
MODEL-DRIVEN DEVELOPMENT OF

ARINC 653 CONFIGURATION TABLES

Ákos Horváth, Dániel Varró, Budapest University of Technology and Economics

Department of Measurement and Information, Budapest, Hungary

Tobias Schoofs, GMV, Lisbon, Portugal

Abstract

Model-driven development (MDD) has become

a key technique in systems and software engineering,

including the aeronautic domain. It facilitates on

systematic use of models from a very early phase of

the design process and through various model

transformation steps (semi-)automatically generates

source code and documentation. However, on one

hand, the use of model-driven approaches for the

development of configuration data is not as widely

used as for source code synthesis. On the other hand,

we believe that, particular systems that make heavy

use of configuration tables like the ARINC 653

standard can benefit from model-driven design by (i)

automating error-prone configuration file editing and

(ii) using model based validation for early error

detection.

In this paper, we will present the results of the

European project DIANA that investigated the use of

MDD in the context of Integrated Modular Avionics

(IMA) and the ARINC 653 standard. In the scope of

the project, a tool chain was implemented that

generates ARINC 653 configuration tables from

high-level architecture models. The tool chain was

integrated with different target systems (VxWorks

653, SIMA) and evaluated during case studies with

real-world and real-sized avionics applications.

Introduction

The ARINC 653 standard [1] has taken a leading

role within the aeronautical industry in the

development of safety-critical systems based on the

Integrated Modular Avionics (IMA) concept. One of

the main promises of IMA is cost saving in reduced

development, integration and verification and

validation effort.

In case of ARINC 653 compliant platforms

many deployment and implementation details are

defined in the configuration tables. Typically, these

configurations are hand defined by the system

architect with limited tool support that only ease (i)

the manipulation of its XML representation, (ii) their

validation to the ARINC 653 schema definition and

some consistency checks.

Unfortunately, despite the inherent complexity

of ARINC 653 configurations, current tools

supporting configuration design offer very low-level

support directly on the XML representation level.

However, existing tools lack support for (1) capturing

the development process for configurations, (2)

validating design constraints for configurations on-

the-fly, (3) recording explicitly the critical design

decisions made by the system architect, and (4)

providing traceability between high-level

requirements and the configuration tables, which

require hand-crafted traceability lists. As a result,

verification of configuration tables is a tedious

activity.

Model-driven development (MDD) has become

a key technique in systems and software engineering.

It facilitates on systematic use of models from a very

early phase of the design process. Based on high-

level modeling standards (like UML , SysML [2] or

AADL [3]), traditional MDD separates business and

application logic from underlying platform

technology by using platform independent models

(PIM) to capture the system requirements, and

platform specific models (PSM) to specify the target

system on the implementation platforms (ADA, Java,

C++). PSM may refer to models or to platform-

specific artifacts like source code and configuration

elements; the latter are automatically generated from

PIM and PSMs, respectively, using automatic model

transformations.

However, as MDD is attracting increasing

attention in safety-critical system development [4],

the original approach needs to be adapted to be in-

line with the rigid certification requirements (e.g.,

DO-178B [5]) imposed by authorities.

In the paper, we present a framework for

systematically designing standard ARINC 653

configuration tables with additional support for

configuring (i) the Wind River VxWorks 653 Safety

Critical RTOS [6] and (ii) the GMV SIMA ARINC

653 simulation platform [7]. Additionally, parallel to

the development process our approach generates end-

to-end traceability information to support

certification for V&V activities. Our toolkit is

implemented in the Eclipse framework, and it is built

upon the principles of Model-Driven Development

(MDD).

The framework was developed in the context of

the DIANA [8] project financed by the European

Commission through the Sixth Framework

Programme in close collaboration with leading

avionics experts and airframers including GMV,

AleniaSia, Atego, Dassault, Embraer, NLR,

THALES, and academic partners of TU Budapest

and Karlsruhe Institute of Technology.

Outline

In order to introduce our approach we (i) outline

the basics of model-driven development for safety

critical system, (ii) presents our intermediate models

and target platforms (iii) give a motivating air

conditioning case study, (iv) introduce our PIM-PSM

mapping approach, (v) highlight a contract based

V&V approach and finally (vi) conclude the work.

Model-Driven Development for Safety

Critical Systems

Models are prime artifacts of engineering. In

system development, they have played an important

role as a way to capture real world notions as well as

abstract constructs. In fact, system architects have

been using models and modeling techniques long

before model-driven development emerged as a

trend, e.g. in the form of entity-relationship diagrams,

graph-like data structures, abstract syntax trees etc.

However, the term Model-Driven Development

(MDD) implies that models play a central role that

encompasses the entire system development

lifecycle, starting from requirement analysis, system

design, implementation, to verification and even

maintenance.

Model-driven development aims to increase the

efficiency and productivity of the software

development process by introducing precise

engineering practices based on formal modeling

techniques. By this approach, design intelligence is

applied to capture all relevant information in the form

of abstract models. First, these models can be used

for documentation purposes to store well-structured

information about the system-under-design.

