A Survey and Comparison of Transformation Tools
Based on the Transformation Tool Contest

Edgar Jakumeit*, Sebastian Buchwald?, Dennis Wagelaar®, Li Dan¢, Abel
Hegediis®, Markus Herrmannsdérfer®, Tassilo Hornf, Elina Kalnina8,
Christian Krause®, Kevin Lano', Markus Lepper, Arend Rensink’, Louis
Rose¥, Sebastian Wiitzoldt?, Steffen Mazanek

¢ Karlsruher Institut fiir Technologie, Germany
bVrije Universiteit Brussel, Brussels, Belgium
¢Faculty of Science and Technology, University of Macau, China
4 Budapest University of Technology and Economics, Hungary
€ Institut fir Informatik, Technische Universitdt Minchen, Germany
fInstitute for Software Technology, University Koblenz-Landau, Germany
9 Institute of Mathematics and Computer Science, University of Latvia, Latvia
h Hasso- Plattner-Institut, Universitit Potsdam, Germany
‘Dept. of Informatics, King’s College London, Strand, London, UK
IDepartment of Computer Science, University of Twente, The Netherlands
kDepartment of Computer Science, University of York, UK

Abstract

Model transformation is one of the key tasks in model-driven engineering
and relies on the efficient matching and modification of graph-based data
structures; its sibling graph rewriting has been used to successfully model
problems in a variety of domains. Over the last years, a wide range of graph
and model transformation tools have been developed — all of them with their
own particular strengths and typical application domains. In this paper,
we give a survey and a comparison of the model and graph transformation
tools that participated at the Transformation Tool Contest 2011. The reader
gains an overview of the field and its tools, based on the illustrative solutions
submitted to a Hello World task, and a comparison alongside a detailed
taxonomy. The article is of interest to researchers in the field of model and
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graph transformation, as well as to software engineers with a transformation
task at hand who have to choose a tool fitting to their needs. All solutions
referenced in this article provide a SHARE demo. It supported the peer-
review process for the contest, and now allows the reader to test the tools
online.

Keywords: tool survey, tool comparison, hello world, transformation tool
contest, SHARE, graph rewriting, model transformation

1. Introduction

The work in this article is part of the special issue on Experimental Soft-
ware FEngineering in the Cloud of the journal Science of Computer Program-
ming, which collates articles that compare software engineering tools in a
pragmatic manner, for example by having tool developers solve a shared case
study. The focus of this special issue is on reproducibility and accessibility,
to be satisfied with virtual machine demos.

1.1. Background

The Transformation Tool Contest [99] held 2011 in Zurich, Switzerland,
was a research workshop where providers of various transformation tools
from the worlds of model transformation and graph rewriting gathered to
compare their tools alongside a number of selected case studies. At this
workshop, SHARE [25] virtual machines were employed to support the peer-
review process.

The compared solutions were implemented with complex software tool-
kits, often requiring a substantial amount of time and knowledge to install
and set up. The SHARE cloud allowed all participants to start up the pre-
installed software environment of their competitors including their solutions
with just one click, drastically lowering the barrier for comparison and eval-
uation.

While being meant originally for peer-based evaluation, the SHARE im-
ages of this scientific workshop were kept available for further empirical eval-
uation by prospective tool users from industry, who can explore the effect of
inputs and parameters better suited to their needs.

While held as a scientific workshop for comparing transformation tools
alongside common case studies, one of the case studies consisting of small and
illustrative tasks resulted in instructive solutions that are simple enough to



be understood with limited knowledge and in a very limited amount of time.
Based on those solutions, an introduction into the tools and their approaches
can be given.

We take the chance offered by those facts and summarize the results and
findings of the Transformation Tool Contest 2011 in the following not only
for the tool building community, but also for a prospective user on the search
for the right graph or model transformation tool to employ.

1.2. Motivation

We aim at assisting software engineers that are facing a specific model
transformation or graph rewriting problem in choosing a tool that is well-
suited to their needs. This statement gives rise to the questions: What is
a model transformation or a graph rewrite problem? And: What does well-
suited to someone’s needs mean? In Appendix A we investigate these ques-
tions and their answers in detail, together with a discussion of the advantages
and disadvantages of using those tools; here, we give a brief summary.

In a nutshell, we are confronted with a graph rewriting or model trans-
formation problem if the most adequate representation of the data at hand is
a mesh of objects, and we need to change its structure or map it to another
mesh of objects.

The transformation tools introduced in this article offer faster develop-
ment of solutions compared to manual coding in a traditional programming
language, by reusing existing functionality. The transformation languages of-
fered by the tools are typically of higher expressiveness than general-purpose
programming languages for tasks of the transformation domain, leading to
more concise solutions, thus lowering maintenance costs. They are declara-
tive, i.e., they allow you to concentrate on the what instead of on the how.
Often, these tools offer a visual style of specification and debugging (or sim-
ulation).

1.8. Survey and Comparison

The problem of reuse is: Are the available features really the ones that
are needed? Using a caliper when a hammer is needed would not offer the
expected benefits. You must choose according to your needs.

In order to assist you in choosing a promising tool we present different
kinds of information in the following sections, at an increasing level of detail.
They allow to incrementally reduce the large set of potential candidates to
a small set of the most promising candidates, which can then be evaluated



in depth, based on their article in the proceedings of the workshop [99], but
especially by having a look at their SHARE images.

Please note that our focus is on assisting you in choosing a tool, under
the assumption that model transformation or graph rewriting are not foreign
words to you. For a tutorial introduction into the field please have a look at
Graph Transformation in a Nutshell [28] and Model-Driven Software Engi-
neering in Practice [9] or MDA Explained — The Model Driven Architecture:
Practice and Promise [55].

Hello World. We start with a description of the Hello World case 70|, which
was posed at the Transformation Tool Contest 2011 [99]. The Hello World
case is a mini-benchmark consisting of several prototypical tasks of the do-
main (and is thus a lot more revealing than the Hello World program from
traditional programming [54], which only requires to print a greeting mes-
sage to the console). Those tasks are simple yet highly illustrative. The
tasks as well as the solutions can be read and understood quickly, even by
non-experts. All tools are introduced with their solution of one of the tasks.
The solutions of all tasks are available in the SHARE images of the tools.

Discussion. The section discusses the Hello World task used for introducing
the tools, as well as the solutions. It explains the performance of the tools
on that task, and corrects possibly wrong impressions.

The World of Transformation Tools. This section gives an introduction into
the field. It unfolds a coarse grain map highlighting the locations of the
tools just introduced. The major high-level discrimination points and their
consequences are discussed.

Classification in Detail. The section allows for an in-depth comparison of
the tools. It refines the taxonomy introduced in The world of transformation
tools with examinations going into greater detail. As in Section 6, the tools
are compared regarding their support for the specified aspects with feature
matrices. They allow to quickly reduce the large set of tools according to the
criteria of the task at hand to a small set of tools to be evaluated in depth.

The importance of the aspects listed there depends on what you need.
We explain the circumstances under which the features are of relevance, and
discuss their consequences. We must note that you could have to skip certain
parts here that are overly detailed for your needs; they are targeted at the
second group of readers, members of the tool building community.



1.4. Guide to Reading

This article sums the results of the Transformation Tool Contest 2011,
and it does so for two groups of readers: on the one hand for prospective
users, and on the other hand for the community of tool builders.

If you are a prospective user, you are interested in the sections just intro-
duced in the previous Section 1.3.

If you are a member of the tool building community, you are likely inter-
ested in those sections written for an imaginary user, too. The field is very
wide and heterogeneous, you presumably will get a better overview of it by
reading through the tool introductions; besides, you will be likely interested
in seeing the effect of the availability or unavailability of declarative means
for processing structures splitting into breadth. The sections on The World
of Transformation Tools and the Classification in Detail are founded on a
taxonomy that is developed in two steps at an increasing level of detail. It is
applied to the diverse tools that participated, yielding a survey of the field.
The taxonomy offers a first, high-level break-up of the notion of expressive-
ness for transformation tools. Besides, you will be interested in the following
sections.

Transformation Tool Contest and SHARFE. The section introduces the work-
shop format of the Transformation Tool Contest and explains the role of
SHARE [25], highlighting its support of the review process. Furthermore,
the votes cast by the tool providers for the solutions at the Transformation
Tool Contest (TTC) are listed (hinting at the usability of the tools for many
different tasks), and finally discussed and put into perspective.

Related Work. The section introduces related work (in-depth tool compar-
isons, the other comparisons of the TTC, and related taxonomies) and com-
pares them with this article.

1.5. Contribution

The contributions of this article are as follows:

e [t introduces many of the state-of-the-art transformation tools, esp.
based on the solutions of the tools to the Hello World case [70] posed at
the Transformation Tool Contest 2011; thereby defining the first large-
scale study of transformation tools based on a simple and instructive
case.



e [t introduces a novel taxonomy synthesized from the experiences gained
from the TTC cases and their solutions, and compares the tools based
on it, leading to a survey of the field, especially explaining what it
means for general-purpose tools to be expressive.

e It describes how SHARE [25] was utilized during the TTC, exemplifying
how software engineering research events (esp. their reviews) can benefit
from cloud based virtual machines. Especially, it links to the SHARE
images, which were produced by the tool providers for the Hello World
case — they allow a prospective tool user to evaluate a tool in depth
before drawing a final decision.

e Overall, it helps researchers in the field of model and graph transfor-
mation as well as software engineers searching for a tool to employ to
get an overview of the world of transformation tools. It assists the lat-
ter in choosing a tool that is well-suited to their needs — much faster
than reading through the numerous papers describing the tools, or the
detailed case and solution reports, which were published in the Pro-
ceedings of the Transformation Tool Contest [99).

2. Hello World Case

The “Hello World!” case consists of a set of simple tasks, each of which can
be solved with just a few lines of code. The solutions of the tasks provided
by each tool resulted in an extensive set of small, instructive transformation
programs. They are too simple to really motivate the strengths of the tools
introduced in this article, but they highlight the different approaches taken
by them, and they illustrate the languages offered by the tools. Only a small
amount of time is needed to understand the case and the solutions.

Below we describe the very first task for illustration, in addition to the
task “Deletion of model components”, which we have chosen as running ex-
ample for our introduction into the tools. The two tasks are copied verbatim
from the original task description. The other tasks are given in Appendix B
as digests. There, a basic model migration and diverse simple queries, as well
as simple transformations on graphs are listed. The original descriptions can
be found in [70].

The aim of the case has been to cover the most important kinds of prim-
itive operations on models, i.e., create, read, update and delete (CRUD),
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Figure 1: The “Hello World” metamodel and the example instance
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Figure 2: The extended “Hello World” metamodel and the example instance

defining a base for the space of transformation tools with simplified proto-
typical tasks. The coverage of the subtasks is discussed in detail alongside a
number of transformation-related properties in Appendix C.

2.1. Constant Transformation and Model-to-Text Transformation

1(a) Provide a constant transformation that creates the example instance of
the “Hello World” metamodel given in Figure 1.

1(b) Consider now the slightly extended metamodel given in Figure 2. Pro-
vide a constant transformation that creates the model with references
as it is also shown in Figure 2.

1(c) Next, provide a model-to-text transformation that outputs the Greet-
ingMessage of a Greeting together with the name of the Person to be
greeted. For instance, the model given in Figure 2 should be trans-
formed into the String “Hello TTC Participants!”.!
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Figure 3: The simple graph metamodel

2.2. Deletion of Model Components

Given a simple graph conforming to the metamodel of Figure 3. Provide
a transformation that deletes the node with name “n1”. If a node with name
“nl” does not exist, nothing needs to be changed. It can be assumed that
there is at most one occurrence of a node with name “n1”. Optional: Provide
a transformation that removes the node “nl1” (as above) and all its incident
edges.

3. The Tools and Their Hello World Solutions in a Nutshell

In the following, we introduce the tools with a calling card. The calling
card consists of three parts: first an introduction-in-a-nutshell to the tool is
given, which is then followed by an example solution of the deletion task of
Hello World, and finally closed by a discussion of what the tool is suited for,
why so, and what it is not suited for, as seen by the tool’s authors.

The purpose of the example is to give an impression of the tool and its
languages. The “Delete Node with Specific Name and its Incident Edges”
task of the Hello World case introduced in Section 2.2 that we use as running
example is a small task that illustrates several aspects of processing structural
information, which defines the functionality at the core of the large majority

!Note that we provide as accompanying material on the case website a metamodel,
Result.ecore, that contains classes for returning primitive results such as strings or
numbers.



of these tools. The task including its optional part defines a simple rewriting
that involves a small node-edge-node structure, splitting into breadth, which
further employs an attribute condition.

Please take a look at Section 4 for a discussion of the implications of
choosing this task, and the consequences of the results under display.

3.1. Edapt

Edapt? is the official Eclipse tool for migrating EMF models in response
to the adaptation of their metamodel. Edapt records the metamodel adap-
tation as a sequence of operations in a history model [38]. The operations
can be enriched with instructions for model migration to form so-called cou-
pled operations. A coupled operation performs an in-place transformation
of both the metamodel and the model. Edapt provides two kinds of coupled
operations—reusable and custom coupled operations [38].

Reusable coupled operations enable reuse of migration specifications across
metamodels by making metamodel adaptation and model migration indepen-
dent of the specific metamodel through parameters. Currently, Edapt comes
with a library of over 60 available reusable coupled operations [39]. Custom
coupled operations allow to attach a custom migration to a recorded meta-
model adaptation. The custom migrations are implemented in Java based
on the API provided by Edapt to navigate and modify models.

Edapt’s user interface—depicted in Figure 4—is directly integrated into
the existing EMF metamodel editor. The user interface provides access to
the history model in which Edapt records the sequence of coupled operations.
The user can adapt the metamodel by applying reusable coupled operations
through the operation browser. When a reusable coupled operation is exe-
cuted, its application is recorded in the history model. A custom coupled
operation is performed by first modifying the metamodel in the editor, and
then attaching a custom migration to the recorded metamodel changes.

3.1.1. Delete Node with Specific Name and its Incident Edges

Figure 4 shows how the history model looks like for all non-migration tasks
of this case. For these tasks, the custom coupled operation always consists of
a custom migration, which is attached to an empty metamodel adaptation.
The custom migration is implemented as a Java class that inherits from a
special super class.

2http://www.eclipse.org/edapt
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Figure 4: Edapt’s user interface

Figure 4 also shows how the deletion task is implemented using the mi-
gration language provided by Edapt. The language provides methods to
obtain all Instances of a class or get the value of a feature. The task
can be implemented quite easily, since Edapt provides a method to delete
instances of classes. To also delete all incident edges, we can use the method
getInverse to navigate to the edges that have the node as source or target.

To avoid unnecessary copying of elements that do not require migration,
the transformation in Edapt is always performed in-place. For storing the
result at another location, we use the helper method moveResult that is
provided by the superclass HelloWorldCustomMigration.

3.1.2. What is the Tool Suited for and why?

Edapt is tailored for model migration in response to metamodel adap-
tation. Edapt is based on the requirements that were derived from an em-
pirical study on real-life metamodel histories [36]. The case study showed
that metamodels are changed in small incremental steps. As a consequence,
Edapt records the model migration together with the metamodel adaptation,

10



in order not to lose the intention behind the metamodel adaptation.

Moreover, the study revealed that a lot of effort can be saved by reusing
migration specifications across metamodels, motivating the need for reusable
coupled operations. The migration tasks can be solved by applying only
reusable coupled operations. Thereby, not a single line of custom migration
code needs to be written. However, the study also showed that in rare cases
the migration specifications can become so specific to a certain metamodel
that reuse makes no sense. For these cases, Edapt provides custom coupled
operations in which the migration is implemented using a Turing-complete
Java-based language [37].

While Edapt is tailored for incremental metamodel evolution and model
migration, it was not designed to perform model-to-model or model-to-text
transformations in general. Even though it is possible to apply Edapt for
other use cases, it is more awkward to use, the more one moves away from
its original use case. It is certainly not suitable, when there is no difference
between source and target metamodel, or when source and target metamodel
are completely different from each other.

3.2. EMFTVM

The EMF Transformation Virtual Machine (EMFTVM)? [108] is a run-
time engine for the ATL Transformation Language (ATL) [47]. Apart from
mapping a set of read-only input models to a set of write-only output models
— the default execution model for ATL - it supports in-place rewrite rules.
The rewrite rules are written in the textual SimpleGT language, and are com-
piled to the same EMFTVM byte code as ATL. Trace models are generated
implicitly, and can be inspected at runtime.

For the Hello World case, solutions written in both ATL and SimpleGT
are provided. Because both languages can be composed in a fine-grained
way in the VM, one can choose which transformation rules to write in which
language for each transformation sub-problem.

3.2.1. Delete Node with Specific Name and its Incident Edges

By default, ATL maps input models to output models. However, the
transformation problem at hand is an in-place problem, and ATL provides a
refining mode for this situation. The ATL solution looks as follows:

Shttp://soft.vub.ac.be/soft/research/mdd/emftvm
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1module graphDeleteNlIncident;

2create OUT : Graph refining IN : Graph;

3

4helper context Graph!Edge def : 1linksToNl : Boolean =
5 self.src.isNl or self.trg.isNl;

6helper context OclAny def : isN1l : Boolean = false;
7helper context Graph!Node def : isNl : Boolean = self.name = ’'nl’;
8

grule Node {

10 from s : Graph!Node (s.isN1)

11}

12rule Edge {

13 from s : Graph!Edge (s.linksToN1)

14}

The transformation module graphDeleteNI1Incident creates a modi-
fied OUT model from the input IN model. Both models conform to the Graph
metamodel. The paths to the actual (meta-)models are given as runtime pa-
rameters. Two helper attributes are defined to abbreviate OCL expressions,
as well as to cache the expression values: 1inksToN1 and 1isN1. These
helper attributes are evaluated in the transformation rules: Node and Edge.
Because it does not have a “to” section, the Node rule deletes all input ele-
ments s that are instances of the metaclass Node in the metamodel Graph,
and are in fact “n1”. The Edge rule deletes all input elements s that are
instances of Edge, and are incident to an “nl1” node.

In ATL, the order of the rules does not matter; specifying the deletion
of node “n1” before the deletion of incident edges does not prevent match-
ing/applying the edge deletion. EMFTVM implements this using a one-shot
matching phase for all rules, followed by a one-shot application phase. Fur-
thermore, deleted elements are merely marked during the application phase,
and only processed at the phase end.

The SimpleGT solution for the same problem looks as follows:

1module graphDeleteNlIncident;
2metamodel Graph;

3transform g : Graph;

4

5def : nl : String = 'nl’;

6

7abstract rule N1 ({

8 from nl : Graph!Node (name =~ env.nl)
9 to nl : Graph!Node (name =~ env.nl)
10 }

11rule DeletelIncomingEdge extends N1 ({
12 from e : Graph!Edge (trg =~ nl), nl : Graph!Node
13 to nl : Graph!Node

14}

15rule DeleteOutgoingEdge extends N1 ({

12



16 from e : Graph!Edge (src =~ nl), nl : Graph!Node
17 to nl : Graph!Node

18}

19rule DeleteNl extends N1 {

20 from nl : Graph!Node

21}

The SimpleGT transformation module graphDeleteNlIncident re-
writes the model g, which conforms to the metamodel Graph. The nl
helper attribute defines the name of the “nl” node to match. The N1 rule
just matches all “n1” nodes. The output pattern reflects the state of the
input pattern after the rule is applied: everything is left intact. This rule is
abstract, and is never applied by itself. The DeleteIncomingEdge rule
extends the N1 rule, and is applied as-long-as-possible to all input patterns
(e, nl), where nl is an “nl1” node (inherited behavior), and e is an edge
targeting n1. The output pattern no longer contains e, so it is deleted. The
DeleteOutgoingEdge rule does the same, but for edges that depart from
nl. Then, the DeleteN1 rule is applied as-long-as-possible to all n1 nodes.
There is no output pattern, so the entire input pattern match is deleted.

3.2.2. What is the Tool Suited for and why?

EMFTVM focuses on reuse, modularization, and composition of model
transformations. It is therefore well-suited to specifying large and complex
transformations. EMFTVM is the third generation VM for ATL, adding new
ATL features as well as improving performance.

EMFTVM provides cross-language internal composition by defining the
composition mechanisms, module import and rule inheritance, at the VM
level. The EMFTVM is based on the Eclipse Modeling Framework (EMF),
and can share its models with other EMF-based tooling.

EMFTVM currently provides compilers for ATL, SimpleGT, a minimal
graph transformation language on top of EMF, and EMFMigrate [107], a
model migration language for EMF'.

The tool is not suited for model-to-text-transformations. Furthermore,
the matching engine is not able to compete with the execution speed reached
by matching engines of high-performance rewriting tools.

13



1
2
3
4
5
6
7
8
9
10
11
12
13

3.3. Epsilon

Epsilon is a component of the Eclipse Modeling Project! and a family
of model management languages. Epsilon seeks to capture patterns of —
and best practices for — model management. Specifically, Epsilon provides
several inter-related task-specific languages. Each language makes idiomatic
patterns and concepts that are important for a specific model management
task. For example, Epsilon Flock [85] provides constructs for updating a
model in response to changes to its metamodel.

To solve the Hello World case, three Epsilon languages were used. The
Epsilon Object Language (EOL) [56] — which is the base language of Epsilon
and is an extension to and reworking of OCL — was used for direct model ma-
nipulation, Epsilon Flock was used for model migration and rewriting, and
the Epsilon Generation Language [87] was used for model-to-text transforma-
tion. For each problem in the Hello World case, we have chosen the Epsilon
language that provided the constructs that we feel were most well-suited to
solving that category of problem.

3.3.1. Delete Node with Specific Name and its Incident Edges

We solved the node deletion task with EOL [56] and with Flock. The
latter is more concise, but arguably more difficult to understand. In EOL,
the delete keyword removes a model element and all nested model ele-
ments from a model. To delete a Node and its incident Edges, three® delete
statements have been used (Listing 1).

var nl : Node = Node.all.selectOne(n|n.name == "nl");

delete nl.incoming () ;
delete nl.outgoing /() ;
delete nl;

operation Node incoming() : Collection (Edge) {
return Edge.all.select (e|le.trg == self);

}

operation Node outgoing() : Collection (Edge) {
return Edge.all.select (e|e.src == self);

}

Listing 1: Deleting a node and its incident edges with EOL.

thttp:/ /www.eclipse.org/epsilon
5A single, cascading delete statement could have been used if containment references
had been used in the graph metamodel.
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An alternative solution, using a Flock migration strategy, is shown in
Listing 2. Like all of the task-specific languages in Epsilon, Flock re-uses
and extends EOL with additional language constructs. For example, Flock
provides the delete construct for specifying model elements that should be
removed for a model. Deletions are guarded using the when keyword. The
difference between the two solutions is subtle, but important. The Flock solu-
tion is declarative, and the Flock execution engine consequently has complete
freedom over how the deletion of the node and edges is scheduled. In con-
trast, the EOL solution is imperative, and the EOL execution engine must
first find the “n1” node, then delete its edges, and then delete the node itself.

