reward at a given point or averaged over a period can be used for most

classical dependability and performance measures [9].

The modeling of an MPS is divided into two main parts, the system behavior and the

phase execution. The behavior of the system is represented in DEEM with the System Net

while the sequence of the phases can be de�ned in the Phase Net. While both are modeled

in DSPN the following restrictions apply: (1) the duration of the phases is deterministic

and (2) the System Net transitions can be only immediate or exponential. Figure 1.7 shows

the interface of the DEEM tool with the Phase Net above and the System Net below.

DEEM also includes a set of modeling features to improve expressiveness of DSPN.

Arbitrary functions of the model markings can be used when de�ning (1) �ring times

of timed transitions, (2) probabilities associated with immediate transitions, (3) enabling

conditions of transitions, (4) arc multiplicities and (5) rewards.

1.5 Reactor Protection System case study

As a running example throughout the document the Westinghouse Reactor Protection

System (RPS) will be used as it is a complex system including numerous software and

hardware elements. The task of this system is to perform an automatic shutdown of the

nuclear reaction when a potentially catastrophic event occurs in the nuclear plant [27].

An event is considered catastrophic if it can lead the plant to a state where the risks of

damaging equipment, people and the environment is very high. The RPS performs a safety

function by leading the plant to a safe state. In the following the description of the RPS

is given along with the requirements de�ned toward it.

14

1.5. Reactor Protection System case study

Figure 1.7: The interface of DEEM and the DSPN models

1.5.1 System description

The RPS consists of four segments connected in a series: the channels, the trains, the

breakers and the rods. The channels monitor and process various physical quantities

(pressure, temperature and others) continuously and generate a signal immediately if a

single measure exceeds its set point value. The trains process the signals coming out from

the four channels and generate a trip signal according to a two of four majority voter logic.

The redundancy created by the four channels tolerates two simultaneous faults and allows

the maintenance of fault tolerance capabilities. The trip signal starts the safety action

that is completed by the breakers. The shutdown of the nuclear reaction is done by the

descent of the rods into the reactor core. Figure 1.8 illustrates the functional structure of

the RPS.

Figure 1.8: The overview of the RPS architecture

15

1. Preliminaries

The four sections can be further extended by specifying their internal structure and

contained components. In order to avoid overwhelming complexity only the structure of the

trains segment is described here. The trains segment consists of two identical independent

trains (A and B). Each train receives the signals from the channels and they are composed

of n Solid State Logic (SSL) modules connected to the shutdown command generating

modules. The SSL generates a trip signal according to a two of four voting logic. The trip

signal is received by two devices the Auto Shunt trip (AS) and the Under Voltage (UV)

which generate the same shutdown command. The state change of one of the devices is

enough to start the shutdown command. Figure 1.9 shows the architecture of the trains.

Figure 1.9: The architecture of the train

1.5.2 Failure possibilities of the RPS

The dependability modeling of the RPS needs the speci�cation of the various failures that

a�ect the components. For every failure the damaged component and the rate of the failure

is given, the values are taken from [10] in which the values have been derived from [27].

The failures are listed in Table 1.1 where rates are given with failures per hours (f/h) unit.

Random event Rate(f/h)
Breaker 2.5 E-7
AS device 4.7 E-6
SSL 2.6 E-7
UV device 4.1 E-6
Channel 7.0 E-6
CCF event Rate(f/h)
3-of-4 channels 8.9 E-8
2-of-3 channels 3.0 E-7
SSL devices 1.5 E-8
UV devices 1.4 E-7
AS devices 1.6 E-7
Breakers 1.2 E-7

Table 1.1: Failure rates of the RPS components

1.5.3 Maintenance policy of the RPS

The RPS is maintained according to a test and maintenance (T&M) program that ensures

that the system is always in a state that meets the necessary dependability requirement for

16

1.6. Financial case study

the provided service and the reliability goal for each component. The T&M program de�nes

a perfectly staggered maintenance policy which has proved to be less compromising to the

system availability than the simultaneous T&M policy (where all the channels are tested

at the same time). Table 1.2 shows the period and the duration of the T&M program for

the channels and the train-breakers (which are maintained together). The rods are tested

every 18 months but they are not included in the dependability model. It is important

to note that the inner structure of the breakers contain bypass breakers parallel to the

primary breakers. These bypass breakers work as spares during the maintenance of their

respective primary breaker thus preserving fault tolerance capability.

Subject T&M period Mean length
Channels 3 months 4 hour (per trip signal)
Train-breaker 2 months 2 hour

Table 1.2: T&M program parameters

1.6 Financial case study

The Financial Case Study of the SENSORIA project [4] describes a credit portal appli-

cation providing loan advice to the costumers of the bank. The case study document

describes the main requirements for the model and implementation of the credit portal in

a service-oriented environment. The main steps of the credit request scenario are de�ned

as: the customer uploads the request which the bank employee reviews. After an internal

veri�cation the o�er is sent to the costumer along with requests for additional data in case

of high-risk credit requests. Finally the customer can accept the o�er or upload the data

while the request itself can be canceled.

In order to perform this steps the following services are necessary: Authentication ser-

vice for user authentication, Customer transaction service for credit requesting, Balance

validation service to evaluate requests and Employee transaction service to provide re-

quest review functionality. [21] introduces the non-functional service contract modeled for

this case study. The non-functional service contract between the Credit request service

and the external Balance validation service de�ned in that paper is extended with the

characteristics de�ned here to show the feasibility of the method.

In this chapter the techniques and topics were introduced which are relevant for under-

standing the method de�ned in the document. The lifecycle of systems including errors,

failures, maintenance and monitoring were described and the practice of modeling a sys-

tem both for development and dependability evaluation purposes was introduced. The

Westinghouse Reactor Protection System and the Credit portal will be used as a running

examples to illustrate the use of the speci�ed method.

17

1. Preliminaries

18

Chapter 2

Related methods and techniques

In the Introduction and Chapter 1 the main topic of this document was discussed along

with the most important techniques and standards. The subject of dependability modeling

and using UML models for representing additional information and performing various

evaluations is widely researched. In order to show the context of this work a brief summary

is given on the important methods and research accomplishments in the related literature.

In Section 2.1 the works related to modeling additional information in UML are introduced.

Many of these works can be used for dependability analysis of systems. Finally in Section

2.2 a few of the tools are listed which can be used for dependability evaluation.

2.1 Modeling and analyzing dependability properties with UML

In [36] Bondavalli et. al. propose a pro�le for annotating UML models with stereotypes

that cover the basic concepts of dependability properties. This approach provides support

for the reliability and availability analysis of UML speci�cations by also de�ning a model

transformation process which derives timed Petri Nets from the UML models through an

intermediate model. The technique of using an intermediate model in later approaches can

be credited to this work. Error propagation between components is supported along with

random and common cause failures.

In [44] Pataricza uses the General Resource Modeling package of the Schedulability,

Performance and Time Speci�cation (SPT) pro�le (which was replaced by the MARTE

pro�le) as the basis and extends it with the notion of faults and errors to support the

analysis of the e�ect of local faults to the system dependability. The extension includes

transient and permanent faults of the resources and the notion of error propagation as well.

In [46] Pataricza et. al. extend UML with stereotypes to perform completeness and

consistency analysis on the behavioral description of a module in a safety-critical system.

The functional design process is enriched by the modeling of potential faults and their

e�ects. Error propagation and testability analysis is supported by using the extension.

Jürgens et. al. usees standard UML extension mechanisms to create safety [31] and

reliability [32] check lists to support the identi�cation of components in the software design

that are prone to failure.

19

2. Related methods and techniques

Bernardi et. al. [7] propose a class diagram based framework for collecting dependabil-

ity properties and requirements of embedded systems along with real-time requirements.

The approach provides support for a semi-automatic derivation of dependability analysis

models such as Stochastic Petri Nets. A set of diagrams structured in packages is de�ned

supporting systems with commercial o�-the-shelf fault-tolerance mechanisms. In [8] they

propose a method for assessing the quality of service of fault-tolerant distributed systems.

The method derives performability models from UML models annotated using the SPT

pro�le.

In [2] Addouche et. al. extend the SPT pro�le to provide concepts that enable the

speci�cation of real-time systems with stochastic and probabilistic information allowing

dependability analysis. An extension to state charts semantics is proposed which are

converted to probabilistic timed automata that can be used for the veri�cation of various

temporal properties related to dependability of real-time systems.

Dal Cin [13] proposes a pro�le for UML which de�nes a language for specifying and an-

alyzing dependability mechanisms. It supports quantitative evaluation of fault-tolerance

strategies and provides speci�cations for various dependability constructs to help in de-

signing fault-tolerant systems. The drawback of this pro�le is that it lacks support for

connecting the dependability mechanisms and the system components.

In [43] de�ne a method for synthesizing dynamic fault-trees (DFTs) from the UML

models. The information required for the analysis is added to the UML models in order to

enable the generation of DFTs. The approach supports the modeling of error propagation

sequences leading to failures along with redundancy and recon�guration activities.

D'Ambrogio also uses fault-trees for predicting the reliability of component-based soft-

ware in [17]. The method uses UML-based system speci�cation which is mapped to a

failure model that can used for reliability prediction of the �nal product. Cortollessa and

Pompei [15] introduce an annotation for UML models using the SPT and QoS&FT pro�les

(both part of MARTE) for the reliability analysis of component-based systems. Grassi et.

al. propose a model-driven transformation framework in [23] which uses the annotations

in [15]. This approach also uses an intermediate model as a transition between the UML

models and the analysis-oriented models.

Goseva et. al. [22] propose a risk assessment methodology using UML models at archi-

tectural level. These models are used to generate a Markov model which is then used for

obtaining risk factors of scenarios. It can also identify critical components and connectors

of the system requiring further analysis. In [24] Hassan et. al. de�ne a methodology for

severity analysis of software systems. Hazard analysis techniques including Functional Fail-

ure Analysis, Failure Modes and E�ects Analysis and Fault Tree Analysis are integrated

to identify hazards on the system and component level. The hazard analysis results and

cost of failure information are represented on annotated UML models and are used for the

analysis.

Musta�z et. al. [41] propose a model-based approach for analyzing the dependability

of use cases. A probabilistic extension to statecharts is used to formally model interaction

requirements. The evaluation of the formal model is based on the success and failure prob-

20

2.2. Analysis tools

abilities of events and may lead to further re�nement of the use cases. A visual modeling

environment supporting the probability analysis of extended statecharts is implemented as

well.

2.2 Analysis tools

DEEM is a tool for the dependability modeling and evaluation of Multiple-Phased Sys-

tems [9]. It is developed by the Dependable Computing Research Lab of the Institute of

Information Science and Technologies (Pisa, Italy). The tool provides a wide range of fea-

tures for modeling and analyzing systems using DSPN models as the modeling formalism

and Markov Regenerative Processes for the model solution. The tool was introduced in

more detail in Section 1.4.3.

Bondavalli et. al. use hand-made DSPN models in [10] to model and analyze the West-

inghouse Reactor Protection System. This mission-critical system is modeled as a MPS

and thorough dependability evaluation is carried out both for availability and performabil-

ity properties along with sensitivity analysis of various parameters such as the maintenance

schedule frequency and the reliability of the maintenance actions. The DEEM tool is used

for performing the evaluation.

The Möbius Modeling Tool [14] is a modeling framework and abstract functional

interface which can be used to eliminate the limitations arising when new and existing

formalisms and solvers need to be compared. The infrastructure of Möbius provides support

for multiple interacting formalisms and solvers. It can also be extended by new formalisms

and solvers. The tool includes several modeling and compositional formalisms implemented

by the creators of the tool.

PEPA or Performance Evaluation Process Algebra [25] is is an algebraic language which

can be used to model performance properties of computer systems. The performance-

related information may be used to predict the performance of the system while the

behavioral information can be used for behavior analysis (e.g. for �nding deadlocks or

exhibiting equivalences between subcomponents). The PEPA workbench [20] is a proto-

type tool which supports the well-formedness checking of the PEPA model through state

transition diagrams and the calculation of performance measures based on the in�nitesimal

generator matrix.

SPIN [26] is a tool that provides e�cient software veri�cation using a high level language

to specify system descriptions called PROMELA (PROcess MEta LAnguage). The tool

can be used for checking the logical consistency of speci�cations, deadlocks, unspeci�ed

receptions, race conditions and many more. The tool works on-the-�y without precon-

structing a global state-graph or Kripke structure and can be used as a full linear temporal

logic (LTL) model checking system. The main usage modes of the tool are as a simulator,

an exhaustive veri�er, a proof approximation system and as a driver for swarm-veri�cation.

21

2. Related methods and techniques

SAL [49] is the Symbolic Analysis Laboratory model checking framework which can be

used for the model checking of systems modeled in the SAL language using transition sys-

tems formalism. The tools included in the framework are able to check the well-formedness

of the model, �nd deadlocks in the model and check any LTL formula. The SAL language

provides support for user-de�ned types, subtype de�nitions, variables with limited or un-

limited value range and composition of modules in asynchronous and synchronous way.

The behavior of the system can be modeled with labeled transitions that have guards and

variable assignments while functions can be declared as well.

Many other Petri Nets tools have been created which use di�erent description lan-

guages and provide di�erent features. A long list of Petri Nets tools are maintained at

[47]. Di�erent tools may provide a graphical interface or support for the evaluation of

instantaneous or cumulative measures. The tools also di�er on which family of Petri Nets

(regular, timed, stochastic or deterministic) can they model.

In this Chapter the related literature for the modeling and analysis of systems modeled

in UML are given by brie�y introducing some of the important researches and methods.

Furthermore a short summary is provided for some of the analysis tools that are available

for the evaluation of dependability and non-functional properties. Although the method

is described using the DEEM tool as the target platform, most of the introduced tools

and languages can be used as target platforms either by creating a code generator or a

transformation from the intermediate model along the lines of the method de�ned here.

22

Chapter 3

Modeling Systems with Maintenance

in UML

As discussed in Chapter 1 the maintenance and monitoring of complex systems are impor-

tant aspects which have to be considered design-time in order to be able to perform correct

evaluation on the dependability properties of the developed product. In this Chapter the

UML pro�le de�ned to support designers with the means to describe the maintenance and

monitoring aspects of systems is introduced. The pro�le which extends MARTE is the

main topic of [3] which concentrates on the reliability aspects of systems and the di�erent

aspects of maintenance and monitoring proposing a complex framework for including these

aspects along with analysis results with the functional and behavioral models of the sys-

tem. First the overview of the pro�le is described in Section 3.1 followed by the detailing

of the extensions to MARTE in Section 3.2. Next the core elements and their connections

are described in Section 3.3 followed by the speci�cation of the System and Maintenance

packages in Sections 3.4 and 3.5. Finally the model library containing additional data type

de�nition is described in Section 3.6. The non-functional service contract de�nition of the

Service-Oriented Pro�le introduced in Section 1.2.2 is also extended to provide support for

the dependability evaluation of service-oriented architectures.

3.1 Overview of the complete pro�le

The modular architecture of UML designs are one of the greatest advantages over other

modeling paradigms. This property allows the designer to separate the di�erent aspects

of the developed system while still retaining the ability for a connected overview. As

mentioned in the introduction of this section, the structural and behavior design of the

system itself can be extended to include maintenance, monitoring and optional analysis as

well. Figure 3.1. shows the di�erent aspects of the modeling with the connections between

them.

The System package contains the structure and behavior speci�cations that are usually

given for a designed system. The components of the system, their internal and external

communication and interactions, the software and hardware elements that the system is

23

3. Modeling Systems with Maintenance in UML

Figure 3.1: The overview of the extended UML design

built up from are all represented here.

The Maintenance package de�nes the various design decisions, policies and activities

that specify how the system is managed during its operation and how the failures and errors

are treated upon discovery. This package connects to the System package by associating

the declared policies and activities to the elements in the system.

TheMonitoring package describes the dedicated systems and decisions that de�ne how

the state of the elements in the system is monitored and what events or deadlines trigger the

execution of the diagnosis on the target elements. This package connects with the System

package by associating the monitoring components to the system elements and with the

Maintenance package by associating the diagnosis to the appropriate maintenance policies

and activities that are triggered for certain events.

Finally the Analysis package includes the di�erent analysis types and their result on

the system at design-time or during operation. The results can be used to re�ne the

system design and to extend the maintenance policies and activities for optimal operation.

24

3.2. Extension model for MARTE

This package connects to the System package by using the properties and relations of the

elements to feed the analysis with input and update these elements with the results. It also

connects with theMaintenance package by sending the results of the analysis to optimize

the policies. Furthermore the Monitoring package updates the analysis parameters with

the data acquired from monitoring the system elements.

3.2 Extension model for MARTE

As discussed in Section 1.2.2 UML pro�les can be used to extend the basic UML2 standard

and thus providing system designers with state-of-the-art design patterns. The MARTE

pro�le is widely used for the design of complex, embedded and fault-tolerant system which

are the target of the method de�ned in this document as well. Hence it is a sound decision

to use MARTE as a core for the pro�le created to provide support for the modeling of

maintenance and monitoring. Figure 3.2 illustrates how the various packages of the pro�le

are imported to create the model that extends MARTE.

