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Abstract 

Model-driven development (MDD) has become 

a key technique in systems and software engineering, 

including the aeronautic domain. It facilitates on 

systematic use of models from a very early phase of 

the design process and through various model 

transformation steps (semi-)automatically generates 

source code and documentation. However, on one 

hand, the use of model-driven approaches for the 

development of configuration data is not as widely 

used as for source code synthesis. On the other hand, 

we believe that, particular systems that make heavy 

use of configuration tables like the ARINC 653 

standard can benefit from model-driven design by (i) 

automating error-prone configuration file editing and 

(ii) using model based validation for early error 

detection. 

In this paper, we will present the results of the 

European project DIANA that investigated the use of 

MDD in the context of Integrated Modular Avionics 

(IMA) and the ARINC 653 standard. In the scope of 

the project, a tool chain was implemented that 

generates ARINC 653 configuration tables from 

high-level architecture models. The tool chain was 

integrated with different target systems (VxWorks 

653, SIMA) and evaluated during case studies with 

real-world and real-sized avionics applications. 

Introduction 

The ARINC 653 standard [1] has taken a leading 

role within the aeronautical industry in the 

development of safety-critical systems based on the 

Integrated Modular Avionics (IMA) concept. One of 

the main promises of IMA is cost saving in reduced 

development, integration and verification and 

validation effort.  

In case of ARINC 653 compliant platforms 

many deployment and implementation details are 

defined in the configuration tables. Typically, these 

configurations are hand defined by the system 

architect with limited tool support that only ease (i) 

the manipulation of its XML representation, (ii) their 

validation to the ARINC 653 schema definition and 

some consistency checks.  

Unfortunately, despite the inherent complexity 

of ARINC 653 configurations, current tools 

supporting configuration design offer very low-level 

support directly on the XML representation level. 

However, existing tools lack support for (1) capturing 

the development process for configurations, (2) 

validating design constraints for configurations on-

the-fly, (3) recording explicitly the critical design 

decisions made by the system architect, and (4) 

providing traceability between high-level 

requirements and the configuration tables, which 

require hand-crafted traceability lists. As a result, 

verification of configuration tables is a tedious 

activity. 

Model-driven development (MDD) has become 

a key technique in systems and software engineering. 

It facilitates on systematic use of models from a very 

early phase of the design process. Based on high-

level modeling standards (like UML , SysML [2] or 

AADL [3]), traditional MDD separates business and 

application logic from underlying platform 

technology by using platform independent models 

(PIM) to capture the system requirements, and 

platform specific models (PSM) to specify the target 

system on the implementation platforms (ADA, Java, 

C++). PSM may refer to models or to platform-

specific artifacts like source code and configuration 

elements; the latter are automatically generated from 

PIM and PSMs, respectively, using automatic model 

transformations. 

However, as MDD is attracting increasing 

attention in safety-critical system development [4], 

the original approach needs to be adapted to be in-

line with the rigid certification requirements (e.g., 

DO-178B [5]) imposed by authorities.  



In the paper, we present a framework for 

systematically designing standard ARINC 653 

configuration tables with additional support for 

configuring (i) the Wind River VxWorks 653 Safety 

Critical RTOS [6] and (ii) the GMV SIMA ARINC 

653 simulation platform [7]. Additionally, parallel to 

the development process our approach generates end-

to-end traceability information to support 

certification for V&V activities. Our toolkit is 

implemented in the Eclipse framework, and it is built 

upon the principles of Model-Driven Development 

(MDD). 

The framework was developed in the context of 

the DIANA [8] project financed by the European 

Commission through the Sixth Framework 

Programme in close collaboration with leading 

avionics experts and airframers including GMV, 

AleniaSia, Atego, Dassault, Embraer, NLR, 

THALES, and academic partners of TU Budapest 

and Karlsruhe Institute of Technology. 

Outline 

In order to introduce our approach we (i) outline 

the basics of model-driven development for safety 

critical system, (ii) presents our intermediate models 

and target platforms (iii) give a motivating air 

conditioning case study, (iv) introduce our PIM-PSM 

mapping approach, (v) highlight a contract based 

V&V approach and finally (vi) conclude the work. 

