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Abstract. Resilience is the ability of a system to return to its normal operation
state after a change or disturbance. Frequently, resilience of a system can be on-
ly empirically estimated due to the complexity of the underlying mechanisms.
While traditional dependability uses quantitative characteristics based on aver-
aging the impacts of faults, resilience requires more focused attributes on the
impacts of disturbances. The paper summarizes the main requirements on the
statistical background needed for resilience characterization and presents an ap-
proach based on Exploratory Data Analysis (EDA) helping to understand dis-
turbance impacts and their respective quantitative characterization.
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1 Introduction

The word ‘resilience’ (from the Latin resilire: to rebound, recoil) as a general term
expresses the ability to resist and/or recover from disturbances. It is part of the estab-
lished terminology of multiple scientific domains; for instance, it is also defined in
ecology [1].

Modern computer applications require more and more an analogous property to ac-
commodate to changes in the environment, like e.g. qualitatively and quantitatively
different workloads, hard to predict parasitic interactions between different users in a
shared infrastructure or changing fault loads. In this sense, resilience as a system or
service property can be defined as ‘the persistence of service delivery that can justifi-
able be trusted, when facing changes’ [4] — in other words, the persistence of depend-
ability [2] under changing circumstances.

Dependability is a design time attribute in the sense that it focuses on anticipated
faults and their effects. In contrast, a resilient system by definition has to maintain its
resilience properties if its environmental factors undergo evolution. Thus, ‘resilience’
encompasses the ability to resist and recover from errors, failures, changed environ-
ment, operational domains or requirements unknown at design time, as well.

Traditionally, quantitative metrics over a set of well-defined aspects as e.g. MTTF,
MTBF or probability of failure on demand characterize the dependability of IT sys-
tems. A common attribute of such metrics is that they focus primarily on the average
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impact of disturbances, as e.g. steady-state availability does; the evolution of the
measures is typically characterized at most by (distribution) variance.

While ‘dependability services’ granted for the users can indeed be characterized
this way, this is potentially insufficient or misguiding from the point of view of dis-
covering and evaluating resilience characteristics, where a) temporal properties of
transients and b) ‘worst case’ scenarios are under scrutiny. For instance, in high avail-
ability infrastructures rare, but long lasting outages may have little impact on overall
availability while seriously violating resilience requirements (speed of recovery).

Quantifying resilience is an actively researched area as there seems to be no clear
consensus yet even on the basic descriptive framework. E.g. [5] approaches resilience
quantification from the networking perspective; [3] outlines how state-based models
of dependability attributes (as for instance availability) can be adapted for resilience
evaluation. [8] discusses benchmarking of resilience and introduces the notion of
‘changeload’ (analogously to the established concepts of ‘workload’ and ‘faultload’
[6]). [7] analyses Infrastructure as a Service (laaS) resilience under capacity and de-
mand changes and introduces the resilience (meta)metrics settling time, peak
over/undershoot and peak time for measures that have an associated steady state be-
tween changes.

Research on resilience in general seems to employ either analytical or phenomeno-
logical statistical modeling approaches similar to dependability analysis.

o Traditional dependability analysis used for decades closed world model based pre-
diction of the reactions of the target system to anticipate faults — assuming simulta-
neously the validity of the underlying fault-error-failure propagation mechanisms
estimated and generalized from past observations on similar systems.

e However, resilience mechanisms have to mitigate not only rare, high impact
events, but also unforeseen ones. It follows that the estimation of resilience neces-
sitates an open world model, allowing for unknown faults and error propagation
mechanisms.

The drawback of reusing existing analytical dependability models is that they incor-
porate only specific, already known mechanisms — while future changes may activate
hidden ones that can invalidate the model itself. The same holds for the usual empiri-
cal (statistical) modeling approaches. Nevertheless, design for resilience necessitates
the estimation of the impact of a wide range of potential environmental changes. This
calls for a rethinking of the system characterization methodologies employed.