Moreover, models can also be used for generative

development, where target design artifacts (source

code, configuration tables, test cases, textual

documentation, etc.) is (semi-)automatically derived

by tools. Finally, models can also be used for early

validation, where important properties of the

products (such as reliability, performance,

robustness, security, complexity) can be evaluated

before actual implementation begins. All of these

techniques aim at reducing costs and risks.

MDD emphasizes the clear distinction between

Platform Independent Models (PIM) and Platform

Specific Models (PSM), thus, software development

in MDD is envisioned as a three-step process.

First, the Platform Independent Model (PIM)

is designed. The main purpose of this model is to

capture the underlying business logic without specific

implementation details and, this way, help portability

to other target platforms (e.g., a prototyping

platform, using Java, for instance; the final target

platform, ARINC 653 for the aeronautical world or

AUTOSAR [9] for the automobile domain based on

ADA or C).

The second step is to generate a Platform

Specific Model (PSM), which contains additional

models, and represents an implementation of the

system under design which can run on the target

platform. The transition between PIM and PSM

(PIM-PSM mapping), should typically be facilitated

using automated model transformation technology.

Finally, software artifacts (e.g., configuration

files, source code, documentation, etc.) are

generated from the Platform Specific Model for the

target platform. Again, code generation should be as

extensive as possible, in order to minimize the

amount of necessarily slow and error-prone manual

coding. This, in turn, requires PSMs that are

expressive enough, not only from a static, but also

from a dynamic point of view of the system, to

produce all of the application artifacts.

Enabling technologies

MDD relies on two key technologies that allow

the definition and manipulation of models called,

metamodeling and model transformation,

respectively.

Metamodeling is a methodology for the

definition of modeling languages. A metamodel

specifies the syntax (structure) of a language.

Metamodels are expressed using a metamodeling

language that itself is a modeling language. The

metamodel can also be interpreted as the object-

oriented data model of the language under design.

There are several different metamodeling

environments, most widely used are the Meta Object

Facility (MOF) [10] from OMG and the Eclipse

Modeling Framework (EMF) [11] (a subset of MOF).

Model transformations (MT) are the backbone

of the MDD concept. Primarily, model

transformations are responsible for the PIM-to-PSM

transformations. However, MTs can also define views

on models and synchronization between different

models (like UML class diagrams and relational

database schemas). Moreover, engineering models

are frequently mapped into mathematical domains by

model transformations to carry out model analysis as

early model based verification. Well-known

approaches for high-level declarative specification of

model transformations are the ATLAS Transformation

Language (ATL) [12], the VIATRA2 (VIsual

Automated model TRAnsformations) system [13]

and the GReAT (Graph Rewrite And

Transformation) framework [14].

Challenges in MDD for Safety Critical Systems

In order to support the specific needs of the

safety-critical development processes, we followed

the guidelines introduced in the EU-FP7 INDEXYS

[15] project for the definition of a MDD means for

embedded systems. Based on these guidelines the

main challenges of MDD for safety-critical systems

are the following (depicted in Figure 1.):

V&V activities need to be tightly integrated

[16] into the development process to provide early

feedback on requirements, specification, design and

implementation. This requires a continuous

verification activity from early specification through

design to development. On top of that it has to be in-

line with rigid certification requirements (e.g., DO-

178B) imposed by authorities like FAA or EASA.

The PIM-PSM mapping process [17] needs to

support both automatic and user-driven design steps

as many critical design decisions are taken during the

mapping process and cannot be fully automated.

Furthermore, these decisions need to be recorded for

traceability related certification requirements.

PSM needs to support the different viewpoints

of the system [17] with a systematic separation of

system level aspects (e.g., functionality,

dependability, security) and a strong separation

between architectural and behavioral aspects. This

allows to use appropriate COTS or proprietary tools

for the generation of textual artifacts.

Finally, PSM needs to support synthesis not

only for source code but also system configuration,

certification and documentation artifacts.

Figure 1: MDD for Safety Critical System Development

Modeling Architecture of the DIANA

approach

Within the DIANA project one of the main goals

was to create an MDD based tool chain for the

analysis and generation of ARINC 653 real-time

operating system (RTOS) configuration files from

high-level specifications captured as platform

independent models. However, transforming these

high-level models into ARINC 653 RTOS-specific

configuration artifacts is a complex task, which needs

to bridge a large abstraction gap by integrating

various tools. Moreover, critical design decisions are

also made during this mapping process. For this

reason, we used intermediate domain specific models

to subdivide the process into well-defined steps. The

overview of the model architecture is depicted in

Figure 2

Platform Independent Models:

In our approach the aim of the high-level

Platform Independent Model (PIM) is to capture the

high-level architectural view of the system along with

the definition of the underlying implementation

platform, while the Platform Specific Model (PSM)

focuses on the communication details and service

descriptions. All our models are defined as separate

EMF models.