1delete Node when: original.name == "nl"
2

3delete Edge when: original.src.name == "nl" or original.trg.name == "nl"

Listing 2: Deleting a node and its incident edges with EOL.

3.3.2. What is the Tool Suited for and why?

Epsilon appears to be well-suited for many common model management
tasks. This claim is supported by the use of Epsilon by numerous indus-
trial partners, including in ongoing collaborations with BAE Systems [11],
IBM Haifa, Telefonica, Western Geco, Siemens, and the Jet Propulsion Lab-
oratory at NASA. Additionally, the Universities of Texas, Oslo, Kassel and
Ottawa teach MDE by using Epsilon. A further benefit of Epsilon is that it is
technology-agnostic: model management operations written in Epsilon lan-
guages are independent of the technology used to represent and store models.
Epsilon can be used to manage XML, EMF, MDR, BibTeX, CSV, and many
other types of models.

Due to its task-specific languages, Epsilon is well-suited to solving a range
of model management problems, such as model transformation, merging,
comparison, validation, refactoring and migration. The opponents assigned
to the Epsilon solution described in this paper remarked that most of the
solutions to the Hello World are very concise and readable when formulated
with Epsilon. Counter to this, one of the opponents suggested that learning
the similarities and differences between the family of languages might be a
challenge for new users of Epsilon.

At present, Epsilon is not well-suited for matching complicated patterns.
The opponents remarked that solutions that required matching complicated
patterns (such as finding cycles of three nodes in a graph) were less concise
and readable due to the use of imperative constructs for specifying patterns

15



in EOL. Additionally, not all of the Epsilon languages scale well for very
large models in some situations. We have tailored Epsilon for use with large
models to solve the specific problems of industrial partners (e.g., [11]), and
we are beginning to address more general issues of scalability in Epsilon as
part of our ongoing research at York (e.g., [2]).

3.4. GReTL

GReTL (Graph Repository Transformation Language, |42, 15]) is a graph-
based, extensible, operational transformation language. Transformations are
either specified in plain Java using the GReTL API or in a simple domain-
specific language. GReTL follows the conception of incrementally construct-
ing the target metamodel together with the target graph, a feature distin-
guishing it from most if not all other transformation languages. When cre-
ating a new metamodel element, a set-based semantic expression is specified
that describes the set of instances that have to be created in the target graph.
This expression is defined as a GReQL query [14] on the source graph.

For transformations with pre-existing target metamodel like in the Hello
World case, there are also operations with the same semantics working only
on the instance level.

GReTL is a kernel language consisting of a minimal set of operations,
but it is designed for being extensible. Custom higher-level operations can
be built on top of the kernel operations. This extensibility was exploited
to add some more graph-replacement-like in-place operations for solving the
Compiler Optimization case [10].

3.4.1. Delete Node with Specific Name and its Incident Edges

As said, GReTL can be extended. To compete in the TTC Compiler Op-
timization case, several in-place-operations with semantics similar to graph
replacement systems were added.

The following operation call deletes all nodes of type Node whose name
attribute equals “n1” and its incident edges.

1transformation DeleteNodeNlAndIncidentEdges;
2
3Delete <== from n: V{Node}

4 with n.name = "nl1"

5 reportSet n, n <--{src, trg} end;

The first line simply declares the transformation. In line 3, the Delete
operation is invoked. It receives a (possibly nested) collection of elements to
be deleted. Those are specified with the GReQL query following the arrow
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symbol. It selects all vertices of type Node whose name is “n1” together with
their incident edges.

In TGraphs, deleting a vertex also deletes incident edges; there cannot
be dangling edges. However, since the example model represents edges as
vertices of type Edge that refer to their start and end Node with src and
trg edges, a reqular path expression is used to select the Edge nodes that
start (src) or end (trg) at the Node n that is to be deleted, in order to
delete them, too.

3.4.2. What is the Tool Suited for and why?

Due to GReQL’s regular path expressions, GReTL is especially suited for
model transformation tasks similar to the Program Understanding case [40],
where complex non-local structures have to be matched in the source graph.

GReTL is not suited for transformations of EMF models because it is
implemented for (and included in) JGraLab®, which uses TGraphs as model
representation. However, EMF models can be imported /exported.

Also, GReTL was designed for model transformations that create a new
metamodel (optionally), and thereby also create a new instance graph. The
support for in-place transformations has been added only for competing in
the TTC cases, and it does not really fit into the original conception of
GReTL except that it proves its extensibility.

3.5. GrGen.NET

GRGEN.NET7 [46| is an application-domain-neutral graph rewrite sys-
tem with a focus on performance, expressiveness, programmability, and de-
bugging. It offers textual languages for graph modeling and rule specifica-
tion, which are compiled into .NET assemblies, and a textual language for
rule application control, which is interpreted by a runtime environment. The
user interacts with the system via a shell application and a graph viewer
(alternatively via an API) allowing for graphical and step-wise debugging.

3.5.1. Delete Node with Specific Name and its Incident Edges

Rules in GrGen consist of a pattern part specifying the graph pattern to
match and a nested rewrite part specifying the changes to be made. The ex-
ample rule deleteN1AndAllIncidentEdges below matches a node n of

Shttp://www.jgralab.uni-koblenz.de
"http://grgen.net
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type graphl_Node, 1if it bears the name searched for. The incident edges
are collected with the iterated construct, which munches the contained
pattern eagerly as long as it is available in the graph and not yet matched.
The contained pattern here consists of a graphlet n <--— e:graphl_Edge
that specifies an anonymous edge of type Edge leading from the source node
e to the target node n. The rewrite part is specified by a replace block
nested within the rule; graph elements that are declared in the pattern but
are not referenced in the replace-part are deleted. Since the replace parts
are empty, all matched elements are deleted.

1rule deleteNlAndAllIncidentEdges {
n:graphl_Node;
if {n._name == "nl";}

iterated {
n <—— e:igraphl_Edge;

replace { }

O © O N ot A W N

The rule is executed from the rule application control language with the
syntax exec deleteNl1AndAllIncidentEdges. When the rule is exe-
cuted in the debugger of the shell, you can watch how it is applied on the
host graph as illustrated by the screenshot shown in Figure 5.

3.5.2. What is the Tool Suited for and why?

GRGEN.NET is suited to tasks requiring notational expressiveness, with
its support for rewriting structures that extend into depth and into breadth,
notably structures with a tree backbone |45], as they are required for pro-
cessing natural languages in computer linguistics [3]. Another highlight is its
support for retyping of graph elements.

The tool fits well to performance-oriented tasks, with its optimized code
generator yielding high execution speed at modest memory consumption, and
its support of matching large patterns. These qualities are of interest in the
domain of compiler construction [89] where GRGEN originates from.

GRGEN.NET is a general-purpose graph rewriting tool. To this end it
offers a rich metamodel and a highly programmable control language, which
allows to program even a state space enumeration, a concept not built in as
such. GRGEN.NET was employed in mechanical engineering [33], architec-
ture |26, and bio-chemistry [88].
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Figure 5: Screenshot from the GRGEN.NET debugger

The tool is well adapted to being used by external developers, due to its
extensive user manual |7], and due to the languages, which were designed to
be understandable to a common software engineer, with a direct representa-
tion of graphical patterns in a textual notation.

GRGEN.NET is not well suited for EMF/.ecore based transformations
because of the name mangling applied by the importer, and the lack of an
exporter. The implementation with a code generator resp. compiler (to
achieve high-performance solutions) slows down the test-debug cycle, and
rules out (programmatic) changes to the rules at runtime. Tool-internal
meta-programming is not supported, so for tasks requiring large amounts
of highly repetitive specifications (that cannot be factored out into subpat-
terns) an external code generator emitting a GRGEN specification needs to
be employed.
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3.6. GROOVE

GROOVE? is a general-purpose graph transformation tool offering a user-
friendly user interface and a very expressive rule language. Its main distin-
guishing feature is automatic exploration and analysis of the complete space
of reachable graphs, using any of a number of search strategies and other
settings. The analysis capabilities include LTL and CTL model checking [53]
and Prolog queries [20]. See [23] for a recent overview of the tool and its use
in practice.

In a typical usage scenario, GROOVE is accessed through its built-in GUI,
but for the analysis of predefined grammars there is a headless, command-
line version available (offering better performance). A screenshot of the GUI
is shown in Figure 6.

ol
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Figure 6: Screenshot of the GROOVE simulator

In the way of interoperability, GROOVE supports import from and export

8http://sf.net/projects/groove
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to a number of external formats, including EMF, as well as a limited form of
textual output.

3.6.1. Delete Node with Specific Name and its Incident Edges

It is typical of the power of the GROOVE rule language that each task of
the Hello World case can be solved in a single rule that captures precisely
the desired functionality or effect. For instance, Figure 7 shows the GROOVE
rule implementing the task described in Section 2.2, namely to delete a node
with a given name (here “n1”) and all its incident edges.

V<« @ |Edge]

Figure 7: GROOVE rule for deleting a node and its incident edges

The phrase “all its incident edges” gives rise to the two nodes labeled V in
the graph, each of which universally quantifies over the patterns connected to
it by a @-labeled edge. Thus, the upper V-node captures all incoming edges,
and the lower one all outgoing edges. The dashed (blue) outline of the nodes
is the visual representation of the fact that they are deleted when the rule is
applied.

3.6.2. What is the Tool Used for and why?

Experience has shown that GROOVE is very easy to use for prototyping
all kinds of systems. In essence, any scenario involving the dynamics of a
system that has a natural representation as graphs is amenable to modeling
in GROOVE.

The advantage of building such a model is especially the ease with which
the resulting behavior can be analyzed, both through simulation and visual-
ization and through the automatic exploration of the set of reachable graphs.
Central to this capability is the notion of a labeled transition system (LTS),
which shows precisely how graphs may evolve under rule application: in this
view, every reachable graph is itself a node (i.e., state) in the LTS, and every
rule application corresponds to an edge (i.e., a transition).
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In settings where the issue is not to model the dynamics of a system but
to specify a (mode-to-model) transformation, GROOVE is still a useful tool
as it can show, on concrete example models, that the rule system specifying
the transformation is confluent and terminating — namely, this is the case
if and only if the L'TS is acyclic and has only a single terminal state.

The Hello World case offers no opportunity to demonstrate this capability,
but in [23| we review examples from several, very distinct domains.

Given the fact that GROOVE is really a general-purpose graph transfor-
mation tool, it should come as no surprise that it is less suited for dedicated
model transformation applications. On the one hand, there is no built-in sup-
port for model transformation (all aspects of the transformation would have
to be constructed manually); on the other hand, the strength of GROOVE,
namely the capability to explore and analyze state spaces, is wasted in the
context of model transformation, where the purpose is really to have a con-
fluent rule system that can be explored in a linear fashion.

Related to this, model-to-text transformation is also outside the scope
of GROOVE: in addition to sharing the characteristics of model-to-model
transformation mentioned above, there is the simple fact that GROOVE does
not support unformatted textual output.

3.7. Henshin

Henshin? [1] is a high-level graph rewriting and model transformation
language and tool environment for Eclipse. The transformation language of
Henshin is based on declarative and procedural features. Complex transfor-
mations can be specified in a modular and reusable way using nested rules
and a small set of control-flow structures. The specification of transforma-
tions is supported by a compact visual syntax provided in a graphical editor.
For formal analysis, Henshin includes a state space generation and model
checking tool, and an export functionality to external model checkers and
other graph rewriting tools, such as AGG [93].

3.7.1. Delete Node with Specific Name and its Incident Edges

Figure 8 shows an example rule in Henshin for deleting a node with a
given name and all its incident edges (modeled here by nodes of type Edge).
The parent graph and the node name are supplied as rule parameters. To

http://www.eclipse.org/henshin
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= Rule deleteNodeWithincidentEdges(graph:Graph, nodeName:EString)

«preserve»
graph:Graph

(]

«delete*/incoming»[| «delete*/incoming» |«preserve*/incoming»
«deleter «delete*/incoming» 2998 >:Node
nodes e
«delete» trg
:Node
= name=nodeName &
«delete*/outgoing» trg «preserve*/outgoing»
«delete*/outgoing» [:Edge ———>i:Node

«delete*/outgoing»

Figure 8: Henshin rule for deleting a node and its incident edges.

implement the deletion of all incident edges, the rule contains two nested
rules, called incoming and outgoing, which are matched and applied as
often as possible. Note that these two nested rules are specified indirectly
with the stereotypes used on nodes and edges, e.g., (delete*/incoming)).
The nesting of such rules is specified using a simple path-like syntax, e.g.,
((delete*/x/y/z)), where x, y and z are the names of nested rules. This
allows the user to define complex transformations in a single rule and without
the need for any control-flow structures, such as loops. However, control-
flow structures as well as composite application conditions and attribute
calculations based on scripting languages are also supported.

3.7.2. What is the Tool Suited for and why?

Henshin targets the transformation of structural data models in the Eclipse
Modeling Framework (EMF). EMF is an implementation of a subset of the
MOF standard by the OMG and is the basis of a wide range of tools and
frameworks, including editors for domain-specific languages as well as an
implementation of UML 2.4.1 (at the time of writing). Henshin is suited
to define transformations for these languages. Since Henshin implements a
rewrite approach, it can be used to modify models in-place, such as required
for refactorings. Additionally, Henshin provides a generic trace model to sup-
port the specification of transformations from one language to another. For
example, Henshin has been used in an industrial case study [44] to implement
an automatic translation of programming languages for satellite technology
to a standardized satellite control language, called SPELL. Due to its state
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space generation facilities, Henshin can be also used for formal verification.
For instance, Henshin has been used for a quantitative analysis of a proba-
bilistic broadcasting protocol for wireless sensor networks [58].

Since Henshin does not include a template language, it is not suited
for model-to-text transformations. Furthermore, out-place transformations
where major parts of the input model have to be copied are not well sup-
ported, because this copying has to be defined explicitly.

3.8. MDELab SDI

Story diagrams [17, 105] are a visual domain specific language similar to
UML activity diagrams with an easily comprehensible notation for expressing
graph transformations. Activity nodes and edges describe control flow and
so-called story nodes can be embedded, which contain graph transformation
rules.

Story diagrams can be interpreted by the MDELab Story Diagram In-
terpreter (SDI)' [24], which features a dynamic pattern matching strategy
when executing the graph transformation rule inside a story node. At run-
time, this strategy adapts to the specifics of the instance model on which
the graph pattern matching is executed to improve performance. Further-
more, the SDI provides seamless integration with EMF and supports OCL
to express constraints and queries in a story diagram. A debugger allows to
execute story diagrams step-wise (including back-stepping), to inspect and
modify the state and the diagram itself, as well as to visualize the execution.

3.8.1. Delete Node with Specific Name and its Incident Edges

The problem to delete a particular node with its incident edges can be
split into four steps: (1) Finding the node, (2) deleting the incoming edges,
(3) deleting the outgoing edges, and (4) deleting the node itself. The story
diagram in Figure 9 contains a story node for each of these steps. First, the
graph that is modified has to be provided as a parameter. Then, the node
will be sought. An OCL constraint is used to check the name of the node. If
one can be found, its incoming and outgoing edges are deleted. This is done
in the subsequent for-each nodes, i.e., the contained graph transformation
rules are executed for all matches that can be found. Finally, the node itself
is deleted. Instead of hard-coding the name of the node to delete, it is also
possible to provide the name as an additional parameter.

Ohttp://www.hpi.uni-potsdam.de/giese/gforge/mdelab/
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Figure 9: Searching for node n1, deleting its incoming and outgoing edges, and the node
itself.

Arguably, this solution is much more verbose than the solutions of other,
especially textual, languages. However, the advantage of this graphical nota-
tion becomes clear if the patterns are complex and contain many links. Then,
a corresponding textual representation would be much harder to understand.

3.8.2. What is the Tool Suited for and why?

As already stated, a major strength of story diagrams is their good com-
prehensibility, especially for people unfamiliar with graph or model transfor-
mation tools. This is supported by allowing to use OCL expressions in any
place, where constraints or queries can be used. They can be executed by an
interpreter, which offers high flexibility because it allows to generate story
diagrams at runtime and execute them right-away. This feature is used, e.g.,
in [19], where behavior models are derived from requirement specifications.
The interpreter simulates different scenarios in several iterations and derives
a valid story diagram, which reflects and fulfills the requirements. Besides
the interpreter, a graphical editor with model validation and a graphical de-
bugger are also provided. Another advantage is the tight integration with
EMEF, which allows to use other EMF-based tools with story diagrams.
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Story diagrams are primarily designed for in-place transformations. There-
fore, they lack common features of model-to-model transformation tools like
implicitly created traceability links. Moreover, all patterns in a story dia-
gram are matched using a local search. Hence, a binding must be provided
for at least one object in the LHS of each pattern. However, this is usually
not a major restriction in practice because model elements are mostly con-
tained in a common container, which has to be included in the patterns, e.g.
graph in Figure 9.

3.9. metatools

metatoolst![66, 67, 96, 97| take the opposite approach to dedicated ex-
ecution machines: They support a declarative style of programming by in-
tegrating high-level transformation devices, like visitors, rewriters, pattern
matching, relational algebra, etc., into a general-purpose programming lan-
guage (currently: Java), as seamlessly as possible. For this, a small run-time
library co-operates with source code that is generated from compact dec-
larations in dedicated domain specific languages (DSLs). Applications are
founded on this generated code, but are otherwise totally free to use any
features of the hosting programming language and its libraries.

The reader is kindly invited to look behind the facade: The second source
text fragment below looks like plain Java code, but indeed only initiates the
fully automated rewriting machine, which has been generated according to
the model definition in the first fragment.

3.9.1. Delete Node with Specific Name and its Incident Edges

metatools do not come with one fixed definition of “graph”, but, contrarily,
apply graph theory to arbitrary data structures. In the context of the “hello
world” test case, the properties of a graph and the mapping of its components
to Java objects are subject to explicit design decisions. The following solution
assumes that the graph is rooted, i.e., can be represented by one single node,
and may contain cycles, but no “dangling” edges, and that edges are directed
and named. (The SHARE demo [65] shows an alternative.)

The first code snippet shows the declaration from which the source code
for objects and visitors is generated. It is written in umod, one of metatools’
DSLs. The class hierarchy is defined by indentation. Fields may have (fully

Uhttp://bandm.eu/metatools
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compositional!) collection types. Constructor signatures and visitor/rewriter
traversal rules may follow the field definitions: The instructions V. 0/0 mean
that all visitors using the traversal rule “0” go from each Node to all Edge
objects contained in .outgoing, and from there to the Node in .target.
The instructions C 0/0, C 0/1, etc., mean that there is only one public
constructor per class, which takes the value to initialize the field .name for
Node objects, and the values for .name, .src and .trg, in this sequential
order, to create Edge objects.

1MODEL Model =
2
3VISITOR 0 Rewriter IS REWRITER ;
4

5 TOPLEVEL CLASS

6Item

7 name string ! Cc 0/0 ;

8| Node

9 outgoing SET Edge ! v 0/0 ;
10| Edge

11 src OPT Node ''c 0/1 ;

12 trg OPT Node ' c 0/2 Vv 0/0 ;

13END MODEL

The second snippet shows how a node with a given name is deleted by
applying rewriter code, which is derived from the generated rewriter. Only
the rewriter’s local behavior needs to be specified, all traversal and the update
of all member fields is done by the generated code.

1 public static Node deleteNodeAndEdges (final Node root,
2 final String nodeName) {
3 return new Rewriter () {

4 public void action (final Node n) {

5 if (nodeName.equals(n.get_name()))

6 substitute (null) ;

7 else

8 super.action(n);

9 }

10 public void action(final Edge e) {

11 if (rewrite(e.get_trg())==null)

12 substitute_empty () ;

13 else

=
'S

super.action(e);

-
5]

}
}.rewrite_typed(root) ;

}

=
~N O

3.9.2. What is the Tool Suited for and why?

The generative approach of the metatools determines their applicability:
Only small runtime libraries must be packaged with an application. All inte-
gration of software components is done by the normal protocols of the hosting
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language, “packages” in horizontal and “inheritance” in vertical direction.

Therefore metatools are well suited when legacy sources shall be combined
with more declarative techniques in an incremental way. This may even
include use of opaque libraries: e.g. the “paisley” pattern matching subsystem
is fully compatible with arbitrarily-shaped pre-defined data [96].

They are also well suited when experienced programmers want to retain
immediate use of the full range of the hosting programming language and its
libraries, stay with the tools they are used to, and do not want to change their
style of coding completely. Features, tools and strategies can be employed
selectively, according to the user’s needs and preferences.

The output of metatools is source code, which can be treated together
with hand-written code in a uniform way, by humans (inspecting) and by
tools (generating doc, debugging, profiling, etc.). There is no “magic behind
the scene”, so programmers have full control over the applications’ behavior,
if they want to.

metatools include advanced support for XML import, export and process-
ing, as long as the format is given as a W3C DTD.

They have been successfully employed in different industrial and academic
medium-scale professional programming projects, in the fields of compiler
construction for DSLs, web content management, financial systems, etc.

Since all typing issues in metatools are checked, resolved and decided as
strict and as early as possible, there are longer programming turnarounds
times than in dynamically typed systems or systems with dynamic meta-
models. Currently there is no support for IDE integration, and for XML
type definitions beside D'TD. Esp. there is no connection to Eclipse and to
EMF. But the SHARE demo on the “compiler optimization task” [65] shows
how easily a new XML based file format (here: gx1-1.0) can be connected
to metatools.

3.10. MOLA

MOLA!? [51] is a graphical general-purpose transformation language de-
veloped with a focus on comprehensibility. It is based on traditional concepts
among transformation languages: pattern matching and rules defining how
the matched pattern elements should be transformed.
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Figure 10: MOLA transformation for deleting a node named “nl1” and its incident edges.

3.10.1. Delete Node with Specific Name and its Incident Edges

MOLA is a procedural transformation language. The MOLA procedure
solving this task is given in Figure 10. The structure of a MOLA procedure
is in a sense similar to UML activity diagrams. The execution order of
MOLA statements is determined using Control Flows (closed arrows with
dashed line). The key element of the MOLA language is a rule (gray rounded
rectangle), which contains a declarative pattern that specifies the instances
of the classes that must be selected and how they must be linked. The first
rule is used to find a Node named n1 in a graph. The graph to be processed
(@g) is given as a parameter to ensure that only nodes in this graph are
examined. We check with an association link that the Node is contained in
the Graph. An OCL-like constraint is used to check the name of the Node.
Here the node name is directly used in the expression, however a variable
containing the name of the node could have been used as well.