In this paper, we argue that Exploratory Data Analysis (EDA) performed on sys-
tem observations is an invaluable — and in general terms, maybe the only practical —
tool for estimating the previously unknown reactions of a system to environmental
changes. Our concepts will be illustrated by reanalyzing the data of an independent,
carefully executed dependability focused experiment [11] and showing how EDA can
provide additional insight into resilience-related properties.



2 Exploratory Data Analysis

Modern statistics usually distinguishes two fundamental modes of data analysis: Ex-
ploratory Data Analysis (EDA) and Confirmatory Data Analysis (CDA). Exploratory
data analysis ‘is a well-established statistical tradition that provides conceptual and
computational tools for discovering patterns to hypothesis development and refine-
ment.” [9]. Pioneered most famously by the American mathematician John Tukey (see
e.g. [10]), EDA can be characterized as the approach of ‘looking at data’ with the
fundamental aim of discovering patterns and building a plausible ‘story of the data’.
In contrast, CDA deals mainly with formal hypothesis testing and model selection.

In the ‘Tukey school’ of EDA (the term is generic enough to have slight variations
across researchers), the following attributes are characteristic of EDA (based on [1]):

¢ An emphasis on understanding the data

e Graphical representations as the main driver of the ‘detective work’ adaptively
traversing the observed data and making inferences from the phenomenological
observations to root causes — thus creating a mental model of the observations

e An iterative process of hypothesis and tentative model specification, testing and
respecification

o Flexibility and pragmatism regarding the methods used

Graphical representation techniques and fast, efficient data discovery featuring inter-
activity between plots and data tours are key to EDA.

2.1  EDA: core diagram types

In recent years — especially with the appearance of ‘Big Data’ problems in many do-
mains — data visualization has reached new levels of sophistication and diversity.
However, there is a core set of diagram types that is almost invariably present in EDA
tools. Most of these, as e.g. scatterplots, histograms or barcharts are widely known.
For our purposes we need to introduce boxplots and parallel coordinates; for an in-
depth introduction to the field see e.g. [12].

Boxplots [14] visualize the ‘five-number’ summary of the distribution of the obser-
vations of a single variable: its lower extreme, lower hinge (practically the first quar-
tile), median, upper hinge (third quartile) and upper extreme. A common variation is
to define ‘outliers’ as observations out of the 1.5 IQR (InterQuartile Range; the dif-
ference of the third and first quartiles) distance from the first and third quartiles; these
are plotted as distinct points. Non-outliers below and above the hinges can be repre-
sented by so-called ‘whiskers’. It is also customary to use boxplots for examining the
interactions between a categorical and a continuous variable in a set of multivariable
observations. In this case, each category value is assigned a distinct boxplot. Fig. 1
shows such an example boxplot, based on the data set analyzed later on.

Parallel coordinates [16] is a technique to visualize N-dimensional data in the
plane. N equidistant parallel axes are drawn to represent the individual variables; to
each observation corresponds a polyline connecting its variable by variable values.



The variables are usually normalized (see e.g. Fig. 6 later). Numerous statistical prop-
erties translate to visually easily recognizable patterns in parallel coordinates, as e.g.
negative linear correlation into lines crossing in one point between two axes.
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Fig. 1. Boxplot example: processing time by client type in a cloud response time experiment.

2.2 Interactivity

The most important interactive technique in EDA for our purposes is selection and
linked highlighting. Selection and linked highlighting means that the interactive selec-
tion of a subset of observations on a plot will be immediately reflected on all other
active plots. Our analysis will include examples of this technique. For other tech-
niques as querying, zooming or color brushing see [12].

2.3 EDA tools

Strictly speaking, EDA can be performed using static diagrams without interactivity
or data tour support; in this sense practically all statistical packages and even modern
spreadsheet applications can be valid choices. However, many tools provide the full
spectrum of capabilities; the most notable open source examples are Mondrian [12],
GGobi [17] and the R [15] packages iPlots [18] and iPlots eXtreme [19]. Certain of-
ferings from TIBCO, IBM and SAS are also feature-complete modern EDA tools in
the above sense.