Figure 3.2: The pro�les of the extended UML design

The System package de�nes several stereotypes which can be used to identify com-

ponents in the system, the relations between them and the di�erent failure types that

damage parts of the system. The stereotypes specify attributes for the additional data

needed to correctly model the dependability and maintenance behavior of the elements.

The pro�le also includes support for explicit de�nition of the component hierarchy and

composite structures.

The Maintenance package declares stereotypes which are used to represent the main-

tenance policies and their contained activities. There are also activity subtypes de�ned

which represent di�erent maintenance procedures. The attributes of the stereotypes can

be used to parameterize the maintenance strategy of the system.

25

3. Modeling Systems with Maintenance in UML

The Monitoring package includes stereotype de�nitions for modeling the di�erent

monitoring activities whether they are checking the occurrence of various events or executed

on a time-driven base. These activities can be used by runtime diagnoses to determine the

state of the system or its components.

The Model library contains the data and enumeration type de�nitions that are used

as the attribute types of the stereotypes de�ned in the pro�les. These types include the

di�erent maintenance policy types, monitoring actor types and several other.

3.3 The core metamodel

The pro�le diagrams of the UML contain only generalization and extension relations though

there are several other relations between the elements de�ned. Figure 3.3 shows the core

elements of the pro�le and the additional relations between them. These relations have to

be created in the UML model which created by applying the pro�le. These relations are

later referred to in the description of the pro�le and the transformation steps as well.

Figure 3.3: The metamodel of the core UML pro�le elements

The components can contain each other to create the composite structure of system,

they can be connected by directed relations which can represent any kind of association

or dependency. The component may be damaged by failures which have di�erent charac-

teristics. Furthermore components can have maintenance policies de�ned for them which

may involve an arbitrary number of maintenance activities. Activities are executed on

an selected component that is not necessarily the same with the component that has the

policy involving the activity.

3.4 System package

The elements of the System package are shown on Figure 3.4 and their details are explained

in the following:

• Component: this stereotype is used to mark the elements of the system that have

to be considered in maintenance and monitoring. System elements without this

stereotype are either not software or hardware elements or they are at a low abstrac-

tion level and are excluded from the dependability modeling. Components can have

maintenance policies and monitoring activities attached to them. The attributes

of the stereotype de�ne the role the component plays in a redundancy structure

26

3.4. System package

Figure 3.4: The System package

(redundancyRole), whether the component is stateful (hasInternalState), the la-

tency that speci�es how quickly error causes failures (errorLatency) and the level of

redundancy the component has as a fault-tolerance structure (redundancyLevel).

• HardwareComponent: this stereotype is specialized from the Component type

and it is used to identify system elements that represent hardware elements. It

de�nes the additional percPermTransFaults attribute which speci�es the rate of

permanent (and transient implicitly) faults occurring in the component.

• SoftwareComponent: this stereotype is specialized from the Component type

and it is used to identify system elements that represent software elements.

• ComponentRelation: this stereotype represents connections between components

which are important for the dependability modeling. These relations indicate pos-

sible error propagation routes and constraints on the operation of the associated

components. The probability of error propagation is de�ned by the propagation

attribute.

• Failure: this stereotype can be used to indicate the possible failures that can damage

the components. A common cause failure is associated with several components while

random failures only damage one component. The attributes of the stereotype specify

the occurrence rate of the failure and its consequence.

The Component stereotype can be used only on the following UML elements:

• UseCase and Package which are represented as software elements and are only

stereotyped if their further re�nement is not relevant for the dependability model

• Object is the most usual marked element and is represented as a software element.

27

3. Modeling Systems with Maintenance in UML

• Class and Component are used as a default instantiation and represented as soft-

ware elements if there is no Object of the class and further re�nement for the

component.

• Node is represented as a hardware element.

3.5 Maintenance package

The elements of the Maintenance package are shown on Figure 3.5 and their details are

explained in the following:

Figure 3.5: The Maintenance package

• Maintenance Policy: this stereotype represents a maintenance strategy for a given

component. The type of the policy is speci�ed with an attribute and the it is asso-

ciated with several activities.

• Maintenance Activity: this stereotype can be used to mark elements that repre-

sent an activity that has a duration and is executed to correct a failed or erroneous

component. The attribute distribFunction can be used to de�ne the distribution

for the time durations of the activities. The recoveryDuration attribute speci�es

the time required for the error recovery mechanisms when maintaining a stateful

component. The activityFailureProbability attribute de�nes the probability that

the maintained component fails during the activity execution. The errorDetec-

tionCoverage attribute speci�es the probability that an error is detected before a

failure. The stereotype has subtypes which further specify the nature of the activity.

• Repair: this stereotype is used when the activity consists of �nding and eliminating

the cause of the failure in the associated component. The duration of the repair can

be speci�ed with the attribute mttRepair.

28

3.6. Model Library

• Replace: this stereotype is used when the activity consists of replacing the associ-

ated component instead of correcting the failure.

• Overhaul: this stereotype is used when the activity consists of a series of tests,

inspections and acceptability tests for deciding whether there are any errors and

correcting them if there are. The duration of the repair can be speci�ed with the

attribute mttOverhaul while the coverage of failure detection can be de�ned by

failureDetectionCoverage

3.6 Model Library

The model library contains additional enumeration and data types that are used as the

type of the attributes in the pro�les. The elements of the library are shown on Figure 3.6

and are further detailed in the following:

Figure 3.6: The Model Library

• RedundancyRole: this enumeration type de�nes the role the component plays in

the redundancy structure.

• MaintenanceType: this data type speci�es the overall strategy type of the main-

tenance and is the generalization of the speci�c maintenance policy types.

• PreventiveM: this data type is used for maintenance policies that strive to prevent

the failure of the structure by executing activities before the various failures of the

components could cause the system to fail. The attributes of the type de�ne the

29

3. Modeling Systems with Maintenance in UML

time period that elapses between two maintenance executions and the time duration

of the maintenance.

• CorrectiveM: this data type de�nes a maintenance policy where activities are ex-

ecuted when the associated component for the policy has failed.

• Domain: this enumeration type speci�es the appearance of the fault that occurs

de�ned by the Failure element. The appearance can be an erroneous value, a timing

error or the complete stopping of the component.

• Consequence: this enumeration type can be used to de�ne the e�ect of the fault

when it causes the component to fail. The e�ect can range from minor to catastrophic.

• ComponentState: this enumeration type can be used to specify the actual state

of a component. This type is useful if the model is updated with runtime diagnosis

results and analysis is carried out with the actual information. The state can be fully

functional, degraded or failed.

• DistributionFunction: this data type is de�ned as a customizable variable dis-

tribution which can be speci�ed using the attributes. The distribution models the

Weibull continuous probability distribution which is capable of mimicking various

distributions using the shape and scale parameters [54].

3.7 Extending the UML4SOA pro�le with dependability and mainte-

nance

One of the core concepts of Service-Oriented Architectures is the use of existing services

instead of implementing the same functionality repeatedly. These services are often pro-

vided by a di�erent party and their quality is bound by the service contract between the

requester and the provider [19]. The UML4SOA pro�le extends the MARTE pro�le in

order to provide the means for modeling and developing SOAs. The pro�le includes a

metamodel for the de�nition of non-functional properties of a service. In the following this

metamodel is described in Section 3.7.1 and the extensions de�ned to include dependability

and maintenance characteristics in these models are introduced in Sections 3.7.2 and 3.7.3.

3.7.1 Non-functional service contracts

The metamodel de�ned in the UML4SOA pro�le for non-functional properties supports

the creation of contracts between provider and requester parties. External third-party

services can also be used for monitoring the runtime characteristics of the service. The

non-functional aspects of the service (for example security or performance) are de�ned as

characteristics while the set of attributes they contain are de�ned as dimensions [33]. The

metamodel is illustrated on Figure 3.7.

30

3.7. Extending the UML4SOA pro�le with dependability and maintenance

Figure 3.7: The UML4SOA metamodel for non-functional properties [21]

Non-functional characteristics can be represented by NFCharacteristic elements

that are associated with the service contract representation NFContract. These charac-

teristics can be de�ned for various properties of the service. The speci�cations of both the

requester and provider party are bound with the contracted service.

Non-functional dimensions are represented by NFDimension elements contained in

the NFCharacteristic elements. The actual values of the attributes are represented by

the RunTimeValue elements composing the dimensions. These values are monitored by

the third-party represented with the Monitor elements.

3.7.2 Provider Dependability Characteristics

The framework for dependability evaluation of UML designs can be used to analyze systems

developed using the SOA paradigm. However the services used by the developed applica-

tion have their own dependability properties and these properties have to be represented in

the models as well. The non-functional service contracts de�ned in the UML4SOA pro�le

are particularly suited for representing these characteristics using the means provided by

the pro�le. The provider dependability characteristic is de�ned to allow the modeler to in-

clude the dependability attributes of the service. Figure 3.8 shows the ProviderDepend-

ability element which is marked with the nfCharacteristic stereotype and its contained

nfDimension elements.

The FailureMode dimension can be used to de�ne whether the service is created to be

fail-silent (i.e. it stops receiving and answering requests when failed), the length of time

after which no answer means the failure of the service (timeout) and the error propagation

probability (propagation). The Availability dimension allows the de�nition of the mean

availability of the service, the mean time between failures (mtbFailure) which is used in

the modeling of the failure rate of the service as a component.

The same characteristic de�nition can be used to specify the properties of a requested

service and a provided service. After the provider of a service performs dependability

31

3. Modeling Systems with Maintenance in UML

Figure 3.8: The de�ned UML4SOA classes

evaluation on its service, the results can be included in the speci�cation of the provided

service as part of the contract. On the other hand the requester of a service can use this

characteristic to specify the properties of the used service as a component and perform

dependability evaluation on the system using the service.

3.7.3 Provider Maintenance Characteristics

The de�ned dependability characteristic is useful to specify the properties of the system

concerning its behavior during operation. However the characteristics regarding the main-

tenance of the service have to be provided as well to specify what measures are taken

in the case of a failure event and how often is the service unavailable due to planned

maintenance. The provider maintenance characteristic is de�ned for specifying these prop-

erties. The ProviderMaintenance element with nfCharacteristic stereotype is shown

on Figure 3.8 together with its contained nfDimensions.

The PeriodicMaintenance dimension is used to specify how often planned mainte-

nance is performed on the system (period), how long this maintenance takes (duration)

and when it is scheduled to happen next (nextOccasion). This last is de�ned in order to

give a starting point for the estimation of the maintenance events. Finally it is possible

to de�ne whether degraded service is available during the planned maintenance (degraded-

Service) and the failure detection coverage of the maintenance activities (coverage).

TheCorrectionMaintenance dimension de�nes the constraints promised by the provider

of the service in the event of a failure. The mean time needed to repair the service is given

(mttRepair) and the error recovery mechanisms in place are de�ned (recoveryMode). The

recovery mode can be either full if the state before the failure is restored during the main-

tenance or partial if only certain data is restored. The recovery mechanism may use a

checkpoint from a given time or it is possible that no recovery is performed (none) for

example if the service is stateless. Additionally the mean time of error recovery can be

32

3.7. Extending the UML4SOA pro�le with dependability and maintenance

given as well (mttRecover) along with the error detection coverage (errorDetection).

The practice of using the characteristic in two ways is present in the case of the mainte-

nance characteristic as well. The provider of the service may generate the values used for

the dimension by performing dependability evaluation of the service and include the results

in a contract while the requester uses the values to include the service as a component in

the evaluation of the system using the service.

If the service modeled with UML4SOA is external the attribute values of the dimen-

sions for the dependability and maintenance characteristics in the non-functional service

contracts are taken from the Service Level Agreement documents supplied by the business

partners. On the other hand if the service is internal and its models are available then the

values can be acquired by performing dependability analysis on the system responsible for

providing the service.

In this chapter the packages of the UML pro�le created for providing means to modelers

to include maintenance, monitoring and analysis aspects in their system designs were

de�ned. The pro�le extends the MARTE pro�le which is a widely known industry standard

created to support the modeling and analysis of real-time and embedded systems. Systems

modeled using the de�ned pro�les can be the target of dependability evaluation using the

method de�ned in this document. Additionally the extensions to the UML4SOA non-

functional service contracts are introduced which allow the engineers of service-oriented

architectures to include the dependability and maintenance properties of external services

in the evaluation of their system. The extension is also illustrated using the Financial case

study from the SENSORIA project.

33

3. Modeling Systems with Maintenance in UML

34

Chapter 4

From UML designs to Intermediate

Dependability Models

The dependability evaluation of systems can be carried out on appropriate mathematical

models such as introduced in Section 1.4. However the engineers and designers of complex,

contemporary systems use UML and its extending pro�les to model the systems in develop-

ment. The method de�ned in this document provides the means to create a dependability

model from the UML models automatically. It is important to note that there are nu-

merous pro�les that are used to model systems for di�erent domains and a high number

of tools that provide dependability evaluation capabilities. A key aspect of the method

de�ned here is to separate the speci�c language used for system modeling and the speci�c

tool (and its input format) used for analysis. In order to achieve this goal an intermediate

model is de�ned for creating a transition between UML models and dependability models.

The idea of creating an intermediate model between the source and target model is mostly

credited to [36]. In this chapter the de�nition of the intermediate model is given in Section

4.1 and the numerous steps de�ned to create the intermediate model from the UML models

are speci�ed in Section 4.2.

4.1 Intermediate Model (IM)

The intermediate model is a general model describing a system, its nonfunctional properties

and its maintenance strategy. The system is composed of multiple hardware and software

elements, which can be organized in fault-tolerance structures and can be subject to several

maintenance policies and activities. The structure of the IM is inspired by the approach

presented in [11, 35]. In order to represent the system correctly, those models are modi�ed

and extended. The elements required to model maintenance are added while the fault-tree

building blocks are elevated to element level from attribute level.

Note that in the context of this thesis the IM is indeed a transition or intermediate

state between the UML and dependability model. However the expression intermediate is

not entirely proper when describing the model itself. To be exact, the IM is a depend-

ability domain-speci�c model which contains all the information required to generate a

35

4. From UML designs to Intermediate Dependability Models

dependability model for a system in an arbitrary formalism.

Figure 4.1: The intermediate Metamodel

Formally, the IM is a hypergraph G = (N, A), where the elements in N represent entities

or information derived from the set of UML diagrams, and each hyperarc in A represents

a relation between elements. The relations are also projected from the UML diagrams and

are part of the system structure itself. The elements and hyperarcs are labeled and have a

set of attributes attached to complete their description. These attributes are obtained from

the UML diagrams as well. In the following the semantic of the IM is given, by specifying

the elements and relations shown in Figure 4.1 as well. The ModelElement is the most

general element that is the (immediate or transitive) parent of each element in the IM. It

is used as a common base for every element and is abstract therefore it isn't instantiated

in any concrete model.

4.1.1 Nodes

The elements representing components whose further re�nement is not relevant for the

dependability model are called nodes. The nodes can be either hardware or software com-

ponents both can be either stateless (purely functional) or stateful (having internal state).

TheAbstractNode element is the general node that is the source or target of the relations

that any node can have. The four distinct type of nodes are tho following:

Stateless Hardware (type SLE-HW) nodes represent purely functional hardware

components in the system. The only attribute for this type of node is the following:

<permanent_rate>, which �eld speci�es the relative ratio of permanent and transient

faults. At the moment, both the permanent and transient faults a�ecting a hardware

element share the same failure process. This could be re�ned during the development of

the method. Moreover, the �eld may be left unspeci�ed if a more detailed fault submodel

is included in the dependability model.

36

4.1. Intermediate Model (IM)

Stateful Hardware (type SFE-HW) nodes represent hardware components which

do have internal state. Having internal state means that the occurrence of faults does

not immediately lead to the failure of the component. First it creates some erroneous

internal state, which eventually causes the failure of the component. The attributes for

the SFE-HW type of nodes are the following:

<error_latency>, which refers to the mean duration of the process that leads to the

failure from an erroneous state. It speci�es the mean value of the exponential distribution

that provides the random values for the process instances.

<permanent_rate>, is de�ned as for the SLE-HW nodes.

Stateless Software (type SLE-SW) nodes represent purely functional software com-

ponents in the system. At this point there are no attributes foreseen for this type of node.

Note that since the component is stateless, error recovery is not needed. Moreover, faults

a�ecting software components are always of transient type.

Stateful Software (type SFE-SW) nodes represent the software components of the

system that have internal state (for example variables). Having an internal state has the

same consequences as explained at the SFE-HW, fault-occurrence leads to an erroneous

state, which causes the component to fail eventually. As for the SLE-SW, faults a�ecting

software components are always of transient type. The SFE-SW nodes have the following

attribute:

<error_latency>, which is de�ned as for the SFE-HW nodes.

4.1.2 Structures

The elements that are further re�ned in the dependability model by de�ning the compo-

nents they are composed of are called structures. These can either represent the hierarchi-

cal composition of components or the redundancy architecture created from them. In this

section these elements and their relations are detailed.