In order to support already existing modeling

tools and languages (e.g., Matlab Simulink model,

SysML, etc.) we use a common architecture

description language called Platform Independent

Architecture Description Language (PIADL) for the

description of architectural details by extracting

relevant information from common off-the-shelf

modeling tools. As for capturing the underlying

platform (in our case ARINC 653) we use a Platform

Description model (PD) capable of describing

common resource elements. Functional requirements

are also incorporated into the PIADL along with the

Platform Description.

 PIADL aims to provide a platform

independent architectural-level description

of event-based and time-triggered

embedded systems using message

communication between applications.

 The Platform Description (model)

describes the resource building blocks,

which are available to build a system. This

mainly includes ARINC 653 based

elements such as modules, partitions,

communication channels, etc.

 In the context of the DIANA project we

supported MATLAB Simulink as a source

COTS language.

Figure 2: Modeling Architecture of the DIANA

approach

Platform Specific Models

PSMs are encapsulated in the so-called

Integrated System Model that contains all relevant

low-level details of the modeled system. Essentially,

it is based on ARINC 653 and consists of the

following sub-documents:

 The Interface Control Document (ICD) is

used to describe data structures and low-

level data representation of systems and

interfaces to ease integration of the

described element with other parts of the

system. It supports both high-level

(logical) and low-level (physical)

descriptions and was designed to be

compatible with the ARINC 653 and

ARINC 825 data and application interface

descriptions. Its descriptors are simple

XML files containing the serialized form

of the model describing the defined data

structures.

 The ARINC 653 System Architecture

model describes the relations among all

elements related to the system. More

precisely the model focuses on the (i)

details of the communication channels

between applications, partitions and

modules, and (iii) the detailed allocation of

the applications to partitions.

In order to support traceability, a trace element

is saved in the Trace documents for all model

elements of the PSM created during the mapping

process. Such an element saves all PIM model

segments that were used for the creation of a PSM

model element.

Target Platforms

During the DIANA project, two OS target

platforms were used: Wind River’s VxWorks 653

real-time operating system and GMV’s ARINC 653

simulator SIMA running on Linux [18]. The

following sections introduce these platforms briefly

and describe peculiarities of their configuration tool

chains.

Wind River VxWorks 653 RTOS

VxWorks 653 is Wind River’s platform for

safety-critical applications certifiable according to

DO-178B [19]. It is an IMA operating system with

proven compliance to ARINC 653 [20][21].

VxWorks 653 implements IMA by means of

virtualization technology [6]. There is a hypervisor

monitoring and controling a set of guests. Each guest

uses its own local executive, the Partition Operating

System (POS). Several types of POS are supported

by the platform, such as the ARINC 653 APEX, the

classic VxWorks RTOS or a general purpose OS like

Linux. Note that there is only one code instance per

POS physically present in the system that is linked to

the virtual address space of the partitions that actually

use this particular POS.

The hypervisor is called the Module Operating

System (MOS). It implements time- and space

partitioning, the ARINC 653 inter-partition

communication channels and the Health-Monitoring

system. The MOS is the only component that runs in

privileged mode. Guest systems run in user space and

are not allowed to execute privileged instructions that

may impact the proper function of the system.

Figure 3 (based on [6]) illustrates the

architecture:

App A

Partition
OS

CPU

Protection Barrier for partitioning

Module OS
ARINC Scheduler and Port, Memory Management Module

Configuration Elements for the Kernel and the Applications

App B

Partition
OS

App C

Partition
OS

Figure 3: VxWorks 653 Architecture

Note that the components of the system are not

linked together to one image; instead individual

binaries are created for the MOS, for the POSes and

for the applications. The boot loader is responsible to

locate the different components on the boot medium

and to load them into memory according to a

configuration derived from system configurations.

The configuration the system integrator has to

provide in order to link, load and execute the system

follows the VxWorks component structure [22].

There is a configuration file for the MOS that defines

fundamental architecture-related settings, such as

processor frequency, page size and virtual and

physical memory; there are configuration files for the

POSes, defining their memory layout and how they

are loaded into memory; there are configuration files

for the applications, defining memory sizes and ports;

there are Health Monitor tables that define the health

monitoring on partition and module level; there is,

finally, a configuration for the module bringing the

single configuration files together and adding time

partitioning-related information.

This configuration is different from the

configuration defined by supplement 2 of ARINC

653. However, the next supplement will present a

new approach: The standard will define a set of data

types that must be used for an ARINC 653-compliant

configuration, but will not impose a schema that

describes how the elements must be related. The

schema is left to implementations.

This approach of the ARINC 653 subcommittee

is just a consequence of the fact that today’s

operating systems do not comply with the standard

schema. Configuration is tightly coupled with the OS

architecture and, as such, is difficult to standardize.

For the task of generating vendor-independent valid

configurations, this is probably not good news. Tools

are needed that deal with the heterogeneity of

configurations.