When the node n1 was found, then two similar MOLA foreach loops
(rectangles with bold border) are executed to process the outgoing and in-
coming edges respectively. As a pattern is only matched once, we have to

Phttp://mola.mii.lu.lv
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employ a loop to process all the edges. Each loophead (first rule in a loop)
contains an iterator — the loop variable, a class element depicted with a bold
border. A loop is executed for each distinct instance of the loop variable
satisfying constraints defined by the loophead. Here, the constraint is that
the edge’s source (respectively, target) is the n1 node. The second rule in
the loop deletes this edge (deletion is marked using a dashed border). After-
wards the nl node itself is deleted using a similar MOLA rule. Execution
ends by reaching the end symbol.

3.10.2. What is the Tool Suited for and why?

The main design goals of the MOLA language are readability and com-
prehensibility of the transformations. Therefore, MOLA is a graphical trans-
formation language. The comprehensibility of the MOLA language helps to
reduce the number of errors in a transformation definition.

MOLA has rich pattern definition facilities. In many cases a solution
to a complicated transformation task can be defined in MOLA with a few
rules. This way it is possible to solve many real transformation tasks easily,
where it is required to process languages with complicated metamodels like
UML. This is proved by a case study performed in the ReDSeeDS project [91],
where MOLA was used to process UML models in a model-driven application
development. MOLA is well suited for building tools for graphical languages
with complicated domain metamodels and dissimilar presentation models.
An example is the MOLA editor [52] built in the METAclipse framework.

MOLA offers an Eclipse-based graphical development environment — the
MOLA tool, incorporating all the required development support: a graphical
editor (with support for graphical code completion and refactoring), a syntax
checker and a compiler to three different target environments including EMF.
The MOLA tool has a facility for importing existing metamodels, including
the EMF (Ecore) format.

MOLA is a general-purpose transformation language, so for specialized
tasks, such as model-to-text transformations or model migrations, special-
ized languages perform better. The same could be said about simple model
navigation and look-up transformations where languages such as 1Query [69]
or EOL [56| perform better. It should also be noted that there are no con-
structs in the MOLA language that allow modifying the metamodel or the
transformation rules at runtime. Though, it is possible to generate MOLA
rules before the execution using HOTs (Higher-Order Transformations), for
example in Template MOLA [50]. In addition, the current version of the
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MOLA tool is also not well suited for tasks requiring high performance.

3.11. QVTR-XSLT

QVT Relations (QVT-R) is a declarative model transformation language
proposed by the OMG as part of the Query/View/Transformations (QVT)
standard. QVT-R has both textual and graphical notations; the latter pro-
vides a concise, intuitive and yet powerful way to specify transformations.
In QVT-R, a transformation is defined as a set of relations (rules) between
source and target metamodels, where a relation specifies how two object di-
agrams, called domain patterns, relate to each other. Optionally, a relation
may have a pair of when- and where-clauses specified with OCL to define the
pre- and post-conditions of the relation, respectively.

The QVTR-XSLT tool [68] supports the graphical notation of QVT-R,
and the execution of a subset of QVT-R by means of XSLT programs. It
consists of two parts: (1) a graphical editor that is used to define the meta-
models and specify the transformation rules, and (2) a code generator that
automatically generates executable XSLT programs for the transformations.

3.11.1. Delete Node with Specific Name and its Incident Edges

= <<Relation>> “_‘]
<< >> b
elation B DelEdge
DelNode {when=snm="n1" or tnhm="n1";}
{where=DelEdge(sg,tg);}
{isTopLevel} <<Domain>> <<Domain>>
<<Domain>> <<Domain>> sql:(Graph, t9: Graph
sg : Graph tg : Graph
edges i —
i ~ : Edge
nodes nodes xmi:id = "sid"
: Node q
: Node src trg edges
name = "n1" {targetld = "sid" , - Node < Node _ Edge
xmiid = "sid" xmiDiffOp = remove } — : {targetld = "sid",
name = "snm" name = "thm" xmiDiffOp = remove }

Figure 11: Delete a node with name “n1” Figure 12: Delete the incident edges

This task is accomplished by a simulated in-place transformation, which is
defined in QVTR-XSLT by modification annotations (insert, remove, replace)
of the existing model elements. The metamodel has been already defined in
Figure 3. The transformation consists of two relations shown in Figure 11
and Figure 12.
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The top-level relation DelNode is the starting point of the transforma-
tion. Its source domain pattern (left part) matches a Node named “nl1” in a
graph. If the “n1” node is found, its identifier (xmi : 1d) is bound to variable
sid, and then the target domain pattern (right part) marks the xmiDi ffOp
of the node whose id is the sid as remove. Invoked from the where-clause
of relation De1Node, the source domain pattern of relation DelEdge, along
with its when-clause, is used to find all the Edges whose src or trg nodes
are the “n1” node. Similarly, these edges are marked as remove in the target
domain pattern.

An XSLT program of about 80 lines of code is generated for the trans-
formation. Execution of the program copies all the model elements from the
input model to the output model, except the ones marked as remove.

3.11.2. What is the Tool Suited for and why?

The QVTR-XSLT tool can be applied to a wide variety of source-to-target
model transformations, under the condition that the source and target models
are stored in XML documents, and each model element has an unique iden-
tifier. Many transformation scenarios, such as platform independent model
(PIM) to platform specific models (PSM) transformations, or the transfor-
mations of UML models to models of formal languages (such as CSP), are
well supported. Data transformation in data engineering is another potential
application field for the tool. Using the tool, the structures of the XML data
can be described concisely by the metamodels, and the mappings between
the data can be specified by relations of QVT-R using the high-level graphi-
cal notation. In addition, the tool can be used in the fields of semantic web
and ontologies, often there is a need to convert between different knowledge
models, which are also in XML formats.

The generated XSLT programs for the transformations can be directly
executed under any XSLT processor on any platform, or can be easily in-
tegrated into other applications and systems. As there are already many
industrial-strength XSLT processors, such as Sazon and Xalan, our transfor-
mations can then run fast, and efficiently process large-scale models.

Using the tool, we have successfully designed complicated transformations
that work within CASE tools. One transformation may include more than
100 rules and queries, and generate more than ten thousands lines of XSLT
code.

QVTR-XSLT is not suited for model-to-text transformations. Further-
more, it only supports models with unique identifiers.
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3.12. UML-RSDS

UML-RSDS" (Reactive system design support, [60]) is a general-purpose
language and tool for model-based development. The language is a precise
subset of UML and OCL, in which software systems can be specified and
designed using UML class diagrams, use cases, state machines and activities.

In UML-RSDS a transformation specification is expressed by:

1. A class diagram, showing the source and target metamodels of the
transformation.

2. A use case, defining the transformation effect. A use case can have a
precondition, defining assumptions made about the source and target
models at the start of the transformation. It also has a postcondition,
defining the intended state of the source and target models at the end
of the transformation.

3. The postcondition constraints are written in a subset of OCL, which
has a unique procedural interpretation: from these a design (as a UML
activity) and executable code (in Java or C#) can be automatically
synthesized.

Source and target metamodels are defined using the visual class diagram
editor of UML-RSDS.

3.12.1. Delete Node with Specific Name and its Incident Edges

The named node deletion transformation on graphs is an update-in-place
transformation, which operates on models of the metamodel shown in Fig-
ure 13. This transformation has the following two postconditions:

1ln : src.name or n : trg.name implies self->isDeleted()

operating on instances of Edge (the notation n : src.name abbreviates
src.name->includes (n) ), and

lname = n implies self->isDeleted()

on instances of Node, where x—>1isDeleted () expresses that x is removed
from the model.

Logically, these postconditions can be read as expressing that in the end
state, there are no edges that have a source or target node with name n, and

Bhttp://www.dcs.kcl.ac.uk/staff/kcl/uml2web
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Figure 13: Graph metamodel in UML-RSDS

that all such nodes have also been removed. Operationally, the constraints
define two transformation rules that remove the edges first, then remove the
nodes. We need to remove the edges first, in order to avoid introducing
dangling edges without target or source nodes during the transformation.

3.12.2. What is the Tool Suited for and why?

UML-RSDS has been successfully used for all categories of transforma-
tion, except text-to-model or model-to-text. It is particularly suited for
update-in-place transformations (refactoring, restructuring, etc.), and for
refinements and abstractions. It can be used for migration transforma-
tions, e.g., [62], however it does not have specific support for defining mi-
grations. Similarly, it does not have specific support for model-to-text or
model-merging transformations, but these can be defined. It supports the
definition and instantiation of generic transformations.

UML-RSDS has the advantage of using standard UML and OCL no-
tations to specify transformations, reducing the cost of learning a special-
purpose transformation language. It also has the advantage of making ex-
plicit all assumptions on models and providing global specifications of trans-
formations, independent of specific rules. Verification support is provided
for proving transformation correctness [64|. For the above example, we can
prove the logical postcondition that exactly those nodes with name n have
been removed using these techniques.

The generated executable implementations of transformations have high
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efficiency and are capable of processing large models of over 500,000 ele-
ments [63].

The Transformation Tool Contest has been of significant benefit to the de-
velopment of UML-RSDS. In particular, the “Hello world” case identified the
need for rules to distinguish pre-state and current-state versions of features.

UML-RSDS cannot be used if transformations are to be carried out within
Eclipse/EMF. It is not suited to model-to-text transformations, or transfor-
mations, which require runtime metamodel or rule changes.

3.13. VIATRA2

The VIATRA2 (VIsual Automated model TRAnsformations [104]) frame-
work is a component of the Eclipse Modeling Project'* and its objective is
to support the entire life-cycle of model transformations consisting of spec-
ification, design, execution, validation and maintenance. VIATRA2 uses the
VPM (Visual and Precise Metamodeling) approach [102] that supports ar-
bitrary metalevels in the model space. It combines graph transformation
and abstract state machines (ASM) [8] into a single framework for capturing
transformations within and between modeling languages [101]. Transforma-
tions are executed using an interpreter and both (1) local-search-based (1.S)
and (2) incremental pattern matching (INC) are available, providing addi-
tional opportunities to fine-tune the transformation either for faster execution
(INC) or lower memory consumption (LS) [43].

3.13.1. Delete Node with Specific Name and its Incident Edges

Model transformations written in VIATRAZ2 consist of graph pattern def-
initions and both graph transformation rules and ASM rules. The delete-
N1NodeAndAllIncidentEdges transformation below uses graph patterns
for identifying the node with the specific name (N1Node) and the edges con-
nected to a given node (connectedEdge). The example is complete and
executable on any VPM model space that contains the proper metamodels.
Upon execution, the main rule is called, which first attempts to find one
node with the given name (choose semantics) and then the found node is
used as an input parameter to find all incident edges in the model (forall
semantics). Each incident edge is deleted from the model and finally, the
node itself is removed as well.

Yhttp: / /www.eclipse.org/viatra2/
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1
2
3
4
5

import datatypes; // imported parts of the model-space are usable by local name
import nemf.packages;
import nemf.ecore.datatypes;

Q@incremental // uses incremental pattern-matcher

émachine deleteN1lNodeAndAllIncidentEdges {

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

pattern N1Node (Node) = {// finds Node with name "nl"
graphl .Node (Node); EString (Name); // type constraints
graphl .Node.name (NameRel,Node, Name) ; // relation constraint
check (value (Name) == "nl");} // attribute value constraint

pattern connectedEdge (Node,Edge) = {// Edge is connected to Node
graphl.Node (Node) ; graphl.Edge (Edge) ;
graphl.Edge.src (SourceRelation, Edge, Node) ;

} or { // Node can be source or target of Edge
graphl.Node (Node) ; graphl.Edge (Edge) ;
graphl.Edge.trg(TargetRelation, Edge,Node) ; }

rule main() = seq{ // transformation entry point
try choose N1 with find N1Node (N1) do seq{ // selects one match
forall Edge with find connectedEdge (N1,Edge) do // iterates on all matches
delete (Edge); // delete model element
delete(N1);}}}

Listing 3: Delete node transformation

3.13.2. What is the Tool Suited for and why?

As a direct consequence of the metamodeling approach of VIATRA2, mod-
els taken from conceptually different domains (and/or technological spaces)
can be easily integrated into the VPM model space. The flexibility of VPM is
demonstrated by a large number of already existing model importers accept-
ing the models of different BPM formalisms, UML models of various tools,
XSD descriptions, and EMF models.

The VIATRA2 transformation framework has been applied to a wide va-
riety of problems and its interpreted transformation language, incremental
pattern matcher engine and transactional model manager provide a solid
foundation for a wide range of applications. The change notifications offered
by INC are used to drive a trigger engine to create live transformations [79]
where rules are executed in response to specific changes and change driven
transformations [4]| that translate changes on an input model to changes on
output models. The transformation engine also supports interactive execu-
tion of rules to drive simulations [80] or perform design-space exploration [30].
Finally, the development of transformations in VIATRA2 are supported by
customizable model space visualization [31] and dynamic transformation pro-
gram slicing [98].
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VIATRAZ2 is not well suited for usage scenarios where the transformation
rules change or evolve as part of the execution of the transformation itself.
Although VIATRA2 is capable of importing and transforming EMF models,
its performance and the conciseness of EMF transformation programs are
lower than those of native EMF tools. This is mainly caused by the inefficient
importer and the canonical model represention of the VPM approach that
requires a large number of model elements to represent EMF models.

4. Discussion

In the previous section, the tools that competed at the TTC were intro-
duced alongside their solutions to the “Delete Node with Specific Name and
its Incident Edges” task of the Hello World case. The solutions are well suited
to explain the approach of the tools and to illustrate their look and feel. The
task fits well to the majority of the tools, but not all. Special-purpose tools
without own transformation languages can only display their extensibility;
this was the case for Edapt designed for model migration. Mapping-based
tools are put at an disadvantage, as the task is easier to solve with an in-place
change; this holds for GReTL and QVTR-XSLT, and partly for other tools
offering both kinds, cf. Table E.6.

The remaining general-purpose rewrite-based tools are split into two classes
by it, as the task reveals the ability of the languages of the tools to match
and modify breadth-splitting structures. Some pattern-matching-based tools
show solutions that appear overly complex for such a simple task. This
is caused by a lack of declarative language constructs to process breadth-
splitting structures, as explained in Section 7.2 and Table F.15 — the solu-
tions specified in the languages of MDELab SDI, MOLA, and VIATRA2 had
to revert to rule control to iterate over the incident edges.

This does not mean those tools are not suited to other tasks or to your
task at hand, especially since the real strengths of the tools compared in this
article do not shine on such a simple task. But if a lot of structures extending
into breadth need to be processed in solving your task at hand, you should
prefer the tools displaying a concise solution for the running example.

The Hello World case consists of several further tasks that are as simple
as the one used in the running example. We want to encourage you to take
a look at all of them. At least at the ones that fit best to your task-at-hand.
All tools and their solutions to the Hello World case, as well as to the other
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Subject SHARE Cases solved

Edapt [35] Hello World, Prog. Understanding, Model Mig.
EMFTVM [106] Hello World

Epsilon [84] Hello World

GReTL [41] Hello World, Prog. Understanding, Compiler Opt.
GrGen.NET [16] Hello World, Prog. Understanding, Compiler Opt.
GROOVE [81] Hello World, Compiler Opt.

Henshin [57] Hello World, Prog. Understanding

MDELab SDI [110] Hello World, Prog. Understanding

metatools [65] Hello World, Compiler Opt.

MOLA [49] Hello World, Prog. Understanding

QVTR-XSLT [13] Hello World, Compiler Opt.

UML-RSDS [61] Hello World, Model Mig.

VIATRA2 [29] Hello World, Prog. Understanding

Table 1: SHARE images and solved cases of the tools

cases of the TTC, are available in the SHARE images listed in Table 1, ready
to be reproduced and interpreted.

We close the discussion with the remark that some of the tasks are under-
specified. This allowed on the one hand e.g. mapping based tools to solve the
running task, just in a less optimal way compared to rewriting based tools;
but on the other hand does it render the task of comparing the solutions
more difficult. We must advise for some care when doing so: implementa-
tions may implement a task correctly regarding its pragmatics, but may do
so semantically in different ways.

5. Transformation Tool Contest and SHARE

This section summarizes the organizational aspects of the Transformation
Tool Contest (TTC), recapitulates the voting results, and explains the use of
SHARE for the tool builders community or other communities with similar
requirements. Feel free to skip it if you are just searching for a tool.

The Transformation Tool Contest!®, the hosting event of the Hello World
case and the organizational umbrella for this survey, is a scientific workshop
with the aim of comparing the expressiveness, the usability and the per-
formance of graph and model transformation tools alongside a number of

Bhttp://planet-mde.org/ttc2011/
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selected case studies. Participants of this workshop want to learn about the
pros and cons of each transformation tool considering different applications,
and especially the pros and cons of their tool. A deeper understanding of
the relative merits of different tool features helps to further improve graph
and model transformation tools, advancing the state of the art. The work-
shop comprises several so-called offline cases, which have to be solved by the
participants before the workshop, but also a live case not known in advance
that has to be solved by the participants during the workshop. The live case,
which is not covered in this paper, allows to evaluate how well-suited the
transformation tools are for rapid prototyping.

The review process of the TTC was based on SHARE (Sharing Hosted
Autonomous Research Environments), which is described by its creators |25]
as: “SHARE is a web portal that enables academics to create, share, and
access remote virtual machines that can be cited from research papers. By
deploying in SHARE a copy of the required operating system as well as all
the relevant software and data, authors can make a conventional paper fully
reproducible and interactive.”

5.1. Offtine Solutions Workflow

We describe the workflow regarding the offline solutions in more detail,
because they allow you to understand the role of SHARE.

Solving the cases and submitting the solutions: The offline cases were
published several months before the workshop. Potential participants
solved them with their favorite tools, and submitted their solutions,
with a document describing the solution, but especially with an instal-
lation in a remote virtual machine offered by SHARE.

Solution review: This SHARE image together with the accompanying pa-
per was then the basis for the peer review. Some time ahead of the
workshop, two reviewers also called opponents were chosen by the or-
ganizers from the set of all participants to investigate a given solution
in detail, and to give a first vote on the solution needed for accepting it
to the workshop. The other participants had equal rights to access the
SHARE images to inform themselves about the competing solutions.
To emphasize it: the very task of the opponents was to find out whether
the solutions available in the share images were adequately described
by the accompanying papers, whether ugly things were swept under
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the carpet, or even false claims were made — which can easily happen
with traditional, paper-only-based reviews.

Solution presentation: During the workshop, the solution submitters pre-
sented their work in front of all other participants. They were able to
focus on the strong points of the solutions. But after the presentation
a discussion was scheduled, in which the general audience could ask
questions, and especially the opponents were on duty to report about
the weak points of the solutions, thus balancing the presentation of the
solution submitter.

Solution voting: The presentation and discussion were then followed by the
voting: All the contest participants were asked to fill out an evaluation
sheet for each solution (except their own). The criteria to be used in the
evaluation sheet were defined by the case submitters, the participants
had to score each solution with 1-5 points regarding each criterion.
The solutions were ranked and awarded prices along the votes of the
participants.

5.2. Cases

There were 4 offline cases to be solved, “Program Understanding” [40],
“Compiler Optimization” [10], “Model Migration” [34], and “Hello World!” [70].

The complex cases Program Understanding, Compiler Optimization, and
Model Migration complement the Hello World case with non-primitive tasks.
They allow to assess the ability of the tools to cope with difficult tasks and
large workloads, evaluating expressiveness, performance, and scalability. A
short introduction into the results of these tasks was already given with the
Related Work, for the detailed results we must hint at the proceedings of the
TTC [99].

5.5. Voles

As described above, the solutions of all Hello World tasks were (1) inves-
tigated in detail by builders of competing tools (called opponents) and (2)
voted by the participants at the transformation tool contest.

The votes for the Hello World case, which were cast alongside the eval-
uation criteria understandability, conciseness, and correctness, are listed in
Appendix D and discussed in detail. Here we give a brief summary. Please
note that the complete set of solutions was voted, not only the solution of
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the running example we used to introduce the tools. This is why tools with
a complicated solution for that task are ranked above tools that showed a
concise solution.

The votes on understandability were influenced by three points: (i) the
distinction into graphical versus textual languages, with a general bonus for
graphical tools, (ii) the concepts the tools are built upon, constructs from
formal logics received a malus, and (iii) whether the tool offers a syntax
similar to well-known programming languages, which was preferred.

Regarding the point conciseness, the availability of (i) lightweight means
for simple CRUD tasks played a role, as offered by imperative solutions, but
even more so (ii) the general expressiveness of the tools, as expressed by the
availability of the features referenced in the feature matrices in 7.2; they had
not to be used into great depth, but their general availability already lead
to more compact solutions compared to competing tools and better voting
results.

The three top-scoring tools were Epsilon, GROOVE and GrGen.NET.
The Epsilon solution was able to employ a language fitting to the task at hand
for nearly each task of the Hello World case, yielding high scores for concise-
ness and understandability. The only caveat was pattern matching, where an
imperative solution with nested loops had to be applied. GROOVE was able
to solve each task with one rule, which resulted in the highest conciseness
vote of all competing solutions. But the quantified nodes leading to the high
conciseness gave it only a midfield result regarding understandability (exem-
plifying the negative effect of formal logic constructs). GrGen.NET was as
balanced as Epsilon regarding conciseness and understandability, without a
major notable single point of weakness, but also without a major noteworthy
single point of strength.

The votes cast assess the performance of the tools in solving the set of
tasks Hello World is built of regarding understandability and conciseness;
this gives a rough indication on the usability of the tools for many different
tasks. But they need to be taken with a grain of salt — they depend on many
subjective influences as discussed further in Appendix D. You may come to
a different conclusion when you inspect the SHARE images listed in Table 1;
they allow you to reproduce and interpret the results on your own.

The votes were cast along a third point, correctness. The Hello World
task descriptions, despite being simple, contain several ugly corner cases and
ambiguities, that showed when they were to be implemented. This lead
to an astonishing amount of less-than-full-points results, considering how
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simple the tasks are. Those missing votes had not much influence on the
overall outcome; they hint at a possible improvement of the Hello World
case, though.

5.4. Review Process Support
The SHARE images employed during the contest served two functions.

Primary Function. This review of the solution and tool together with the
paper allows for much more honest results than paper only solutions. A
paper can be tweaked easily to show a compelling solution by emphasizing
the strong points of the solution and leaving out the dark corners entirely.
An executable environment cannot be tweaked like this. Especially not with
opponents, who explicitly want to find negative aspects so the competing
tool can be voted down, and their own tool look correspondingly better.

SHARE was used massively for this purpose, as can be seen by the com-
ments the opponents gave'® e.g.: “Unfortunately, only the first task (...) is
reproducible in the SHARE demo, the other solutions fail for some reason
(...). Please fix this.”

Besides the SHARE hosting computer was used as the base for perfor-
mance comparisons in the complex cases; this made the original numbers
comparable, which were typically measured at wildly different machines.