Model-Driven Development for Safety 

Critical Systems 

Models are prime artifacts of engineering. In 

system development, they have played an important 

role as a way to capture real world notions as well as 

abstract constructs. In fact, system architects have 

been using models and modeling techniques long 

before model-driven development emerged as a 

trend, e.g. in the form of entity-relationship diagrams, 

graph-like data structures, abstract syntax trees etc. 

However, the term Model-Driven Development 

(MDD) implies that models play a central role that 

encompasses the entire system development 

lifecycle, starting from requirement analysis, system 

design, implementation, to verification and even 

maintenance. 

Model-driven development aims to increase the 

efficiency and productivity of the software 

development process by introducing precise 

engineering practices based on formal modeling 

techniques. By this approach, design intelligence is 

applied to capture all relevant information in the form 

of abstract models. First, these models can be used 

for documentation purposes to store well-structured 

information about the system-under-design. 

Moreover, models can also be used for generative 

development, where target design artifacts (source 

code, configuration tables, test cases, textual 

documentation, etc.) is (semi-)automatically derived 

by tools. Finally, models can also be used for early 

validation, where important properties of the 

products (such as reliability, performance, 

robustness, security, complexity) can be evaluated 

before actual implementation begins. All of these 

techniques aim at reducing costs and risks. 

MDD emphasizes the clear distinction between 

Platform Independent Models (PIM) and Platform 

Specific Models (PSM), thus, software development 

in MDD is envisioned as a three-step process. 

First, the Platform Independent Model (PIM) 

is designed. The main purpose of this model is to 

capture the underlying business logic without specific 

implementation details and, this way, help portability 

to other target platforms (e.g., a prototyping 

platform, using Java, for instance; the final target 

platform, ARINC 653 for the aeronautical world or 

AUTOSAR [9] for the automobile domain based on 

ADA or C). 

The second step is to generate a Platform 

Specific Model (PSM), which contains additional 

models, and represents an implementation of the 

system under design which can run on the target 

platform. The transition between PIM and PSM 

(PIM-PSM mapping), should typically be facilitated 

using automated model transformation technology. 

Finally, software artifacts (e.g., configuration 

files, source code, documentation, etc.) are 

generated from the Platform Specific Model for the 

target platform. Again, code generation should be as 

extensive as possible, in order to minimize the 

amount of necessarily slow and error-prone manual 

coding. This, in turn, requires PSMs that are 

expressive enough, not only from a static, but also 

from a dynamic point of view of the system, to 

produce all of the application artifacts. 



Enabling technologies 

MDD relies on two key technologies that allow 

the definition and manipulation of models called, 

metamodeling and model transformation, 

respectively. 

Metamodeling is a methodology for the 

definition of modeling languages. A metamodel 

specifies the syntax (structure) of a language. 

Metamodels are expressed using a metamodeling 

language that itself is a modeling language. The 

metamodel can also be interpreted as the object-

oriented data model of the language under design. 

There are several different metamodeling 

environments, most widely used are the Meta Object 

Facility (MOF) [10] from OMG and the Eclipse 

Modeling Framework (EMF) [11] (a subset of MOF).  

Model transformations (MT) are the backbone 

of the MDD concept. Primarily, model 

transformations are responsible for the PIM-to-PSM 

transformations. However, MTs can also define views 

on models and synchronization between different 

models (like UML class diagrams and relational 

database schemas). Moreover, engineering models 

are frequently mapped into mathematical domains by 

model transformations to carry out model analysis as 

early model based verification. Well-known 

approaches for high-level declarative specification of 

model transformations are the ATLAS Transformation 

Language (ATL) [12], the VIATRA2 (VIsual 

Automated model TRAnsformations) system [13] 

and the GReAT (Graph Rewrite And 

Transformation) framework [14]. 