2.4  EDA asa process

In practice, the steps performed by a professional data analyst tend to fall into the
natural continuum between ‘pure’ EDA and CDA, the emphasis shifting into the di-
rection of CDA with the progress of the analysis. It is worth to note and is actually
regularly emphasized by statisticians that EDA by its nature is a very ad-hoc process;
at first glance it may seem to be a random search for ‘interesting plots’. While this
holds in some cases, there are statistical techniques for suggesting graphical represen-
tations that may be worth checking (e.g. so-called guided tours [13]). Note that EDA
and CDA are complementary: for instance visual clustering (identifying an agglomer-
ate of data) can guide algorithmic clustering by delivering a rough initial model.

Also, our example will show that generic domain specific knowledge and some
rules of thumb as ‘check marginal distributions first’ naturally give rise to a sort of
proto-workflow. However, as such questions are out of scope here, we will discuss
these aspects in future work.

3 Requirements for statistical methodology

The general definition of resilience poses further requirements on the statistical analy-
sis process in addition to rely on open world models: (i) the observations should drive
model building without restrictive assumptions originating in the underlying mathe-
matics, as resiliency has to cope with unexpected behavior and phenomena (e.g. no a
priori distribution on the occurrence of faults/intrusions can be assumed), (ii) the es-
timated normal operation domain model should be highly insensitive to change im-
pacts as no a priori restrictions should apply on the change impacts.

3.1  Non-parametric statistics

Non-parametric statistics addresses data analysis and modeling without taking restric-
tive assumptions on the data observed and the model structure fitted to them. Using
non-parametric statistics results in a high degree of independence of the modeling
mechanics.

For instance, distribution free statistics can be generally used over arbitrary data
sets without a priori setting the statistical models, inference and statistical tests. Simi-
larly, independence of a pre-specified model type leaves both the structure and size of
the model as free parameters to the modeling process.

3.2  Robust statistics

Changes may manifest typically as rare outliers of the normal operation. The re-
quirement of a clear separation of normal and disturbed operation states in resilience
analysis means in the terms of statistics that individual disturbances should result in a
reasonably small bias in the characteristics of the normal domain; moreover, if normal



operation dominates, its characteristics should be asymptotically unbiased. The im-
portance of robustness is illustrated by the following example:

Let assume that the reaction time of a web service lies in the range of [1, 5] ms in
the normal operation domain. The traditional characterization of this web service is
done by the mean of its reaction time having a value of 3 ms. A single fault in one of
1000 transactions may lead to a reboot lasting for 20 s. This may clearly distort the
weighted sum of response time mixing up two essentially different metrics. The im-
pact of an outlier representing the failure may be unlimited, thus the mean is inappro-
priate to characterize a system with no restrictions on fault impacts.

On the other hand, median, the value cutting the set of ordered observation values
into two equal cardinality parts is a robust characteristic. In our example the outlier
counts only by its number of occurrence independently of his magnitude being only
one sample therefore median remains a little biased characteristics of the normal do-
main. Naturally, a separate characterization of the faulty domain has to be elaborated
after separation.

4 Case study: EDA on cloud performability observations

In this section we present an EDA process performed by us on the data underlying
[11]. Two separate analysts worked on the data in a loosely coupled way - one in full
knowledge of the previously published findings and one not knowing those - reaching
the same conclusions. Omitting overhead factors, the analysis (including understand-
ing the measures) took approximately one day.

4.1  The dataset under analysis

The previous work’s basic goal is to compare the performance of Microsoft Azure,
GoGrid and an in-house server from the point of view of the clients, using a (remote)
web service and taking into account the communication delay. The end-to-end re-
sponse time (RT) is defined as the sum of the server-side request processing time
(RPT) and a network round trip time (RTT). The benchmark web service run at the
server side is a compute-intensive sorting task on data sent by the clients.