GMV SIMA simulator

Simulated Integrated Modular Avionics (SIMA)

is an execution environment, providing the ARINC

653 Application Programming Interface (API) and

robust partitioning to operating systems that do not

support these features by themselves [7]. SIMA is

designed to run on all POSIX-compliant OSes and

optimised for the Native POSIX Thread Library

(NPTL), available on Linux since kernel version 2.6.

In SIMA, ARINC 653 partitions are mapped to

POSIX processes, and ARINC 653 processes are

mapped to POSIX threads. Each SIMA application is,

hence, linked to a single POSIX program, containing

user code and data, the APEX code and data and,

finally, the platform execution environment, i.e. the

NPTL for Linux.

The Module Operating System (MOS),

controlling the different POSIX processes, belonging

to the same simulated module, is likewise linked to

one POSIX process. The following picture illustrates

this design:

Figure 4: SIMA Architecture

The APEX services are implemented by a static

library, called POS. The POS implements the APEX

process scheduler on top of the POSIX FIFO

scheduler (sched_fifo). POSIX features are

encapsulated within a portability layer; this way main

parts of the APEX code do not rely directly on

POSIX, but on scheduling policies implemented by

the POS itself. The advantage of this approach is

enhanced portability - there is even an

implementation of the SIMA POS, running on bare

hardware - and the fact that scheduler features that

introduce subtle differences between different POSIX

implementations are handled in the portability layer

and hidden from the APEX implementation.

The MOS implements the APEX partition

scheduler. To be able to suspend and resume

partitions, commands are exchanged with the POS in

the partitions using signals and shared memory

segments. Obviously, this approach does not answer

safety and security threats, caused by random errors

in the partitioned code. The POS has to respond

correctly to given commands which may not be true

in the case where faulty or malicious application code

corrupts the state of the POS. In fact, the MOS does

only simulate the behaviour of an ARINC 653

compliant OS on top of non-safety aware systems

like standard Linux.

 Since SIMA main purpose is simulation, it aims

at full conformity with the standard. The SIMA

configuration is therefore strictly compliant to the

schema defined in today’s ARINC 653 part 1 and 2.

Additional information that is needed by the system

is added by means of a separate configuration file.

This file defines the mapping of certain elements of

the ARINC 653 configuration to the Linux OS;

APEX ports, for instance, can be mapped to UDP

ports.

Case Study: Air Conditioning

In order to introduce our approach, let us assume

a generic air conditioning system installed on an

airplane.

Figure 5: Overview of the Air Conditioning Case

Study

Its task is to regulate the temperature and

pressure in the aircraft. This is done in the following

way. The air conditioning pack is regulated by the

pack controller to supply the mixing unit with a

sufficient flow of cool fresh air. This air is supplied

to arbitrary number of zones (in Figure 5 we depicted

two zones Aft. and Forward). In order to regulate the

temperature of this airflow, the zone controller

regulates the amount of hot air added to the flow of

cool air, which is set on the air conditioning panel

and monitored on the system display. Additionally, as

air-conditioning is a critical task all systems have a

redundant equivalent for better reliability.

An overview of the air conditioning system is

depicted in Figure 5. Throughout the paper we will

use this case study as our running example. It is a

simplified version of the NLR demonstrator in the

DIANA project.

Steps of the PIM-PSM Mapping

Process

In order to introduce our PIM-PSM mapping

concept we first, highlight the steps of a general PIM-

PSM mapping process, then go into details about our

concrete implementation.

A general PIM-PSM Mapping Process for

Safety Critical Systems

A general PIM-PSM mapping process, in the

safety-critical system design domain, consist at least

the following steps (see in Figure 6):

1. Define / Derive the platform-independent

system model (PIM). The architecture-level

integrated system design starts by specifying a set of

applications attributed with properties extracted from

the system requirements (functional and non-

functional) and high-level initial system models

captured in SysML [2], AADL [3], etc.. These

properties are captured in the PIM model.

2. Define / Derive the Platform Description

Model (PD). The PD model describes all the details

(CPU, latency, bandwidth, etc) of the underlying

hardware platform including cabinet specification

and hardware resource descriptions

3. Define / Derive Platform Interface (PI). This

model describes the high-level middleware services

offered by the underlying platform.

4. Extract design constraints (performance,

dependability, security, etc.). The PIM and PD

models should also include design constraints,

which have to be satisfied by valid PSM models

derived as a result of a PIM-PSM mapping. These

constraints are extracted from the functional and non-

functional System requirements (e.g., modular

redundancy).

Figure 6: A Generic Mapping Process

5. Define variability points / design choices. As

there is more than one possible mapping of a PIM to

a target PSM, the PIM-PSM mapping should offer

variability points to explicitly capture design

choices. These variability points can be subject to

future optimization steps.