Secondary Function. The aim of the Transformation Tool Contest is to com-
pare the participating tools, and to allow the tool providers to learn from
each other. The SHARE images are helpful in this regard, too, because they
allow to inspect competing tools with a minimum of effort.

A case submitter that first only sent an archive file was asked by an-
other participant for a SHARE demo: “(...) a SHARE demo really should
be created for this solution. I just did not figure out how to operate the
Java program in your submitted zip file.” With SHARE, the reviewers can
concentrate on reviewing the tool already set up, and prospective users on
assessing the tool — they do not need to invest their time into getting the tool
running (this effort is only needed for the tools the user finally chooses).

¥nttp://planet-research20.org/ttc2011/index.php?option=com_
community&view=groupsé&task=viewgroup&groupid=13&Itemid=150
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6. The World of Transformation Tools

In the following, we introduce you into the world of transformation tools.
To this end, we ask motivational questions, which we answer with explana-
tions, and with feature matrices highlighting the positions of all the tools in
the field. The explanations introduce core notions of the domain, while the
feature matrices give a direct overview of the tool landscape.

The introduction is organized along five areas:

Suitability What are the goals of the tool, what is it suited for?
Data Which data is to be transformed?

Computations What kinds of computations are available, how are they
organized?

Languages and user interface How does the interface of the tool to the
user look like?

Environment and execution How does the interface of the tool to the
environment look like, how is it executed?

The aim of this section is to give you an overview, a coarse grained map

of the field.

6.1. Suitability

“Is the tool suited to my task?” is the first question that comes to mind
when you have to decide whether to use a tool or which tool to use. In
Table 2, we summarize the information from the “What is the tool suited
for and why?” sections of the tool introductions, where the tool providers
described the design goals and the strong points of their tools. Everything
is available on one page, so the tools can be easily compared against each
other.

Nearly all tools were built with the goal of offering general-purpose trans-
formations, which is the reason why we for one discussed the results of solving
all the prototypical little tasks of Hello World in Section 5.3, and for the other
the reason why we compare in the following and esp. in Section 7 with a
taxonomy derived from aspects and subtasks of complete tasks. The feature
matrices used to this end allow to deduce tool performance for your task-at-
hand, and accumulated give a hint on tool performance for many different
tasks.
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Suitability and strong points of the tool

Edapt: model migration in response to metamodel adaptation.
High automation by reuse of recurring migration specifications.
In-place transformation, seamless metamodel editor integration.

EMFTVM: general-purpose model transformation.
ATL is a mature language for mapping input models to output models.
The EMFTVM runtime introduces composition and rewriting.

Epsilon: general-purpose model management and transformation.
For each task the right language; with editing and debugging support.
Abstracts from the underlying modeling technology.

GReTL: general-purpose model transformation.
Expressive graph query language (regular path support and set semantics).
Highly extensible transformations.

GrGen.NET: general-purpose graph rewriting.
Pattern matching of high performance and expressiveness; highly programmable.
Excellent debugging and documentation. Excels at compilers, computer linguistics.

GROOVE: state space exploration, general-purpose graph rewriting.
Rapid prototyping, visual debugging, model checking.
Expressive language (nested rules, transactions, control); isomorphism reduction.

Henshin: graph transformations for EMF models with explicit control flow.
Expressive language (nested rules, support for higher-order transformations)
JavaScript support, light-weight model & API, state space analysis

MDELab SDI: graph transformations for EMF models with explicit control flow.
Expressive language, mature graphical editor, support for debugging at model level.
High flexibility, easy integration with other EMF /Java applications.

metatools: general-purpose model transformations.
Seamless integration of hand-written and generated sources, of imperative
and declarative style. Full access to host language, libraries and legacy code.

MOLA: general-purpose model transformations with explicit control flow.
Expressive language, graphical editor with graphical code completion and refactorings,
built-in metamodel editor, EMF support.

QVTR-XSLT: general-purpose model transformations.
Supporting the graphical notation of QVT Relations with a graphical editor
to define transformations, and generate executable XSLT programs for them.

UML-RSDS: general-purpose model transformation with verification support.
Declarative transformation specification using only UML/OCL.
Efficient compiled transformation implementations.

VIATRAZ2: general-purpose multi-domain model transformations.
Model space with arbitrary metalevels, excellent programming API.
Incremental pattern matching.

Table 2: Suitability and strong points of the tool
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Many tool providers claim that their tool is expressive (thus allowing to
achieve concise solutions), we will explain what it means for a transformation
tool to be expressive in greater detail in Section 7.2, so we can understand
why (and judge whether) these claims hold.

6.2. Dala

“Can I adequately model my domain?” is the most important question
concerning the data. A first answer is given by Table E.6. There, the domain
of the tool and the kind of the tool are distinguished. In Figure 14 are the
two prototypical ones illustrated, to the left the graph rewrite tools with
AGG (93] as a typical tool, and to the right the model mapping tools with
ATL [47] as an example tool.

Domain. The tools compared at the TTC 2011 originate from two histori-
cally distinct worlds, the realm of graphs, where the data is called a graph
and conforms to a type graph. and the realm of models, where the data is
called a model and conforms to a metamodel. To a large degree the difference
between graph and model transformation tools is a question of self-definition,
to which community and culture the tool authors have stronger links, or what
they define as their goals. Under the abstract setting put forward in the be-
ginning “the most adequate representation of the data at hand is a mesh of
objects, and we need to change its structure or map it to another mesh of

45



objects” they are unified. In the prelude to Table E.6'7 we take a closer look
at the blurred boundary between the two worlds and the locations of the
tools inside them.

Kind. The second discrimination point is the kind of the tool, with a dis-
tinction into mapping versus rewriting'®. A mapping tool operates on several
models. Tt typically maps from a constant source model to a target model
(sometimes are further source or target models included). Mapping tools offer
explicit syntactical means to distinguish between several models/instances.
The models might conform to the same metamodel; this way rewriting tasks
can be processed by mapping tools. A rewriting tool in contrast operates
on one model. The model might be a union of several metamodels; this way
mapping tasks can be processed by rewriting tools.

Rewriting tools are more adequate for tasks where only a small part of
the model needs to be changed and the rest should stay untouched (i.e.
local changes), as only the changes need to be specified and executed. In
mapping tools you must specify and execute the copying of the parts, which
should stay untouched. For tasks where one representation is to be mapped
to another one (tasks showing a high rate of turnover), mapping tools are
better suited: they do not need to take care of a model partly built from
elements from the source and partly from the target model, and they offer
implicit traceability handling (see below). Complicated tasks, which need
to be decomposed into a series of smaller tasks tend to favor the rewriting
approach: a series of rewriting steps (each responsible for a small part of
the overall work) is easier to specify and more efficiently executed compared
to a series of full mappings from one representation into the other. But the
expressiveness of the computational constructs we visit later on has an even
stronger impact on those tasks.

Traceability. Traceability information is stored when a source element is
mapped in a transformation to a target element; it allows to fetch the source
from the target element or the target element from the source element later
on. Traceability support may be a built-in service of the transformation

17You find the table in the appendix, as nearly all tables, for they would hamper read-
ability when being included inline.

18Sometimes transformation is used in the literature as a synonym for mapping; in this
article we use it in the wider sense, comprising both rewriting and mapping.
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engine, as it is typically the case for mapping tools, or may require man-
ually coded assignments to variables of map type. Keeping the identity of
the transformed entity may emulate this behavior in a rewrite-based tool
supporting retyping.

Typically only mapping tools offer the user-convenient and declarative
implicit traceability. For a rewriting-based tool, it is possible to model trace-
ability links between nodes (only nodes) with an edge in between the source
and the target. This “pollutes” the metamodels but allows for a trivial visu-
alization as a surplus (in case the tool supports visualization). But this does
not extend to storing and visualizing traceability information for attributes,
as it is typically offered by tools that maintain traceability links implicitly.

6.3. Computations

“Can I adequately specify my computations?” is the most important ques-
tion concerning the transformation of the data (and for the field of transfor-
mation tools as such). A first answer is given in Table 3, after an introduction
into the most important approaches and concepts up-front, in order to un-
derstand the differences and their consequences.

Programs. The most basic approach is the program-based one: the compu-
tations are implemented in an imperative, object-oriented programming lan-
guage, either a general-purpose programming language or a domain-specific
programming language as offered by some of the tools. The program-based
approach builds on simple queries and simple updates against the API of the
model, which are glued together by state wvariables and control structures.
With simple queries we mean read operations, which return i) all elements
of a certain node type, or ii) the attribute values of a node, or iii) an iterator
over all incident edges/adjacent nodes of a given node. With simple updates
we mean create element operations, delete element operations, and attribute
value assignments. They are combined by state variables, either of basic
type for storing single elements, or of container type, for storing collections
of elements; and by the commonly known control structures, i.e., sequences,
conditions, loops, and subprogram calls. A large transformation is built from
multiple subprograms. The image to the left in Figure 15 illustrates the pro-
grammed approach.

Alternatively to a model or graph API offering operations to access all
elements of a certain type, there could be variables containing root nodes as
entry points; typically this leads to computations, which are organized into
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Figure 15: The computations refined

passes navigating the object structure following the contained or referenced
elements. This defines the traditional, non-model way of processing object
structures.

Nawvigational Ezxpressions. The first step away from general-purpose pro-
gramming languages and towards domain specific programming is carried
out with the inclusion of OCL [109] expressions. The Object Constraint
Language combines attribute comparisons with logical operations and espe-
cially with navigational expressions, which allow to formulate constraints on
the connection structure. Being expressions, they are executed without side
effects on the model and return a value: for references with one target ele-
ment, the return value is the single element, but for references with multiple
targets, a collection of elements is returned (the same holds for retrieving all
elements of a certain type).

Rules and Query-Update Units. A further step away from traditional pro-
gramming taken by most of the tools is the creation of declarative trans-
formation units as central element. They consist of a complex query — also
known as left hand side (LHS) or precondition — and a dependent update,
i.e., an update depending on the query result — also known as right hand side
(RHS) or postcondition. The main service offered by these transformation
tools is to relieve the programmer from writing the glue code with its control
constructs and state variables by hand, which is needed in order to realize
those complex queries and dependent updates. These tools offer an interface
at a higher level of abstraction. The model state is changed in big steps,
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one half-step reading and one half-step writing, compared to a series of small
interwoven steps in the program-based approach.

The declarative transformation unit is distinguished into rules and into
query-update-units. Within rules, the update is strongly bound to the query.
The postcondition is specified directly referencing the elements from the pre-
condition (as single element variables). The query-update-units, which are
executed similarly to database queries, are loosely coupled in contrast: the
query fills some explicitly declared intermediate container variables, accumu-
lating all queried elements, which are then read by the update.

Separation into Layers. The tools building on declarative transformation
units separate the computations into a query plus update layer (the trans-
formation unit) and a control plus storage layer. Only the transformation
layer queries and updates the model directly. The control layer on top of it is
responsible for orchestrating the rules, it defines which rule is to be executed
next (scheduling) and where it is to be executed next (location).

Implicit control is exercised by a control engine deciding which rules to
apply where. You can communicate hints or constraints on rule scheduling to
the execution engine, e.g., with rule priorities. We speak of explicit control
if you define with a control program which rules are to be applied where.
This may occur in one of several ways: the tool might offer a dedicated rule
control language, or a tool specific programming language that is used for
control, too, or the control layer might be programmed in a general-purpose
programming language. If rules are triggered by the engine when the model
changes we speak of event-driven control. The image to the right in Figure 15
illustrates the rule plus control approach.

Application Conditions. A further step of separation is carried out in the
declarative transformation unit based tools with application conditions. They
specify constraints, which must hold for applying the rule. The elements
captured by them are not available for rewriting or mapping, though. They
are the main means of constraining the location of rule application in rule
languages that are mapping one element (and not a pattern) to multiple ele-
ments. In application conditions you may especially ask for elements to not
erist. In query-and-update-based languages both parts are combined, and
explicit projection of the values of interest is used instead.

Patterns. Tools following the rule-based approach often employ patterns.
Patterns specify a subgraph that is to be matched in the host graph, a small

49



Pattern

Figure 16: Pattern matching illustrated

submodel that is to be sought after in the model, as illustrated in Figure 16.
The hallmark of the pattern-based approach is the direct representation of
the pattern elements within the matched spot inside the host graph. The
semantics of patterns are based on existence, and a search for a match, bind-
ing each pattern element to a graph element. If a match is found, the rule
— which consists of two patterns — will be applied: elements only available
in the left hand pattern will be deleted, elements only available in the right
hand pattern will be created, and common elements will be retained.

Direct Reuse. Instead of relying on more complex means to combine com-
putations and esp. complex queries, you could aim for direct reuse, with a
library of predefined computations you choose from and parameterize. This
approach obviously only works for constrained domains or task where some
predefined routines and a few simple parameters are sufficient to define the
required computations. If it can be applied, it offers the largest amount of
reuse.

Helper Code. Instead of stepping up the abstraction level of the computa-
tions with domain specific languages, you could stay at the level of user
programmed code (and the program-based approach), just aided by a code
generator, which emits some helper code. The main service offered here is the
unfolding of a concise specification of the data and some processing aspects to
boilerplate code, which would have been cumbersome to write manually; ev-
erything else is still directly programmed in a general-purpose programming
language against the generated code.
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Approach

Edapt: Library with predefined operations for adapting a model in reaction to
metamodel changes, custom adaptations are to be programmed using an API in Java.

EMFTVM: Rules mapping from an element and OCL expressions
to elements and a connecting program with implicit control, or rules
rewriting a pattern to a pattern with explicit control.

Epsilon: Task specific languages built on a base programming language (incl. OCL-
like expressions). For transformations: rules mapping from an element and OCL
expressions to elements and a connecting program, with implicit control.

GReTL: Library to be extended, offering a query language yielding data containers;
the updates are to be written in Java, some basic ones are predefined.

GrGen.NET: Rules rewriting patterns to patterns with explicit control.

GROOVE: Rules rewriting patterns to patterns with explicit or implicit control,
and strategies for state space enumeration.

Henshin: Rules rewriting patterns to patterns with explicit control.

MDELab SDI: Rules rewriting patterns to patterns with explicit control.

metatools: Code generator for Java classes and access helpers, visitors, rewriters.
The computations as such are to be programmed as visitors in Java
and are carried out during visitor runs.

MOULA: Rules rewriting patterns to patterns with explicit control.

QVTR-XSLT: Rules from patterns to patterns with implicit control.

UML-RSDS: Rules which ensure a postcondition OCL expressions is satisfied
when a precondition OCL expression was matched, with implicit or explicit control.

VIATRAZ2: Rules rewriting patterns to patterns with explicit or event-driven control,
or direct usage of the control language as programming language.

Table 3: Approach for specifying computations
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Discussion of Suitability. Patterns and pattern-based rules define a simple
and intuitive approach for expressing computations over graph structured
data, with the potential benefit of direct visualization. But this comes at
a cost: patterns with their fixed structure are less expressive than query or
programming languages. For tasks that only require to match and rewrite
fixed shapes, the solutions based on them are as concise and declarative as
can be. But they fit badly to tasks that require to process all neighboring
elements of a node, or that require to search for a path from a source node
to a target node. For these kinds of tasks, a high amount of control over
tiny patterns is needed, virtually eliminating the advantages of the pattern-
based approach, falling back to a programmed solution. Even worse: falling
back to a programmed solution with the additional weight of being sepa-
rated into multiple layers. To counter the aforementioned deficiencies, the
pattern-based languages were extended with further constructs; we will in-
spect those extensions later on in Section 7.2. Especially as the support for
processing breadth-splitting structures and depth-extending structures is of
high importance for all kinds of tools.

The program-based approach in contrast does not suffer from being in-
capable of expressing anything, it is highly flexible and adaptable — it only
does not offer many advantages over traditional imperative or object-oriented
programming languages. The program-based approach works well and yields
concise solutions if the task at hand requires only small queries. This is typ-
ically the case for mostly 1:1 mapping tasks of one model to a structurally
similar model, where only a bit of local context needs to be queried. But
for these kinds of tasks the mapping tools built on OCL and implicit control
offer a compelling alternative. Being expressive enough for those tasks, they
lead to a more declarative, functional-style specification.

If the task at hand requires to specify queries comprising more than a
handful of nodes though, the query-update or pattern-based tools become a
must-have in order to achieve a concise solution, as only they can evade the
large amount of glue code needed in implementing the complex queries. For
simple 1:1 mapping task on the other hand they may be a bit heavyweight
(especially due to their typical separation into layers).

In order to decide in between the pattern- and the query-based tools,
which both offer declarative queries, you should ask “Do I need large pat-
terns?” but especially “Do you I need large, non-uniform updates per matched
spot?”, or rephrased “Are the updates highly context dependent?”. If so, the
pattern-based tools are better suited, as they allow to specify more directly
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and in finer detail what should happen in what situation with what ele-
ments, whereas the query languages must operate through the bottleneck of
the query result data structure. The container variables between the queries
and updates allow for an easy accumulation of extracted data on the other
hand, surpassing the pattern based tools when the data from the matched
spots needs to be integrated in some way.

An argument similar to the finding that simple queries are well-suited for
1:1 mapping tasks and complex queries are needed for mining of distributed
data or matching large patterns holds for implicit control and explicit control:
Implicit control typically allows for more concise specifications (no control
program needed) for tasks which are well-suited for the control engine’s strat-
egy. Explicit control is more robust regarding problems for which the implicit
control engine was not designed; it then yields faster execution times (the
constraints of the task at hand can be exploited), or even allows to handle a
task at all.

6.3.1. Examples

To highlight the differences in between the approaches, to illustrate the
gain of the declarative constructs, and to ease understanding, we implement a
small example query in each of them, that shows how structural information
is collected.

Patterns. We query the model for all nodes a of type A, which are connected
via an edge v of type V to an opposite node b of type B, but are not at
the same time connected via an edge w of type W to a node c of type C. In
pattern-based languages this query is expressed with the following pattern,
often in graphical instead of the chosen textual notation:

a:A -v:V-> b:B
negative {
a —w:W-—> c:C

}

We note that it is not specified how this structure is to be matched. You
can easily add a further node being adjacent to some of the already available
nodes.

Query Languages. In query-update-based languages the example query is
expressed using a term similar to the following one:
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from v:V

with a := startVertex(v), b := endVertex(v)
and hasType{A} (a) and hasType{B} (b)
and not (v -w:W-> c:C)

report a, v, b

The from clause declares elements of interest that are to be found in the
graph. The with part specifies the conditions that must be fulfilled for the
elements of interest, maybe introducing further helper elements. The ele-
ments satisfying the conditions are reported back in the way specified by the
report clause.

OCL. In OCL-based languages the example query is noted down with an
expression similar to the following one:

A.allInstances—>select (a |
a.V->exists(b | b.oclIsTypeOf (B)) and not
a.W—>exists(c | c.oclIsTypeOf(C)))

All instances of the type of the node are selected, and for each of them it is
checked whether one of the V or W references leads to a node of type B or
C, the results are combined with boolean operators. Here the order in which
the elements are to be visited is partially fixed, the search is carried out by
nested expressions.

Programs and Control. In program-based languages the example query is
implemented with a program similar to the following one:

found = foundNAC = false
for a in model.getAll (A)
for b in a.Vv
if b instanceOf B
found = true
break
for ¢ in a.W
if ¢ instanceOf C
foundNAC = true
break
if found and not foundNAC
result.add (a)

24



The order in which the elements are to be visited is fixed, the search is carried
out by loop statements utilizing variable assignments. A further adjacent
node requires another nested loop, inserted at the right nesting level.

6.4. Languages and User Interface

“Does the user interface of the tool fit to my needs or preferences?” is the
primary question concerning tool-user interaction, this includes especially the
languages offered by the tool. We give a first answer in Table E.7.

Languages. Most tool-supplied languages employed in solving the Hello World
tasks are separated vertically into several sublanguages, for data definition
(see Section 6.2), and for specifying the computations (see Section 6.3) with
the means available according to the approach, i.e. a programming language,
or a query language, or a rule language coming commonly together with a
control language.

Some tools are horizontally split into several special-purpose languages,
which are offering an own domain specific language for each of several goals.
They offer additional functionality outside of the focused topic of this article,
the transformation of structures; the same holds for special-purpose tools that
do not allow for general transformation programming.

External Languages. The question “What languages does the tool offer?” we
raised above needs to be complemented by the question “What languages
does the tool require?” for the parts programmed in an external programming
language. Here we have to distinguish whether the computations can or must
be programmed in an external language. In some tools the computations are
meant to be programmed in a general-purpose programming language by-
design. In others, only the computations that are exceeding the functionality
of the supplied library are to be programmed this way. Most tools offer own
languages, their functionality is then typically made available via an API.
For those tools we have a further look in Section 7.3 on the other direction
of usage (for using entities from the outside inside the tool languages).
Employing a general-purpose programming language allows you to reuse
the knowledge and skills you have already acquired in programming in it —
and the tools that are available for it. Everything happening is fully transpar-
ent at the level of the programming language and its debugger. But only at
this level — you miss the typical advantages of conciseness and declarativeness
displayed by the domain specific languages of the transformation tools; and
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the potentially available visual style of programming and debugging offered
by the pattern-based tools.

Tools that are offering an API allow you to use the specified transfor-
mations from the outside. This is crucial if you want to benefit from the
advantages of the transformation languages in case other parts of the task at
hand require an integration with network communication or a 3D rendering
engine, which are not supplied by the tools.

A transformation can be reused as such; this defines the most easy and
beneficial form of reuse. Alternatively, you could start a step down in the
layering of Figure 15 by using the declarative transformation units from a
general-purpose programming language'®. This is helpful if restrictions of
the control languages would render the task at hand overly complicated.

You could start a step even further down in the layering of Figure 15 by
writing the computations to a large degree in a general-purpose language,
reusing only a data API plus some helping code. For some tasks this may be
a useful approach; but even more so would be a hybrid solution, where you
employ declarative transformation units for the subtasks where they fit well,
and manually code the solutions to the subtasks where they do not.

Form of Specification Language. In Table E.8, we list the form of the spec-
ification languages. We distinguish graphical languages like UML class or
activity diagrams from teztual languages. Graphical languages are normally
more intuitive, often better readable, and can be learned quicker. This holds
especially for pattern-based languages, which offer the most intuitive en-
coding of structural changes 2. Textual languages are typically more concise
and expressive, and can be edited more easily. They offer a better integration
into existing source code management systems and their textual difference
engines, but especially they allow to generate specifications by some text-
emitting scripting code. For this reason even pattern-based tools — for which
graphical languages are the more natural encoding — may still offer textual
languages. To a certain degree the choice is a matter of personal taste, you

19 Such an architecture would be very similar to the layering applied in a lot of applica-
tions written in a general-purpose programming language, which delegate the subtask of
storing data persistently and retrieving it again via an API to a database engine offering
declarative SQL queries and updates. Here the programming language is notably used to
glue the single SQL statements into larger activities.