System elements represent both the components of the system whose dependability

properties are the target of the evaluation and the composite components as well. A

system element may represent the system as a whole which provides services (function-

alities, use cases) to users. However, the system element does not have to correspond to

a speci�c UML entity. It can be used to represent several elements in the system, which

interact with other system elements as a whole. Moreover, it may correspond to any entity

in an UML diagram, if the dependability attributes for that particular entity should be

estimated. In this case the node has the following attributes:

<measure_of_interest>, which de�nes the speci�c dependability property the designer

has chosen for the analysis. This can be instantaneous or mean value of reliability or

availability among others.

<cost_function>, which speci�es a more precise function to measure additional prop-

erties and perform sensitivity analysis on a certain scale.

37

4. From UML designs to Intermediate Dependability Models

Fault-tolerance structures (type FTS) are composite elements composed of nodes.

An FTS element is not an actual entity in some UML diagram, it only corresponds to

the redundancy structure implemented by a group of nodes. The nodes that make up an

FTS fall into three di�erent categories. These categories de�ne the role of a node in the

redundancy structure. The main categories are the following:

• Redundancy manager identi�es the node through which the service provided by

the whole redundancy structure is available. An FTS can only have one redundancy

manager.

• Variant refers to members of a set of redundant elements that provide the service

and are controlled by the redundancy manager.

• Adjudicator that de�nes the nodes responsible for validating the behavior of the

variants and thus assure the correct functioning of the service. It can be further

re�ned to various subtypes such as tester, voter or comparator.

The FTS elements may de�ne the following attribute:

<redundancy_level>, which further re�nes the number of failures the structure can

tolerate without failure. This attribute is used in the automatic generation of fault-trees

as the percent of variants that may fail before the structure fails because of the number

of failures. For example a 2-out-of-4 voter has a 0.5 (i.e. 50%) redundancy level as it can

tolerant two failed variants but not more.

In addition, FTSs may contain any number of fault-trees, which describe how the com-

ponents together provide redundancy and which combination of failures will eventually

cause the FTS to fail when the redundancy structure is not able to tolerate them. The

description of the fault-tree can be gathered from the following sources:

1. From the analysis of the UML diagrams, if the fault-tolerance scheme is de�ned

explicitly. In Section 4.2.5 the analysis procedure is described in detail.

2. From the fault-tolerance library, if the fault-tolerance scheme was selected from the

list of schemes already described in the library.

Note that there are various methods to describe fault-tolerance and fault-trees are only one

of these. However, in the method de�ned in this document the fault-trees together with

the roles described above are used to specify redundancy of structures. The Intermediate

Model may be re�ned later by including others like event-trees or reliability block diagrams.

Fault-tree in the intermediate model are hierarchical in the sense that every fault-tree

consists of either a single failure or a gate (logical operation) that is composed of subtrees

which are fault-trees themselves. The FTS elements can contain several fault-trees, all of

which are composed from the following elements:

• The Failure elements are introduced to the intermediate model to represent one type

of failure of a given component. The element is connected to one Node element with

the damages association. The attributes of the Failure element is the following:

38

4.1. Intermediate Model (IM)

<name>, which identi�es the failure so that it can be used in several fault-trees or

more than one time in the same fault-tree. <fault_occurrence>, which describes

the time needed for a fault to occur on the component itself. It speci�es the mean

value of the exponential distribution that provides the random values for the fault

appearance instances.

• The Common Cause Failure (type CCF) element is a specialized Failure that

represents the event when more than one component of the same type fails in the

same time (because of a common cause). Therefore the CCF element is associated

with more than one Node element.

• The AND Gate element represents the logical conjunction operation which is true

only if all the subtrees it is composed of are true. The element has composition

relations to at least two other subtrees and has no attributes.

• The OR Gate element represents the logical disjunction operation which is true if

at least one of the subtrees it is composed of is true. The element has composition

relations to at least two other subtrees and has no attributes.

4.1.3 Maintenance

The maintenance elements of the IM are used to represent the policies declared for the

system in the UML diagrams. A policy describes the strategy and the schedule of mainte-

nance executed on the components of the system. Maintenance policies may correspond to

a single component, a fault-tolerance structure, a high-level service or the whole system.

Moreover several policies may be de�ned for a single component or structure. Each policy

involves several activities which specify the properties of the maintenance performed on

given component. The policies and activities are detailed in the following.

Policies

Maintenance policies de�ne the strategy followed by the operators of the system. Two

policy types are de�ned in the IM, corrective and preventive maintenance, both are spe-

cialized from the abstractMaintenance element. Corrective maintenance is applied when

components are maintained only in case of a failure. Whereas preventive maintenance aims

to avoid failures by periodically renewing the condition of components.

Corrective Maintenance (type Corrective) represents a maintenance policy that

executes the involved activities on components in the event of a failure. The element has

the following attribute:

<error_detection>, which de�nes the probability whether the erroneous state of a

component is detected by the maintenance (for example for part of a FTS).

Preventive Maintenance (type Preventive) represents a strategy that includes pe-

riodical execution of the contained activities thus increasing the chance of avoiding the

39

4. From UML designs to Intermediate Dependability Models

failure of a service or system. The Preventive element has one attribute attached:

<period>, which speci�es the time between consecutive maintenance executions. Find-

ing the optimal period for a given fault-tolerant system is a di�cult task, though it is

possible through sensitivity analysis of the dependability model.

<duration>, which speci�es how long the maintenance is performed in every period.

The activities included in the policy may take more or less time to �nish, but can not be

started after the system returns to normal operation mode when this time elapsed.

Activities

Apart from policies, the other important aspect of a maintenance strategy is the activities

involved. Every activity has a target node for which it speci�es the properties needed

to carry out the dependability analysis. Several activity types are de�ned in the IM, all

of them are specialized from the abstract Activity element. This element includes the

following common attributes of the di�erent activity types:

<error_probability>, which de�nes the probability that the target component of the

activity fails during the maintenance regardless of it's earlier state. It can also be de�ned

as the coverage of error correction mechanism.

<completeness>, which de�nes the probability that a successful maintenance activity

restores the component to a correct state if it did not fail but is in an erroneous state. It

can also be de�ned as the coverage of error detection mechanism.

<error_recovery>, which represents the time needed for recovery from a erroneous or

failed state. This attribute is considered only if the target node is stateful. It speci�es

the mean value of the exponential distribution that provides the random values for the

recovery instances.

The following activity types are de�ned in the intermediate model:

Repair element represents the activity used when the target component is maintained

by eliminating the causes of its failure without replacing the whole component. Repair

elements have the following attribute:

<duration>, which de�nes the time needed for explicit repair of a failure. It speci�es

the mean value of the exponential distribution that provides the random values for the

repair instances.

Replace element represents the maintenance task of exchanging the failed component

with a new one. The replacement of a component is instantaneous for a stateless com-

ponent, while error recovery is needed in case of stateful components. No attributes are

foreseen for this element.

Overhaul element represents the task of inspecting the targeted component. An over-

haul usually consists of acceptability tests and adjustments. Overhaul elements have the

following attributes:

40

4.2. From the UML models to the Intermediate Model

<duration>, which is similar to the de�nition in Repair activities, but in this case it

de�nes the time needed to perform the inspection.

<coverage>, which de�nes the probability that the inspection reveals the failure of the

target component and is also referred to as coverage of failure detection.

4.1.4 Relations

The hyperarcs in the set A represent the relations between the elements of the intermediate

model. Several association relations have already been de�ned, such as the involves relation

between the Maintenence and Activity elements or the targets relation between the

Activity and AbstractNode elements. However, there are two additional hyperarcs,

which are detailed in the following:

Uses the service of (abbr. uses) relation exists between two elements in the IM if

during their operation they communicate in a client-server pattern. In the IM, software

nodes may use the services of other software, hardware or FTS elements. Hardware nodes

may use the services of other hardware or FTS elements. Actors use the top-level System

elements to interact with the system under investigation. The uses relation is unidirectional

and there is a possible fault-propagation path between the connected nodes. Whenever

the server node fails, the client also fails (or reaches an erroneous state) with a non-zero

probability as a result. Moreover, the failure of the client may also cause the error or

failure of the server following a faulty request, but this type of relation is modeled with

another uses relation in the opposite direction. Apart from fault-propagation, the uses

relation also describes a constraint for the maintenance of the element. The element can

not function properly after a failure as long as its external environment (the elements it

uses) contains failed elements. Therefore, even if the maintenance of the element is �nished,

it becomes fully functional only after the used elements are behaving correctly as well. The

uses relation has the following attribute:

<propagation_probability>, which de�nes the probability that a failure of the target

element causes an error or failure in the originating element.

Is composed of (or composition) relation represents the hierarchical composition

between the various components of the system. The composition hyperarc links the FTS

elements to the set of nodes that they are composed of. Moreover, this relation is used

to link the System element with the elements it consists of. The composition relation

thus indicates the non-trivial dependencies between the connected elements. There are no

attributes de�ned for this relation.

4.2 From the UML models to the Intermediate Model

The system designs created according to the UML pro�les introduced in Section 3 are

modeled with the Intermediate Model speci�ed in 4.1 as part of the method to generate

a model for dependability evaluation. In this section the analysis of the UML design

41

4. From UML designs to Intermediate Dependability Models

is described and the creation of the IM elements. First the creation of various structure

elements are de�ned in Section 4.2.1 then the fault-tolerance elements are created according

to Section 4.2.2. Next the maintenance related elements are created in Section 4.2.3 and

the uses relations are created in Section 4.2.4. Finally the algorithm for the automatic

generation of the fault-trees is de�ned in Section 4.2.5 and the generation of the IM elements

for non-functional service contracts is described in Section 4.3.

4.2.1 Creating Structure Elements of the IM

TheComponent stereotype and its subtypes are used to mark elements in the UML design

which have to be included in the dependability evaluation. In the IM the System, FTS

and the variousNode subtypes are used to represent the structure elements. The elements

in the UML design that are marked with the Component stereotype are represented in

the IM according to the following guidelines:

• Component elements which are not contained in an other Component

element are the top-level components of the system, these elements are represented

with System elements in the IM.

• Component elements which contain additional Component element are

components in the system that are below the top-level and also contain additional

elements themselves. These elements are represented with FTS and Node elements

in the IM if they are marked as redundancy managers and System elements

otherwise.

• Component elements which do not contain additional Components are

components whose further re�nement is not included in the dependability model.

These elements are represented with subtype elements of Node in the IM. The

actual subtype depends on the additional properties of the element.

Figure 4.2: Components and the created IM elements

The hasInternalState attribute of the Component stereotype de�nes whether the

component has an internal state. The Node element created for the actual Component

is SLE-SW/HW type if the hasInternalState attribute is false and SFE-SW/HW if

the attribute is true. Figure 4.2 shows how the structural architecture of the RPS in UML

42

4.2. From the UML models to the Intermediate Model

is represented in the IM. Note that the composite components of the RPS are modeled as

software elements for the sake of the example. The attributes of the created elements receive

the value already given in the attributes of the original UML elements. The composition

relation between Component elements are represented with composition relations in

the IM.

Most of the UML elements that are marked as leaf components are represented by

softwareNodes. However if the element is aNode UML element, it represents a hardware

component and it is represented with a hardware Node in the IM. Figure 4.3 illustrates

how the di�erent UML elements are represented in the IM.

Figure 4.3: Hardware Nodes and the created IM elements

4.2.2 Creating Fault-tolerance Elements of the IM

Figure 4.4: Fault-tolerance stereotypes and the created IM elements

The components of the fault-tolerance structure are created as speci�ed in Section 4.2.1.

However the fault-tolerance representation in the IM also contains the di�erent roles at-

tached to the components of the FTS, the fault-trees speci�ed for the structure and the

failures damaging the components. The roles are speci�ed with an enumeration type in the

UML model and they are represented with the appropriate relation between the FTS and

the associated Node in the IM. These roles are the redundancy manager, the adjudi-

cator and the variant. Note that the adjudicator can be further specialized as tester,

voter or comparator. The created role relations for the fault-tolerance structure of the

trains segment of the RPS are shown on Figure 4.4.

As mentioned in Section 4.1.2 the fault-trees of a fault-tolerance structure can be either

selected from a fault-tolerance library if the modeled structure de�nes a known redundancy

43

4. From UML designs to Intermediate Dependability Models

Figure 4.5: Fault-tree from library and the created IM elements

or it can be automatically generated from the UML model. The automatic generation is

described in Section 4.2.5. A fault-tolerance library may contain a collection of fault-trees

with an arbitrary complexity. These fault-trees are created using the elements de�ned in

the dependability pro�le. The fault-trees in the IM are constructed using AND gates,

OR gates and Failures composed according to the UML design. Figure 4.5 shows how

the fault-tree de�nition of the example is represented in the IM.

Finally the random and common cause failures speci�ed as the leaf elements of the fault-

trees are examined. These elements are marked with the Failure stereotype and either

damage one Component (random failures) or more (common cause failures). For each

element an appropriate Failure or CCF element is created in the Intermediate Model.

The attributes of the created elements receive their values by copying the attributes of

the original UML element. The failures de�ned in Section 1.5.2 are de�ned in the UML

design on Figure 4.6 along with the created elements in the IM. The damages association

relations are also created between the failure and the associated Node.

Figure 4.6: Failure stereotypes and the created IM elements

4.2.3 Creating Maintenance Elements of the IM

The maintenance part of the Intermediate Model is created by examining the elements

with Component stereotype. If the component is connected to a MaintenancePolicy

through the mainPolicy attribute then a Maintenance element is created in the IM.

The type of the element is Corrective if the type attribute of the originating UML

element contains a CorrectiveM element and Preventive if it contains a PreventiveM

44

4.2. From the UML models to the Intermediate Model

element. The composition relation is created between the associated IM element and the

Maintenance element. The attribute values are copied from the attributes of the type

element. Figure 4.7 shows how the policy de�ned for the channels segment is represented

in the IM.

Figure 4.7: Maintenance stereotypes and the created IM elements

Each maintenance policy contains a set of activities describing the various maintenance

tasks performed on the components associated with them. For each Activity element

belonging to a given MaintenancePolicy an Activity element is created in the IM. The

type of the activity can be Repair, Replace or Overhaul in the UML design and the

same element types are present in the Intermediate Model as well. The attributes of the

created activity elements are copied from the originating UML element. A composition

relation is created between the maintenance policy and each activity it contains. Finally the

association relation is created between the Activity element and the Node representing

the associated component in the IM. The IM representation of the maintenance activities

de�ned for the train-breakers segment of the RPS is illustrated on Figure 4.8.

Figure 4.8: Maintenance activities and the created IM elements

4.2.4 Creating Relations between Structural Elements

The elements in the UML design can be connected by many relations which all represent

some kind of connection between the elements they link. A large portion of these relation-

ships may imply an error propagation paths between the end elements. Those relations

that are considered as a propagation path by the designer are marked with the Relation

stereotype. Certain UML relation elements imply a bidirectional propagation paths when

the errors may propagate from both ends of the relation while others represent a propa-

gation path in only one direction. The elements that can be marked with the Relation

stereotype are listed in Table 4.1.

The UML model elements with Relation stereotype are examined and the uses relation

is created in the IM for every marking where the value of the <propagation_probability>

45

4. From UML designs to Intermediate Dependability Models

Metamodel element Direction)
Generalization with stereotype �extends� Direction from supertype to subtype
or �uses�
Dependency with stereotype �calls� Direction from client to supplier
or �uses�
Association with an AssociationEnd Direction from the aggregate end
having aggregate attribute to the normal one
Association with an AssociationEnd Direction from the composite end
having composite attribute to the normal one
Association (otherwise) Bidirectional
Link having LinkEnd as instance of an Direction from the aggregate end
AssociationEnd with aggregate attribute to the normal one
Link having LinkEnd as instance of an Direction from the composite end
AssociationEnd with composite attribute to the normal one
Link (otherwise) Bidirectional
Message Direction from sender to receiver

if the receiver is stateless,
otherwise bidirectional

Relation stereotype from System pro�le Bidirectional

Table 4.1: UML elements implying error propagation paths

attribute of the uses relation is copied from the attribute of the originating stereotype.

The relations marked as error propagation paths in the RPS are illustrated on Figure 4.9

with the uses relations created in the IM.

Figure 4.9: Uses relations and the created IM elements

4.2.5 Automatic Fault-tree creation

The fault-trees de�ned for the fault-tolerance structures specify the behavior of the struc-

ture as a whole when its contained components fail due to errors. These fault-trees describe

which components can fail at the same time before the service provided by the structure

becomes unavailable. As already discussed these fault-trees can be selected from a library

if a known redundancy scheme is used in the structure. However the fault-trees can be

created also automatically when the library is not used. In this case the fault-trees are

constructed using the failures and fault-tolerance roles de�ned for the components and the

additional relations between the composing elements.

Similar algorithms are de�ned in [11] by analyzing the statechart diagram of the redun-

dancy manager and [39] by analyzing the state machines for reliability modeling.

46

4.2. From the UML models to the Intermediate Model

The construction of the fault-trees is performed by examining the UML design and

approximating the redundancy scheme of the fault-tolerance structure. First the role of the

components in the structure is identi�ed then the failures associated with the components

are collected which will be represented by the leaf elements of the fault-trees. The elements

marked with the Relation stereotype are used to identify additional connections between

the components with di�erent roles.The fault-trees created based on the UML elements and

their relations are illustrated with an example on Figure 4.10. The <redundance_level>

attribute of the FTS element is used for the cases when the fault-tree is generated based

on the failure of several components.