6. Resource allocation. As the core phase, the

system architect assigns application types to

resources (called resource allocation), which

provide general rules / guidelines for the PIM-PSM

mapping. From these high-level guidelines, the actual

mapping instances (i.e. mapping of application

instances to actual resources) could be partially

automated to obtain the PSM model. A valid PIM-

PSM mapping should fulfill all design constraints

(e.g. should not exceed HW limits like available

memory).

7. Scheduling and Optimization. In addition,

further scheduling and optimization steps can be

carried out after resource allocation, which is out of

scope for the current paper. For further reference see

in FRESCOR [23]

8. Evaluate the quality of the mapping. The

quality of the mapping can be evaluated against all

functional and non-functional requirements, and

certification means.

The DIANA Approach

We support the system architect by subdividing

the PIM-PSM mapping process into well-defined

design steps and by the precise definition of the

interactions and interfaces at each step. Individual

design steps are then organized into a complex

workflow [24], which is closely aligned with the

designated development process followed by the

system builder (system integrator, function provider

and platform provider.). In order to assist the system

architect, our framework guarantees that a certain

design step can only be started if all prerequisite steps

are successfully completed. Our framework is easily

customizable to incorporate additional design steps, if

required.

The high level workflow of the PIM-PSM

mapping process as used in the DIANA project is

depicted in Figure 7. The process consists of 22 steps

organized into five groups.

To illustrate some technicalities of our approach

we use the simplified Simulink model (depicted in

Figure 8) as the starting PIM model of the air

conditioning case study.

Application Group

The group consists of steps to define the

resource requirements of the applications and

partitions used in a module and create a viable

mapping that is compatible with the available

resources and dependability requirements.

Figure 7: Workflow of the DIANA PIM-PSM mapping process

First, the PIADL and the PD models are

imported into the framework. This step also resolves

certain dependability attributes defined in the PIADL

like redundancy degree of applications and messages

(e.g., triple or double modular redundancy etc.).

As the platform description does not include all

information needed for the allocation process and

configuration generation, the system architect needs

to (i) define the memory requirements and

compatibility mapping of the applications and (ii)

new partitions or modify existing ones and define

their memory requirements.

Figure 8: PIM model of the Air Conditioning Case

Study
1

To demonstrate how these steps are captured on

model level, Figure 9 illustrates the low level model

elements created for a partition (partitions creation

step). Model Elements in yellow and dashed lines are

newly created, while elements in green (and solid

references) are already existing in the model. The

tags <<Integration>> and <<PD>> represent the

package of the model element. Partitions are

defined/stored in the Platform Description model

with separate model elements describing their

corresponding memory requirements capturing the

size, access (type) and type attributes. PSMRoot is

the root element of the integration model and it holds

references between the elements of the PIADL, PD

and the PSM models.

1 © 2010 NLR

For easier readability (i) attribute types are

excluded from the figure and (ii) references and

association are depicted by simple lines.

As the final step in the group, all allocations of

applications-to-partitions conform to the defined

constraints and requirements are computed. This way

the system architect can select a valid allocation and

(if required) can take into account additional non-

functional requirements.

Figure 9: Partition Creation

The allocation problem is solved as a constraint

satisfaction problem.

Communication Group

The group involves steps in the PIM-PSM

Mapping editor that carry out the allocation of inter-

partition communication channels and the

specification of ports residing on each end of these

channels.

The allocation is based on the architecture

defined in the PIADL model (derived from a

Simulink model), the selected application to partition

mapping and the redundancy requirements of the

applications. Based on this information the allocation

algorithm creates the required ARINC 653 ports and

connects them.

Additionally, the system architect needs to

define the ARINC 653 specific parts like the queue

length and the VxWorks specific queuing protocol to

be able to generate the configuration files.

Figure 10 depicts a simple example how the

allocated channels are visualised. In this case Data

Monitoring application allocated over the I/O

Processing partitions uses the Temp. channel to send

the temperature value to the Refresh GUI application.

Figure 10: Allocated Communication Channels

Health Monitoring Group

The group consists of steps to define the Health

Monitoring tables for module, partition and

application level along with the different error

entities and actions to be carried out.

All these definitions are done by the system

architect by hand. The framework gives support for

early validation (e.g., naming conventions, required

action definitions etc.) based on the specification of

the different tables and the system-specific

requirements for health monitoring tables..

The defined tables are saved in the Platform

Description model with the appropriate references

from the PSMRoot of the Integration model.

ICD Group

In this group steps related to the description of

interfaces and messages provided and required by

applications. These are user driven mapping steps,

where PIM types and messages, are refined with

platform specific information like encoding, default

value, etc.

Figure 11 describes how the Temp PIM type is

refined into the Int1_100 PSM representing an

integer value with a domain of 1-100. The Int1_100

type is based on the predefined 16 bit unsigned

integer type from the ICD with additional constraints

over its domain. Based on these PSM types, complex

messages are defined following a similar way, where

the ICD provides the basic structures like arrays,

buffer, etc.