20this depends on the number of elements though, the advantage of immediate visual
understandability of structures fades as they grow
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should have found out about your own preferences by inspecting the listings
in Section 3, and can find out further by playing around with the SHARE
images.

6.5. Environment and Ezecution

“In which environment can I use the tool?” and “How are the tool spec-
ifications executed?” are the primary questions we have a look at in this
section.

Execution Host. “How are the transformations executed which I specified?”
is answered in Table E.9. The tool may contain an external executable, which
allows to run the transformation, it may contain a plugin for an IDE that is
able to execute and debug the code, or an API may be offered so that the
transformations can be executed from an user application

If the transformation should be integrated as the algorithmic core into a
user application, an API is required. If the transformation service you need
consists only of the mapping of one file to another file, an external executable
is the most advantageous execution host, as neither further code files are
needed, nor have the startup costs of an IDE to be payed. An IDE integration
offers the most convenient development, especially if a computation consists
of transformation code and external code.

Operating System. The most binding decision regarding the environment are
the operating systems supported. The tools supporting all major desktop
operating systems (Windows, Linux, Mac OS X) are built on the Java vir-
tual machine or the Common Language Runtime; they can be used on all
operating systems for which those platforms are available or will be avail-
able. Native programs are bound to their underlying OS unless they are
ported with high effort to another one, but they typically offer performance
advantages over VM-based tools, better integration into their host system,
and do not require that a VM is available; this point is investigated in-depth
in Section 7.4.

Tool Execution. “Is the tool able to handle my workload?” is a question whose
answer depends on the workload, but a broad hint at the performance char-
acteristics is possible by having a look at the execution model, the matching
engine, and the memory consumption.
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Ezecution Model. In Table E.10, we compare the execution model of the
specification languages, distinguishing compilation or code generation from
interpretation. Compilation results in general in higher execution speed?!,
at the price of having the parts implemented this way being fixed at compile
time. Interpretation in contrast allows for faster development turn-around
times and gives the flexibility of runtime adaptation.

Engine. Querying for graph information, esp. matching patterns (also known
as subgraph isomorphy solving) is the most expensive operation in trans-
formation tools. The different approaches search-based, incremental, and

user programmed and their performance characteristics are introduced in
Table E.10.

Memory. Besides the time needed to execute the transformation, the memory
consumed by the metamodel is of importance. You can estimate the memory
consumption of the task at hand from the values given in Table E.10.

7. The Tools in Detail

In the following, we work again based on the setup we already employed in
the previous section, asking motivational questions, which are then answered
with feature matrices and a discussion of the consequences of the features,
explaining why and when the features are of importance. Here we refine the
initial answers that were geared towards giving an overview of the field with
a step into greater detail. The focus is on answering questions that allow you
to choose the tools that are best-suited to your task-at-hand; on questions
that are normally quickly raised, and on questions you would raise if their
importance was known.

The tool comparison is organized along the areas that were already em-
ployed in Section 6, namely:

Data: Which data is to be transformed?

Computations: What kinds of computations are available, how are they
organized?

21 While compilation yields faster results for frequently executed operations, it might fall
back behind interpretation if queries are only to be executed once.
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Languages and user interface: How does the interface of the tool to the
user look like?

Environment and execution: How does the interface of the tool to the
environment look like, how is it executed?

Suitability as seen by the providers was already deepened in Section 3 and
summarized in Section 6.1, and is thus not taken care of any more in its
direct high-level form — but the features compared with the feature matrices
are chosen to allow you to assess suitability on your own, by breaking up
your task-at-hand to the subtasks and aspects listed there. In addition to the
areas named, the support for Validation and Verification is investigated
in more detail.

7.1. The Data Refined

“Can I adequately model my domain?” received only a very coarse grain
answer in Section 6.2, but is a question of high importance, as the model
comprises the foundation on which all of the computations and all of the
other tool features are built. So we investigate it more deeply here, regarding
the expressiveness of the metamodel and the import/export capabilities of
the tool.

7.1.1. Input and Output

“Does the tool support the file formats I need?” is the question answered
in Table F.11, which compares the tools regarding their import and export
capabilities. A tool built on a standard modeling technology and API sup-
ports the serialization format of its technology out of the box. Sharing a
common modeling technology allows for easy integration with other tools. A
tool built on its own modeling technology may still be able to import and
export the serialization format of another modeling technology by mapping
those concepts to its own concepts, allowing for interoperability in between
the tools.

7.1.2. Metamodel Expressiveness

For the following parts we are back again at the original question “Can
I adequately model my domain?”, now having a look in greater detail at
what the tools are able to express, i.e., what the metamodels (or modeling
technologies) support. We respond to the query “Do the nodes, edges, and
attributes allow me to directly encode my problem?”, with Table F.12 and
Table F.13.
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Nodes and FEdges. The elements defining the structure may be untyped or
equipped with types. The types may be simply disjoint, or organized in a
single-inheritance hierarchy, or even a multiple inheritance hierarchy. Addi-
tionally, the elements may or may not bear attributes.

Typing is an essential part of modeling; it prevents nonsensical models
from getting constructed successfully, and nonsensical transformations from
getting executed successfully. Single inheritance is an improvement over dis-
joint typing. It allows you to factor out common parts according to a com-
patibility relationship, and to process them with a single piece of code, thus
enabling more concise transformation formulations. Multiple inheritance fur-
ther improves on this by allowing you to organize the elements in as many
compatibility relationships or hierarchies as you like.

In contrast to the nodes that are equipped with very few degrees of free-
dom, there are many differences in how edges (resp. references) are exactly
realized, e.g. they may have an identity, they may be undirected or ordered,
or may be distinguished into references and containment edges. Choose the
ones that fit best to the needs of your task at hand.

Attributes. The graph elements may be attributed freely, or depending on
their type. The liberal kind is more flexible, but rules out static type check-
ing. The attributes of the graph elements may be typed with one of the basic
types known from traditional programming. You can check in Table F.13
whether the ones you need to model your domain are supported.

We complete the model part of the comparison by stating that all the
computations compared next operate on an in-memory-representation, in
contrast to databases (e.g., graph databases).

7.2. The Computations Refined

“Can I adequately specify my computations?” was partly answered in
Section 6.3 by an explanation of the different approaches and a discussion
of their consequences. Here we go into detail: first, we compare the expres-
siveness of the general-purpose tools, then we inspect some selected software
engineering aspects.

7.2.1. Introduction to Erpressiveness

“Is the tool expressive enough to allow for a concise solution for my task
at hand?” is the main question to be answered in the following. To this end
we will have a look at four subtasks:
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Figure 17: Depth extension and breadth splitting structures illustrated

Data collection How do I query for data, how do I check for context con-
straints?

Result storing Can I store results from queries for later processing?
Depth How do I capture structures that are extending into depth?

Breadth How do I capture structures that are splitting into breadth?

Regarding all of those subtasks, there are more general and less general
language constructs available. The less general, i.e., less expressive constructs
are before all easy to learn and understand. ?* If they are sufficient, they
lead to a concise specification; typically even more concise than a solution
employing more expressive, i.e., general constructs. But the “if sufficient” is a
decisive constraint here. The more general constructs allow to directly express
solutions to subtasks that require a combination of multiple constructs in the
simpler language, e.g. using control to apply a rule multiple times to capture
all neighboring nodes. Then, they lead to far more concise solutions — and
the following rule of thumb: the more complex the languages, the simpler
the solution. You must understand what level of expressiveness is required
by your task at hand in order to choose a tool.

Depth and Breadth Structure Handling. Figure 17 illustrates two common
and important subtasks of transformation tasks. Often chains of nodes linked

ZFurthermore, they are typically easier to visualize, and to implement for the tool
provider, which especially means they are more likely implemented correctly.
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by edges need to be inspected, to gain access to values at the end of the chain
(this is typically used to query for the transitive closure of a relation); maybe
the elements on the chain should be even changed. If this is indeed the case
for your task at hand, you should inspect the support of the tools for captur-
ing structures extending into depth. The other repeatedly appearing subtask
involves inspecting all neighboring nodes of an anchor node; maybe the neigh-
boring nodes even need to be changed. If this is the case for your task at
hand, you should inspect the support of the tools for capturing structure
splitting into breadth.

The problem is to capture structures with a statically not known number
n of depth-extending or breadth-splitting steps, with less than n notational
elements. Structures that extend into depth by a statically known number
of k steps can be described directly with patterns of k elements; or by OCL
expressions with one nesting level per step, or by programs with one level
of loop nesting per step. The same holds for the pattern based approach
regarding structures that split into breadth with k& branches.

The following Section 7.2.2 and Section 7.2.3 give a condensed survey over
the programming resp. specification constructs offered by the tools, including
a comparison of their expressive power. If you are a novice to the world of
transformation tools just searching for a tool to use you might have difficulties
to follow the comparison. What you should take away from this important
topic is given in the directly following paragraph.

Expressiveness Results in a Nutshell. When your task comprises matching
depth extending structures, look out for regular path expressions or recur-
sive patterns in the left column of Table F.15, they allow to concisely and
declaratively capture those structures. When your task comprises match-
ing breadth splitting structures, look out for all-quantified patterns, iterated
patterns, amalgamated rules, queries with set semantics, or OCL-expressions
in the right column of Table F.15. They allow to concisely and declaratively
capture those structures. When you need both combined, look out for re-
cursive and iterated patterns. If pattern languages need to revert to control
to implement them (because your task at hand requires them), they become
uncompelling; have a look at the example solutions in Section 3 to see this
effect on a simple example.
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7.2.2. Ezxpressiveness by Approach

Due to a strong cohesion within the approaches and the cross cutting
nature of the features, we will first visit the four main subtasks related to ex-
pressiveness approach-by-approach, before we compare the features directly,
discussing their consequences.

Patterns. The pattern-based approach employs in addition to the main pat-
tern already introduced with the approaches patterns as negative application
conditions and positive application conditions. Negative patterns prevent the
containing pattern from matching in case they can be found (defining a not-
exists operation). Positive patterns in contrast must be present in addition
to the main pattern. These patterns define constraints, their elements are
not available for rewriting. A reduced version of them may be available with
single negative/positive elements. A generalized version of them are nested
negative/positive patterns; a second level negative re-allows a pattern for-
bidden by a first level negative. The attributes are processed with additional
attribute conditions, which allow to specify logical formulas over comparisons
of attribute values and constants.

Furthermore, alternative patterns may be available to match alternative
substructures, or iterated patterns, which allow to match a pattern as often
as it is available in the graph. Subpatterns allow to factor out a recur-
ring pattern and use it from different patterns. These constructs can be
employed as plain application conditions comprising only a left hand side
pattern. They may be endowed with an additional right hand side, then
specifying a complex rule (which is applied in one step after everything was
found, in contrast to a recursive call in a common programming language
that carries out matching and rewriting in each single step).

Matching Structures Extending into Depth with Patterns. Subpatterns com-
bined with alternatives allow to recursively match structures into depth, as
chains of patterns. Subpatterns need to be called with explicit parameter
passing to this end. The parameter passing can be omitted in the common
case that paths, i.e., only chains of nodes connected by edges need to be
matched. In this case the more concise regular and iterated path constructs
may be employed. Regular path expressions allow to match an iterated
path constraining the incident edges and adjacent node types on the path.
They subsume the iterated path, which allows to find out whether a node
is reachable from another one, without the possibility to constrain the types
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(a special form of this is transitive containment along containment edges).
The explicit parameter passing for subpatterns is less convenient and concise
than the implicit passing in regular paths, but it allows in combination with
the iterated patterns to declaratively match tree structures.

Matching of Breadth Splitting Structures with Patterns. Iterated patterns
allow to capture breadth splitting structures. So do the equally expressive
nested rules, which are following the notion of rule amalgamation from theory,
where a kernel rule is extended by repeated rule parts as required. Reduced
versions of these constructs are available with multi-nodes and loop-header-
nodes. A multi-node allows to match a pattern and then a node incident to
the pattern multiple times. A loop-header-node allows to match the header
node multiple times, and then for each instance the pattern. It can be seen
as a loop from a control language notationally integrated into a pattern
language; especially when it can be directly assigned, which allows to follow
an iterated path.

Patterns are typically matched with existence semantics, the right hand
side of the rule is applied on the one match of the left hand side that was
found. After this execution, the rule can be applied again, but only on the
then-changed state. Alternatively, a pattern may be matched with for-all
semantics, a rule is then applied on all matches found for its left hand side.
The availability of for-all semantics for the main pattern of a rule alone is
only a step towards matching a breadth splitting structure, as the fixed kernel
part must be matched before and handed in via parameters. The for-all and
existence semantics of the top level pattern can be generalized with quan-
tified patterns: an all-quantified nested pattern is matched multiple times
(similar to an iterated pattern), an existentially quantified nested pattern
once. The ability to nest such patterns to an arbitrary (but statically fixed)
depth lifts the expressiveness of pattern based tools considerably above the
expressiveness of the basic approach.

Query Languages. Being built for SQL like querying of graph repositories or
databases, query languages comprise a direct match regarding the question
for the means available for general data querying. They allow to query graphs
declaratively for connected structures without incurring side effects, and re-
port the found data back in the form of collections of tuples, i.e., container
variables of a complex type.

Geared towards the extraction of information distributed over a graph,
they contain built-in means for querying into depth. GReQL, the only query
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language which was used for solving the Hello World case, employs regular
path expressions as already introduced above. Breadth structures are col-
lected into a result set by the implicit for-all matches semantics of query
execution. Patterns can be described but incur some notational overhead
over dedicated pattern languages. The data structure with the data result-
ing from the query is passed as input to the transformation code.

OCL and Non-Pattern-Based Rules. In the non-pattern-based rules typically
only one source element is matched, and OCL expressions are used as appli-
cation conditions to constrain the rule application. Or the rule is described
by its effects, formulated by a precondition OCL expression and a postcondi-
tion OCL expression. OCL may be employed from pattern-based tools and
from program-based tools, too. The former is rather seldom, though.

OCL combines attribute conditions and their single-value semantics with
navigational expressions for querying the neighboring elements (or all ele-
ments in a model); when only one neighbor is allowed by the metamodel, a
single model element is returned, but otherwise a collection of all neighboring
elements is returned. A further nested expression can then be formulated
for all elements in the container. This allows to easily capture structures
extending into breadth, but is inconvenient for simple existence matching,
read: describing patterns. Depth structures can only be followed by nesting
expressions, i.e. to a statically fixed depth.

Programs and Control. In the program-based approach, queries over the
model are programmed, with elementary model queries, which are glued by
statements, i.e., control flow and state variables. Depth structures can be
matched by loops with a variable storing the current node; in each iteration
step the variable is advanced following an edge by one step into depth. Al-
ternatively they can be matched by recursive calls with the current node as
input parameter. Breadth structures are typically matched by loops with
a variable iterating over the neighboring elements. So everything can be
expressed, but everything must be always explicitly expressed in solutions
based on tool-supplied or external programming languages.

These looping or calling schemes may be applied from the control lan-
guage of a language based on declarative transformation units, too. Besides
loops iterating single-element variables you may employ container variables
to store the results of queries, esp. of a statically not known number of nodes.

Programs allow for concise solutions for tasks, which are outside the ex-
pressiveness of the other approaches, or even a solution at all, but less concise
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and not declarative solutions for tasks, which fall inside the expressiveness
of the other approaches.

7.2.8. FExpressiveness Compared

After the explanations of the important features alongside the approaches,
we now turn towards the direct comparison. We start with the means avail-
able for data collection and for storing data collection results, under display
in Table F.14, before we continue with the means available for matching

structures extending into depth and structures branching off into breadth in
Table F.15.

Data Collection. Different means for data collection are available. Patterns
may be used and extended with certain kinds of application conditions. Or a
one element query may be combined with an OCL expression — alternatively
OCL expressions may be used stand alone. Furthermore, a dedicated query
language may be used. Or simply a manually coded program. Not listed
here are task-specific pre-coded data collection routines for constrained tasks,
which may in fact build the backbone of a special-purpose tool. We repeat
our recommendation to choose the more general constructs, e.g. to favour
nested negative patterns over negative elements, unless you know that the
simpler constructs are sufficient.

Result Storing. Different kinds of variables are available to store the results
from the data collection for later processing. This is a basic feature of query
languages, and commonly supported by programming languages. OCL ex-
pressions are explicitly designed to be free of side effects and do not allow to
store results. Pattern based rules define an immediate effect not storing any
results, but they may return matched or created elements to the control lan-
guage, so for rule- and control-based languages this is a discrimination point
of the control language. Storing results allows to omit repeating searches for
elements that were already found, thus increasing performance. It further-
more allows to decompose a task into phases coupled by the stored data,
which is beneficial for complex tasks. The price of this feature is a reduced
declarativeness for transformations and a susceptibility to ordering effects.

Depth. The means available for solving this subtask were already introduced
with the approaches. Best suited to query for structures into depth are regu-
lar path expressions, followed by the more powerful but less concise recursive
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patterns, followed by the less powerful iterated path expressions. OCL ex-
pressions are not able to describe depth drilling. On the non-declarative
side, we can capture depth-extending structures with loops or recursive calls.
This holds for the program-based approach as well as for the control layer
of a rule-and-control based language. In case that structures extending an
unlimited time into depth and into breadth are to be matched (e.g. trees),
only a combination of iterated and recursive patterns is up to the task, or a
manually coded recursive subprogram. Please note that some constructs al-
low to modify the items matched into depth, e.g., reversing all edges visited,
while others do not. Look out for this ability if your task at hand requires
it.

Breadth. The means available for solving this subtask were already intro-
duced with the approaches. OCL expressions offer a concise solution with
their set based semantics for capturing attached nodes, and allow to capture
more complex neighboring structures with expression nesting, albeit much
less concisely then. GReQL offers a concise solution with its query result
sets, and allows to capture and return more complex neighboring structures.
Multinodes allow to capture attached nodes concisely, but cannot be gener-
alized to more complex attached structures at all. Loop header nodes allow
to capture attached nodes concisely, but can only be generalized to more
complex structures with the help of rule control. The nested rules, or iter-
ated patterns, or quantified patterns are a bit less concise for single attached
nodes, but are especially well suited to capture attached patterns.

On the non-declarative side, we can capture breadth-extending structures
with loops or recursive calls. This holds for the program-based approach
as well as for the control layer of a rule-and-control based language. The
availability of rules which can be applied with for all semantics is a help in
that case.

Please note that some constructs allow to modify the items matched into
breadth, e.g., linking all nodes visited to another node, while others do not.
(OCL expressions for example are not capable of this modification, while
rules of OCL expressions are.) Look out for this ability if your task at hand
requires it.

7.2.4. Selected Features
In Table F.16 some more detailed features are listed; most of them were
of importance for the Hello World tasks and played a role in the reviewer
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comments and the votes. Again, it depends on your task at hand whether
they are of importance for you.

Retyping. Retyping, also known as relabeling in graph rewriting, allows for
an in-place change of the type of a node while keeping its incident edges.
This feature allows rewrite tools to achieve concise solutions for simple 1:1
mapping tasks, it especially allows pattern-based tools with their weakness
in describing a statically not fixed context to achieve concise solution.

Transaction Support. Transactions allow to roll back changes carried out on
the model at request. Transactions render programming for search-based
tasks easier, as it is possible to just try a transformation and to roll it back
to the original state when it failed according to some criteria, instead of being
forced to specify a complex condition that needs to be checked beforehand,
or instead of being forced to explicitly undo the effects. Transactions are
only important for tasks where you must search for an optimal model, for
plain transformation tasks they are not needed.

Modifier Matching. The matching modifiers constrain the way in which pat-
tern elements may be matched to graph elements; they only apply to pattern-
based tools. A single graph element may be allowed to get matched by mul-
tiple pattern elements (homomorphic matching), or not (isomorphic match-
ing). Languages that only offer isomorphic matching must duplicate patterns
for tasks where non-isomorphic matching is needed. Languages that only
offer homomorphic matching require the reader to always think of all the
possibilities in which pattern elements may get coalesced by matching them
to the same graph element. Tools offering both allow you to flexibly choose
according to your current needs.

Modifier Rewriting. The rewriting modifiers constrain deleting nodes in case
edges not mentioned in the pattern would dangle; they only apply to pattern-
based tools. SPO allows to delete a node even if not all edges were specified
in the pattern, which is for most tasks the more practical approach. With
DPO semantics, proving propositions about graph rewrite systems is much
easier (this is of interest for verification). This is another occurrence of the
inability of the pattern-based tools to describe a statically not fixed context.

7.2.5. Programming in the Large and Reuse
“Is the tool suited to a large and complex transformation task?” is a ques-
tion that is answered to a good degree by the points regarding expressiveness
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we already visited, but additionally by answers to the questions “What means
of abstraction and reuse are available?” and “What means of structuring large
specifications are available?”. In Table F.17, the capabilities of the tools for
transformation programming in the large are listed. Of course it depends on
the size of your task at hand whether or to what extent these abilities are
really needed.

Model and Computation Modularization. Is it possible to combine the meta-
model specification in a project from parts in different files or views, which
can be reused and edited separately? This allows for metamodel structuring
and reuse, as needed by tasks with large metamodels. And as a refinement:
do they support different namespaces, so that the parts can be combined
without name clashes? The refinement is important if models out of differ-
ent origins need to be combined.

Is it possible to combine the computations in a project from parts in
different files or views, which can be reused and edited separately? This
allows for computation structuring and reuse, as needed by tasks with large
specifications. And as a refinement: do they support different namespaces,
so that the parts can be combined without name clashes?” The refinement is
important if computations from different programmers need to be combined.

Abstraction and Parameterization. The most basic unit of reuse in the world
of transformation are entire (mapping-like) transformations between repre-
sentations, which are combined by transformation concatenation, building a
pipeline architecture. Transformations that would be too complex for one
pass are split into multiple passes linked by intermediate representations.

Besides this external reuse one needs to ask in how far the units from
which the transformations are built can be reused: When transformation
elements are abstracted into own units, what are these units, and how can
they be parameterized? We concentrate in Table F.17 on what a subprogram
of the program-based approach would offer, just split into the different units
employed by the approaches (as induced by their layering).

The more abstraction and parametrization possibilities are available, the
better; they allow to factor out and re-use common parts.

7.2.6. Extensibility, Meta Programming, and Runtime Flexibility
The extensibility of the languages and tools, their support for meta-

programming, and their flexibility concerning runtime changes are listed in
Table F.18.

69



Ertensions. “I have a subproblem the tool does not allow me to solve, what
can I do?” is a question that arises if the tool is used outside a pure trans-
formation setting (for which the tool and especially its languages were de-
signed for). The tools introduced in this article for example typically do not
natively support matrix or vector classes in the model and matrix-vector-
multiplications in the attribute computations, or the filtering of matches by
additional queries against a persistent database before they are applied.