Figure 4.10: Automatic Fault-tree generation

The automatically created fault-trees are constructed according to the following guide-

lines:

• Failure of redundancy manager causes the structure to fail because it provides

the service toward the rest of the system. If there is a Failure de�ned that damages

the Component with redundancy manager stereotype, the created fault-tree

includes an OR gate that contains the failure of the manager component and the

rest of the fault-tree.

• Failure of variant without adjudicator causes the structure to fail as there is

no mechanism de�ned to detect and suppress the failure of the variant. The created

fault-tree is an OR gate containing the failure of the variant and the rest of the

fault-tree. Note that this OR-gate can be the same as the one mentioned above.

• Failure of a variant and its tester causes the structure to fail if there is no

further adjudicators connected to the variant. The created fault-tree is an AND

gate containing the separate failures of the variant and the tester. If a common

cause failure is de�ned for the variant and the tester an OR gate is created that

contains the AND gate de�ned for the separate failures and the CCF de�ned for

the common cause failure.

• Failure of variants that are compared can cause the structure to fail if the

simultaneous failure of the variants renders the comparator unable to suppress the

error. The created fault-tree is an AND gate containing the separate failures of the

variants. If a common cause failure is de�ned for the variants an OR gate is created

47

4. From UML designs to Intermediate Dependability Models

that contains the AND gate de�ned for the separate failures and the CCF de�ned

for the common cause failure.

• Failure of variant and its comparator can cause the structure to fail because the
failure of the comparator implies that the failure of the variant escapes notice. The

created fault-tree is an AND gate containing separate failure of the variant and the

comparator. If a common cause failure is de�ned for the variant and the comparator

an OR gate is created that contains the AND gate de�ned for the separate failures

and the CCF de�ned for the common cause failure.

• Failure of the majority of the variants with a voter can cause the structure

to fail because the voter is unable to decide following the majority of the variants.

The created fault-tree is an OR gate containing the AND gates for the di�erent

variations of which variants fail. These AND gates contain the separate failures

of the variants. If common cause failures are de�ned for the variants then those are

included in the AND gates as well by creating more variations.

• Failure of a variant and its voter causes the structure to fail because the voter

is unable to perform a correct voting. The created fault-tree is an AND gate

containing the separate failures of the variant and the voter. If common cause failures

are de�ned for the variant and the voter an additional OR gate is created that

contains the AND gate de�ned for the separate failures and the CCF de�ned for

the common cause failure.

4.3 Intermediate model from non-functional service contract

In order to include the dependability and maintenance properties of a used service in the

IM the non-functional service contract of the target service has to be examined. First

the ProviderDependability characteristic is used to create the fault process and error

propagation of the service then the ProviderMaintenance characteristic is used to create

the maintenance policies and activities associated with the service.

4.3.1 IM elements for the Provider dependability characteristic

The service itself is modeled as a software node, if it is stateless then as an SLE-SW

element otherwise as a SFE-SW element. The FailureMode dimension represents how

the failure of the service a�ects its operation. If the <fail-silent> attribute is true

then a uses association is created between the requester component and the service while

the value of the <propagation> attribute is used for the probability of error propagation.

Additionally the Failure element representing the possible failure of the service is created

based on the Availability dimension. The fault occurrence rate is equal to the reciprocal

of the mtbFailure attribute as the time between failures has to be transformed into the

number of failures in a given time. Figure 4.11 illustrates how the UML elements are

represented in the IM.

48

4.3. Intermediate model from non-functional service contract

Figure 4.11: Provider dependability and the created IM elements

4.3.2 IM elements for the Provider maintenance characteristic

Correction mode dimension If the CorrectiveMode dimension is present in the

non-functional service contract then the service has a corrective maintenance policy de-

�ned. This policy is represented by a Corrective element in the IM with the value

<error_detection> attribute can be gathered from the UML element. Furthermore a

Repair element is created to represent the maintenance activity for the service. The at-

tributes of the Repair element are �lled with the appropriate attribute values from the

UML element. The IM elements created from the UML elements are illustrated on Figure

4.12.

Figure 4.12: Provider correction mode and the created IM elements

Figure 4.13: Provider periodic maintenance and the created IM elements

Periodic maintenance dimension Similarly to the corrective mode the Preventive-

Maintenance dimension is represented by a Preventive and an Overhaul element, with

49

4. From UML designs to Intermediate Dependability Models

the attributes getting the proper values from the dimension. Both maintenance policies

are contained in the SLE-SW node representing the service and the de�ned activities are

associated with it as well. Figure 4.13 illustrates the generated IM elements from the UML

model.

In this chapter the intermediate model used as a transition point between the source

UML models and the target dependability models were de�ned along with the steps of

creating this intermediate model from UML models. The created intermediate model is

used to create the dependability model and its creation is described in the next chapter. It

is important to note, that the steps de�ned here are capable of creating the intermediate

model only from UML models using the pro�le de�ned in Chapter 3.

50

Chapter 5

From the Intermediate Model to the

Dependability Model

As discussed in Section 1.4.2 Multiple-phased systems consist of two main parts. The

Phase Net is used to represent the various scheduled phases that are executed as part of

the maintenance of the system. While corrective maintenance is executed at the time of

error or failure detection, preventive maintenance is carried out on a regular basis using

a prede�ned schedule. The algorithm for creating the Phase Net is described in Section

5.1. The System Net on the other hand describes the behavior of the system and its

components which are subject to malfunctions, errors, failures and maintenance activities.

The construction of the System Net based on the IM is de�ned in Section 5.2.

5.1 Deriving the Phase Net from the IM

In the UML diagrams of the designed system, the preventive maintenance policies are

de�ned for di�erent system parts. While this is useful for describing the maintenance

in a distributed and thus less complex way, it can not be used as is when modeling the

system as a whole. In order to create the Phase Net of the modeled system an algorithm

is de�ned for the integration of preventive maintenance policies in the system design. The

algorithm uses a table to gather the phases required to plan a perfectly staggered schedule

for the maintenance of the components. This table will referred to as the Maintenance

Schedule Table (MST). A perfectly staggered schedule (i.e. the components of the same

fault-tolerant structure are tested at separate times) is in most cases less compromising to

system availability then simultaneous maintenance (i.e. all the components are tested at

the same time, one after the other).

5.1.1 De�nition of the Maintenance Schedule Table(MST)

The phases of the system operation can be separated in two types, phases of full redundancy

(when no component is under maintenance) are divided by phases of maintenance (when

a given component or components are under maintenance). The MST contains the phases

of the second type, identifying the components under maintenance, the period, duration

51

5. From the Intermediate Model to the Dependability Model

and starting time of their maintenance. The entries on the table are sorted based on the

starting time and entries with overlapping maintenance phases are shifted (their starting

time changed) to avoid the loss of more redundancy than required. Figure 5.1 shows the

MST for the components in the case study.

Figure 5.1: An example of the Maintenance Schedule Table

5.1.2 The MST creating algorithm

In order to create the MST, �rst every Preventive maintenance element is gathered from

the IM. The length of a full maintenance cycle (M) will be the least common multiple of

all the elements found this way (5.1). This results from the notion that after that time

the maintenance of the system will be carried out in exactly the same schedule as before.

Trivially the starting time of the last entry in the MST will be M and overlapping entries

will appear in the end of the table.

M = LCM(p1, p2, ...pn), pk = maintenance period of element k (5.1)

Entry creation step The next step is to populate the table with the entries representing

the maintenance phases of the components. Suppose there are n variant Nodes handled

by a given Preventive maintenance policy. Given that M is divisible by pk,
M
pk

is a

positive integer and it is exactly the number of times a component is maintained during

the complete cycle as part of the target policy. In this case exactly M
pk

n new entries are

added to the table with the following values: the name of the element and a running index

(i) together identi�es the component, the period pk is copied from the Preventive element

and the duration (dk) can be obtained from the Activity de�ned for the element. The

starting time (startk) is calculated with the formula (5.2).

startk(i) =
pk
n

j, j = 1, . . . ,
M

pk
n, i = j (mod n) (5.2)

52

5.1. Deriving the Phase Net from the IM

By repeating the entry creation step for every Preventive policy the entries of the MST

are created. As already stated, overlapping entries will appear in the table, if there is

at least two policy de�ned. In order to eliminate overlapping, the entries in question are

shifted backwards until the starting time of each entry is greater than the starting time of

the entry before by at least the duration of the maintenance of the earlier entry (5.3).

startk(n) ≥ startj(n) + dj , ∀j 6= k (5.3)

Overlap elimination step To achieve this, take the entry among the overlapping ones

with the second maximum duration (d2
max). Shift every overlapping entry except the one

with the maximum duration backwards with d2
max. This step assures that the entry left in

place does not overlap with any entry. By repeating the procedure with the still overlapping

entries, the number of entries decreases with every step except if shifting the entries result

in a new entry to overlap the shifted ones. If the sum of all the durations is less than M ,

then ultimately no entries will overlap and the procedure stops. Otherwise the procedure

stops with the fewest possible overlapping entries. The algorithm can be re�ned to deal

with non-solvable overlapping by making sure that entries for the same component and

the same fault-tolerant structure don't overlap. This solution is not speci�ed at this time.

5.1.3 Production of the Phase Net from the MST

The creation of the Phase Net from the MST is done by de�ning the Petri Net parts for

each entry in the table and connecting these parts with the necessary arcs. The Phase

Net created from the table in Figure 5.1 is shown on Figure 5.2. The starting phase of

system operation is not part of the full maintenance cycle. As the �rst step, a Start

place is de�ned with one initial token. Next, a timed transition t_Start is placed with

the deterministic �ring time equal to startk(1) from the �rst entry of the MST, and an

inbound arc from Start.

Figure 5.2: The Phase Net created from the MST

53

5. From the Intermediate Model to the Dependability Model

Phase Net construction step Next, the places M_Comp_k_1 and Op_1 repre-

senting respectively the maintenance of the component identi�ed by the �rst entry and the

normal operation after it are created. An outbound arc from t_Start toM_Comp_k_1

is added. Then a timed transition t_M_Comp_k_1 representing the end of mainte-

nance is placed with the deterministic �ring time equal to dk from the �rst entry. After

that an inbound arc from M_Comp_k_1 and an outbound arc to Op_1 are added

for this transition. Finally a timed transition t_Op_1 representing the end of normal

operation is created, its deterministic �ring time (operate1
k) equal to the di�erence between

the ending time of the actual maintenance activity and the starting time of the next entry

(Compj(1), if there is one) in the table (5.4), and an inbound arc is added from Op_1. If

operate1
k equals 0, then the transition is not created because an other maintenance phase

comes right after the current.

operate1
k = startj(1)− (startk(1) + dk) (5.4)

Repeat the Phase Net construction step for every entry in the MST, naming the places

representing the maintenance periods with with the name found in the table and the

operation periods with an increasing index. The �rst outbound arc always leads from the

last transition (t_Op_1) to the �rst place (M_Comp_j_1).

For the last entry, the �ring time of the last transition (t_Op_N is calculated with

the same formula but the following parameters, startk(1) = 0 and startj(1) equal to the

starting time of the �rst entry. Finally the placesCount and Stop are created representing

respectively the number of full cycles completed by the system and the end of the cycle.

Inbound arcs from the transition t_Op_N are added to these places. Then an immediate

transition T_Stop representing the restarting of the cycle is placed with the enabling

function Mark(Count) < max_count, that stops the operation when the number of full

cycles completed reaches a prede�ned limit. In the end an inbound arc from Stop and an

outbound arc to M_Comp_k_1 are added to the Phase Net, closing the cycle.

5.2 Creating the System Net subnets from the IM

The dependability model is generated by examining the Intermediate Model. Given that

the IM always has at least one System element as root, the construction of the System

Net starts from these root elements and the contained elements are dealt with iteratively.

For every Node, System and FTS element in the IM, a basic subnet is created with the

possible states the component or structure can have. Then the fault-tolerance structures

are parsed to create the Petri Net match of the fault-trees and failures. Next the main-

tenance policies and their contained activities are handled and the subnets representing

them are created. Finally, the propagation subnets for every uses hyperarc in the IM are

generated.

54

5.2. Creating the System Net subnets from the IM

5.2.1 Basic subnets

The places of the basic subnets represent the states an element can be in during normal

operation (i.e. not under maintenance). Every element starts in the Healthy state repre-

senting correct operation and they may change to the Failed state due to a failure of the

component or its contained components. The subnet containing these places is shown on

Figure 5.3.

Figure 5.3: The basic subnet of stateless nodes, System and FTS elements

Additionally if the component is stateful then it has an Erroneous state that repre-

sents the presence of an internal error that may cause the element to fail. The transition

t_latency is a timed transition with �ring properties given by the <error_latency> at-

tribute of the given node. This transition is enabled if there is a token in the Erroneous

place and generates tokens in the Failed place by �ring. This means that an internal error

may cause multiple faults in the component. The basic subnet for stateful components is

shown on Figure 5.4.

Figure 5.4: The basic subnet of stateful nodes

5.2.2 Fault-tolerance structure subnets

Every FTS element contains one or more fault-trees which in turn are constructed from

logical operators (gates) and failures as described in Section 4.1.2. Also, an implicit fault-

tree can be assigned to System elements. This fault-tree consists of a singleOR gate with

a Failure element for each contained component. Fault-trees in the IM are transformed to

two Petri Net subnets, one represents the failure of the structure as a result of the failure

of components, the other describes the e�ect that the repair of components allows the

structure to function correctly again. The later one is referred to as the repair tree from

now on. The repair tree is the dual of the fault-tree in the sense that it can be obtained by

changing the OR gates to AND gates and vice versa. The inclusion of these subtrees is

illustrated on Figure 5.5.

Figure 5.5: The basic subnet with fault-trees and repair-trees included

55

5. From the Intermediate Model to the Dependability Model

Failure subnets

The fault-trees of the FTS elements can contain several gates but the leaves of the tree

at the lowest level are Failure or CCF elements. These elements are associated with one

or more (in case of the CCF) Nodes and the basic subnets of these nodes are extended

to include the representation of the failure mechanism. In addition for every CCF element

a new subnet is created which controls the occurrence of the common cause failure and

enables the transitions in the basic subnet of the associated nodes.

Figure 5.6: The basic subnets with failure transition included

First the Failure elements are handled by looking up the basic subnet of the associated

node. If the basic subnet does not have a failure transition de�ned then a new timed

transition fail is created with an inbound arc from theHealthy place and an outbound arc

to the Erroneous or Failed place depending on whether the node is stateful or stateless.

The �ring rate of the transition is equal to the <fault_occurrence> attribute of the

Failure element. On the other hand if the transition is already present in the subnet

the <name> attribute of the Failure element is checked. If a Failure element with the

same name and associated node has already been handled then the subnet is not changed.

However if no corresponding Failure element is found then the �ring rate of the fail

transition is changed to include the occurrence of the actual failure. This is done by

a simple addition operation between the current �ring rate and the <fault_occurrence>

attribute of the Failure element. The basic subnets with the included transition are shown

on Figure 5.6.

Next the subnet for CCF elements is generated in the following way. A common cause

failure means that several nodes fail at the same time due to the same cause. As with

the Failure elements if a CCF element with the same <name> attribute and associated

nodes has been handled already the System Net is not changed. In order to correctly

model the simultaneous nature of the CCF a separate subnet is created to handle the

possible stages of the failure and the subnets of the corresponding nodes are extended with

a transition that represents the e�ect of the CCF. Three di�erent stages are de�ned in the

created subnet, the CCF_No place represents normal operation stage before the CCF

happens, the CCF_Yes place represents that the CCF occurred while the CCF_UM

place represent the stage when the associated nodes are under maintenance after the failure.

The places are connected with three transitions which are the following:

• The timed transition ccf_fail represents the occurrence of the CCF, it has an in-

bound arc from CCF_No and an outbound arc to CCF_Yes. The �ring rate is

equal the the <fault_occurrence> attribute of the CCF element.

• The immediate transition ccf_maintain represents that maintenance is started for

the associated nodes. It has an inbound arc from CCF_Yes and an outbound arc

56

5.2. Creating the System Net subnets from the IM

to CCF_UM. The transition is enabled if at least one of the associated nodes is

under maintenance.

• The immediate transition ccf_repair represents that maintenance is �nished and

the e�ect of the CCF is removed thus an other CCF can occur in the future. The

transition has an inbound arc from CCF_UM and an outbound arc to CCF_No.

The transition is enabled if every associated node is in the Healthy state.

Figure 5.7: The subnet for common cause failure

Finally the basic subnet of the related nodes are extended with the immediate ccf

transition. It has an inbound arc from the Healthy place and an outbound arc to the

Erroneous or Failed place depending on whether the node is stateful or stateless. The

transition is enabled if there is a token in the CCF_Yes place in the CCF subnet. If the

ccf transition is already present in the basic subnet then its enabling function is extended

so that it can �re if there is a token in the CCF_Yes place of the actual CCF subnet.

The created CCF subnet is illustrated on Figure 5.7 while the extended basic subnets of

the associated nodes are shown on Figure 5.8.