Challenges in MDD for Safety Critical Systems 

In order to support the specific needs of the 

safety-critical development processes, we followed 

the guidelines introduced in the EU-FP7 INDEXYS 

[15] project for the definition of a MDD means for 

embedded systems. Based on these guidelines the 

main challenges of MDD for safety-critical systems 

are the following (depicted in Figure 1.): 

V&V activities need to be tightly integrated 

[16] into the development process to provide early 

feedback on requirements, specification, design and 

implementation. This requires a continuous 

verification activity from early specification through 

design to development. On top of that it has to be in-

line with rigid certification requirements (e.g., DO-

178B) imposed by authorities like FAA or EASA. 

The PIM-PSM mapping process [17] needs to 

support both automatic and user-driven design steps 

as many critical design decisions are taken during the 

mapping process and cannot be fully automated. 

Furthermore, these decisions need to be recorded for 

traceability related certification requirements. 

PSM needs to support the different viewpoints 

of the system [17] with a systematic separation of 

system level aspects (e.g., functionality, 

dependability, security) and a strong separation 

between architectural and behavioral aspects. This 

allows to use appropriate COTS or proprietary tools 

for the generation of textual artifacts. 

Finally, PSM needs to support synthesis not 

only for source code but also system configuration, 

certification and documentation artifacts. 

 

Figure 1: MDD for Safety Critical System Development 



 

Modeling Architecture of the DIANA 

approach 

Within the DIANA project one of the main goals 

was to create an MDD based tool chain for the 

analysis and generation of ARINC 653 real-time 

operating system (RTOS) configuration files from 

high-level specifications captured as platform 

independent models. However, transforming these 

high-level models into ARINC 653 RTOS-specific 

configuration artifacts is a complex task, which needs 

to bridge a large abstraction gap by integrating 

various tools. Moreover, critical design decisions are 

also made during this mapping process. For this 

reason, we used intermediate domain specific models 

to subdivide the process into well-defined steps. The 

overview of the model architecture is depicted in 

Figure 2 

Platform Independent Models: 

In our approach the aim of the high-level 

Platform Independent Model (PIM) is to capture the 

high-level architectural view of the system along with 

the definition of the underlying implementation 

platform, while the Platform Specific Model (PSM) 

focuses on the communication details and service 

descriptions. All our models are defined as separate 

EMF models. 

In order to support already existing modeling 

tools and languages (e.g., Matlab Simulink model, 

SysML, etc.) we use a common architecture 

description language called Platform Independent 

Architecture Description Language (PIADL) for the 

description of architectural details by extracting 

relevant information from common off-the-shelf 

modeling tools. As for capturing the underlying 

platform (in our case ARINC 653) we use a Platform 

Description model (PD) capable of describing 

common resource elements. Functional requirements 

are also incorporated into the PIADL along with the 

Platform Description. 

 PIADL aims to provide a platform 

independent architectural-level description 

of event-based and time-triggered 

embedded systems using message 

communication between applications.  

 The Platform Description (model) 

describes the resource building blocks, 

which are available to build a system. This 

mainly includes ARINC 653 based 

elements such as modules, partitions, 

communication channels, etc.  

 In the context of the DIANA project we 

supported MATLAB Simulink as a source 

COTS language. 

 

Figure 2: Modeling Architecture of the DIANA 

approach 

Platform Specific Models 

PSMs are encapsulated in the so-called 

Integrated System Model that contains all relevant 

low-level details of the modeled system. Essentially, 

it is based on ARINC 653 and consists of the 

following sub-documents:  

 The Interface Control Document (ICD) is 

used to describe data structures and low-



level data representation of systems and 

interfaces to ease integration of the 

described element with other parts of the 

system. It supports both high-level 

(logical) and low-level (physical) 

descriptions and was designed to be 

compatible with the ARINC 653 and 

ARINC 825 data and application interface 

descriptions. Its descriptors are simple 

XML files containing the serialized form 

of the model describing the defined data 

structures. 

 The ARINC 653 System Architecture 

model describes the relations among all 

elements related to the system. More 

precisely the model focuses on the (i) 

details of the communication channels 

between applications, partitions and 

modules, and (iii) the detailed allocation of 

the applications to partitions. 

In order to support traceability, a trace element 

is saved in the Trace documents for all model 

elements of the PSM created during the mapping 

process. Such an element saves all PIM model 

segments that were used for the creation of a PSM 

model element. 