The transformation may be extended with external program code in two
ways:

o With externally-defined transformation operations that are callable in
place of the built-in operations, or in place of operations specified in
the language of the tool. They allow to fall back to a programmed
model for tasks where this is more appropriate; in contrast to an API,
which is used from outside the tool languages, they allow to utilize
programmed operations from within the tool, e.g., calling an external
operation from the rule control language of the tool.

e With externally-defined attribute types and attribute computations;
e.g., for introducing a type matrix and a matrix multiplication as oper-
ation, which are opaque to the tool. Externally-defined attribute types
and attribute computations are helpful when the attributes offered by
the tool as given in Table F.13 and the operation available on them are
not sufficient for the task at hand.

Meta-Programming. “Can I program my programs?” or in our setting “Can
I transform my transformations?” is a question you are interested in getting
an answer for in case your task at hand leads to repetitive specifications with
a lot of boilerplate code.

When the transformations are available as models to be inspected and
changed, the model transformation tools introduced here are able to syn-
thesize the transformations with another user-written transformation, giving
meta programming virtually “for free”.

A reduced version of this functionality is available with the meta-iteration,
which allows to iterate over all available types in the model, not naming the
specific types. Tasks that require that a lot of types are treated in the same
way can be specified concisely in a loop over the types, instead of being
explicitly and statically enumerated in the code.
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Meta-programming allows for the concise specification of tasks where a lot
of similar computations arise, at the price of understandability. Tools that do
not offer these capabilities require in that case either copy-n-paste program-
ming or to program a tool-external code generator, which emits specifications
in the tool’s format.

Runtime Adaptability. “Can I adapt my metamodel or my computations at
runtime?” is a question that arises when the tool has to adapt to environ-
ments not fully known at specification time in a flexible way. The capability
to change the metamodel at runtime allows to build the target metamodel
of a mapping transformation when executing the transformation. The ca-
pability to change the computation at runtime allows a rule based language
to change the rules from the rule set while the transformation is running,
depending on intermediate results (i.e. meta-programming at runtime).

7.3. The Languages and the User Interface Refined

“Does the user interface of the tool fit to my needs or preferences?” was
given a first answer for in Section 6.4 by listing the languages offered by the
tools and their form (distinguishing textual from graphical). Here we refine
these points by comparing the support offered by the tools in developing
transformations in Table F.19, and by a comparison of how easy it is to get
acquainted with the tool and its languages.

7.8.1. Development Support

“What kind of support do I get by the tool when developing transforma-
tions?” is the question to be answered with the help of Table F.19. The
domain specific languages introduced in this article as such are better suited
to transformation problems, and the typically offered visual style of program-
ming and debugging is often more adequate for transformation tasks — but the
tools commonly fall short in advanced editing support like auto-completion or
refactorings offered by the IDEs of general-purpose programming languages.

IDE and Editor Integration. “Can I use my favorite Integrated Development
Environment or my favorite editor to develop my transformations?” If so,
you can save the effort of learning a new IDE or editor. Have a look at
Table F.19 to find out about the IDEs and editors offered.
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Development Support. We focus on the assistance offered for debugging and
editing your transformations. Regarding debugging we are especially inter-
ested in the abilities to visualize the model. Regarding editing we query for
help in basic editing with auto completion, and for the ability to refactor
the specifications, e.g., to consistently rename an entity definition; without
refactoring support the changes must be carried out by hand, e.g., for the
renaming with a search and replace in a textual editor, fixing the identifiers
which were captured accidentally afterwards.

7.3.2. Learnability

“How easy is it to learn the tool and its languages?” Learning a new
language is an investment that should pay off in the end, with a reduced
total time needed for development and maintenance. Most tools offer own
languages, which require considerable effort to catch up; the more expressive
the language and the more powerful the tool (and thus the more to gain),
the more effort is commonly required beforehand. But a documentation of
high quality is of help here, as well as maybe already available knowledge.

User Documentation. The types of user documentation available are listed
in Table F.20. They tell you where to look at first and give a hint on the
overall documentation support you can expect.

Direct. Further on learning a tool may be supported by reusing already ex-
isting notations, from standardized programming or specification languages.

Concepts. Learning a tool may be fostered by conceptual reuse. So we ask
which knowledge from what domains is helpful to understand the tool, reason
by analogy. The more proficient you are in the domains specified, the easier
should the transformation language be to learn for you.

7.4. The Environment and the Erecution Refined

“In which environment can I use the tool?” was given a first answer for in
Section 6.5. Here we refine it with Table F.21, listing what you have to set up
to develop transformations, and what you have to set up on the computers
of the user of your transformations.
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Prerequisites Fxecution. “What must be installed on a computer besides the
bare OS to run developed transformations?” The less the better. This is
a much stronger requirement than the following prerequisites for the de-
velopment, as each end user of the transformations is forced to install these
prerequisites, or the transformation developer is forced to install them on the
end user’s computer with a setup routine together with the transformations
as such.

Prerequisites Development. “What must be installed on a computer in ad-
dition to the execution prerequisites to develop transformations?” The less
the better. The prerequisites listed give a hint on the effort required to get
the tool running. While a long list for the development prerequisites is not
much of a hindrance once the decision for a tool offering compelling features
was taken, it is a large obstacle for prospective developers or reviewers in
software engineering workshops, which just want to evaluate the tool. The
pre-installed SHARE images of the tools are an important help in this case.

7.4.1. License and Maturity
“What is the price of the tool?” “Is the source code available?” “How
mature is the tool?” You find answers to those questions in Table F.22.

License. The answers to the first two questions are linked to the license.
When the source code is available you can fix bugs and extend the tool on
your own, even after the tool runs out of support, so this defines a kind of
insurance. Furthermore, the license has a strong influence on the price to pay,
which may be measured in money or in code. Choose what you can afford
(or what is compatible with the license of the transformation you intend to
develop).

Maturity. Tool maturity gives hints on tool stability and usability, (typically
the older and larger tools have an advantage here), but also flexibility in
carrying out changes due to user requests (typically the younger and smaller
tools have a higher degree of freedom).

7.5. Validation and Verification

“How can I ensure my transformation does what it should do?” is the pri-
mary question we answer in Table F.23, extended by answers to the question
“How can I use the tool to ensure that things that I modeled are doing what
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they should do?”. The helpers for manual inspection (graph viewer, debug-
ger) were already compared in Section 7.3.1, here we ask for the support for
automatic checking. We begin by comparing the support for checking model
integrity.

Constraints. Metamodel or type graph constraints may be enforced or may
be checkable, regarding the allowed attributes, regarding the allowed edge
types between certain node types, and regarding the allowed multiplicities of
edges of a given type at specific nodes.

Facts of type checked can be violated during the transformation, this eases
transformation writing. On the other hand it is easier to introduce errors as
you must not forget to trigger the checking. The enforced checks may be in
fact not checks at all, but consequences of the chosen model implementation:
enforced attribute type checks are typically a consequence of model kind fixed
as defined in Table F.13), commonly implemented by statically typed classes
containing the attributes as member variables. Types and multiplicities being
enforced is a hint at model-based tools, which implement edges by reference
or container variables, whereas graph tools typically allow implementation-
wise an arbitrary number of edges at each node. In case checks like these are
not provided, they can be of course programmed.

Validation and Verification. Besides the basic checks for model integrity,
OCL expressions may be used to validate the model; describing and check-
ing constraints on object structures is in fact the primary reason for their
existence. The tools may even offer a dedicated validation language extend-
ing OCL with e.g., refined user feedback. Furthermore, the tools may offer
to clone a graph and rewrite it until an answer regarding a very complex
constraint is reached.

Finally, the tool may be based on a correct-by-design approach: the user is
not writing code to be executed, but describes precondition and postcondition
formulas, which are then implemented by the code generator of the tool.
Moreover, the tool may allow for formal verification of its transformations,
with theorem proving support.

Until now we spoke of validating or verifying the developed transforma-
tions. A task some of the tools introduced here were created for is verifying
other systems. To this end, they offer model checking by state space enu-
meration (SSE). A state space enumerator allows to enumerate a state space
of graphs generated by applying a rule set, visualizing the space structure as
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well as the single states. Unfolding the space of different executions is a help
in manual inspection, too. But its primary use is in automated model check-
ing: it is tested whether temporal logic formulas hold for all the enumerated
states.

8. Related Work

A respectable number of tool comparisons was already carried out on
complex cases with a small number of compared tools. This article in contrast
summarizes the first (to the best of our knowledge) large-scale study based
on an instructive case, consisting of several simple tasks.

In the invitation to the Model Transformations in Practice Workshop [5],
a Class-to-RDBMS scenario was introduced, that defined one of the first and
most influential cases for comparing model transformation tools. Classes
containing attributes linked by associations in between them were to be
transformed to tables containing columns with foreign key constraints in
between them. In contrast to the Hello World case that comprises several
very simple tasks, the Class-to-RDBMS case consists of one clearly more
complicated core task (plus an advanced task, and several additional tasks).
In Model Transformations by Graph Transformation [95], the transformation
tools AGG, ATOM3, VIATRA, and VMTS were compared using the afore-
mentioned object-to-relational transformation example in-depth, with QV'T
chosen as a 5th comparison partner; leading to the conclusion that there are
a large number of commonalities, with the main differences to be found in the
description of attribute computations and in the control of rule applications.
The paper defined a first effort in comparing transformation tools, using up
about 50 pages for a comparison of just 4 graph transformation based tools,
highlighting one of the problems of comparisons alongside complex cases: a
lot of time must be invested by a reader to understand the case alone, and
even more to understand the solutions of the tools, before any conclusion can
be drawn when searching for a tool to employ.

In the Comparison of Three Model Transformation Languages [27], the
transformation languages CGT, AGG, and ATL are compared alongside “a
fairly complicated refactoring of UML activity models”, in the words of the
authors. The paper attributes the more concise solution of CGT over AGG
and ATL to the usage of a collection operator, which is a declarative language
construct for processing breadth-splitting structures in our terminology (and
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to the advantages of concrete syntax-based graph transformation as imple-
mented by CGT).

The paper The Jury is still out: A Comparison of AGG, Fujaba, and
PROGRES [18] comparing the three aforementioned tools in-depth is similar
in its goal of helping a user to choose a tool, leaving it to the prospective
user to draw the final decision.

Transformation Tool Contest Based Comparisons. Several cases of earlier
editions of the Transformation Tool Contest have also resulted in the publi-
cation of tool comparisons, being the major source for those.

In the article Transformation of UML Models to CSP: A Case Study for
Graph Transformation Tools [100] originating from the AGTIVE 2007 Tool
Contest, multiple tools are compared regarding a transformation from UML
activity diagrams to formal CSP processes. The languages of UML activity
diagrams and of CSP processes, as well as a non-trivial transformation in
between the two languages have to be understood in order to be able to
follow the solutions and the comparison of the eleven participating tools.

In the article Graph Transformation Tool Contest 2008 [83], and in A Case
Study to Evaluate the Suitability of Graph Transformation Tools for Program
Refactoring [78] are the different cases of the 2008 edition of the contest, its
execution, and its results explained; concerning a program refactoring case
(with the complexity of the program graphs and the transformations listed
as key challenges by the authors), the simulation of an ant population with
a focus on performance, a realistic transformation from BPMN to BPEL
models, and a live contest case involving the scheduling of a conference.
Several separate articles were published for the different transformation tools
and their solutions to the cases, for AGG/EMF Tiger [6], Fujaba [21],
GrGen.NET [46], Kermeta [76], MoTMoT [77], VIATRA2 [43], and VMTS
[74]; as well as GROOVE [23], showcasing further tasks.

In Graph and Model Transformation Tools for Model Migration [86] are
nine graph and model transformation tools compared with a focus on empir-
ical evaluation alongside a migration of UML activity diagrams from version
1.4 to version 2.2, a more elaborate version of the prototypical Simple Migra-
tion task of the Hello World case. The decisive features for achieving good
results were automatic copying of elements based on name equivalence, and
retyping (cf. Section 7.2.4). The tools that scored best in voting were Ep-
silon Flock and COPE (the predecessor of Edapt), specifically designed for
model migration, with GrGen.NET following as first general-purpose tool.
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The aforementioned comparisons concentrated on the languages of the
tools and on development support. The performance of execution is typi-
cally investigated in dedicated benchmarks. The paper Benchmarking for
Graph Transformation [103] proposes a benchmark for comparing the per-
formance of graph transformation languages. On Improvements of the Varro
Benchmark for Graph Transformation Tools [22] corrects and extends those
initial measurements. In Generation of Sierpinski Triangles: A Case Study
for Graph Transformation Tools [94]| are multiple tools compared regarding
their performance — execution time and memory consumption — in creating
Sierpinski triangles. The results showed a huge difference in between the
slowest and the fastest tools, but also highlighted that the fastest tool for
the task (FUJABA) was coming near to a hand-coded solution maximally
tuned for performance.

The Comparisons of the 2011 Edition of the TTC. The Hello World case
aimed at introducing the tools and illustrating their approach was comple-
mented by a Program Understanding and a Compiler Optimization case??,
which evaluate how well the tools are suited to complex tasks involving large
workloads.

The Program Understanding case [40] required to extract a state ma-
chine model out of an abstract syntax graph (ASG) of a computer program,
according to some patterns in the ASG. A prerequisite was the ability to
import XMI. The case was designed to measure the ability of tools to cap-
ture non-local data; it required to follow chains of potentially unbounded
length. So declarative depth support as given in Table F.15 was of high im-
portance to achieve good results here, as underlined by the voting results,
with GReTL offering regular path expressions scoring first, GrGen.NET of-
fering recursive patterns scoring second, and MDELab SDI offering iterated
containment paths third.

The Compiler Optimization case [10] required to carry out constant fold-
ing (which is trivial for data flow and complex for control flow) and instruc-
tion selection on a graph-based compiler intermediate representation. A pre-
requisite was the ability to import GXL. The case was designed to measure
the performance of the competing tools. Achieving a good result was aided
by the ability to store visited nodes in containers as given in Table F.14,
this allowed to fold following the flow. Performance-oriented tools, which are

23and a Model Migration case, but this one received only two submissions
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able to handle large data sets achieved good results here, as underlined by the
voting results with GrGen.NET scoring first, GReTL second, and GROOVE
third.

We want to note that in those two complex cases, as well as in Graph
and Model Transformation Tools for Model Migration|86], the tools of the
case proponents won. An in-depth case measures not only how well a tool is
performing, but notably how well a tool is adapted to that specific case. If
your task at hand is very similar to the case investigated, you find very good
answers regarding the suitability of the compared tools. But regarding a
different task, the results will be likely substantially different. Is is often dif-
ficult to generalize the results of complex cases. Multiple in-depth cases with
their results accumulated would be ideal to assess general-purpose usability,
saving users from learning a new transformation language and environment
whenever they need to solve a new transformation task. Unfortunately, this
would be excessively time consuming, for readers as well as tool providers?*.
For this reason is the article built on Hello World, a collection of prototypical
tasks — the performance of the tools in solving those simple tasks gives rough
hints at their performance when facing more complex problems of the same
kind. But especially on a taxonomy with feature matrices telling about the
usability of the tool for certain aspects and subtasks that a complex task can
be broken into. This allows to estimate tool performance for a task at hand,
for a wide range of many different tasks.

Tazxonomies. The taxonomy that was applied to the tools in this article was
developed based on the lessons learned from the cases, and inspired by the
taxonomies introduced in [12] and [72] for classifying transformation tools,
tasks, and solutions. The Feature-based survey of model transformation ap-
proaches [12] presents a classification model for transformation languages
based on their technical properties. The Taxonomy of Model Transforma-
tions 72| introduces different applications of transformation languages and
tools, and presents functional as well as non-functional requirements for
transformation approaches; it was applied on AGG, Fujaba, GReAT, VI-
ATRA in [73]. Our taxonomy is surpassing the aforementioned papers in
its approach towards explaining expressiveness, but especially in its direct
application to the large amount of tools that participated in the TTC.

24 each single tool typically only appears in a small selection of the in-depth comparisons
carried out for this reason
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9. Summary and Conclusion

The Transformation Tool Contest 2011 was a research workshop for tool
providers interested in the pros and cons of their tools regarding diverse ap-
plications. Their motivation was to understand the relative merits of different
tool features in order to improve their tools and to advance the state of the
art. This article is one in a series of articles in the history of this research
event, casting the comparison results into paper form. But in contrast to all
previous and many other in-depth comparisons carried out, do we not only
target members of the tool building community, but also prospective users.
The instructiveness of the Hello World case solved for the contest, and the
ready availability of virtual machine images of the solutions allowed for an
article also aimed at helping in choosing a tool — helping you.

We took you by the hand and assisted you on your way through the maze
of the numerous available tools, in order to find a tool that is well-suited
to your task at hand. First, we introduced the different tools with a calling
card, that included an illustrative example solution of one of the tasks of
the Hello World case. We further discussed the solutions, in order to balance
wrong impressions you could get from only seeing this one example; especially
explaining the importance that the support for processing structures splitting
into breadth played for it.

We want to note that the task descriptions of the small, prototypical tasks
of the Hello World case contain some semantic ambiguities. An upgraded ver-
sion with more accurate descriptions would help in future tool comparisons,
as would the inclusion of a task requiring to match structures extending into
depth.

Then we gave an overview of the positions of the tools in the tool land-
scape, explaining core notions and discrimination points of the field on the
way. The feature matrices employed there allowed you to quickly order and
reduce the set of candidates. In the second, more detailed step based on the
same setup of building a taxonomy and applying it directly to the tools did
we answer multiple questions you typically ask when you have to choose a
tool — or you would ask if you would know their importance, with a special
focus on the topic of computational expressiveness.

This survey includes the largest number of tools compared up to now; we
must note that it still does not include all of the state-of-the-art tools — a
worthwhile endeavor would be an extension with the missing tools yielding
a full market survey.
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Besides helping in choosing a tool and painting a detailed picture of the
tool landscape, this article gave an example for software engineering in the
cloud?®. We explained how cloud based virtual machines were used during
the Transformation Tool Contest. SHARE gave rise to reproducible and
strongly validated results, ameliorating the problems in reviewing the com-
plex software toolkits employed. It allowed to review real solutions instead
of only paper digests, and lowered the hurdle to learn from other tools.

The SHARE images did not only improve the review process, but they
allow you now to investigate the tools in-depth, according to your needs.
We must note, though, that the images are not yet available for anonymous
access; this unfortunately builds a barrier that requires effort to be surpassed,
it is not unsurmountable, though: we want to encourage you to write to the
SHARE maintainer(s) in order to gain access.

Acknowledgments. We want to thank Stephan Hildebrandt for his contribu-
tions to this article, the organizers of the Transformation Tool Contest for
rendering this comparison possible, and the SHARE maintainers fur supply-
ing the virtual machines used in the contest. Furthermore, we want to thank
the reviewers for their valuable comments. This work was partly supported
by the German Research Foundation (DFG) as part of the Transregional
Collaborative Research Centre “Invasive Computing” (SFB/TR 89).

2 Software engineering in the cloud is an application of cloud computing for the benefit
of software engineering, as opposed to the older topic of software engineering for the cloud,
which is concerned with building applications for the cloud

80



Appendix A. Problem Domain and Solution Domain

Appendixz A.1. Problem Domain

In a nutshell, we are confronted with a graph rewriting or model trans-
formation problem if the most adequate representation of the data at hand is
a mesh of objects, and we need to change its structure or map it to another
mesh of objects.

A model is an abstract representation of a system, which captures ex-
actly the characteristics of the system that are of interest to the model de-
signer [90]; a complete system may be covered by models at various abstrac-
tion levels described from different points of view. Models are typically built
from entities and relationships between these entities, forming a network of
interrelated objects. They conform to a metamodel (built from entities and
relationships) to be defined by the designer while modeling. The metamodel
in turn conforms to a fixed metametamodel.

The mathematical concept of a graph is very similar to the model notion:
Here the entities are called nodes, and the relationships edges, forming a net-
work of interconnected nodes. We regard both concepts to be equivalent and
use them interchangeably. A programmer is facing a graph- or model-based
problem if the domain of interest requires a representation of the system to
be modeled as network of objects. Problems that can be adequately modeled
with scalar values or lists do not benefit from any of the tools introduced in
this article.

One domain in which the introduced tools are helpful is model-driven
development according to the Model-Driven Architecture vision [75] of the
OMG. In this approach, the central artifacts in the software development
process are models. Software is developed by defining metamodels and im-
plementing transformations between them, which finally yield an executable
model or program code. In this context, we are typically confronted with
mapping problems, which require to translate a higher-level program repre-
sentation into a lower-level program representation. Other domains in which
these tools are helpful include, among others, mechanical engineering [33],
computer linguistics [3], and protocol verification [82]. There, we are typi-
cally confronted with rewrite problems, which require modifying one graph
by a sequence of transformation steps. In each of these steps, a graph pattern
needs to be matched and replaced by another pattern until a goal state is
reached.
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Appendiz A.2. Solution Domain

Given a problem as described above, what are the options in solving it?
You could either

1. code it by hand in a high-level programming language of your own
choice, or

2. use one of the transformation tools introduced in this article.

The question that now naturally arises is: What are the benefits of using
one of the tools compared to manual coding? The direct, simple answer is
reuse. A tool offers a proven and tested implementation, which was already
debugged and is ready to be used. Reusing an existing tool allows a developer
to achieve his goals quicker and with less effort.

The languages offered by the tools are typically of a much higher ezpres-
stveness for tasks of the domains of model transformation or graph rewriting
than general-purpose programming languages. This holds because subprob-
lems of the domain, which required explicit imperative code before were
solved and made declarative by the tool providers through implementing a
code generator or a runtime library (that emits or contains the imperative
code the user would have had to write on his own before).

Solutions specified in these special-purpose languages are concise com-
pared to solutions coded in general-purpose programming languages. This
leads to a decrease in the development and maintenance costs as the de-
veloper needs to write less code during the development and read or change
less code during maintenance. Additionally, graph and model transformation
tools may offer a more user-friendly graphical access to models and model
transformations. Often, these tools offer a wvisual style of specification and
debugging (or simulation).

Appendiz A.3. Potential Benefits and Drawbacks

We now discuss in more detail the potential benefits and drawbacks of
using a transformation tool instead of a manually implemented solution.

Graph and Model. In the object-oriented paradigm, node types would be
typically implemented by classes, nodes by objects, and edges by references
stored in the source object, pointing to the target object. In contrast, a
transformation tool or a special-purpose language may offer:
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A more concise specification. For the easiest manually coded solu-
tion the benefits would not be compelling. However, optimizing the
implementation to achieve a high performance (especially for pattern
matching) is technically challenging.

A more elaborate model, e.g., featuring attributed edges.
Run-time adaptability of the metamodel.
Reuse of importer/exporter code.

A graph viewer that can be used to visually inspect the model, instead
of being forced to chase chains of references in the debugger of the
programming language used for a manual implementation.