Figure 5.8: The basic subnets with common cause failure transition included

Fault-tree subnet

The construction of the failure subnet from the fault-tree is presented through an ex-

ample. On Figure 5.9 the fault-tree and the generated subnet are illustrated. The FT

structure fails if either components A and B have failed at the same time or if C fails.

The corresponding subnet is created using the following rules:

Figure 5.9: Fault-tree transformed to failure propagation subnet

57

5. From the Intermediate Model to the Dependability Model

• Root transition: Create an immediate transition that represents the failure of the

structure caused by the failure of the components (FT_fail).

• OR gate: Create a place representing the event that at least one of the subtrees

of the gate failed (FT_failed and create an immediate transition for each subtree

the gate connects to (G_fail, C_fail). These transitions represent the failure of

the subtree. Connect the transitions to the place and the place to the transition

of its parent (FT_fail on the example). Furthermore, the place FT_failed has a

capacity limit of 1.

• AND gate: Create a place representing the event that all of the subtrees of the gate

failed (G_failed and create an immediate transition to which each subtree of the

gate will connect to (Comps_fail). This transition represent the failure of every

subtree. Connect the transition to the place and the place to the transition of its

parent (G_fail on the example). Also, the place G_failed has a capacity limit of

1.

The resulting subnet is a fair representation of the fault-tree, but the basic subnets of

the components and the structure has to be linked in as a �nal step. Each Failure element

in the fault-tree is associated with one Node which it damages while CCF elements are

associated with several nodes. The Failed place of each damaged node is connected in

both directions to the appropriate transition created in the failure subnet when handling

the gates. In the case of a CCF element, the CCF_Yes place is connected. Moreover,

the Healthy and Failed place of the basic subnet of the structure is connected to the root

transition, changing the state from healthy to failed. On Figure 5.10 the connections are

illustrated.

Figure 5.10: Basic subnets connected to the failure propagation subnet

Repair-tree subnet

The construction of the repair subnet is done by transforming the repair-tree in mostly

the same way as it was done with the fault-tree. The di�erences are the following:

• The root transition is called FT_repair. And it changes the state of the structure

from Failed to Healthy when �ring.

58

5.2. Creating the System Net subnets from the IM

• The places created for gates are called X_repaired while the transitions are named

X_repair.

• The Healthy place from the basic subnets of the damaged nodes and the CCF_No

place from the CCF subnet are connected in both directions to the transitions.

Figure 5.11: Repair-tree transformed to repair propagation subnet

The transformation of the repair tree is illustrated on Figure 5.11 while the connections

between the basic subnets and the repair subnet are shown on Figure 5.12.

Figure 5.12: Basic subnets connected to the repair propagation subnet

Connecting the fault-tree subnets

In order to completely de�ne the connection between the failure and repair subnets a �nal

step is required. The current de�nition of the subnets is problematic for the following

reason: although the places in the subnets have a limited capacity, the number of tokens

in the subnet at any given time varies due to the non-deterministic �ring of the concurrent

immediate transitions. This means that although the nodes connected to a given gate have

changed state, the token representing the active state of the gate remains in place. In order

to absorb the unnecessary tokens in the subnets a set of inbound arcs are added between

the corresponding failure and repair subnets. The following arcs are added to the subnets:

• For each transition that has an outbound arc to each place X_failed in the failure

subnet FT_failure, add an inbound arc from the place X_repaired in the repair

subnet FT_repair.

• For each transition that has an outbound arc to each place X_repaired in the

repair subnet FT_repair, add an inbound arc from the place X_failed in the

failure subnet FT_failure.

59

5. From the Intermediate Model to the Dependability Model

These arcs make sure that at any given time, the tokens in the subnets represent the active

state of the corresponding gate in the fault or repair-tree.

5.2.3 Maintenance subnets

The Intermediate Model provides several elements which makes it possible to model com-

plex maintenance policies and customized activities. The construction of the subnets rep-

resenting these elements are described in this section. First the subnet controlling the

preventive maintenance policy execution is described then the subnets for the various ac-

tivities are explained.

Maintenance policy subnet

As already described in Section 4.1.3 the two policy types are handled di�erently. While the

corrective maintenance is executed when the failure is detected, the preventive maintenance

is carried out periodically. In Section 5.1 the generation of the Phase Net based on the

Preventivemaintenance policies in the IM is described. In addition to the phases, an other

subnet is created to represent the activation of a given policy. It contains two places, the

No_M place representing that no maintenance is carried out at the time and the Yes_M

place representing that maintenance of elements is under way. The places are connected

with two immediate transitions, the �rst is the start_M transition that represents the

beginning of the maintenance. It is enabled when the Phase Net has a token in one of the

appropriate M_Comp_X_i places (preventive policy) or if the associated element has

failed hence has a token in the Failed place (corrective policy). Second is the end_M

transition representing the end of the maintenance. It is enabled when there is no token

in the aforementioned Phase Net places (preventive policy) or if the associated element is

working correctly hence has a token in the Healthy place (corrective policy). The �rst

transition has an inbound arc from No_M and an outbound arc to Yes_M. The second

transition has an inbound arc from Yes_M and an outbound arc to No_M. The policy

subnet is illustrated on Figure 5.13.

Figure 5.13: Maintenance policy transformed to subnet

Maintenance activity subnet

Although the Activity element of the IM is abstract and thus it is never instantiated, the

generic subnet part is presented here because it is the same for every concrete activity, the

subnets for which are described in detail afterwards. The activity subnet of a maintenance

60

5.2. Creating the System Net subnets from the IM

activity di�ers based on the type of its associatedNode. For stateless nodes error recovery

is not necessary thus now we only de�ne the place Pre_UM which represents the state

when the component is scheduled for maintenance but the actual activity is not started yet.

There are two immediate transitions, start and clear. The �rst represents the activation

of the maintenance process and has an outbound arc to Pre_UM. It is only enabled

when there is no token in the Pre_UM place so that failures generated before the start

of the actual maintenance are handled together. The second is enabled when there is a

token in Pre_UM and represents gathering of failures before the execution of the activity.

Additionally if the activity is part of a Preventive maintenance then the transitions are

only enabled if the policy subnet of the policy is in the Yes_M state.

Stateful nodes require error recovery after maintenance to return to correct operation.

The place ER represents the state when the activity is completed and error recovery

commences. The timed transition recover represents the completion of error recovery, it

has an inbound arc from ER and its �ring rate is equal to the <error_recovery> attribute

of the Activity element.

The subnets are connected to the basic subnets of the associated nodes with several

arcs. The start and clear transitions have inbound arcs from the Failed place. The

recovery transition has an inbound arc from the Erroneous place and an outbound arc

to the Healthy place. These arcs are shown on Figure 5.14.

Figure 5.14: Basic subnets connected to the activity subnet

Error detection, completeness and error probability attributes

The <error_detection> attribute of the Corrective element indicates that the de-

tection of internal errors of components is possible to a certain degree. If this attribute

is given then the subnets of the activities contained within the given policy are extended

with the Not_D place representing that the actual error in the component has not been

detected by the activity and three transitions. The detect and not_detect immediate

transitions represent the non-deterministic choice whether the error is detected or not.

They are enabled concurrently and their �ring probability is d and 1 − d respectively

where d is equal to the aforementioned <error_detection> attribute. An outbound arc is

added from detect to the Pre_UM place and from not_detect to the Not_D place.

The immediate clean transition represents that another error can be detected again if the

61

5. From the Intermediate Model to the Dependability Model

earlier one has been corrected. It has an inbound arc from Not_D and is enabled if the

associated node is no longer in Erroneous state.

To connect the basic subnets of the nodes to the actvity subnet inbound and outbound

arcs are added to both detect and not_detect transitions from and to the Erroneous

place. The subnets with the required arcs are illustrated on Figure 5.15.

Figure 5.15: Basic subnets connected to the error detection subnet

The <completeness> attribute of the Activity is used to give the probability that the

maintenance is carried out before the component fails. While error detection provides a

probability that the error is detected, completeness indicates a probability that the error

is successfully corrected before a failure occurs. The activity subnet that is shown also

on Figure 5.16 is thus extended with the following:

• A new No_F place is created to represent that no failure has occurred before the

maintenance began. The s_3 immediate transition represents the beginning of main-

tenance to correct an error, it has outbound arcs to No_F and Pre_UM. It is

enabled only when there is no token in the Failed place of the node.

• For every transition with outbound arcs to the ER place, two additional immediate

transitions are created found and not_found which represent the non-deterministic

choice whether the error is found during the maintenance or not. Their �ring prob-

ability is comp and 1 − comp respectively where comp equals the <completeness>

attribute of the Activity element. The inbound arcs of the original transition are

copied for the new transitions and an inbound arc fromNo_F is added to both tran-

sitions. Moreover an outbound arc to ER is added to found. The original transition

can only �re if the No_F place is empty.

• When connecting the basic subnets to the activity subnet, an inbound arc is added

from the Erroneous place to s_3 and an outbound arc to the same place is added

to not_found.

The <error_probability> attribute of the Activity element represents the proba-

bility that a maintenance activity creates an error or failure in the component instead of

correcting any. The activity subnet is extended by duplicating every transition that: (1)

62

5.2. Creating the System Net subnets from the IM

Figure 5.16: Basic subnets connected to the completeness subnet

has an outbound arc to the Healthy place of the associated stateless node, (2) has an out-

bound arc to the ER place. These transitions (m_succ) represent the end of maintenance

execution and their created duplicates (m_fail) represent the failure of component during

the maintenance. The �ring probability of transitions m_fail and m_succ is ep and

1 − ep respectively where ep equals the aforementioned <error_probability> attribute.

An outbound arc to the Failed or Erroneous place is added whether the node is stateless

or stateful. The extended subnet and the connections are illustrated on Figure 5.17.

Figure 5.17: Basic subnets connected to the error probability subnet

Repair activity subnet

If the activity instance is a Repair element, the activity subnet is extended with the

actual representation of the maintenance. The extended subnet (repair) includes two new

places (UM_p and UM_t) and four transitions (permanent, transient, maintain

and reset). The UM_p place represents the execution of explicit repair on the compo-

nent while UM_t represents implicit repair. The concurrent permanent and transient

immediate transitions represent the non-deterministic choice whether the actual failure is

caused by a permanent or a transient fault. Their �ring probability is perm and 1− perm

respectively where perm equals the <permanent_rate> attribute of the associated Node

element. They both have inbound arcs from Pre_UM and outbound arcs to UM_p and

UM_t respectively. The timed transition maintain represents the completion of explicit

repair, its �ring rate equal to the <duration> attribute of the Repair element and has an

inbound arc from UM_p. The immediate transition reset represents the completion of

63

5. From the Intermediate Model to the Dependability Model

the implicit repair and has an inbound arc from UM_t. If the associated node is stateful

both transitions have an outbound arc to ER.

The basic subnets of the associated nodes are connected with a few outbound arcs in

the case of stateless elements. Outbound arcs to the Healthy place are added to the

maintain and reset transitions. The connected subnets are shown on Figure 5.18.

Figure 5.18: Basic subnets connected to the repair subnet

Replace activity subnet

The extended subnet for Replace elements contains an additional place and two more

transitions compared to the activity subnet. The UM place represents the execution of

the maintenance (i.e. the replacing of the component) while the immediate transitions

remove and replace represent the removal of the failed and the replacement of the new

component. The remove transition has an inbound arc from Pre_UM and and outbound

arc to UM while the replace transition has an inbound arc from UM and an outbound

arc to ER if the associated node is stateful or to the Healthy place of the node if it is

stateless. The replace subnet and the connections with the basic subnets are shown on

Figure 5.19.

Figure 5.19: Basic subnets connected to the replace subnet

Overhaul activity subnet

While both the Repair and Replace activities indicate maintenance that is only carried

out if the components failed the Overhaul activity is used for maintenance executed

64

5.2. Creating the System Net subnets from the IM

regardless of component state. It is mostly used in preventive policies as a regular test and

maintenance for running components. However this characteristic also implies that the

activity can miss a failure and �nish the maintenance without correcting it. The activity

subnet is extended with the UM place and several transitions. The UM place represents

that the testing is �nished and the failures are corrected if found. The timed transition

check represents the execution of tests and the correction of failures. It has an inbound

arc from Pre_UM and an outbound arc to UM, its �ring rate is equal to the <duration>

attribute of the Overhaul element. The immediate transitions maintain and oversee

represent the non-deterministic choice whether the failures are found or not, their �ring

probability is cov and 1− cov respectively where cov is equal to the <coverage> attribute

of the Overhaul element. They both have an inbound arc from UM and maintain has

an outbound arc to ER if the associated node is stateful.

Additional transitions are created to handle the fact that the activity can start when

the node has not failed yet. The immediate start_2 (s_2 in short) and s_3 transitions

represents that the activity starts when the node is in the Healthy or Erroneous states.

Both transitions have outbound arcs to Pre_UM. The overhaul subnets are shown on

Figure 5.20.

Figure 5.20: Overhaul activity transformed to subnet

The basic subnets of the associated nodes are connected to the overhaul subnet with

several arcs. In addition to the arcs already mentioned for the activity subnet, out-

bound arcs are added from the start transition to the Failed place and from maintain to

Healthy if the node is stateless. In and outbound arcs are added between the Healthy

place start_2 and the Erroneous place and s_3 if the node is stateful. Finally an out-

bound arc is added from Failed tomaintain and the enabling function of clear is changed

that it only �res if there is more then two token in Failed. The connected subnets are

illustrated on Figure 5.21.

5.2.4 Propagation subnets and repair constraints

As described in Section 4.1.4 the Uses the service of hyperarcs represent a client-server

connection between two elements. This relation has two e�ects on the dependability model,

the failure of the server element can cause an internal error or actual failure in the client

element and the client element can return to normal operation after maintenance only if

the server element is not under maintenance itself.

65

5. From the Intermediate Model to the Dependability Model

Figure 5.21: Basic subnets connected to the overhaul subnet

Error propagation

The error propagation is modeled with the generation of a subnet for every uses hyperarc.

The subnet has three places de�ned for representing the process of propagation. The New

place represents the beginning of the propagation process when the server element has not

failed yet. The Used place is used for storing the information that the e�ect of the server

failure has been handled and no further propagation happens until the server is not in

normal operation. Finally the Choice place represents that the server indeed failed and

there is a possibility that the failure propagates to the client. These places are connected

with several immediate transitions which are described in the following:

• The may_prop transition represents the activation of the propagation process. It

has an inbound arc from the New place and outbound arcs to the Used and Choice

places.

• The prop and no_prop transitions represent the non-deterministic propagation of

the error and are always enabled concurrently. They both have inbound arcs from

the Choice place, their �ring probability is p and 1− p respectively, where p equals

the <propagation_probability> attribute of the uses hyperarc.

• The restart transition represents the reactivation of the propagation process when

the server has returned to its healthy state. It has an inbound arc form the Used

place and an outbound arc to the New place. The transition is only enabled when

there is a token in the Healthy place of the basic subnet for server element.

Figure 5.22: Error propagation subnet for the uses hyperarc

66

5.2. Creating the System Net subnets from the IM

The created subnet is connected with the basic subnet of the client and server elements.

An inbound and outbound arc is added to the may_prop transition from and to the

Failed place of the basic subnet of the server element (B). The prop transition is connected

with an inbound arc from the Healthy place and an outbound arc to the Erroneous or

Failed place, all in the basic subnet of the client element (A), depending on whether the

element is stateful or stateless. The propagation subnet created for a uses hyperarc is

shown on Figure 5.22 and the connections with the basic subnet for the A uses B relation

is illustrated on Figure 5.23.

Figure 5.23: Basic subnets connected to the error propagation subnet

Repair constraints

Finally the repair constraints are created in the form of inhibitor arcs between the various

subnets of the client and server element. These arcs disable the transitions in the activity

and FT_repair subnets of the client which have an outbound arc to the Healthy place

of their associated element. The arcs are added to these transitions from the place that

connects with an inbound arc to the same type of transitions in the subnets of the server

element, speci�cally the UM, UM_t, UM_p, ER named places for nodes and Failed

basic subnet place for FTSs. These restrictions assure that the client element can restart

normal operation if the server element is not under maintenance (though it may still be

erroneous or failed). It is important to note that if a cycle exists in the IM formed by

the uses hyperarcs, these constraints may lead to a potential deadlock of the System Net

where every element waits for an other to �nish their maintenance. However, the existence

of such a situation can indicate a design �aw in the original system or it can be typical for

a context where additional re�nement of the maintenance processes is necessary. Figure

5.24 shows the repair constraints in the subnets of the client element.

Figure 5.24: Repair constraints included in the client subnets

In this chapter the algorithm for creating the Phase Net from the intermediate model

is de�ned along with the generation procedure of the subnets of the System Net. By

67

5. From the Intermediate Model to the Dependability Model

executing the steps de�ned here the MPS dependability model can be created which can

be used for the evaluation of the system whose UML models were examined to create the

intermediate model.

68

Chapter 6

Implementation

In Section 4 and 5 the theory of dependability modeling of UML designs has been de�ned.