This tutorial is based on a one-day portion of the dataset of [11] which was record-
ed by tests on Microsoft Azure instances. The servers ran in the Microsoft Azure Data
Centers located in Dublin (Ireland) and Redmond (USA). Clients were set up at 12
locations in the USA, 3 in Europe and 2 in Canada. The client application has a Java
as well as a C# implementation. Requests were sent by the clients every minute; the
resolution of the observations is one millisecond. The examined data set contained the
following attributes:

| Timestamp | Client IP | Client location | Client type | Server location | RPT/RTT/RT (ms) |




4.2  Reconstructed workflow

Our exploratory data analysis followed the structure shown in Fig. 2. In the first col-
umn, the flow of the high-level goals is shown. The next two columns describe the
generic EDA approach and its specific manifestations. In the last column we noted the
main findings reached. In the following, we will present this process step by step and
show how the visual techniques lead to findings as well as to subsequent steps. Note
that the workflow is ‘reconstructed’ in the sense that it was not preplanned — the par-
tially ad-hoc process was documented along the way and reassembled at the end.

Throughout the process, we used Mondrian as our EDA tool of choice®; Mondrian
is completely mouse interaction driven and its usage does not need scripting. This
enables rapid data exploration.

EDA findings 1, 2, 4.1 and 5, to our knowledge, were not discovered in the original
work. (Note that there the main objective was goal metric driven phenomenological
characterization instead of full-scale EDA.)
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techniques
1 Basic data 1] I | 1. RTT: faulty
characteristics \ observations
[4| Marginal distribution Histograms, boxplots,
/ discovery barcharts

2. RT: stat. outliers agree
with ,problematic” and
»hard faulty” domain
notion

Basic qualitative Z
abstractions

:

Varisbiceubact N-d|rner15|ona| Parallel coordinates G RT primary factor: RTT
search techniques k
Normal domain: (Interactive) variable Scatterplot + barchart 4.1 Client with
4 RT ~RTT air interactions OR consistently
characteristics P Parallel boxplot +5 sec RTT

4.2 For a specific location
and client type: RTT
depends on time of day

Scatterplot + Mosaic
plot + zooming

Y

Faulty domain: A . A 5. For clients in Secaucus
Int t | tt lot + M
ST s mteraeions ot selecting CE LML s
characteristics P P L extreme value in Dublin

Fig. 2. Overview of the performed exploratory data analysis.

1 Note that some figures in this section were not taken from Mondrian, but reconstructed in R
using the static visualization package ggplot2 [20] to improve legibility and figure quality.
There are only aesthetic differences between the original plots and the alternatives
presented.



4.3  Basic data characteristics

With marginal distribution discovery, one can get a first impression about the char-
acteristics of single variables: whether they contain ‘NA’ (missing) values, what kind
of distribution they follow, which values their quartiles take on. Based on our experi-
ence, this step is vital for understanding and validating the data to find e.g. inconsist-
encies between the recorded values of an attribute and its theoretical domain. (A few
such minor errors were found and reported to the authors of [11].)

4.4  Basic qualitative abstractions

For resilience assessment, another goal of marginal distribution analysis can be de-
fining an initial qualitative discretization of the ‘goal’ variable (here RT).

A boxplot of RT has shown that there are significant outliers (some are even over
50 s) that visually suppress the non-outliers. Zooming in on that boxplot we remove
the points over 20 sec (19 observations), resulting in Fig. 3. Based on the filtered
boxplot, it becomes apparent that the majority of the observations (~92%) are roughly
in the [500 ms, 3000 ms] interval. Another set (~7%) seems to be tightly grouped in
approx. [3000 ms, 8500 ms]; and we have points with even higher values (0.4%). This
categorization inspired by basic statistical properties would be even acceptable from
the engineering point of view, too. (Note that we test web services, not interactive
web pages.)
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Fig. 3. ‘Zoomed’ boxplot and histogram of RT values with dashed lines at 3000 and 8500 (ms)

Although the boxplot is a very compact and efficient tool, it is also useful to examine
the histogram of the variable (see Fig. 4). Based on that, we decided to refine the in-
tervals to [0, 5000], [5000, 7500] and (7500, ] — this is a more natural quantization
from a statistical as well as engineering point of view.