Target Platforms 

During the DIANA project, two OS target 

platforms were used: Wind River’s VxWorks 653 

real-time operating system and GMV’s ARINC 653 

simulator SIMA running on Linux [18]. The 

following sections introduce these platforms briefly 

and describe peculiarities of their configuration tool 

chains. 

Wind River VxWorks 653 RTOS 

VxWorks 653 is Wind River’s platform for 

safety-critical applications certifiable according to 

DO-178B [19]. It is an IMA operating system with 

proven compliance to ARINC 653 [20][21]. 

VxWorks 653 implements IMA by means of 

virtualization technology [6]. There is a hypervisor 

monitoring and controling a set of guests. Each guest 

uses its own local executive, the Partition Operating 

System (POS). Several types of POS are supported 

by the platform, such as the ARINC 653 APEX, the 

classic VxWorks RTOS or a general purpose OS like 

Linux. Note that there is only one code instance per 

POS physically present in the system that is linked to 

the virtual address space of the partitions that actually 

use this particular POS. 

The hypervisor is called the Module Operating 

System (MOS). It implements time- and space 

partitioning, the ARINC 653 inter-partition 

communication channels and the Health-Monitoring 

system. The MOS is the only component that runs in 

privileged mode. Guest systems run in user space and 

are not allowed to execute privileged instructions that 

may impact the proper function of the system. 

Figure 3 (based on [6]) illustrates the 

architecture:
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Figure 3: VxWorks 653 Architecture 



 

Note that the components of the system are not 

linked together to one image; instead individual 

binaries are created for the MOS, for the POSes and 

for the applications. The boot loader is responsible to 

locate the different components on the boot medium 

and to load them into memory according to a 

configuration derived from system configurations. 

The configuration the system integrator has to 

provide in order to link, load and execute the system 

follows the VxWorks component structure [22]. 

There is a configuration file for the MOS that defines 

fundamental architecture-related settings, such as 

processor frequency, page size and virtual and 

physical memory; there are configuration files for the 

POSes, defining their memory layout and how they 

are loaded into memory; there are configuration files 

for the applications, defining memory sizes and ports; 

there are Health Monitor tables that define the health 

monitoring on partition and module level; there is, 

finally, a configuration for the module bringing the 

single configuration files together and adding time 

partitioning-related information.  

This configuration is different from the 

configuration defined by supplement 2 of ARINC 

653. However, the next supplement will present a 

new approach: The standard will define a set of data 

types that must be used for an ARINC 653-compliant 

configuration, but will not impose a schema that 

describes how the elements must be related. The 

schema is left to implementations. 

This approach of the ARINC 653 subcommittee 

is just a consequence of the fact that today’s 

operating systems do not comply with the standard 

schema. Configuration is tightly coupled with the OS 

architecture and, as such, is difficult to standardize. 

For the task of generating vendor-independent valid 

configurations, this is probably not good news. Tools 

are needed that deal with the heterogeneity of 

configurations.  

GMV SIMA simulator 

Simulated Integrated Modular Avionics (SIMA) 

is an execution environment, providing the ARINC 

653 Application Programming Interface (API) and 

robust partitioning to operating systems that do not 

support these features by themselves [7]. SIMA is 

designed to run on all POSIX-compliant OSes and 

optimised for the Native POSIX Thread Library 

(NPTL), available on Linux since kernel version 2.6.  

In SIMA, ARINC 653 partitions are mapped to 

POSIX processes, and ARINC 653 processes are 

mapped to POSIX threads. Each SIMA application is, 

hence, linked to a single POSIX program, containing 

user code and data, the APEX code and data and, 

finally, the platform execution environment, i.e. the 

NPTL for Linux.  

The Module Operating System (MOS), 

controlling the different POSIX processes, belonging 

to the same simulated module, is likewise linked to 

one POSIX process. The following picture illustrates 

this design: 

 

Figure 4: SIMA Architecture 

The APEX services are implemented by a static 

library, called POS. The POS implements the APEX 

process scheduler on top of the POSIX FIFO 

scheduler (sched_fifo). POSIX features are 

encapsulated within a portability layer; this way main 

parts of the APEX code do not rely directly on 

POSIX, but on scheduling policies implemented by 

the POS itself. The advantage of this approach is 

enhanced portability - there is even an 

implementation of the SIMA POS, running on bare 

hardware - and the fact that scheduler features that 

introduce subtle differences between different POSIX 

implementations are handled in the portability layer 

and hidden from the APEX implementation. 