This chapter describes how the presented models can be generated automatically using

existing tools. First the di�erent technologies used for the implementation are introduced

then their role in creating the current method is described. It is important to note that the

implementation follows the Model-Driven Architecture (MDA) paradigm [40]. According

to the MDA, the development happens on three levels: the initial system design (platform-

independent model, PIM) is transformed to a target dependability model (platform-speci�c

model, PSM) which is chosen depending on the desired veri�cations to be executed. Finally

a speci�c executable code (or program input) is generated from the dependability model.

While the creation of the IM from the UML design is mostly a PIM-PIM transformation

the generation of the DSPN from the IM is a PIM-PSM transformation. The DSPN model

can be used to generate an input �le for several tools created for DSPN veri�cations (MPS

in the case of DEEM). The overview of the speci�ed approach is illustrated on Figure 6.1.

Figure 6.1: The overview of the approach

First an introduction to metamodeling which is the base of graph transformation can

be read in Section 6.1. Next graph transformation itself is described in detail in Section

6.2. The transformations are implemented and executed with the VIATRA framework,

69

6. Implementation

the features of which are listed in Section 6.3. Finally in Section 6.4 and 6.5 the actual

applications are detailed.

6.1 Metamodeling

The goal of metamodeling is to provide a frame for possible models by specifying an abstract

description on what rules these models have to conform to. The constraints speci�ed in

the metamodel have to be satis�ed by the concrete modeling language or its models. The

UML static structure and object diagrams are used in most cases for both notation system

and concrete syntax [51]. For easier understanding this is applied in the following.

The metamodel is constructed from the following elements:

• The class is an element that identi�es an entity of the modeling language. Classes

that can not be instantiated immediately are called abstract similar to those in

UML. Subclasses can be descendants of classes and the original class is called a

parent by convention in such cases (this is also called generalization). An instance

of the descendant class is an instance of the parent class as well. Furthermore the

descendant class keeps the structure of the parent and may naturally extend it.

• The association is a binary relation between the instances of classes. There are

two types: aggregation, if the target element is contained in the source element and

reference otherwise.

• The attribute represents a property which is the parameter of the class.

The model created based on a metamodel contains the following elements:

• An object is an instance of a non-abstract class of the metamodel and has a unique

identi�er.

• A link connects objects and is an instance of an association of the metamodel.

• A slot is a storage place in objects for the attributes de�ned in the metamodel.

The type of an element in the model is an element in the metamodel. Therefore type can

be interpreted as a function which associates an element in the metamodel to an element

of the model and has the following constraints:

• The type of an object has to be a class.

• The type of a link has to be an association and either aggregation or reference.

• The type of a slot has to be an attribute.

The connection between the classes and associations of the metamodel and the objects

and links of the metamodel are illustrated on Figure 6.2. The two elements on the top

part of the �gure are classes of the metamodel with an association between while on the

bottom part two objects of the model are connected with a link.

70

6.2. Graph transformation

Figure 6.2: The connection between metamodel and model

The immediate type of an element is the element in the metamodel which it is an instance

of. In accordance with the generalization relation, an object can have mediate types as

well. These are the supertypes received with the descendance and include every element

from which the immediate type is descended.

6.2 Graph transformation

Graph transformation is a technique that creates a new graph from a given graph using

rules and patterns. Every rule has a left and a right hand side and the application of the

rule replaces the matches of the pattern on the left hand side according to the pattern on

the right side. A rule is applicable if there is a graph part that matches the left hand side

pattern but does not match any of the de�ned negative application conditions which can

be contained in each other recursively.

The rules of graph transformation are described with a 6-tuple. The parts of a given

r = (LHS, Neg,RHS, Cond,Assign, Par) rule are de�ned in the following:

• The left hand side (LHS) graph which is the positive condition of the applicability

of the rule. Also referred to as precondition because elements in LHS have to be

present in the model before application.

• The set of graphs representing the negative application condition (Neg) which pre-

vents the rule execution.

• The right hand side (RHS) graph which speci�es the result of the application. Also

referred to as postcondition because elements in RHS have to be present in the model

after application.

• The set of logical conditions (Cond) which can describe additional conditions for

attributes of the objects in the LHS and Neg graphs.

• The set of value setting functions (Assign) which overwrite the attributes of the

objects in the RHS.

• The descendance function (Par) associates to every element their immediate parent

in the LHS and Neg graphs sorted as tree-structures. The root element in this

structure is the LHS itself.

71

6. Implementation

The left and right hand side graphs of the graph transformation rules does not have to be

disjunct. The same element may appear on both sides of the rule. Furthermore if there is a

parent-child relation between two graphs in the tree-structure created by the Par function

then an object can be part of both.

Elements on the same level of the Par tree-structure represent conditions in logical

conjunction with each other. The negative condition of a parent element is the actual con-

dition of the child element. This relationship allows the embedding of negative conditions

into each other at an arbitrary depth.

One of the most important steps of graph transformation is pattern-matching which

looks for parts in the graph on which transformation rules can be applied. The applicability

of a rule has positive and negative conditions. Consider a given graph G which is an

element of the LHS or Neg set. A positive pattern exists if G has an isomorph or at least

homomorphous image in M model therefore the rule can only be applied on a positive

match if the following conditions are satis�ed:

• Every element in G can be type-safely mapped to an element in M . Furthermore if

the match is isomorph then every element in M has to be di�erent.

• Every edge in G can be mapped to an edge in M .

• The conditions de�ned for the attributes of a given element in G are satis�ed for the

attributes of the mapped element in M .

For a negative pattern take an arbitrary G′ graph in Neg. For every G′ the following

is true: no set of elements exist in the M model which G′ can be mapped to and G′ is

the immediate child of G (i.e. par(G′) = G). These matches have to be checked on every

parent graph and the matches are stored and extended if needed.

The application of a graph transformation rule transforms an M model to an M ′ model

by replacing the LHS of the rule to the RHS. The steps of rule application are the follow-

ing [1]:

1. Graph pattern matching: Find a match for LHS in M that includes the negative

conditions of Neg and the additional conditions of Cond. If more than one match is

found the rule is applied on one of the matches non-deterministically.

2. Deletion: Remove every element from the model which matches LHS but does not

match RHS.

3. Creation: By connecting RHS to M the M ′ model is created. Practically, new

objects and links are created for every element that exists in RHS but not in LHS

and the attribute settings de�ned in Assign are applied.

The introduced method uses graph transformation on two places. First the UML model

is transformed to the Intermediate Model, second when this IM is transformed to the

Dependability Model. From a technical viewpoint the creation of the MPS input �le is a

graph transformation as well, but it does not create a new model only an other format of

72

6.3. VIATRA2 model transformation framework

the original model. The modelspace of the VIATRA framework introduced in Section 6.3

is the graph on which the transformation rules will be applied to create the models needed

for dependability analysis.

It is important to note why graph transformation has been chosen among other model

transformation techniques. The declarative de�nition of patterns is a huge advantage

compared to imperative languages like Java as complex pattern matching algorithms are

already implemented in the VIATRA framework. The other popular transformation tool,

Extensible Stylesheet Language Transformations (XSLT) has performance and scalability

problems when it comes to complex pattern matching challanges [16].

6.3 VIATRA2 model transformation framework

The implementation of the transformations is carried out in the Visual Automated model

Transformations (VIATRA2 R3) framework [5]. VIATRA itself is an open source Eclipse-

based tool and tool-integration framework that can be easily extended with additional com-

ponents. It is an o�cial Eclipse subproject developed at the Department of Measurement

and Information Systems of the Budapest University of Technology and Economics [1].

6.3.1 Modelspace

VIATRA stores the elements which will be the subject of transformations in a hierarchic

modelspace. Two type of elements can be specialized from the abstract ModelElement

type in the modelspace: Entity and Relation [1]. Figure 6.3 shows the connections

between the three elements.

Figure 6.3: Elements of the VIATRA modelspace

AModelElement can be the instance or a supertype of an other ModelElement. Every

ModelElement has a String typed attribute which stores the name of the element and a

derived attribute which is the unique identi�er of the element (fully quali�ed name or fqn).

The name of the elements on the same level in the strict hierarchy of the modelspace has

to be unique as the fqn is obtained by taking the local names of the hierarchy levels

73

6. Implementation

and concatenate them, separated with dots. Hence two elements may have identical local

names and still they can be uniquely identi�ed by the fqn.

The modelspace has a tree-structure as Entities can contain other entities or relations

as illustrated with the contains association. The contains associations must not create

a cycle in the modelspace in order to retain the tree property. A String typed attribute

value can be associated with entities.

Relations create a connection between two ModelElement and can be described as a

directed edge where both ends of the edge is an element in the modelspace. The rela-

tions are automatically contained in the source element in the hierarchy. The attribute

isAggregation speci�es whether the target of the relation is contained within the source

element. While the multiplicity attribute imposes a restriction on the model structure and

can have the following values: one-to-one, one-to-many, many-to-one or many-to-many.

6.3.2 Navigation in the modelspace

In order to be able to create models in the VIATRA modelspace form the presented ele-

ments, two type of �les have to be created. First the metamodels have to be de�ned whose

importance has been described in Section 6.1. Second the transformation de�nitions are

created to navigate in the models based on the metamodels.

Metamodels

The modeling language of the VIATRA2 framework is the VIATRA Textual Metamodeling

Language (VTML) which uses the Visual and Precise Metamodeling (VPM) metamod-

eling approach [1]. The metamodel is described as a set of entities and relations. The

entities represent the elements of the domain-speci�c modeling while relations represent

the connections between these elements. The literals associated with the entities contain

application-speci�c information.

The entities are declared with the type(name) form where the type has to be an existing

entity and the name has to be unique. The relation are declared as type(name, source,

target) where type has to be an existing relation, the source and target refer to the entities

between which the relation exists. Every element must have a type when declared and the

types can be organized in a hierarchy, on top of which are the entity and the relation types.

The VTML also provides support to de�ne descendance and instantiation. The earlier

can be speci�ed with the supertypeOf(parent type, child type) form while the later

can be done with the instanceOf(instance, type) form.

Transformation de�nitions

The pattern and rule-based model-manipulation language is the VIATRA Textual Com-

mand Language (VTCL) which de�nes patterns, graph transformation rules and the ele-

ments of the abstract state-machines (ASM) that de�ne control structures such as variables,

rules and asm functions [1]. Furthermore VTCL provides support for the use of native

functions which can be written in Java by the user to extend the framework.

74

6.4. UML-IM transformation

The VTCL �les contain the implementation of the graph transformation by de�ning the

patterns for which matches have to be found and how the model has to be changed as

the result of the transformation. Two di�erent strategy can be used when a pattern has

several matches in the model. The choose construct applies the rule on one of the matches

selected non-deterministically, this can be repeated iteratively as long as there is a match

in the model. In contrast to this the forall construct gathers every match and applies the

rule on all of them. It is important to note that the iterate choose construct in di�erent

because pattern matching is repeated after every application.

6.4 UML-IM transformation

In Section 4 the method of generating an Intermediate Model from the UML design is

discussed in detail. The implementation of the method is described in the following section,

including the UML and IM metamodels, the reference model and the structure of the

transformation itself.

6.4.1 Metamodels

UML2 metamodel. The metamodel used is the o�cial UML2 metamodel included in

the VIATRA2 R3 framework. This metamodel is compliant with the EMF-based Eclipse

implementation of the OMG standard [18, 51]. VIATRA also features an UML2 importer

which can create models from the output of UML2 designer tools that use the EMF-based

format to store the diagrams. Among many others the metamodel de�nes entities like

Class, Inteface, Parameter, Profile or Stereotype just to mention a few examples.

IM metamodel. The elements of the Intermediate Model are de�ned in Section 4.1

with their attributes and the connections between them. These elements are described in

a VTML metamodel in which a type is created for every element in the IM. The connections

of the IM are modeled using relations except for the uses relation which has an attribute

and has been modeled as a type itself. Listing 6.1 shows the de�nitions of the SLE-HW

and uses type. The SLE-HW type has an attribute as speci�ed in the IM and is the

subtype of Node. The uses relation has a source and a target element (which can be

either node or FTS) and an Double typed attribute.� �
entity(sleHW){

relation(permanentRate , sleHW , String);}

supertypeOf(node , sleHW);

[...]

entity(usesRelation){

relation(prop_prob , usesRelation , Double);

relation(source , usesRelation , element);

relation(target , usesRelation , element);}� �
Listing 6.1: Excerpt from the IM metamodel

75

6. Implementation

UML-IM Reference metamodel

When creating the IM from the UML2 model a reference model is used to store the informa-

tion concerning which UML elements have been transformed already and which elements

in the IM correspond to a given UML element. This reference model can be used during

the transformation for example when an association or dependency relation is handled.

In most cases only the IM element created for one end of the relation is known and the

element for the other end can be obtained by using the reference model. After the trans-

formation the reference model is useful for identifying the UML2 elements that have to be

changed because the results of the analysis demands it. Listing 6.2 shows the de�nition

of the generic reference between UML elements and IM elements (umlE2IME) along with

a more speci�c reference between UML Node elements (used for representing hardware

components) and nodes in the IM model (UMLNode2IMNode).� �
entity(umlE2IME){

relation(umlElement ,umlE2IME ,uml2.metamodel.Element);

relation(IMElement ,umlE2IME ,imm.ModelElement);}

entity(UMLNode2IMNode){

relation(umlElement ,UMLNode2HWNode ,uml2.metamodel.Node);

supertypeOf(umlE2IME.umlElement , UMLNode2IMNode.umlElement);

relation(IMElement ,UMLNode2HWNode ,imm.node);

supertypeOf(umlE2IME.IMElement , UMLNode2IMNode.IMElement);}

supertypeOf(umlE2IME , UMLNode2IMNode);� �
Listing 6.2: Excerpt from the UML-IM reference model

6.4.2 UML-IM Transformation structure

The IM containing entities with the types de�ned in the metamodel is generated from the

imported UML2 model with a transformation stored in a VTCL �le. This transformation

is built from ASM rules that parse the entire UML2 model using patterns and create the

corresponding entities in the IM. Figure 6.4 shows the structure of the transformation.

The execution starts with choosing the target UML2 model and the IM is generated auto-

matically after that. The rules of the transformation are de�ned to create the elements as

speci�ed in Section 4.2.

First a model entity is created in the modelspace that will contain the whole entity

structure of the IM. Then the transformation parses the UseCase entities in the model

to create the root System elements. In the next steps the packages, objects, classes,

components and nodes are all parsed to create the software and hardware elements. After

that the elements with the fault-tolerance structure stereotypes are gathered and the FTS

elements are created with the corresponding fault-trees, failures and composition relations.

Next the maintenance policies and their contained activities are parsed and the appropriate

elements are created in the IM. Finally the uses relations are created by examining every

element that is included in the IM and �nding the associations, dependencies and other

kind of connections in the UML2 model that have the relation stereotype and connect

the represented elements. If the tagged value indicates a non-zero probability, then the

76

6.5. IM-DSPN transformation

Figure 6.4: The structure of the UML-IM transformation

uses relation is created in the IM in the direction de�ned in Section 4.2.

6.5 IM-DSPN transformation

The method of creating the Dependability Model from the Intermediate Model is de�ned

in Section 5. In this section the implementation of the DSPN metamodel, the IM-DSPN

reference metamodel and the transformation itself is described.

6.5.1 DSPN metamodel

The elements of a DSPN are detailed in Section 1.4.1 and the metamodel is created accord-

ing to that description. The DSPN model consists of the System and Phase Nets which

contain places and transitions, the arcs connecting them are stored under the transition

they connect to. There are several transition and arc types de�ned which have di�erent at-

tribute sets. When creating the metamodel the entities representing the di�erent elements

are de�ned. Listing 6.3 shows the de�nition of the root element containing the two nets

and the System Net de�nition. The remaining elements are de�ned in a similar fashion,� �
entity(net){

relation(name ,net ,String);

relation(phn ,net ,phn);

relation(sn ,net ,sn);}

[...]

// system net

entity(sn){

relation(place ,sn,place);

relation(trans ,sn,trans);}� �
Listing 6.3: Excerpt from the DSPN metamodel

the di�erent attributes are stored as a relation to built-in datatypes while the connections

77

6. Implementation

between elements are modeled as relations.