Figure 11: Definition of the Temp value in ICD

Artifact Generation Group

Finally, when the prerequisite steps for a certain

code generator is finished the actual textual

representation is synthesized by separate dedicated

code generators.

In our case the ICD generator simple serializes

the model into its XML representation using the built

in support of the Eclipse Modeling Framework. As

for the other artifacts we hand-coded the generators

in java to derive the required formats defined by the

two platforms.

The communication architecture, depicted in

Figure 8, is mapped to ARINC 653 ports through the

defined mapping process and then automatically

generated both the ARINC 653 and the VxWorks 653

specific module and ApplicationDescription XML

configuration tables. A fragment of the generated

configuration tables capturing the communication

channel depicted in Figure 10 is captured in Figure

12.

Figure 12: Example ARINC 653 Module and

VxWorks Application Description configuration

Traceability

Additionally, as an essential requirement of DO-

178B certification, continuous traceability has been

carried out from the high-level requirements to the

deployed applications (depicted in Figure 13).

Figure 13: Traceability between models and

configuration artifacts

In case of the design phase we used (i) inter-

model traceability based on the Integration Model

that keeps track of all manipulations done during the

PIM-PSM mapping process and (ii) model-to-

configuration traceability with XMI files connecting

generated configuration elements to their

corresponding model entities. This allowed end-to-

end traceability from the PIADL model to the

generated configuration tables. It is important to

mention that the current implementation requires an

explicit definition of traceability elements between

the various models. However, currently we are

investigating special live model transformations [25]

to give support for automatic generation of

traceability elements without explicit definition.

Verification and Validation Support

Keeping the design and verification aspects

tightly synchronized, enables early validation as close

as possible to the corresponding model/code

development time, thus providing better feedback and

error detection. To support early validation of

modeling artifacts during our development process

we used contracts to guard each steps.

Contracts

During a development process certain steps

require external COTS tools (e.g., Matlab, SAL, etc.)

or user interaction to perform their task. In order to

guarantee that the result of these steps is acceptable

and the process can continue, the definition of

contracts [26] is a well-known paradigm.

The idea is to guard both the input and output of

a step by specific constraints. Thus, a contract is

composed of a precondition and a postcondition. In

our interpretation a precondition defines constraints

that need to be fulfilled by the input of the step in

order to allow its execution, while the postcondition

guarantees that the process can continue only if its

constraints are satisfied by the output.

In our approach we used graph patterns (GP)

[27] to capture such contracts. GPs are frequently

considered as the atomic units of model

transformations. They represent conditions (or

constraints) that have to be satisfied by a part of the

underlying model. Based on these contracts we

investigated two promising approaches to support

early validation and verification.

On-The-Fly Evaluation of Contracts

One of the main advantage using contracts to

specify constraints on the input and output (model) of

each step in the development process is that it allows

fine grain (step level) validation of model changes

throughout the whole workflow. However, graph

patterns can express complex model constraints

containing cycles, attribute conditions, transitive

closures and recursive calls. Additionally, as these

queries are executed rather frequently in interactive

modeling applications, they have a significant impact

on the runtime performance of the tool, and also on

the end user experience.

In our framework to provide on-the-fly

evaluation of constraints, we applied EMF-IncQuery,

a state-of-the-art pattern matcher engine over EMF

models based on incrementally maintained caches,

resulting in (almost) instantaneous contract

evaluation. More details are available in [28].

Without going into details the simplified

example contract depicted in Figure 14 captures the

condition that, “if there exist an Application with an

ApplicationInstance (as the precondition), then after

the allocation step there cannot be

ApplicationInstances that are not allocated to a

Partition (as the postcondition)”. For more details

see [24].

Figure 14: Contract for Application Allocation

Validation of end-to-end traceability

One key question in end-to-end traceability is to

demonstrate that any target element can be traced

back to its corresponding requirement. Showing this

ability in a model driven development process can be

problematic as separate part of models can be parts of

the traceability (e.g., in our case the integration

model is also part of the traceability) resulting in

complex trace paths.

To solve this issue, our idea is to validate the

existence of such trace paths through contracts and

show that complete traceability is present in the

whole mapping process from the PIADL down to the

generated artifacts. The idea is based on the

following assumptions: (i) defining the traceability

relation, as a contract, between the input and output

of a step is relatively simple, (ii) if a step is

completed in the process and its contracts are

validated then their postconditions can be treated as

valid statements over the model, and finally, (iii)

using the defined workflow of the development

process all steps required for the generation of a

configuration element can be followed back to its

starting point (e.g., import step, creation step, etc.)

allowing an induction based reasoning over the

contracts of the traversed steps to show the existence

of a valid traceability path.. However, it only proves

the existence and does not provide the traceability

matrix; future work is required to automatically

generate it.

Related Work

There are numerous approaches in the literature

introducing various model based techniques for the

development of embedded system. Here we give a

brief summary of some current EU research projects

with significant relevance to design and verification

of embedded systems involving model based

techniques.