The MOS implements the APEX partition 

scheduler. To be able to suspend and resume 

partitions, commands are exchanged with the POS in 

the partitions using signals and shared memory 

segments. Obviously, this approach does not answer 

safety and security threats, caused by random errors 

in the partitioned code. The POS has to respond 



correctly to given commands which may not be true 

in the case where faulty or malicious application code 

corrupts the state of the POS. In fact, the MOS does 

only simulate the behaviour of an ARINC 653 

compliant OS on top of non-safety aware systems 

like standard Linux. 

 Since SIMA main purpose is simulation, it aims 

at full conformity with the standard. The SIMA 

configuration is therefore strictly compliant to the 

schema defined in today’s ARINC 653 part 1 and 2. 

Additional information that is needed by the system 

is added by means of a separate configuration file. 

This file defines the mapping of certain elements of 

the ARINC 653 configuration to the Linux OS; 

APEX ports, for instance, can be mapped to UDP 

ports. 

Case Study: Air Conditioning 

In order to introduce our approach, let us assume 

a generic air conditioning system installed on an 

airplane.  

  

Figure 5: Overview of the Air Conditioning Case 

Study 

Its task is to regulate the temperature and 

pressure in the aircraft. This is done in the following 

way. The air conditioning pack is regulated by the 

pack controller to supply the mixing unit with a 

sufficient flow of cool fresh air. This air is supplied 

to arbitrary number of zones (in Figure 5 we depicted 

two zones Aft. and Forward). In order to regulate the 

temperature of this airflow, the zone controller 

regulates the amount of hot air added to the flow of 

cool air, which is set on the air conditioning panel 

and monitored on the system display. Additionally, as 

air-conditioning is a critical task all systems have a 

redundant equivalent for better reliability. 

An overview of the air conditioning system is 

depicted in Figure 5. Throughout the paper we will 

use this case study as our running example. It is a 

simplified version of the NLR demonstrator in the 

DIANA project. 

Steps of the PIM-PSM Mapping 

Process 

In order to introduce our PIM-PSM mapping 

concept we first, highlight the steps of a general PIM-

PSM mapping process, then go into details about our 

concrete implementation. 

A general PIM-PSM Mapping Process for 

Safety Critical Systems 

A general PIM-PSM mapping process, in the 

safety-critical system design domain, consist at least 

the following steps (see in Figure 6 ): 

1. Define / Derive the platform-independent 

system model (PIM). The architecture-level 

integrated system design starts by specifying a set of 

applications attributed with properties extracted from 

the system requirements (functional and non-

functional) and high-level initial system models 

captured in SysML [2], AADL [3], etc.. These 

properties are captured in the PIM model.  

2. Define / Derive the Platform Description 

Model (PD). The PD model describes all the details 

(CPU, latency, bandwidth, etc) of the underlying 

hardware platform including cabinet specification 

and hardware resource descriptions 

3. Define / Derive Platform Interface (PI). This 

model describes the high-level middleware services 

offered by the underlying platform.  



4. Extract design constraints (performance, 

dependability, security, etc.). The PIM and PD 

models should also include design constraints, 

which have to be satisfied by valid PSM models 

derived as a result of a PIM-PSM mapping. These 

constraints are extracted from the functional and non-

functional System requirements (e.g., modular 

redundancy). 

 

Figure 6: A Generic Mapping Process 

5. Define variability points / design choices. As 

there is more than one possible mapping of a PIM to 

a target PSM, the PIM-PSM mapping should offer 

variability points to explicitly capture design 

choices. These variability points can be subject to 

future optimization steps. 