6.5.2 IM-DSPN Reference metamodel

In order to be able to decide which DSPN model parts correspond to a given IM element a

reference metamodel is created. This metamodel can also be used for back-annotation and

traceability as for every entity in the DSPN model the original IM element can be found. In

Section 5.2 we already used the subnet expression to describe a part of the System Net that

represents a common characteristic. It is also important to note that in the DSPN context

the subnet as an entity does not exist though it is particularly suited for encapsulating

the places and transitions that are strongly related. Hence the subnet type is de�ned in

the reference model to overcome this shortcoming. Furthermore the element2subnet is

de�ned which connects a given element in the IM with the corresponding subnets in the

DM. The de�nition of these entities are shown on Listing 6.4.� �
entity(subnet){

relation(subnet.place , subnet , place);

relation(subnet.trans , subnet , trans);}

[...]

entity(element2subnet){

relation(element , element2subnet , modelElement);

relation(subnet , element2subnet , subnet);}� �
Listing 6.4: Excerpt from the reference metamodel

However in some cases the type of the referred element needs to be restricted to in-

crease performance for larger models and supertyping is a perfect solution to create spe-

cialized types. For example the node2subnet entity is created to store the association

between a Node and the created subnets. The supertype of this entity will be the original

element2subnet entity as also illustrated on Listing 6.5. The element relation is also

restricted to only accept the appropriate typed entities.� �
entity(node2subnet){

relation(element , node2subnet , node);

supertypeOf(element2subnet.element , node2subnet.element);}

supertypeOf(element2subnet , node2subnet);

[...]

entity(healthy);

supertypeOf(place , healthy);

entity(failed);

supertypeOf(place , failed);

entity(erroneous);

supertypeOf(place , erroneous);� �
Listing 6.5: Type restrictions and extensions

There are several places de�ned in Section 5.2 which are unique for every node, system

or FTS element. While the DSPN metamodel does not distinguish multiple place types the

transformation is more understandable if we di�erentiate them. For this purpose the places

of the basic subnets (Healthy, Failed and Erroneous) are represented with specialized

types as shown in Listing 6.5.

78

6.5. IM-DSPN transformation

6.5.3 IM-DSPN Transformation structure

The DSPN models conforming to the de�ned metamodel is generated from the models

created based on the IM metamodel with a graph transformation implemented in a VTCL

�le. During the transformation ASM patterns and rules are used to �nd and process

the elements in the IM model. The structure of the transformation is shown on Figure

6.5. At the beginning of the execution the appropriate IM model has to be chosen in the

modelspace and the DSPN model is generated automatically by the transformation.

Figure 6.5: The structure of the IM-DSPN transformation

First a so called model base is created that includes the DSPN model root net element

and both the sn and phn entities for the System and Phase Net respectively. Next the Phase

Net places and transitions are created as described in Section 5.1. After that the IM model

elements are recursively transformed �rst the System elements and then the System, FTS

and Node elements they contain. The rules in the transformation are de�ned to match the

di�erent subnet creation de�nitions as discussed in Section 5.2. The Maintenance policies

and activities associated with the elements are transformed when the element itself is

transformed. Finally the uses relations are handled as also de�ned in Section 5.2 and if

measures of interest are given for the System elements they are added to the model as well.

79

6. Implementation

� �
rule create_Arc(in From , in To, in Name , in Type) =

let R = undef , Arc = undef in seq{

if (find trans(From)) seq{

new(entity(Arc) in From);

new(instanceOf(Arc , Type));

rename(Arc , Name);

new(oarc.fromTrans(R, Arc , From));

new(oarc.toPlace(R, Arc , To));}

else seq{

new(entity(Arc) in To);

new(instanceOf(Arc , Type));

rename(Arc , Name);

if(Type == dspn("iarc")) seq{

new(iarc.fromPlace(R, Arc , From));

new(iarc.toTrans(R, Arc , To));}

else seq{

new(inharc.fromPlace(R, Arc , From));

new(inharc.toTrans(R, Arc , To));}}}� �
Listing 6.6: Rule for creating arc in the model

There are several additional rules de�ned which help in making the transformation

understandable. A key aspect of this transformation is creating places, transitions and

arcs that make up the System and Phase Nets. In order to keep the subnet creation rules

clear of the unnecessary code that is responsible for the low-level value assignment of the

attributes of these elements the create_Place, create_Trans and create_Arc rules are

created. Transitions have three additional subtypes for which di�erent rules are created

as well, these rules call the create_Trans rule to create the common elements of the

transition. Listing 6.6 shows the create_Arc rule which is used to create a new arc in the

model by specifying the elements the arc connects, the type of the arc and the name that

will identify it.� �
call create_Place(FSubnet , dspn("place"), [...], FaultPlace);

call create_Arc(FaultPlace , ParentFaultTrans , [...], dspn("iarc"));

call create_Place(RSubnet , dspn("place"), [...], RepairPlace);

call create_Arc(RepairPlace , ParentRepairTrans , [...], dspn("iarc"));

call create_ImmTrans(FSubnet , [...], FaultTrans);

call create_Arc(FaultTrans , FaultPlace , [...], dspn("oarc"));

// parse subtree

forall SubTree in FaultTree with find faultTree(SubTree) do

let RepairTrans = undef in seq{

call create_ImmTrans(RSubnet , [...], RepairTrans);

call create_Arc(RepairTrans , RepairPlace , [...], dspn("oarc"));

call transform_FaultTree(FTS , SubTree , FSubnet , RSubnet ,

FaultTrans , RepairTrans);}� �
Listing 6.7: Rule part for creating fault-tree in the model

After de�ning these rules the assembling of complex subnets is straightforward as it

mostly consists of calling the creator rules with the correct parameters. The example

transformation code in Listing 6.7 shows how an AND gate of a fault-tree is transformed

to the appropriate elements as de�ned in Section 5.2.2. First the places in the failure and

repair subnets are created and arcs are placed to connect them to the parent transitions

which are passed as parameters to the rule. Then the transitions to which the subtrees are

connecting are created together with the connecting arcs. Finally the rule itself is called

80

6.5. IM-DSPN transformation

recursively for every subtree with the proper parameters.

MPS description generation. The dependability analysis of a DSPN model can be

carried out on any particular tool that is able to handle DSPNs. However every tool has

a given input language format that de�nes how the DSPN itself has to be described. The

VTCL �le describing the transformation that generates the MPS description for the DEEM

tool from the DSPN model was already created for [34]. This transformation parses the

DSPN model and for every entity it writes the appropriate lines to an output �le. The

result �le can be used with the DEEM tool for dependability analysis.

In this chapter the theory and the framework behind the implementation of the de�ned

method was described along with the de�nition of the implementation steps that are taken

to provide an automatic tool for generating DSPN descriptions from UML models. The

theory of metamodeling and graph transformation was described and the VIATRA2 model

transformation framework was introduced. Finally the metamodels and transformations

required for the method were detailed.

81

6. Implementation

82

Chapter 7

Dependability model generation for

the case study

In order to show the application of the method the Reactor Protection System and the

Financial case studies are used. In this chapter the models for both case studies are

presented �rst the RPS in Section 7.1 then the Financial case study in Section 7.2. Several

dependability property evaluation possibilities are described as examples for the usability

of the created dependability models.

7.1 Reactor Protection System Case Study

The RPS case study was introduced in Section 1.5 along with the maintenance policies

and failure rates de�ned for the components. In the following the system is modeled �rst

in UML using the pro�le de�ned in Chapter 3 then the intermediate model is created

according to the steps de�ned in Section 4.2. This intermediate model is then used to

create the dependability model according to the steps de�ned in Chapter 5. The attributes

de�ned in the stereotypes are illustrated in a gray rectangle connected to the element to

which the stereotype is applied.

7.1.1 UML models of the RPS

First the static structure of the RPS is created as shown on Figure 7.1. The stereotypes

of the pro�le are applied on the classes to mark the structures and components of the

system. The RPS element represents the system itself, which contains the Channels,

TrainBreaker and Rods elements. The Channels element contains Channel compo-

nents while the TrainBreaker contains Train and Breaker segments. The Train is

composed of SSL device, AS device and UV device elements. The elements which are

related in the system description are connected with dependency relations.

The concrete structure of the RPS is illustrated on Figures 7.2 and 7.3. The RPS contains

a channels segment with four channels and two train-breaker segments that have the same

structure. Only one of the train-breaker segments is illustrated as they are identical.

The channels have a common preventive maintenance policy de�ned for them (ChannelsTM)

83

7. Dependability model generation for the case study

Figure 7.1: The static structure diagram of the RPS components

Figure 7.2: The object diagram of the RPS components

which de�nes repair activities for every channel. Additionally the random and common

cause failures are created for the channels. The random failures are the same for every

instance of the channels but the common cause failure rate is di�erent for two and three

channels. Hence these failures are de�ned for the instances of the channels. This part of

the model is illustrated on Figure 7.4.

Similarly to the channels segment the train-breaker segments have a common preventive

policy as well (TrainBreaker_TM) which de�nes overhaul activities for the breakers and

repair activities for the devices contained in the trains. The random and common cause

failures for the breakers are also de�ned on Figure 7.5.

Figure 7.3: The object diagram of the RPS components

84

7.1. Reactor Protection System Case Study

Figure 7.4: The UML diagrams for the Channel segments

Figure 7.5: The UML diagrams for the Train-Breaker segments

Every device in the train segment has di�erent random and common cause failure rates

which are modeled as classes marked with the failure stereotype. These elements are

illustrated on Figure 7.6.

Figure 7.6: The UML diagrams for the devices in the train segment

7.1.2 IM model created from the UML models of the RPS

After executing the transformation from the UML models to the intermediate model, the

structural part of the RPS can be illustrated as shown on Figure 7.7. The hierarchy of

the system is easily recognizable along with the associations representing the roles of the

85

7. Dependability model generation for the case study

components in the fault-tolerance structures. The redundancy manager components are

represented as a FTS and a Node element.

Figure 7.7: The structure part of the IM created from the UML model

The maintenance policies and activities de�ned for the channels are illustrated on Figure

7.8 along with the various failures damaging the channels. It is important to note that

only a part of the common cause failures are illustrated in order to keep the diagram

readable. However the complete intermediate model contains every common cause failure

combination de�ned for the components. Furthermore the failures are contained in the

fault-trees of the FTS element but this composition is illustrated later.

Figure 7.8: The channel part of the IM created from the UML model

The fault-trees of the Channels fault-tolerance structure are illustrated on Figure 7.9

though only a part of the fault-trees are shown. Note that the top-level OR gates are

de�ned for the various combinations of channel failures that cause the channel segment to

fail. The AND gates on the lower level represent the di�erent failure combinations which

correspond to the event represented by the top-level gate. For example the channels 1,2

and 3 can fail either separately, by a common cause failure a�ecting all three of them or

86

7.1. Reactor Protection System Case Study

only two are a�ected by a common cause failure and the third fails separately.

Figure 7.9: The fault-trees of the channels in the IM

Similarly to the channels segment, the preventive maintenance policy and its activities

are de�ned for the train-breaker segments. The intermediate model part is illustrated on

Figure 7.10 along with the failures de�ned for the various elements. Note that only the

SSL device is illustrated among the devices in the trains segment as the AS and UV devices

are modeled in the exact same way apart from the attribute values.

Figure 7.10: The train-breaker part of the IM created from the UML model

The fault-trees of the train segment are illustrated on Figure 7.11. The train segment

fails if either the SSL device fails or if both the AS and UV devices fail. This option is

represented by the top-level OR gates which contain several AND gates representing

the di�erent failure combinations which can occur in the system.

Note that although it is not represented in the model explicitly at the moment, the

RPS system is operational as long as the channels segment and one of the train-breaker

segments are operational. This additional information can be included either by re�ning

the UML model and de�ning a fault-tolerance structure for the train-breaker segments or

by manually including the re�ned failure and repair subnets in the dependability model.

87

7. Dependability model generation for the case study

Figure 7.11: The fault-trees of the trains in the IM created

7.1.3 Dependability model created from the IM model of the RPS

Phase Net The maintenance policies de�ned for the RPS case study are used in Section

5.1 as an example for the illustration of the Phase Net creation algorithm, the generated

Phase Net is shown on Figure 5.2. The normal operation is repeatedly interrupted with

maintenance periods which are de�ned for the channel and train-breaker segments of the

system.

System Net Given the complexity of the case study and the similarity among the com-

ponents only a small part of the System Net is illustrated here. Figure 7.12 shows the

preventive maintenance policy subnets for the channels and one of the train-breaker seg-

ments, the basic and maintenance subnets of one of the breakers along with the subnet

controlling the occurrence of common cause failures a�ecting the breakers.

Figure 7.12: The policy and the Channel basic and maintenance subnets

As an example for the representation of fault-trees in the dependability model the fault-

tree corresponding to the top-level system element is illustrated on Figure 7.13. As dis-

cussed earlier the system itself fails if either the channels segment or both the train-breaker

segments fail. This is also represented in the repair subnet which shows that the system

returns to correct operation if the channels segment and at least one of the train-breaker

segments are working.

88

7.1. Reactor Protection System Case Study

Figure 7.13: The fault-trees of the top-level System element

Dependability properties Various properties can be de�ned for the RPS system using

reward functions that can be speci�ed in the DEEM tool as measures. In Section 1.3 the

de�nition of several properties were given for illustration purposes the availability property

is used here. In the following the availability of the RPS is speci�ed on the dependability

model as:

• RPS available if at least two channels and one of the train-breaker seg-

ments is available. The train breaker segment is available if either the AS or the

UV device and both the SSL device and the breaker are working correctly. This can

be speci�ed as a reward measure in DEEM using the markings of the basic subnets

representing the components.

• DEEM is capable of performing both instantaneous and cumulative analysis for the

de�ned reward functions. The reward function can be speci�ed as described in (7.1)

where m(Subnet.P lace) refers to the marking of the given place in the subnet.

A(t) = IF ((m(Ch1.H) + m(Ch2.H) + m(Ch3.H) + m(Ch4.H) > 1)AND

(((m(BrA.H) + m(BrB.H) ∗m(TrBrA.Y esTM) > 0)AND(m(SSLA.H) = 1)

AND((m(ASA.H) = 1)OR(m(UVA.H) = 1)))OR((m(BrB.H) + m(BrA.H)∗

m(TrBrB.Y esTM) > 0)AND(m(SSLB.H) = 1)AND((m(ASB.H) = 1)OR

(m(UVB.H) = 1))))THEN(1)ELSE(0) (7.1)

• If the fault-trees are precisely modeled in the dependability model then the (7.1)

formula can be expressed simply by stating that the channels and at least one train-

breaker is working correctly (7.2).

A(t) = IF ((m(Channels.H) = 1)AND((m(TrBrA.H) = 1)

OR(m(TrBrB.H) = 1)))THEN(1)ELSE(0) (7.2)

• If the dependability model also includes the re�ned fault-trees for the top-level sys-

tem then the availability of the system can be expressed simply with the formula

A(t) = IF (m(RPS.H) = 1)THEN(1)ELSE(0) which is important because its sim-

plicity provides easier automated generation as the availability of the system can be

89

7. Dependability model generation for the case study

expressed as the state of the top-level System element. However it requires precise

fault-trees to be de�ned at every level of the model.

7.2 Financial Case Study

In Section 3.7 the extension for non-functional service contracts was introduced and in

Section 4.3 the steps required to generate the IM elements from the UML model of the

contracts were de�ned. In this section the Financial case study is used for illustrating the

use of the method on a concrete UML model. First the UML model for the actual service

contract is described which is later used for the generation of the IM part that can be

transformed to the dependability model. Finally the measures required to evaluate the

availability of the service is de�ned.

UML models using extended UML4SOA

The dependability and maintenance characteristics for the service contract between the

Credit request service and the Balance validation service are de�ned on Figure 7.14. The

service is marked as stateless which means error recovery and detection is not applicable

to the service.

Figure 7.14: The UML model using the extended contract de�nitions

7.2.1 Intermediate model of the Balance Validation service

The values given in the service contract of the concrete con�guration can be used to cre-

ate the Intermediate Model elements in order to include the service in the dependability

evaluation. The service itself is modeled as a software node, in the case of the example,

an SLE-SW element. The CorrectiveMode dimension is represented by a Corrective

90

7.2. Financial Case Study

element and a Repair element. The attributes are copied from the values of dimension

attributes. Similarly the PreventiveMaintenance dimension is represented by a Pre-

ventive and an Overhaul element, with the attributes getting the proper values from

the dimension. The maintenance policies are contained in the SLE-SW node representing

the service and the de�ned activities are associated with it as well. Finally the Failure

element representing the possible failure of the service is created. The fault occurrence

rate is equal to the reciprocal of the mtbFailure attribute as the time between failures has

to be transformed into the number of failures in a given time.

Figure 7.15: The generated IM model part from the service contract

7.2.2 Dependability model of the Balance Validation service

The System Net of the generated dependability model contains the subnets corresponding

to the elements of the intermediate model. On Figure 7.16 the basic, repair and overhaul

subnets are illustrated for the service. The �ring delay of the exponential transitions of

the subnets is determined by the attributes of the intermediate model elements which are

in turn taken from the UML models.

Figure 7.16: The basic, repair and overhaul subnets for the service

The service has both a preventive and a corrective policy de�ned which are represented

by the policy subnets on Figure 7.17. The preventive policy also means that the Phase

Net is generated using the algorithm de�ned with the policy of the service included.

Finally the propagation subnet is illustrated on Figure 7.18 which is corresponding to the

relation between the requester component and the service. The error propagation subnet is

activated when the service is in the Failed state. The error propagates to the component

according to the probability de�ned in the service contract. The repair constraints are not

91

7. Dependability model generation for the case study

Figure 7.17: The maintenance policy subnets for the service

illustrated but they are included in the model according to Section 5.2.4.

Figure 7.18: The propagation subnet for the service

7.2.3 Dependability property for the case study

As already discussed in Section 7.1.3 reward functions can be speci�ed in the DEEM tool

as measures to evaluate the properties of the modeled system. In the following the reward

functions for the availability (instantaneous or mean) of the service and the system its part

of are de�ned as an example:

• Service availability can be expressed simply by the expression (7.3).