Based on their plausible engineering interpretation, we term these intervals the
‘ok’, ‘problematic’ and ‘faulty” domains of the service. In the following, when we
speak of a ‘normal domain’, it will mean the union of ‘ok’ and ‘problematic’.
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Fig. 4. Histogram of RT values smaller than 20 s with dashed lines at 5000 and 7500 ms.

4.5  Variable subset search: faulty domain

One of the key parts of the analysis is to figure out that which are the variables with
the most significant impact on the goal variable. It is advisable to perform feature
selection for each discovered ‘operational domain’ as the underlying phenomena may
be different.

Analysing the faulty domain with a parallel coordinates diagram, it can be seen that
by far the strongest relationship is that the high values of RT coincide with the high
values of RTT (see Fig. 5 and Fig. 6). Note that the RTT/RPT ratio has a typical value
around 2, in extreme cases reaching 200. This shows that only a small portion of RT
is spent with server-side computing. This way, we can formulate the hypothesis that
in the faulty domain RT is predominantly defined by RTT.

RT RTT ip client type

start time RPT location Couritry D

Fig. 5. Parallel coordinates plot of the whole data set (without selection)
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Fig. 6. Normalized and ‘common scale’ (ms) parallel coordinates; selection: ‘faulty’ domain

4.6  Variable subset search: normal domain

In the normal domain, one can find a similar strong relationship between the RTT and
RT metrics; this can be seen e.g. on a scatterplot where the RT values are plotted
against the RTT values (Fig. 7). With Mondrian we can even fit a linear regression
line on the scatterplot (with a very good fit in the statistical sense). In practical terms
this means that RT almost equals RTT plus a quasi-constant offset.
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Fig. 7. RTT versus RT scatterplot (ms/ms) in the normal domain with linear regression



4.7  Relationship analysis in the normal domain

In the first step, we defined the ‘normal’ domain as the union of two suspiciously
distinct clusters of values. Following up on that, we investigate the relationship of this
phenomenon with our tentative linear model. Fig. 8 shows an ensemble of three plots;
the ‘problematic’ cluster was selected on the scatterplot. In turn, this leads to the fol-
lowing findings: a) from the histogram: unsurprisingly, this indeed covers all ‘prob-
lematic’ RT observations and b) from the mosaic plot*: these observations belong
almost solely to one specific client in Lansing.

Observing the distributions of the RTT values of different clients from Lansing (Fig.
9), it becomes clear that one of the clients shows a constantly with 5 second higher
delay than the others from the same location. What makes the phenomenon interesting
is that this “suspicious” client shares one subnet with one of the machines with nor-
mal RTTs, so the probability of a subnet-dependent fault is low. The anomaly is most
likely caused by different firewall settings. This can be seen obviously on the time
series of the clients as well (Fig. 10).
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2 The mosaic plot (see [12]) here serves simply as a multidimensional ’switchboard’
representing observation sets with specific IP address — location combinations as ’tiles’.



The explanation for the ‘problematic’ cluster we found with time-independent plots.
However, there are phenomena that can be detected only with time series visualiza-
tion. The result about the dependency of RTT values on the hour-of-the-day presented
in the original article is a good example for this.
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Fig. 9. Lansing client RTT observations as boxplots

Those results were produced by a client in Newcastle which run the Java client; it
quickly became clear to us, too, that the RTT time series of different client types di-
verge from each other. Filtering to the Java clients, the visual detection of the hour-of-
the-day dependency needed only a barchart of IP. Clicking through the bars and ana-
lyzing the corresponding RTT time series, the ‘interesting’ time series become recog-
nizable (Fig. 11).