A graphical metamodel editor.

An explicit model interface that abstracts from the underlying model-
ing, enabling the reuse of computations on different modeling technolo-
gies.

Rewriting and Transformation. The most simple manually implemented so-
lution would navigate the object graph with loops, explicitly manipulating
the processing state. In contrast, a transformation tool or a special-purpose
language may offer:

A more concise specification, with e.g., navigational expressions.

A declarative specification with rules, which specify the graph patterns
to be matched and modified.

An already implemented rule execution engine, which takes care of the
matching of rules, or a concise special-purpose language for this task.

Declarative pattern matching and rewriting, instead of nested loops
iterating incident edges or adjacent nodes.

A graphical debugger, which allows the developer to stepwise follow the
rule executions, highlighting the currently matched rule in the graph.

A graphical rule editor.
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e An already implemented and tested library for predefined high-level
tasks.

e Higher performance than an unoptimized manually implemented solu-
tion.

Potential Problems. There are also possible drawbacks in using a transfor-
mation tool compared to a manually implemented solution:

e The time needed to learn the tool and its languages. The higher pro-
ductivity achieved when using a tool is offset by the initial effort to
learn the tool.

e Reduced flexibility w.r.t. transformations implemented in general pur-
pose programming languages in general. Especially missing flexibil-
ity regarding tasks the tool was not designed for; they might lead to
complicated solutions. This holds in particular for the case that the
requirements change after the project start.

e Increased deployment effort due to the transformation engine and its
prerequisites.

e Potential performance problems because of an unoptimized engine.
This might be the case with a manually coded solution as well, but
optimizing a tool supplied by others is a more difficult task.

e Maintenance problems due to the dependency on a third-party compo-
nent; esp. vendor lock-in — the developer might be forced to abandon a
solution in case the tool is not maintained anymore, esp. if it is closed
source.

e Lack of advanced IDE features commonly offered for general-purpose
programming languages, such as refactorings.

Appendix B. Hello World Case, the other Tasks

The Constant Transformation task (“Constant Transformation and Model-
to-Text Transformation”) and the Deletion task (“Deletion of Model Com-
ponents”) were already introduced in Section 2. Here we give digests of the
other tasks of the Hello World Case. Note that certain subtasks had been
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Figure B.18: The evolved graph metamodel

marked as optional, i.e., those have not been required to solve the case but

can be considered only as extensions. The original descriptions can be found
in [70].

Appendiz B.1. Pattern Matching

The querying tasks asks for model queries counting certain elements in
the graph conforming to the metamodel given in Figure 3. Numbers wrapped
into an object of a result type have to be returned.

Asked-for are the number of nodes, the number of looping edges, the
number of isolated nodes, the number of matches of a circle consisting of
three nodes in a graph, and optionally the number of dangling edges.

Appendiz B.2. Sitmple Replacement

The update task requires to provide a transformation reversing all edges
in a graph (conforming to Figure 3).

Appendiz B.3. Sitmple Migration

The migration task asks for a transformation migrating a graph con-
forming to the metamodel given in Figure 3 to a graph conforming to the
metamodel given in Figure B.18. (The name of a node becomes its text.
The text of a migrated edge has to be set to the empty string.)

An optional task is to provide a topology-changing migration into graphs
as defined by the metamodel in Figure B.19.
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Figure B.19: The even more evolved graph metamodel

Sub-task CRUD Transf. Compl. Flow Language Abstraction
Constant transformation C creation  simple output endogenous  horizontal
Pattern matching R query simple input exogenous vertical
Simple replacement RU turnover  simple input endogenous  horizontal
Simple migration RC turnover  simple input exogenous horizontal
Deletion RD spot simple input endogenous  horizontal
Transitive edges RC turnover  simple input endogenous  horizontal

Table C.4: Categorization of “Hello World” case sub-tasks.

Appendiz B.J. Transitive Edges

The optional transitive edges task asked for the insertion of an edge e3
in between the nodes n1 and n3, in case there was a node n2 existing, with
an edge el in between n1 and n2 and an edge e2 in between n2 and n3.

Appendix C. Discussion of Hello World

To provide an insight in the coverage of the “Hello World” case, Table C.4
lists a number of transformation-related properties covered by each sub-task
of the case. These properties are based on experiences from the TTC work-
shop series, as well as transformation tool surveys by [72] and [12], as typical
distinguishing factors between the different transformation languages/tools.
The properties are CRUD, transformation kind, transformation complexity,
control flow, language, and abstraction. The CRUD property stands for
Create/Read/Update/Delete, and refers to the kind of model manipulations
required by the transformation problem. For the transformation kind we
distinguish creation for a write-only transformation, from query for a read-
only transformation, from turnover for a transformation that rolls around
most parts of the model, from spot for a transformation that changes only
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a small part of the model, which means an in-place transformation carried
out by a rewriting tool is better suited to it. Complexity refers to the kind
of transformation that is required, and can be either simple or heavy. Simple
problems allow the transformation to be described as a relatively straight-
forward relationship between input and output elements, or mapping. Heavy
problems are more complex, and require intermediate model states that are
transformed in a stepwise fashion until the desired output is achieved (favor-
ing rewriting tools). All transformation sub-tasks were simple problems. The
contol flow refers to the kind of navigation required to generate the desired
output. It can be either input-driven, where the transformation output can be
fully quantified by the input (i.e., n output elements for each input element),
or it is output-driven, where a specific output template structure is required,
regardless of the kind and amount of input elements. The language property
refers to either endogenous transformations, or erogenous transformations
(i.e., either within the same language, or between different languages). The
abstraction property refers to either horizontal (same abstraction level) or
vertical (different abstraction levels) transformation problems.

Appendix D. Votes and Discussion

Here, we publish the votes for the Hello World case, which were cast
along the dimensions completeness, understandability, and conciseness in
steps of 1 to 5 points, with 5 being the highest score. Additionally, we give
an interpretation and discussion comparing the solutions and tools in the
order of voting results. The discussion is based on the opponent statements,
enriching them with further post-workshop insights of the authors. Only the
tools that were presented at the TTC were voted; this is why the EMFTVM,
the metatools, and QVTR-XSLT are missing from Table D.5. PETE, which
was presented at the workshop, is not included in this article.

Completeness was of low impact compared to conciseness and understand-
ability, with the worst solution in this regard scoring at 95% of the maximum
value (compared to 56% and 57% regarding the other dimensions). This high
rate of success is not surprising taking into account how basic the tasks were;
in fact it is rather surprising that a third of the tools was not able to give
a complete/correct solution in the first place. So the matter was decided
alongside understandability and conciseness. Regarding understandability,
three points played a role: (i) the distinction into graphical versus textual
languages, with a general bonus for graphical tools, (ii) the concepts the
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tools are built upon, constructs from formal logics received a malus, and
(iii) whether the tool offers a syntax similar to well-known programming lan-
guages, which was preferred. Regarding conciseness, the availability of (i)
lightweight means for simple CRUD tasks played a role, as offered by imper-
ative solutions, but even more so (ii) the general expressiveness of the tools,
as expressed by the availability of the features referenced in the feature ma-
trices; they had not to be used into great depth, but their general availability
already lead to more compact solutions compared to competing tools.

Appendiz D.1. Epsilon

The Epsilon solution was able to employ a language matching the task
at hand for nearly each task of the Hello World case. So the solution scored
highly regarding conciseness and understandability, rendering it the clear
winner of this challenge. But there is one exception to the understandability
and conciseness: as no declarative pattern matching is offered, the match a
cycle of nodes task had to be coded imperatively with 3 nested loops. Offering
multiple languages has another side effect, which was also complained about
by the opponents: learning becomes harder.

Appendiz D.2. GROOVE

GROOVE was able to solve each task with one rule, which resulted in the
highest conciseness vote of all competing solutions. This was made possible
by the use of quantified nodes — but while yielding the top vote regarding
conciseness, they lead to only a midfield place and complaints from the re-
viewers regarding understandability. A further point criticized was the lack
of XMI import and export.

Appendiz D.3. GrGen.NET

GrGen.NET was as balanced as Epsilon regarding conciseness and under-
standability, but at a clearly lower level. Strong points regarding conciseness
were the retyping (cf. Table F.16) for the migration task, which earned it
kudos from the opponents, and the subpattern iteration. Complaints were
fielded regarding the lack of an exporter for XMI, which was manually coded,
and an imperatively formulated transitive edges solution.
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Appendiz D.4. MOLA

The MOLA solution received the 3rd highest vote regarding understand-
ability, but only a midfield result regarding conciseness. It can be expected
that the graphical language for both rules and control leads to the high vote
for understandability while reducing the conciseness score.

Appendiz D.5. MDELab SDI

The MDELab SDI solution received the 2nd highest vote regarding un-
derstandability, which most likely must be attributed to its clean graphical
syntax. But this was offset by the 3rd lowest vote regarding conciseness,
with the opponents complaining about the lack of non-isomorphic matching
(cf. Table F.16) and the unavailability of negative patterns (cf. Table F.14),
which would have been useful for this case.

Appendiz D.6. GReTL

The GReTL solution scored 3rd highest regarding conciseness based on
the highly compact language for the transformation of query result sets. But
on the other hand it scored 2nd worst regarding understandability, which
must be attributed to a lot of special tokens not known from common pro-
gramming languages, which seem to stem from formal specification languages
the audience was not trained in.

Appendiz D.7. Henshin

Henshin scored in the midfield for understandability, which is rather sur-
prising for a graphical rule-based language, especially compared to MDE-
Lab SDI and MOLA - it seems that the non-activity-diagram-based control
language gave a minus in this regard. It scored 2nd worst regarding concise-
ness, with an opponent criticizing it for the lack of a pure apply-rule-for-all-
matches construct not requiring a kernel rule.

Appendiz D.8. Edapt

Edapt offered a strong solution for the model migration task for which the
tool is designed, only reusing some predefined operations. For the other tasks,
hand-coded solutions against an API were offered, which gave complaints
by the opponents regarding a lack of declarativeness and conciseness and a
reduced vote in this areas.
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Appendiz D.9. VIATRA2

VIATRAZ2 was seen by the voters to belong to the top third regarding un-
derstandability, but received a devastating vote regarding conciseness. While
clearly being one of the most verbose languages, the effect seems dispropor-
tional, which most likely is to be attributed to the solution introduction paper
that presented several possible solutions for each of the tasks; while being in
accordance with the goals of the Hello World case it seems that people just
glimpsing over paper got the impression that there is a huge amount of code
needed.

Appendiz D.10. PETE

Pete received kudos for its declarative and potentially bidirectional style
for specifying transformations with Prolog terms. On the other hand, this
most likely gave it a bad vote regarding understandability with an audience
not trained in this language. In ended in the midfield regarding conciseness,
with an opponent praising it for a concise solutions regarding the counting
task and denouncing it for a verbose solution regarding the model-to-text
task.

Appendiz D.11. UML-RSDS

UML-RSDS scored in the midfield regarding conciseness but worst re-
garding understandability. The opponents termed the solution interesting
regarding its basic approach while at the same time asking about the use of
mathematical formulas for the simple Hello World task; it seems the voters
did not appreciate the predicate logic style of specification either.

Appendiz D.12. Validity and Full Solutions

The Hello World task descriptions, despite being simple, contain sev-
eral ugly corner cases and ambiguities (e.g., reversing dangling edges), that
showed when they were to be implemented. Some tool providers delivered a
correct solution offering exactly the required features, at the price of a more
complex and thus less concise and readable solution, while others were flexible
in the interpretation of the requirements, concentrating on the pragmatics of
the case, i.e., introducing their tools. Some voters took this into account and
gave lower votes regarding completeness based on correctness, while others
just ignored this issue or were even surprised that some participants voted
them in this regard.
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The votes cast can be seen as good indication on the overall performance
of the tools regarding understandability and conciseness, but should be taken
with a grain of salt. On the one hand, they are tweaked by the presentational
skill of the tool provider before the audience, and on the other hand by the
inquisitional skill of the opponents. For while in principle every tool provider
could evaluate all tools and then give an all encompassing vote, this rarely
happened with more than a dozen competing tools and solutions; the SHARE
images of the solutions typically were investigated by the opponents and a
handful of interested, but not all participants.

Regarding understandability one should take care of the fact that this
criterion is highly dependent on the experience and knowledge of the voters.
Tools offering a notation based on general programming constructs fared
better than tools based on constructs from formal specification languages
or formal logic. While this gives a good indication on the mass market
compatibility of a tool and the appeal to the average software engineer, it
might give a wrong impression on the understandability of a tool regarding
the knowledge available to a prospective user.

Conciseness was judged subjectively, too, based on the presentation and
the paper. Presenting only the concise parts could have lead to a better
vote then deserved regarding overall performance. Some help in this re-
gard and especially regarding the question of correctness might come from a
transformation judge [71], a computer program under development judging
objectively.

Appendix E. Feature Matrices for Section 6
Appendiz E.1. Table FE.6

Domain. We note down
graph for graph-based tools.
model for model-based tools.

Of high importance in distinguishing in between the two notions are the sup-
ported input formats and output formats defining the technical space [59] the
tools operate in: model transformation tools are normally built on UML/-
MOF /XMI/Ecore, whereas graph transformation tools are typically built on
GXL or custom formats. Graph-based tools are typically more general pur-
pose, geared towards all domains that operate on graph like representations.
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Tool Domain Kind Traceability

Edapt model (EMF) rewriting preserve
EMFTVM model (EMF) both implicit
Epsilon multi (EMF, ...)  both implicit, explicit
GReTL graph mapping  implicit
GrGen.NET graph rewriting  explicit, preserve
GROOVE graph rewriting  explicit
Henshin model (EMF) rewriting  explicit
MDELab SDI model (EMF) rewriting  explicit
metatools model both explicit
MOLA model (EMF, ...) both explicit
QVTR-XSLT model mapping  implicit
UML-RSDS model both explicit
VIATRA2 mixed rewriting  explicit

Table E.6: Domain and Kind

In contrast, model tools are typically centered on program representations.
Graph transformation tools tend to view edges as first level constructs, which
might be attributed or endowed with an inheritance hierarchy, while model
transformation tools tend to view edges as references between nodes without
own attributes. The world of graphs, which is older and more mature, enjoys
a higher level of mathematical sophistication compared to the more practi-
cally minded world of models (sometimes at the price of regarding practical
usability an inferior topic).

In addition to these two opposite values, there are two refinements avail-
able:

mixed is used for tools that are located in the middle of the two domains.
multi is used for tools that offer to switch the metametamodel.

Tools normally provide one fixed metametamodel based on which the users
can define the metamodel to work with. Tools classified as multi allow
to switch the modeling technology to work with different metametamodels.
They may show a different behavior depending on the chosen metameta-
model. In cases where this influences the features we compare, we hint at it
with a table footnote.

The modeling technology for tools that are not using a custom model,
but are built on the API of a common technology, like EMF for the Eclipse
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Modeling Framework [92|, is given in parenthesis. The advantage of such
a setup is that other tools built on that technology can be easily (re)used,;
a disadvantage may arise from the fact that it is not possible to adapt the
model implementation to the computations, esp. that it is not possible to
tweak it for more efficient matching.

Kind. We note down:

mapping for mapping based tools (operating on several models).
rewriting for rewriting based tools (operating on one model).

both for tools that support both kinds.
Traceability. The support for traceability links can be distinguished into:

implicit Traceability is built-in, source and target elements are automati-
cally linked by the transformation engine.

explicit Traceability must be explicitly coded by assignments to variables
of map type.

preserve Traceability can be modeled by keeping the identity of the trans-
formed entity in a rewrite-based tool supporting retyping, cf. Table F.16.

Appendiz E.2. Table E.7
Languages. We distinguish:

DDL A data definition language to specify the metamodel (see Section 6.2).
PL A programming language (as explained in Section 6.3).

QU A query language (as explained in Section 6.3).

RL A rule language (as explained in Section 6.3).

CL A control language (as explained in Section 6.3).

SPs stands for tools that are horizontally split into several special-purpose
languages.

sp is noted down for tools that offer a user interface that can be seen as
a domain specific language, but one that does not allow for general
transformation programming.
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Tool Languages offered  Attributes External Languages

Edapt sp for migration Extensions : Java
EMFTVM RL OCL API : Java
Epsilon PL and SPs, one: R  OCL API : Java
GReTL QU Main : Java

GrGen.NET  DDL, RL, CL(/PL) Java-like API(RL,CL), Events : C#
GROOVE DDL, RL, CL

Henshin RL, CL JavaScript API, Events: Java/EMF
MDELab SDI RL, CL OCL API, Events: Java/EMF
metatools SPs: DDLs, RL Java Main: Java

MOLA DDL, RL, CL OCL-like Extensions, API : Java, C+-+
QVTR-XSLT RL XSLT APT : XSLT

UML-RSDS RL, CL OCL

VIATRA2 DDL, RL, PL(/CL)

Table E.7: Offered languages and extensions

Attributes. In addition to the languages concerned with structural transfor-
mation, the sub-language offered for attribute computations is given.

External Languages. We distinguish:

Main The computations are meant to be programmed in a general-purpose
programming language.

Extensions The computations that are exceeding the functionality of a sup-
plied library are to be programmed in a general-purpose programming
language.

APIT A user program written in a general-purpose programming language
can manipulate the model or call the computations via an API.

Events A user program may hook into events that are fired when the model
is manipulated or a rule is matched.

For all points the programming language that needs to be employed is of
interest.

Events fired on model changes finally allow for an even tighter integration
of tool supplied data and computations into an externally written program.
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Tool M.-M. Computations MM RE CE
Edapt G G (T for extensions) x X X
EMFTVM GorT T,T X X X
Epsilon GorT T X X X
GReTL GorT T X X X
GrGen.NET T T, T X X X
GROOVE G G, T v v
Henshin G G, G xt vV v
MDELab SDI GorT G,G <t v v
metatools T T X X X
MOLA G G, G v v v
QVTR-XSLT G G, T v vV
UML-RSDS G T, T v v
VIATRA2 T T, T X X X

! third-party editors for EMF-based metamodels are T or G

Table E.8: Form of specification language

Appendiz E.3. Table E.8

Form of Specification Language. We note down:
G for graphical languages like UML class or activity diagrams.
T for textual languages.
The form is applied to the:
Metamodel for the metamodel specification.
Computations for the computation specification.

The computation specification comprises one value for tools of non-rule kind,
and two values for tools of the rule and control kind, first the rule, then the
rule control part.

Graphical Editors. In addition, we list the availability of graphical editors,
differentiated in between the different language parts:

MM stands for a graphical metamodel editor, which allows to edit the meta-
model in a notation similar to UML class diagrams.
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Tool Execution host Operating System
Windows Linux Mac OS X

Edapt EXE, IDE(Eclipse), APP 4 4 v
EMFTVM IDE(Eclipse), APP(JVM) 4 4 4
Epsilon IDE(Eclipse), EXE, APP(JVM) 4 4 v
GReTL EXE, APP(JVM) 4 4 v
GrGen.NET  EXE, APP(.NET) 4 4 v
GROOVE EXE, APP(JVM) 4 v v
Henshin APP(JVM), IDE(Eclipse) 4 4 4
MDELab SDI  APP(JVM), IDE(Eclipse) v 4 4
metatools APP(JVM), EXE 4 4 v
MOLA IDE(Eclipse), APP(JVM, Win)! 4 X X
QVTR-XSLT EXE, XSLT v v v
UML-RSDS  API(JVM) 4 4 X
VIATRA2 IDE(Eclipse), EXE, APP(JVM) 4 4 v

! Target environment dependent (Java or C++)

Table E.9: Execution host and supported OS

RE stands for a graphical rule editor, which allows to edit the left hand side
and right hand side patterns of the rules in a notation similar to UML
object diagrams.

CE stands for a graphical rule control editor, which allows to edit the control
flow in a notation similar to UML activity diagrams.

Graphical editors bring graphical languages to life; while a graphical language
without an own editor would be unusable, a textual language, esp. a pattern-
based one might come with an additional graphical editor. Graphical editors
offer the benefits of visual programming, but bind the user to that editor (in
addition to the underlying execution engine, as is the case for the textual
languages).

Appendiz E.4. Table E.9
FExecution Host. We distinguish:

EXE The tool suite contains an external executable, which allows to run
the transformation, e.g., a shell application or a simulator.
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Tool M.-M. Comp. Engine Memory

Edapt I Tand C UP 48bytes, 40bytes
EMFTVM C c,C SB(stat), UP not tool defined?
Epsilon CorI' 1 UP not tool defined'
GReTL Corl 1 SB(dyn) 36bytes, 60bytes
GrGen.NET C C,CorI SB(dyn) 44bytes, 56bytes, 4bytes
GROOVE I L1 SB(stat) or INC  40bytes, 48bytes, 48bytes
Henshin I LI SB(dyn), UP not tool defined?
MDELab SDI Corl I 1 SB(dyn) not tool defined?
metatools C C

MOLA C CC SB(stat) not tool defined!
QVTR-XSLT C C C SB(dyn), UP

UML-RSDS C C,C

VIATRA2 I I I SB or INC 1kbyte, 1kbyte, 3kbytes®

! depends on underlying modeling technology
2 depends on EMF implementation (approx. 48bytes, 32bytes)
3 due to canonical model representation

Table E.10: Execution model
IDE The tool suite contains a plugin for an IDE that is able to execute and
debug the code.

APP The transformations are executed from an user application, which is
accessing the transformation via an API. (On what kind of machine?)

Operating System. We distinguish:
Win Windows,
Lin Linux or Unix,

Mac Mac OS X.

Appendiz E.5. Table E.10

Tool Execution.
Ezxecution Model. We note down:
C for compilation or code generation.

I for interpretation.
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The execution model is applied to the:
Metamodel for the metamodel specification.
Computations for the computation specification.

The computation specification comprises one value for tools of non-rule kind,
and two values for tools of the rule and control kind, first the rule, then the
rule control part.

Engine. We distinguish the following matching engine approaches:

SB for search-based — queries are answered or patterns are matched by a
search in the graph, based on a plan scheduled by the search engine. A
discrimination point within this approach is the time when the search
plan is computed, a static one is computed at specification time, a dy-
namic one can be (re-)computed at runtime to better fit to a currently
given model.

INC for incremental — all matches of all rules are stored in a Rete network,
model changes percolate through this network to yield all matches of
all rules after the model change. This allows for very fast queries at
the price of slow updates and increased memory consumption. The less
rules, the better the performance.

UP for user programmed — patterns are sought by nested navigational ex-
pressions or nested loops; here the user can easily optimize the matching
order, but on the other hand, the user is always forced to define the
matching order.

Memory. We give the amount of memory required by a plain node without
attributes, followed by the amount of memory required by a plain edge with-
out attributes, followed by the additional amount of memory required by an
4-byte integer attribute of a node.