INDEXSY [15] aims to realize industrial

implementations of cross-domain architectural

concepts [17] developed in the GENESYS [29]

project and give tool support based on MDD for its

three target domains: automotive, aerospace and

railway.

COCONUT [30] focuses on the definition of a

formal framework [31] based on a tight integration of

design and verification through refinement steps of

an embedded platform design flow, from

specifications to logic synthesis and software

compilation.

TopCased [32] is an open source tool-kit (over

the Eclipse platform) for the design, development and

deployment of safety critical system using novel

MDD techniques and support for languages like

AADL and SysML.

CHESS [33] seeks to improve Model Driven

Development practices and technologies to (i) better

address safety, reliability and robustness

functionalities as required by the aeronautical and

railway industry and (ii) develop techniques to

guarantee the correctness of assembled component

embedded systems by reusing certification artifacts

of the components used for the complete system.

FRESCOR [23] aimed to integrate advanced

flexible scheduling techniques directly into an

embedded systems design methodology, covering all

the levels involved in the implementation, from the

OS primitives, through the middleware, up to the

application level using contracts to define the

application requirements.

CHARTER [34] focuses on cost-reduction of

certification of critical embedded systems by

integrating real-time Java, model-driven

development, rule-based compilation, and formal

verification into a novel development process called

Quality-Embedded Development (QED).

Conclusion and Future Work

Our approach demonstrated that Model-Driven

Engineering can be effectively applied for the

systematic development of ARINC 653 configuration

tables. Additionally, we demonstrated the use of

model based validation techniques such as (i)

complete end-to-end traceability from the high-level

models down to the generated artifacts and (ii) model

based on-the-fly validation of design contracts during

the development process.

However, during the evaluation of the proposed

technologies we have encountered gaps and

shortcoming that point to future work and new

research directions:

One key issue for the success of MDE in the

safety-critical domain is the certification of model

transformation. MT serves as the backbone of almost

all model based technologies from code and model

synthesis through model validation techniques to

simulation. Up to date many work has been done

regarding the V&V of transformations [35], however,

certification issues were rarely covered in recent

publications. Additionally, the complexity of tools

may impose high qualification costs on tool vendors

As development of safety-critical system usually

requires large number of developers the need for

advanced collaborative support for the definition

models like versioning, distributed development,

access control etc. is becoming a key question

[36][35].

Finally, MDE promises an easier way of

integrating various tools based on a common

integrated model (or model bus [32]) that allows their

input and output models of the various tools to be

treated in a common way. Additionally, it can give

support for model based traceability a common

requirement by various certification authorities.

References

[1] Airlines electronic engineering committee

(AEEC), 2006, avionics application software

standard interface - ARINC specification 653 - part 1

(supplement 2 - required services), ARINC Inc.

[2] The Object Management Group: System

Modeling language, http://www.sysml.org/.

[3] International Society for Automotive Engineers,

Architecture Analysis and Design Language,

http://www.aadl.info.

[4] Clarck, L., T. Ruthruff, B.. Hogan, , Development

of Lockheed Martin's, F16 Modular Mission

Computer Application Software using MDA

http://www.omg.org/mda/mda_files/LockheedMartin.

pdf.

[5] RTCA/EUROCAE, 1992, Software

Considerations in Airborne Systems and Equipment

Certification.

[6] Wind River, 2007, VxWorks 653 for Integrated

Modular Avionics, Wind River White Paper,

Alameda.

[7] GMV, 2009, SIMA Overview, GMV White

Paper, Lisbon.

[8] The DIANA Project, Distributed, equipment

Independent environment for Advanced avioNic

Application, http://dianaproject.com.

[9] AUTOSAR Consortium: The AUTOSAR

Standard, http://www.autosar.org/.

[10] The Object Management Group, Meta Object

Facility (MOF) core specification version 2.0

http://www.omg.org/docs/formal/06-01-01.pdf.

[11] Eclipse Foundation, Eclipse Modeling

Framework: http://www.eclipse.org/emf.

[12] ATLAS Transformation Language,

http://www.eclipse.org/atl/.

[13] VIATRA2:-VIsual Automated model

TRAnsformations, http://wiki.eclipse.org/VIATRA2.

[14] GReAT: Graph Rewrite And Transformation

http://www.escherinstitute.org/Plone/tools/suites/mic/

great.

[15] The INDEXYS Project, INDustrial EXploitation

of the genesYS cross-domain. architecture,

http://www.indexys.eu/.

[16] Miller, P. Steven., 2009, Bridging the Gap

Between Model-Based Development and Model

Checking, 2009, In Proc. of 15
th
 International

Conference on Tools and Algorithms for the

Construction and Analysis of Systems, York, UK,

Springer, pp 443-453.