A(t) = IF (m(Serv.H) = 1)THEN(1)ELSE(0) (7.3)

This property can be used to assure that the service contract indeed describes a

service with the required dependability level.

• System availability can be expressed by extending the expression created according

to Section 7.1.3 with the availability of the service if the failure of the service causes

the system to fail (7.4)

A(t) = IF ((m(Sys.H) = 1)AND(m(Serv.H) = 1))THEN(1)ELSE(0) (7.4)

In this chapter the application of the de�ned method was illustrated on two case studies.

The complete model of the Reactor Protection System is de�ned and transformed to �rst

the intermediate model then to the dependability model. The intermediate model created

from the non-functional service contract of the Balance Validation service is described along

with the dependability model parts corresponding to the intermediate model elements.

Furthermore the de�nition of dependability characteristics in the DEEM tool is described

brie�y using the RPS and availability as an example.

92

Chapter 8

Conclusion and future work

8.1 Concluding remarks

The systems designed and developed today (such as embedded, mission-critical or service-

oriented architectures) have to live up to high expectations both in availability and per-

formance while their complexity grows beyond the understandable. In order to be able to

grasp the numerous aspects of these systems engineers use high abstraction level modeling

languages like UML to describe the systems often using domain-speci�c pro�les. An ex-

ample for domain-speci�c pro�les is MARTE which covers the modeling of real-time and

embedded systems. These modeling languages provide a powerful tool in specifying a sys-

tem of arbitrary complexity by using hierarchic architecture and common representation.

However the qualitative and quantitative evaluation of various nun-functional properties

of complex systems have to be executed before the production phase, during design-time.

Precise mathematical models are used for modeling the system in question at a low abstrac-

tion level before analyzing these models with various model checking tools. It is important

to note that the creation of these models require a deep understanding of the theory behind

model checking.

The huge break between the high level system description languages and the low-level

mathematical models calls for novel methods to bridge the gap. These methods must

provide the designers with the ability to evaluate their system models without the hardships

of creating the mathematical models by hand.

The paradigm of Model-Driven Architecture and the technique of model transformation

are particularly suited for the de�nition and execution of such methods. A key aspect of

model-driven engineering is the independence from a concrete system and the ability to

support a whole domain of systems.

Over the years numerous methods were introduced to aid the automatic generation of

evaluation models each capable of handling a given domain of systems. However most of

these methods exclude the modeling of the maintenance and monitoring of systems even

though these play a huge role in high-availability systems and their speci�cation should be

included in the system models.

Additionally there is an ever-increasing applications developed using the Service-Oriented

93

8. Conclusion and future work

Architecture paradigm while there are only a few approaches which support the analysis of

such systems. The Service-Oriented Pro�le provides engineers with the means to exploit

the full potential of these domain-speci�c concepts.

In this document a novel method is de�ned to provide a framework for the dependabil-

ity analysis of UML-based system designs. The conceptual contributions include the

following:

• The support of a new pro�le including maintenance and monitoring that

extends the state-of-the-art UML pro�le MARTE with several additional elements.

• The extended de�nition of an intermediate model which provides a transi-

tion between the UML language and the mathematical models used for the analysis.

The intermediate model includes the explicit de�nition of fault-trees for redundancy

structures, possible failures of system components and maintenance policies and ac-

tivities.

• Detailed de�nition of the transformation steps needed to generate the

intermediate model from the UML models and the dependability model from the

intermediate model.

• De�nition of a novel algorithm for creating the Maintenance Schedule

Table and the perfectly staggered maintenance schedule for the concurrent use of

di�erent preventive maintenance policies.

• Extension for the non-functional service contracts of the UML4SOA pro-

�le to provide support for the inclusion of services as components in the dependability

evaluation.

The other contributions include the:

• The detailed de�nition of the method implementation which uses the state-of-

the-art model transformation framework VIATRA2 as a powerful model generation

and transformation engine. The metamodels of the various models are de�ned as

well as the reference models connecting the corresponding elements of the di�erent

models. The transformations are de�ned conforming to the steps de�ned in the

conceptual method.

• The application of the method is illustrated on case studies including the

Westinghouse Reactor Protection System and the Financial Case Study of the SEN-

SORIA project.

8.2 Possible future enhancements and extensions

The method de�ned in this document is barely a �rst step towards a more complete frame-

work for the dependability evaluation of UML-based designs. The following extensions and

enhancements are seen as possible:

94

8.2. Possible future enhancements and extensions

• The inclusion of the complete pro�le with the de�nition of monitoring could be

used for creating a more precise dependability model of the designed system. While

the analysis results of other tools and methods also represented with the help of

the pro�le could be used to drive the generation of the dependability model with

parameters.

• The de�nition of redundancy structures in the intermediate model can be

extended with reliability block diagrams, event-trees or other redundancy represen-

tations.

• The tool-integration of the method into a framework to provide dependability
evaluation capabilities from the UML modeling environment.

• Other analysis tools can be used for evaluation by either creating a proper ex-

porter if they can handle DSPN or by creating an alternate transformation from the

intermediate model otherwise.

• Back-annotation of evaluation results can be implemented to represent the de-

pendability analysis results at the UML level in a format that a designer understands.

• Complex models could be analyzed hierarchically by taking advantage of the

fact that the results of a dependability evaluation of a lower-level structure can be

used to represent the structure as a single component during the evaluation of the

higher level structure.

• The "weak points" of the system could be automatically selected by exam-

ining the results of the dependability evaluation and showing the engineer the parts

of the system that has the biggest impact on its dependability properties.

95

8. Conclusion and future work

96

Nomenclature

Nomenclature

AS Auto Shunt trip

ASM abstract state-machines

Assign value setting functions (graph transformation rule)

CCF Common Cause Failure

Cond logical conditions (graph transformation rule)

DEEM Dependability Evaluation of MPS

DSPN Deterministic and Stochastic Petri Nets

EMF Eclipse Modeling Framework

FTS Fault-tolerance structures

GSPN Generalized Stochastic Petri Nets

IM Intermediate Model

LHS left hand side (graph transformation rule)

MARTE Modeling and Analysis of Real-time and Embedded systems

MPS Multiple-Phased Systems

MST Maintenance Schedule Table

Neg negative application condition (graph transformation rule)

OMG Object Management Group

Par descendance function (graph transformation rule)

PIM platform-independent model

PN Petri Nets

PSM platform-speci�c model

RHS right hand side (graph transformation rule)

97

RPS Reactor Protection System

RTES real-time and embedded systems

SFE-HW Stateful Hardware

SFE-SW Stateful Software

SLE-HW Stateless Hardware

SLE-SW Stateless Software

SOA Service-Oriented Architecture

SPT Schedulability, Performance and Time Speci�cation

SSL Solid State Logic

T&M test and maintenance

UML Uni�ed Modeling Language

UML4SOA Service-Oriented Pro�le

UV Under Voltage

VIATRA Visual Automated model Transformations

VPM Visual and Precise Metamodeling

VTCL VIATRA Textual Command Language

VTML VIATRA Textual Metamodeling Language

98

Bibliography

Bibliography

[1] The Viatra 2 Model Transformation Framework Users Guide, 2008.

http://dev.eclipse.org/viewcvs/indextech.cgi/gmt-home/subprojects/

VIATRA2/index.html.

[2] N. Addouche, C. Antoine, and J. Montmain. UML models for dependability analysis

of real-time systems. In SMC, pp. 5209�5214. IEEE, 2004.

[3] M. Albini. Un pro�lo UML 2.0 per la descrizione di strategie di manutenzione in

sistemi critici e la sua applicazione. (Masters thesis), 2009.

[4] M. Alessandrini and D. Dost. D8.3.a: Requirements modeling and analysis of selected

scenarios, Finance Case Study, August 2007. SENSORIA Deliverables Month 22.

[5] A. Balogh and D. Varró. Advanced Model Transformation Language Constructs in

the VIATRA2 Framework. In ACM Symposium on Applied Computing � Model

Transformation Track (SAC 2006), pp. 1280�1287. ACM Press, Dijon, France, 2006.

[6] W. C. Bars, C. Telefonaktiebolaget, and L. Ericsson. OMG Uni�ed Modeling Lan-

guage (OMG UML), Superstructure, V2.2 OMG Available Speci�cation, 2009.

[7] S. Bernardi, S. Donatelli, and G. Dondossola. A class diagram framework for collecting

dependability requirements in automation systems. In International Symposium on

Leveraging Applications of Formal Methods., vol. TR-2004-6. Department of Computer

Science, University of Cyprus, 2004.

[8] S. Bernardi and J. Merseguer. QoS Assessment via Stochastic Analysis. IEEE Internet

Computing, vol. 10(3):pp. 32�42, 2006.

[9] A. Bondavalli, S. Chiaradonna, F. Di Giandomenico, and I. Mura. Dependability

modeling and evaluation of multiple-phased systems using DEEM. IEEE Transactions

on Reliability, vol. 53(4):pp. 509�522, 2004.

[10] A. Bondavalli and R. Filippini. Modeling and Analysis of a Scheduled Maintenance

System: a DSPN Approach. The Computer Journal, BCS, vol. 47:pp. 634�650, 2004.

[11] A. Bondavalli, I. Majzik, and I. Mura. HIDE Deliverable 2: Transformations, From

Structural UML diagrams to timed Petri nets, 1998.

99

Bibliography

[12] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. Grose. Eclipse Modeling

Framework. Addison Wesley Professional, 2003.

[13] M. D. Cin. Extending UML towards a useful OO-language for modeling dependability

features. In WORDS Fall, pp. 325�330. IEEE Computer Society, 2003.

[14] G. Clark, T. Courtney, D. Daly, D. Deavours, S. Derisavi, J. M. Doyle, W. H. Sanders,

and P. Webster. The Mobius modeling tool. In Petri Nets and Performance Models,

2001. Proceedings. 9th International Workshop on, pp. 241�250. 2001.

[15] V. Cortellessa and A. Pompei. Towards a UML pro�le for QoS: a contribution in the

reliability domain. In J. J. Dujmovic, V. A. F. Almeida, and D. Lea (eds.), WOSP,

pp. 197�206. ACM, 2004.

[16] K. Czarnecki and S. Helsen. Feature-based survey of model transforma-

tion approaches. IBM Systems Journal, vol. 45(3):pp. 621�645, 2006. URL

http://www.research.ibm.com/journal/sj/453/czarnecki.html.

[17] M. R. D'Ambrogio A., Iazeolla G. A method for the Prediction of Software Reliability.

In Proc. Software Engineering and Applications Conference 2002. Cambridge, MA,

USA, 2002.

[18] Eclipse Modeling, Model Development Tools, UML2, 2009.

http://www.eclipse.org/modeling/mdt/?project=uml2.

[19] T. Erl. Service-Oriented Architecture : Concepts, Technology, and Design. Prentice

Hall PTR.

[20] S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Support a Process

Algebra-based Approach to Performance Modelling. In In Proceedings of the Seventh

International Conference on Modelling Techniques and Tools for Computer Perfor-

mance Evaluation, number 794 in Lecture Notes in Computer Science, pp. 353�368.

Springer-Verlag, 1994.

[21] L. Gönczy and V. Dániel. Design and Deployment of Service Oriented Applica-

tions with Non-Functional Requirements. In J. Suzuki (ed.), Methodologies for non-

functional requirements in Service Oriented Architecture. IGI Global. Under review.

[22] K. Goseva-Popstojanova, A. E. Hassan, A. Guedem, W. Abdelmoez, D. E. M. Nassar,

H. H. Ammar, and A. Mili. Architectural-level risk analysis using UML. IEEE Trans.

Software Eng, vol. 29(10):pp. 946�960, 2003.

[23] V. Grassi, R. Mirandola, and A. Sabetta. Filling the gap between design and per-

formance/reliability models of component-based systems: A model-driven approach.

Journal of Systems and Software, vol. 80(4):pp. 528�558, 2007.

100

Bibliography

[24] A. Hassan, K. Goseva-Popstojanova, and H. Ammar. UML based severity analy-

sis methodology. In Reliability and Maintainability Symposium, 2005. Proceedings.

Annual, pp. 158�164. 2005.

[25] J. Hillston. PEPA: Performance enhanced process algebra. Technical Report CSR-

24-93, University of Edinburgh, Edinburgh, Scotland, 1993.

[26] G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineer-

ing, vol. 23:pp. 279�295, 1997.

[27] I. (Idaho national engineering and environmental laboratory). Reliability study: West-

inghouse Reactor protection system, 1999. Lockheed Martin Idaho technologies com-

pany. NUREG/CR-5500.

[28] Electropadia: The World's Online Electrotechnical Vocabulary: dependability, 2009.

http://dom2.iec.ch/iev/iev.nsf/display?openform&ievref=191-02-03.

[29] Electropadia: The World's Online Electrotechnical Vocabulary: reliability, 2009.

http://dom2.iec.ch/iev/iev.nsf/display?openform&ievref=191-12-01.

[30] J. Joyce, G. Lomow, K. Slind, and B. Unger. Monitoring distributed systems. ACM

Transactions on Computer Systems, vol. 5:pp. 121�150, 1987.

[31] J. Jürjens. Developing Safety-Critical Systems with UML, 2003.

[32] J. Jürjens, S. Wagner, and T. U. München. Component-based Development of De-

pendable Systems with UML. In ComponentBased Software Development for Embed-

ded Sytems. An Overview on Current Research Trends. Springer, 2005.

[33] N. Koch, P. Mayer, R. Heckel, L. Gönczy, and C. Montangero. D1.4.a: UML for

Service-Oriented Systems, October 2007. SENSORIA Deliverables Month 24.

[34] M. Kovacs, P. Lollini, I. Majzik, and A. Bondavalli. An Integrated Framework for the

Dependability Evaluation of Distributed Mobile Applications. In RISE/EFTS Joint

International Workshop on Software Engineering for REsilieNt systEms (SERENE

2008), pp. 29�38. 2008.

[35] J.-C. Laprie and K. Kanoun. Software reliability and system reliability. In Handbook

of software reliability and system reliability, pp. 27�69. McGraw-Hill, Inc., Hightstown,

NJ, USA, 1996.

[36] I. Majzik, A. Pataricza, and A. Bondavalli. Stochastic dependability analysis of system

architecture based on uml models. In Architecting Dependable Systems LNCS�2667,

pp. 219�244. Springer-Verlag, 2003.

[37] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling with

Generalized Stochastic Petri Nets. SIGMETRICS Perform. Eval. Rev., vol. 26(2),

1998.

101

Bibliography

[38] UML Pro�le for Modeling and Analysis of Real-time and Embedded Systems

(MARTE), 2009. http://www.omg.org/technology/documents/profile_catalog.htm.

[39] M. Martinez, J. Davis, J. Scott, J. Sztipanovits, and G. Karsai. Integrated Analysis

Environment for High Impact Systems, 1997.

[40] A Proposal for an MDA Foundation Model, 2005.

http://www.omg.org/cgi-bin/doc?ormsc/05-04-01.

[41] S. Musta�z, X. Sun, J. Kienzle, and H. Vangheluwe. Model-driven assessment of

system dependability. Software and System Modeling, vol. 7(4):pp. 487�502, 2008.

[42] Catalog of UML Pro�le Speci�cations, 2009. http://www.omg.org/technology/

documents/profile_catalog.htm.

[43] G. J. Pai and J. B. Dugan. Automatic Synthesis of Dynamic Fault Trees from UML

System Models. In ISSRE, pp. 243�256. IEEE Computer Society, 2002.

[44] A. Pataricza. From the General Resource Model to a General Fault Modeling

Paradigm? In Workshop on Crititcal Systems Development with UML at UML 2002,

pp. 163�171. 2002.

[45] A. Pataricza, T. Bartha, G. Csertán, S. Gyapay, I. Majzik, and D. Varró. Formális

módszerek az informatikában. Typotex, 2004. In Hungarian.

[46] A. Pataricza, I. Majzik, G. Huszerl, and G. Várnai. UML-based design and formal

analysis of a safety-critical railway control software module. In Formal Methods for

Railway Operation and Control Systems, pp. 125�132. 2003.

[47] Petri Nets Tools Database Quick Overview, 2009.

http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html.

[48] SENSORIA (Software Engineering in Service-Oriented Overlay Computers) EU FP6

Project, 2005. http://sensoria-ist.eu.

[49] N. Shankar. Symbolic Analysis of Transition Systems. In Y. Gurevich, P. W. Kutter,

M. Odersky, and L. Thiele (eds.), ASM 2000, no. 1912 in LNCS, pp. 287�302. Springer-

Verlag, Monte Verità, Switzerland, 2000.

[50] A. A. Ucla, A. Avizienis, J. claude Laprie, and B. Randell. Fundamental Concepts of

Dependability, 2001.

[51] Uni�ed Modeling Language, 2009. http://www.uml.org/.

[52] UML Speci�cation Version 1.3, 2001. http://www.omg.org/spec/UML/1.3/.

[53] UML Speci�cation Version 2.0, 2005. http://www.omg.org/spec/UML/2.0/.

[54] The Weibull Distribution, 2006. http://www.weibull.com/LifeDataWeb/

the_weibull_distribution.htm.

102