Appendix F. Feature Matrices for Section 7
Appendiz F.1. Table F.11

The formats listed are:
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Tool Input formats Output formats

Edapt XMI XMI

EMFTVM XMI, TXT XMI, TXT

Epsilon XMI, XMI(1.x), XML XMI, XMI(1.x), XML
GReTL CST, XMI, GXL CST, XMI, GXL, VIZ
GrGen.NET  CST, GXL, XMI CST, GXL, TXT, VIZ
GROOVE GXL, XMI GXL, XMI, VIZ, VER
Henshin XMI XMI, VIZ, VER
MDELab SDI XMI XMI

metatools TXT, XML(dtd) TXT, XML(dtd)
MOLA XMI, CST XMI, CST, TXT
QVTR-XSLT XML, XMI, GXL, CST XML, XMI, GXL, CST
UML-RSDS CST CST, XMI

VIATRA2 XMI, CST XMI, CST, TXT

Table F.11: Input and Output

GXL: an XML dialect, the de facto standard for graph transformation tools,
specifying the graph as well as the type graph.

XMI: an XML dialect, the de facto standard for model transformation tools,
specifying the model. The metamodel for an .xmi is typically given in
.ecore format (version 2.0).

XMI(1): in case the tool supports XMI 1.x.
XML: general support for XML.

CST: custom formats, which are not helpful in tool interoperability (unless
adopted by other tools thus defining a de facto standard), but unleash
the full potential of a tool.

TXT: means the tool has support for text output into a file, which allows
to emulate an arbitrary file format (at the price of explicit coding).
If this is specified for input, the tool offers integration with a parser
generator, e.g., EMFText [32].

VIZ: visualization formats emitted by the tool, which are used as input for
a graph visualization tool (e.g., .dot or .vcg).

VER: file formats for verification, e.g., .aut.
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Tool Nodes Edges Modifier

+M +U 4+0 +RC +I +B
Edapt M, A P 4 X v v v  x
EMFTVM M,A P v < v vV vV X
Epsilon St ! 4 x V1 x X X
GReTL M,A M, A v < v vV < ¥
GrGen.NET M, A M, A 4 v X X x v
GROOVE M,A S X X X X x v
Henshin M, A P X X X v X X
MDELab SDI M, A P v v v vV vV X
metatools M, A 4 X v X X X
MOLA M,A P «x v v v v Vv
QVTR-XSLT M,A P v < v vV  x  x
UML-RSDS S, A P X x v vV vV x
VIATRA2 M, A M 4 X X v X X

! depends on the underlying modeling technology, values given for EMF

Table F.12: Nodes and Edges

Appendiz F.2. Table F.12
The ways in which the nodes or edges may be typed are:

U: means the elements are untyped.
P: for plain means the elements are equipped with disjoint types.

S: for single inheritance means the elements are equipped with a type hi-
erarchy specifying a can-be-substituted relation with one single parent
for each type.

M: for multiple inheritance means the elements are equipped with a type
hierarchy specifying a can-be-substituted relation with potentially mul-
tiple parents for each type.

Additionally, an element may bear attributes, denoted with A.
The modifiers for how edges (resp. references) are exactly realized are:

+M: If the edges have an identity, i.e., multiple edges of the same type
between two nodes are allowed, we speak of a Multi-Graph; we note
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down +M in this case. This is an extension of a simple graph, which
allows only one edge of the same type in between two nodes. The
simple graph is the natural choice for problems, which are strictly built
on relations, where multiple edges between same nodes do not have any
meaning.

+U: Edges are normally directed, with one node distinguished as source and
the other as target. There might be additionally undirected edges. In
this case, we hint at them by noting down +U.

+0O: Edges in a graph are typically unordered (in contrast to an array of
references). In case the tool is able to query for and assign the position
of edges, this is denoted by +O for ordered.

+RC: Model transformation tools typically distinguish edges into references
and containment, and e.g., implement a cascading delete of children if
the parent is deleted. It is indicated by +RC that this is the case.

+1I: The tool supports inverse edges if creating or deleting an edge automat-
ically creates or deletes a co-edge in the opposite direction.

+B: The tools supports traversing edges in both directions (bi-directional
navigationability). This is common for graph tools, the co-edge han-
dling can be seen as a way to achieve this behavior in a model-based
tool.

Appendiz F.3. Table F.13

The available attribute kinds are:
Liberal: means each element can bear arbitrary attributes.
Fixed: means a type defines uniquely which attributes an element may bear.

The types available for typing attributes are: b for boolean, i for integer
numbers, f for floating point numbers, s for strings, e for enumerations, o
for objects (user-defined types, which are opaque to the tool language, they
make only sense when the tool can be employed from an API embedded in
a host program), C for collection types (e.g., set, map, bag, array, list).
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Tool Attribute Kind Attributes

b i f S e 0 C
Edapt Fixed v v v v vV «x V
EMFTVM Fixed v v v v v v V
Epsilon Fixed v v v v vV «x
GReTL Fixed v v v v vV «
GrGen.NET  Fixed v v v v v vV V
GROOVE Fixed or liberall! ¢ ¢ v ¢V x x x
Henshin Fixed v v v v VvV vV
MDELab SDI  Fixed v v v v vV v V
metatools Fixed, Liberal v v v v v v V
MOLA Fixed vV vV <« vV vV x x
QVTR-XSLT Fixed v v vV vV vV x x
UML-RSDS  Fixed v v vV vV vV x x
VIATRA2 Liberal v v vV vV VvV « x

I The user can either set a type graph fixing the allowed attributes, or
leave the model untyped

Table F.13: Attributes

Tool Data collection Result storing
Edapt PL, OCL container
EMFTVM P, NP, PP, AC or container

E, OCL none
Epsilon OL PL, OCL container
Epsilon TL E, OCL none
GReTL Query Language: GReQL compound container
GrGen.NET P, NNP, NPP, AC container
GROOVE P, NNP, NPP, AC none
Henshin P, NNP, NPP, AC variable
MDELab SDI P, NE, PE, PP, AC, OCL  container
metatools P, PL, NNP, NPP, AC container
MOLA P, NE, PE, AC variable
QVTR-XSLT P, PP, AC none
UML-RSDS OCL none
VIATRA2 P, NNP, NPP, AC container

Table F.14: Data collection
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Appendiz F.4. Table F.1)
The available abbreviations for data collection are:

P: for the main pattern.

E: for the single element from the source to be mapped.

NP: for a negative pattern.

PP: for a positive pattern (used as application condition).

NE/PE: for negative/positive elements.

NNP /NPP: for nested negative/positive patterns.

AC: for attribute condition.

OCL: for conditions formulated in the Object Constraint Language.

PL: for data collection programmed in a programming language.
The different ways to store results of the data collection:

none: it is not possible to store results

variable: for single valued variables.

container: for container variables.

compound container: for compound containers (capable of storing records,
similar to the table-valued result of a SQL query).

Appendiz F.5. Table F.15

The abbreviations employed in explaining the depth and breadth match-
ing capabilities are:

Imper: for an imperative solutions with loops or calls, implemented in a
programming language or a rule control language.

Reg: for regular path expressions.
Rec: for recursive patterns.

Pat: for a pattern.
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Tool Depth Breadth

Edapt Imper OCL, Imper

EMFTVM Imper OCL, Multi-nodes/RHS, Imper/RHS
Epsilon Imper/RHS OCL, Imper/RHS

GReTL Reg-Path Result-Set/RHS

GrGen.NET Rec-Pat/RHS, Imper/RHS Iterated-Pat/RHS, F-All, Imper/RHS
GROOVE Reg-Path Quantified-Pat/RHS

Henshin Imper/RHS Nested rules/RHS, Imper/RHS
MDELab SDI Imper/RHS OCL, F-All, Imper/RHS

metatools Reg-Path, Imper Reg-Path, Imper

MOLA Imper/RHS Loop-with-header/RHS, Imper/RHS
QVTR-XSLT Rec-Pat Iterated-Pat

UML-RSDS Imper OCL/RHS, Imper/RHS?

VIATRA2 Rec-Pat F-All, Imper/RHS

Table F.15: Depth and breadth support

F-All: for rules applied with for-all semantics.

RHS: abbreviates right-hand-side; this tells that it is possible to modify the
elements matched.

We add the suffix RHS to the solutions listed in Table F.15 if we can modify
the items matched into depth, e.g., reversing all edges visited.

Appendiz F.6. Table F.16
The values for retyping are:

cross: in case it is supported without restrictions.
down: if only downcasts are allowed (being type safe but less powerful).
none: if retyping is not supported.
The values for transaction support are:
simple: if transactions are supported.
nested: if they may be nested.
none: if transactions are not supported.

The values for the matching modifier are:
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Tool Retype Transaction Mod. Mat. Mod. Rew.

Edapt Cross none - -
EMFTVM none none iso, hom DPO
Epsilon cross' simple - -

GReTL none none - -
GrGen.NET Cross nested iso, hom SPO, DPO
GROOVE down simple hom, iso SPO, DPO
Henshin none simple iso, hom SPO, DPO
MDELab SDI  none none® iso SPO
metatools none none hom -

MOLA none none hom, iso SPO
QVTR-XSLT none none hom SPO
UML-RSDS none none hom, iso SPO
VIATRA2 cross? nested iso, hom SPO

! depends on the underlying modeling technology, values given for EMF
2 only supported by the rule control language
3 transactions are supported in the debugger

Table F.16: Retyping, transactions, and pattern modifiers

iso if a single graph element cannot get matched by multiple pattern ele-
ments.

hom if a graph element can get matched by multiple pattern elements.

The default is specified first.
The values for the rewriting modifier are:

SPO if the rule is applied and the edges that would dangle are deleted.
DPO if the rule is prevented from matching and nothing happens.

The default is given first.

Appendiz F.7. Table F.17

A check mark in the model column (Mod.) tells that the metamodel
specification can be combined from different files or views; a second check
mark denotes the availability of separate namespaces.

A check mark in the computations column (Comp.) tells that the com-
putation specification can be combined from different files or views; a second
check mark denotes the availability of separate namespaces.
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Tool Mod. Com. Units of abstraction and reuse

Edapt vViv vV/x PO
EMFTVM VvV Vv/x (C(1,0),R(0),SI10)

Epsilon OL V)¢ V/x P

Epsilon TL Vv Vv/x RS

GReTL x/x ¥ /x  Q(O0), PA0)
GrGen.NET ¢//x ¥/x  (C(1,0), R(1,0), S(1,0)
GROOVE vV /x V¥V C R(LO)

Henshin v,V vV C10),R10)
MDELab SDI ¢ v/ V')V (C(1,0), R(1,0), S(1O)
metatools partly P(I1,0)

MOLA vVivV vV/x C(LO)

QVTR-XSLT R(L,0)

UML-RSDS  ¢/x ¥//x  C(I), R(I)

VIATRA2 v, vV ((10),R(10),S10)

Table F.17: Transformation organization and reuse

Abstraction and Parameterization. In the program-based approach, a pro-
gram is the basic unit of use. If it is in addition possible to factor out
common program computations and reuse them from other program parts,
we note down P for a subprogram. The subprogram subsumes all the other
means of reuse offered by alternative approaches.

In the library-based approach, library functions are the basic unit of use.
As it is not possible to abstract them further we omit them here.

In the query-update-based approach (as introduced in Section 6.3), a
query is the basic unit of use. When it is in addition possible to factor out
common queries and reuse them from other queries, we note down Q for
subqueries.

In the rule-based approach, a rule is the basic unit of use. The explicit
control sequence or an implicit control engine is an accompanying basic unit
of use. When it is in addition possible to factor out a control sequence of a
rule control language (or a program when the rule control language includes
a programming language), and reuse that unit as a compound control unit,
we note down C for a sub-control program. When it is in addition possible
to factor out a rule and reuse it from another rule, we note down R for a
subrule. When it is in addition possible to factor out a computation below
rule level and reuse it from another rule, we note down S for subrule com-
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Tool Extensions M-I M-P Gen. Model Comp.
Edapt EOP(Java) v X X 4 4
EMFTVM EOP(Java), EAC(Java) ¢! ¢ x x V2
Epsilon EOP(Java) v X 4 4 X
GReTL EOP(Java) v  x x 4 4
GrGen.NET  EOP(C#), EAC(C#)  x X X X 4
GROOVE - v v X X X
Henshin EAC(JavaScript) X v v v 4
MDELab SDI EOP(Java), EAC(Java) x ¢ v x 4
metatools Comp. are external 4 v X X V2
MOLA EOP(Java, C++) X v X X X
QVTR-XSLT EOP(XSLT) X v X X X
UML-RSDS EOP(Java), EAC(Java) x X X X X
VIATRA2 EOP(Java), EAC(Java) ¢ ¢/ 4 4 x

" only supported by the rule control language
2 self-reflective adaptation of the currently running transformation is not supported
(for tools not supporting M-P this holds directly)

Table F.18: Extensions, metaprogramming, and runtime flexibility

putations; this includes e.g., application conditions and subpatterns. C is
helpful when complicated transformations need to be programmed. R saves
you from returning output parameters to the control language to be used as
input parameters for following rules, for tools of the rule and explicit control
approach, which is a cumbersome practice, and allows implicit control tools
to use other rules as a reusable entity. S is helpful when there are common
structures to be processed in the same way or when there are non-trivial
attribute computations to be carried out from several rules.

If these units of reuse support parameterization, we add:

I if parameters passed in are supported.
O if parameters passed out after applying the part are supported.

Appendiz F.8. Table F.18
The following values are available for the Extensions column:

EOP Externally-defined transformation operations can be called in place
of the built-in operations, or in place of operations specified in the
language of the tool.
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EAC Externally-defined attribute types and attribute computations can be
defined; e.g., for introducing a type matrix and a matrix multiplication
as operation.

The programming languages in which these extensions may be programmed
is appended.

A check mark in the M-I column denotes the capability to program with
meta-iterations. A check mark in the M-P column denotes tools in which
the computations are available as models to be inspected and changed at
runtime by meta programs.

A check mark in the Gen. column denotes the capability for generic pro-
gramming in the sense that metamodels are passed as parameters at runtime,
i.e., the metamodels are not statically known (as supported e.g. by Dynamic
EMF). A check mark in the Model column denotes the capability to change
the metamodel at runtime. A check mark in the Comp. column denotes the
capability to change the computations at runtime.

Appendiz F.9. Table F.19

The IDE and editor column lists the IDEs for which a tool integration is
available; an editor integration must consist of at least syntax highlighting.

The following columns under developer support are checked when the
corresponding functionality is available:

GV Graph viewer — a graph viewer allows to view the graph before the
transformation and after the transformation.

HG Hierarchical graph support — the graph viewer allows to view a nested
graph, where nodes are capable of containing further graphs. This
feature is important for large graphs, which are not consumable by the
human mind if presented in a flat layout.

GD Graphical debugger — a graphical debugger allows to execute a transfor-
mation stepwise, rule match by rule match, and to view the matching
pattern highlighted in the graph.

DB Textual debugger — a debugger for a textual transformation language is
available.

CD Change difference — the tool offers a viewer to highlight changes in a
model.
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Tool

IDE & Editor

Developer support

GV HG GD DB CD RF AC
Edapt Eclipse v X X X v v X
EMFTVM Eclipse x x ¥ vV x x v
Epsilon Eclipse X X X v X X X
GReTL Eclipse, Emacs v X X xZ  x x ¥
GrGen.NET  N++!Vim, Emacs ¢ ¢ ¢/ x X X X
GROOVE v X v X X X v
Henshin Eclipse X X X X Vi x X
MDELab SDI  Eclipse vV x vV x V3 x
metatools v  x X V2 X x X
MOLA Eclipse v X X X vi v v
QVTR-XSLT MagicDraw UML X X X X X X X
UML-RSDS X X X X X v x
VIATRA2 Eclipse 4 X X X X X X

L N+ + abbreviates the editor Notepad+-.
2 The debugger of the general-purpose programming language is available.
3 EMFCompare can be used to compare models and visualize differences.

Table F.19: Developer support
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Tool User documentation Direct Concepts

Edapt Tut, API, Expl PL, OO
EMFTVM UM, Tut, Wiki OCL PL, 0O

Epsilon UM(238), Tut, LR OCL PL, OO, RP
GReTL API, Pap, Expl SL, DQ, PL, 0O
GrGen.NET UM(250 incl. LR), Expl, API Java PL, OO, RP, FLA
GROOVE Tut, Expl, UM(25) FLO, PL, GL, RP
Henshin Tut, Wiki, Expl JavaScript OO, GL, RP
MDELab SDI  IPHelp, Expl, API OCL 00, GL, RP
metatools Pap, UM(200), API Java FLA, PL, SL, OO
MOLA Web, UM(28), LR(60) OCL PL, OO, GL, RP
QVTR-XSLT Web, Expl, Pap OCL GL, RP
UML-RSDS UM(20), Expl, Pap OCL,UML FLO, SL, OO, GL
VIATRA2 Wiki(42), UM(115), LR(88) PL, RP, DQ

Table F.20: User documentation and learnability

RF Refactoring — an editor that allows for some refactorings of the tool
language is available.

AC Auto completion — an editor that helps in editing by suggesting com-
pletions for the current editing operation is available.

Appendiz F.10. Table F.20

The following types of user documentation may be listed in Table F.20:
UM for user manual, Tut for a tutorial, Wiki for a wiki, LR for a language
reference, API for an API documentation, Expl for examples, IPHelp for
an in-program help, e.g., Eclipse help, Pap for scientific papers, and Web
for a web site. Numbers appended in parenthesis specify the amount of A4
pages when printed. The three most important pieces of documentation are
given in descending order.

The column direct lists the standardized programming or specification
languages whose notations are reused in the tool, for attribute evaluation
and assignment, or application conditions, as the computations as such.

Concepts. The concepts column may list one (or multiple) of the following
abbreviations in case knowledge from the corresponding domain is helpful in
learning the tool:

FLO Formal logic. For predicates, quantifiers, proofs.
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SL Specification languages, e.g., Z, B. For set comprehension and set oper-
ations, logic operations, map operations, and their specific syntax.

FLA Formal languages. Grammar rules of nonterminals as placeholders
for things yet to be derived/parsed (subpatterns) are employed, and
terminals (nodes and edges). Programming with recursion.

DQ Database queries. A query language returning a set of tuples and an
update language.

PL Programming languages are characterized by: block nesting, keywords,
definition and use of identifiers, statement sequences, expressions for
attribute evaluation, and procedure calls.

OO Attributed classes with inheritance hierarchies over types and method
call notation.

GL Graphical languages: UML class diagrams, UML object diagrams, UML
activity diagrams.

RP Rule-based programming and pattern matching. Specification by match-
ing of inputs, generation of outputs.

Appendiz F.11. Table F.21

The Prerequisites Execution column lists the third-party software an end
user is forced to install in order to get a transformation developed with the
tool running (copying a few runtime libraries supplied by the tool, which can
be shipped with a solution do not count into this).

The Prerequisites Development column lists the third-party software the
transformation developer needs to install additionally in order to develop
transformations with the tool (besides the software components directly shipped
with the tool).

Appendiz F.12. Table F.22
The License column lists a combined value from

open the source code is available to the public.
closed the source code is not available, only binaries are supplied.

and a price value:
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Tool

Prerequisites Execution

Prereq. Development

Edapt
EMFTVM
Epsilon
GReTL

GrGen.NET

GROOVE
Henshin

Java

Eclipse, EMF, ATL core
Java

Java

.NET 2.0 (or mono)
Java 1.6 RE

Java, EMF

MDELab SDI  Java, EMF

metatools

MOLA

QVTR-XSLT
UML-RSDS

VIATRA2

Java RE

Java, Eclipse (ME)
ADT'+ SimpleGT
Eclipse

Java

Java 1.5 RE

Eclipse, EMF
Eclipse, EMF
Java SDK, ANTLR,
GNU make, coreutils

Java, EMF or Windows(C++)

XSLT processor
Java
Java

MagicDraw UML
Java
Eclipse

L'ADT abbreviates the ATL development tools.

Table F.21: Prerequisites

Tool License Year Ver. Code size

Edapt EPL 2007 36k Java, 31k comment
EMFTVM EPL 20112 3.3.0 50k Java

Epsilon EPL 2005 0.9.1 397k Java

GReTL GPL 2009 28k Java, 19k comment
GrGen.NET LGPL 2003 3.1 78k Java, 65k C#
GROOVE Apache 2003 4.6.0 133k Java, 63k comment
Henshin EPL 2009 EIP 57k Java, 41k comment
MDELab SDI EPL 2008 2.3.5 104k Java, 49k comment
metatools closed /money* 2001 103k Java

MOLA closed/free 2005 1.3.5 82k C++

QVTR-XSLT closed/free 2009 7.5k XSLT, 1.2k Java, 10k XML
UML-RSDS open/free 1996 1.3 75k Java

VIATRA2 EPL 2002 3.2 144k Java, 104k comment

I academic licenses available
2 the values are given for the EMFTVM extension, ATL is older

Table F.22: License and Maturity
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money using the tool requires payment.

strong using the tool requires publishing the using code.
weak changing the tool requires publishing the changes.
free none of the above.

Alternatively, the licenses may be specified directly:
Apache the Apache License, of type free (mostly).
GPL the GNU General Public License, of type strong.
LGPL the Lesser GPL, of type weak.

EPL the Eclipse Public License, of type weak.

The column Year specifies when development was started. The column
Version defines the version number reached. EIP instead of a version num-
ber stands for Eclipse Incubation Project. The column Code gives the
number of lines of code written, by programming language, according to
cloc.sourceforge.net (excluding third-party libraries and examples).

Appendiz F.13. Table F.23

The classification for the support of metamodel or type graph constraints
in the Constraints column is combined from two groups. The first is the fact
to be checked, being one of:

A: only certain attributes are allowed (depending on the type).
T: only certain edge types are allowed between certain node types.

M: only certain multiplicities of incoming/outgoing edges of a given type
are allowed at specific nodes.

The second is the strictness of the check, being one of:
F: this is enforced.
C: this can be checked.

The abbreviation SSE in the Validation and Verification column stands
for state space enumeration.
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Tool Constraints Validation and Verification

Edapt T:C, M:C

EMFTVM A:F, T:F, M:C

Epsilon A:F, T:F, M:F ! dedicated validation language
GReTL A:F, T:F, M:C

GrGen.NET A:F, T:C, M:C rewrite-clone, programmed SSE
GROOVE AF, T:F, M:C+F  SSE for model checking

Henshin T:C+F, M:C+F SSE for model checking

MDELab SDI  T:C-+F, A:C, M:C

metatools A:F, T:F, M:F

MOLA A:F, T:F, M:F

QVTR-XSLT A:C, T:C OCL checking

UML-RSDS A:F, M:F, T:F correct-by-design, export to theorem-prover
VIATRA2 T:C, M:C stochastic SSE

! depends on the underlying modeling technology, values given for EMF

Table F.23: Validation and verification support
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