We would like to note here that the tentative hypotheses we are reaching should be
actually treated as such; for instance, before deciding that there is a fault mode where
the RTT to Dublin radically depends on the time of day, we have to control for other
factors as e.g. client type, too. (In this case, although the observation set is not bal-
anced with respect to client types, the hypothesis is reasonable.)
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Fig. 10. Lansing client RTT observations as time series
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4.8  Analysis in the faulty domain

Similarly, we should look deeper into the structure of the ‘faulty’ domain to under-
stand the mechanisms that together result in the ‘composite behavior’ (linear relation-
ship between RTT and RT). We specifically look for distinct rare events that are sup-
pressed or did not have direct effect on RT, but potentially may have.
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Fig. 12. Secaucus and Durham using Dublin DC RTT time series: correlated hard faults

As in the faulty domain there are only 60 observations clustering into 10-12 groups
along the timeline, these places can be examined one by one. Although one cannot
recognize any pattern readily — only seemingly random transient errors — the ratio of
high RTT delays increased between 1 AM and 2 AM. With barcharts-based linked



highlighting it can be detected that clients in Secaucus sending their requests into the
Dublin DC produce the majority of these high delays. On the other hand one can ob-
serve that not only the 4 clients of Secaucus but also the client in Durham shows simi-
lar high delays at the same time (in the same minute), twice within a 35-minute inter-
val (see Fig. 12). We can conclude that the communication error — in contrast with our
initial first thoughts — is specific for the Dublin DC, not the Secaucus client group.

5 Interpretation: from EDA to resilience

The EDA process provided valuable and rather deep insight into the observed per-
formability characteristics of the experimental environment. How can we utilize this
knowledge for ‘as is’ resilience characterization and during resilience mechanism
design? At a first glance, there is not much to say about as-is resilience. We are aware
of only network latency failures and we do not know whether these stemmed from
network level faults/overload or configuration changes. Tolerating these faults is a
resilience issue only in the sense that the benchmarking ‘system’ was certainly not
equipped to deal with them. The same holds for such true changes as moving the cli-
ent to a different location.

However, the discovered relationships can advise us about resilience against cer-
tain classes of cloud failures. Due to virtual machine interferences and scheduling
policies, virtual machines running in an laaS cloud may lose temporarily a significant
portion of their ‘steady state’ CPU time allowance (see e.g. [21]). Based on the EDA
findings, we can begin to formulate the expected effects of (unexpected) server CPU
slowdowns on RT. Fig. 13 shows the histogram of our observations in the lower part
of the normal category — with the RPT component of the RT sum being scaled from
the original values to ten times greater. It becomes clear that ‘all else being equal’ (i.e.
no network faults are present), the setup is “resilient” as even a ~5 times ‘slowdown’
still keeps us in our original ‘normal’ RT domain. However, 10 times slowdowns
evidently lead us out from this category, the maximal frequency shifting to ~8000 ms.
This way, we have effectively identified a significant amount of slack in the system
against disturbances we have no direct observations for at design time based on the
available data. Additionally, the discovery of the time dependent nature of RTT for
certain data centers means that at a finer granularity of modeling, the slack, and thus
the inherent resilience becomes time-dependent as well. Note that the scope of this
paper only allows for presenting these core ideas; future work will investigate the
necessary (nonparametric) statistical tooling.

Our findings have important ramifications for design for resilience as well. On the
one hand, we have an empirical sample on network time faults that can serve as a
basis for their classic dependability modeling. However, maybe more importantly
from the point of view of resilience, we have found evidence for 1) single machine
deployment problems leading to consistently ‘problematic’ RTT; and 2) empirical
proof for RTT faults characteristic to using a specific data center. Consequently, resil-
ience techniques for systems using the measured resources should be aware of these
fault modes — especially in a cloud setting, where the potentially highly dynamic de-



ployment configuration of clients as well as servers can be interpreted as system-

internal change.
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Fig. 13. Histograms of existing ‘ok’ RT observations with RPT component scaling 1..10
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