[17] Obermaisser, R., H. Kopetz (Eds.), 2009,

GENESYS: A Candidate for an ARTEMIS Cross-

Domain Reference Architecture for Embedded

Systems; Germany, SVH

[18] Schoofs, T:, 2010, The Use of SIMA in the

DIANA Project. A Success Story, GMV White

Paper, Lisbon.

http://www.sysml.org/
http://www.aadl.info/
http://www.omg.org/mda/mda_files/LockheedMartin.pdf
http://www.omg.org/mda/mda_files/LockheedMartin.pdf
http://dianaproject.com/
http://www.autosar.org/
http://www.omg.org/docs/formal/06-01-01.pdf
http://www.eclipse.org/emf
http://www.eclipse.org/atl/
http://wiki.eclipse.org/VIATRA2
http://www.escherinstitute.org/Plone/tools/suites/mic/great
http://www.escherinstitute.org/Plone/tools/suites/mic/great
http://www.indexys.eu/

[19] Parkinson, Paul, Larry Kinnan, 2006, Safety

Critical Software Development for Integrated

Modular Avionics. Wind River White Paper,

Alameda.

[20] Felipe, Sérgio, 2007, ARINC 653 Validation

Test-Suite Execution on VxWorks 653 2.1, Report

Skysoft Portugal and Wind River, Lisbon.

[21] Schoofs, Tobias, 2009, ARINC 653 Validation

Test-Suite Execution on VxWorks 653 2.2, Report

GMV and Wind River, Lisbon.

[22] Wind River, 2007, Platform for Safety Critical

ARINC 653 - Configuration Reference 2.2, Wind

River Manual, Alameda.

[23] The FRESCOR project, Framework for Real-

time Embedded Systems based on COntRacts,

http://www.frescor.org/.

[24] Balogh, A., et al, 2010, Workflow-Driven Tool

Integration using Model Transformation, Graph

Transformations and Model-Driven Engineering,

LNCS 5765, Springer.

[25] Ráth, I., A. Ökrös, D. Varró, 2010,

Synchronization of abstract and concrete syntax in

domain-specific modeling languages, Software and

System Modeling, Spec. Issue on Traceability,

Springer.

[26] Meyer, Bertrand, 1992, Applying ”design by

contract”, Computer, IEEE, 25(10), pp. 40–51.

[27] Varró, D., A. Balogh: The model transformation

language of the VIATRA2 framework, 2007, Science

of Computer Programming 68(3), Elsevier, pp. 214–

234.

[28] Bergmann, G., et al., 2010, ,Incremental Model

Queries over EMF Models, In Proceeding of the 13
th

International Conference on Model Driven

Engineering Languages and System, Oslo, Norway,

Springer.

[29] The GENESYS project, GENeric Embedded

SYStem Platform, http://www.genesys-platform.eu/.

[30] The COCONUT project, A COrrect-by-

CONstrUcTion Workbench for Design and

Verification of Embedded Systems,

http://www.coconut-project.eu.

[31] Bloem R., et al., 2010, RATSY - A new

Requirements Analysis Tool with Synthesis. Proc. of

Computer Aided Verification (CAV), Edinburgh,

Scotland, Springer, pp 425-429.

[32] TopCased, The Open Source Toolkit for Critical

Systems, http://www.topcased.org/.

[33] The CHESS project, Composition with

Guarantees for High-Integrity Embedded Software

Components Assembly, http://chess-

project.ning.com/.

[34] The CHARTER project, Critical and High

Assurance Requirements Transformed through

Engineering Rigour, http://charterproject.ning.com.

[35] Varró, Dániel, 2010, Towards Certifiable Model

Transformations: A Survey, Budapest University of

Technology and Economics, Department of

Measurement and Information Systems, Technical

report, Budapest.

[36] Bendix, L., Par E., 2009, Requirements for

Practical Model Merge, In Proceeding of the 12
th

International Conference on Model Driven

Engineering Languages and System, Denver, USA,

Springer, pp. 167-180.

Acknowledgements

We would like to thank to Klaas Wiegmink,

from NLR, for his help with air conditioning case

study and Olivier Charrier, from WindRiver for his

support on VxWorks.

This work was mainly supported by the EC FP6

DIANA (AERO1-030985) European project,

however, the validation of traceability by contracts

research direction was also partially supported by the

Hungarian CERTIMOT (ERC_HU_09) project and

the Janos Bolyai Scholarship.

Email Addresses

Ákos Horváth: ahorvath@mit.bme.hu

Dániel Varró: varro@mit.bme.hu

Tobias Schoofs: tobias.schoofs@gmv.com

29th Digital Avionics Systems Conference

October 3-7, 2010

http://www.frescor.org/
http://www.genesys-platform.eu/
http://www.coconut-project.eu/
http://www.topcased.org/
http://chess-project.ning.com/
http://chess-project.ning.com/
http://charterproject.ning.com/
mailto:ahorvath@mit.bme.hu
mailto:varro@mit.bme.hu
mailto:tobias.schoofs@gmv.com