6. Resource allocation. As the core phase, the 

system architect assigns application types to 

resources (called resource allocation), which 

provide general rules / guidelines for the PIM-PSM 

mapping. From these high-level guidelines, the actual 

mapping instances (i.e. mapping of application 

instances to actual resources) could be partially 

automated to obtain the PSM model. A valid PIM-

PSM mapping should fulfill all design constraints 

(e.g. should not exceed HW limits like available 

memory). 

7. Scheduling and Optimization. In addition, 

further scheduling and optimization steps can be 

carried out after resource allocation, which is out of 

scope for the current paper. For further reference see 

in FRESCOR [23] 

8. Evaluate the quality of the mapping. The 

quality of the mapping can be evaluated against all 

functional and non-functional requirements, and 

certification means.  

The DIANA Approach 

We support the system architect by subdividing 

the PIM-PSM mapping process into well-defined 

design steps and by the precise definition of the 

interactions and interfaces at each step. Individual 

design steps are then organized into a complex 

workflow [24], which is closely aligned with the 

designated development process followed by the 

system builder (system integrator, function provider 

and platform provider.). In order to assist the system 

architect, our framework guarantees that a certain 

design step can only be started if all prerequisite steps 

are successfully completed. Our framework is easily 

customizable to incorporate additional design steps, if 

required. 

The high level workflow of the PIM-PSM 

mapping process as used in the DIANA project is 

depicted in Figure 7. The process consists of 22 steps 

organized into five groups. 

To illustrate some technicalities of our approach 

we use the simplified Simulink model (depicted in 

Figure 8) as the starting PIM model of the air 

conditioning case study. 

Application Group 

The group consists of steps to define the 

resource requirements of the applications and 

partitions used in a module and create a viable 

mapping that is compatible with the available 

resources and dependability requirements. 

 



 

Figure 7: Workflow of the DIANA PIM-PSM mapping process 

 



First, the PIADL and the PD models are 

imported into the framework. This step also resolves 

certain dependability attributes defined in the PIADL 

like redundancy degree of applications and messages 

(e.g., triple or double modular redundancy etc.). 

As the platform description does not include all 

information needed for the allocation process and 

configuration generation, the system architect needs 

to (i) define the memory requirements and 

compatibility mapping of the applications and (ii) 

new partitions or modify existing ones and define 

their memory requirements. 

 

Figure 8: PIM model of the Air Conditioning Case 

Study
1
  

To demonstrate how these steps are captured on 

model level, Figure 9 illustrates the low level model 

elements created for a partition (partitions creation 

step). Model Elements in yellow and dashed lines are 

newly created, while elements in green (and solid 

references) are already existing in the model. The 

tags <<Integration>> and <<PD>> represent the 

package of the model element. Partitions are 

defined/stored in the Platform Description model 

with separate model elements describing their 

corresponding memory requirements capturing the 

size, access (type) and type attributes. PSMRoot is 

the root element of the integration model and it holds 

references between the elements of the PIADL, PD 

and the PSM models. 

                                                      

1  © 2010 NLR 

For easier readability (i) attribute types are 

excluded from the figure and (ii) references and 

association are depicted by simple lines. 

As the final step in the group, all allocations of 

applications-to-partitions conform to the defined 

constraints and requirements are computed. This way 

the system architect can select a valid allocation and 

(if required) can take into account additional non-

functional requirements.  

 

Figure 9: Partition Creation 

The allocation problem is solved as a constraint 

satisfaction problem. 

Communication Group 

The group involves steps in the PIM-PSM 

Mapping editor that carry out the allocation of inter-

partition communication channels and the 

specification of ports residing on each end of these 

channels. 

The allocation is based on the architecture 

defined in the PIADL model (derived from a 

Simulink model), the selected application to partition 

mapping and the redundancy requirements of the 

applications. Based on this information the allocation 

algorithm creates the required ARINC 653 ports and 

connects them. 

Additionally, the system architect needs to 

define the ARINC 653 specific parts like the queue 

length and the VxWorks specific queuing protocol to 

be able to generate the configuration files. 

Figure 10 depicts a simple example how the 

allocated channels are visualised. In this case Data 

Monitoring application allocated over the I/O 

Processing partitions uses the Temp. channel to send 

the temperature value to the Refresh GUI application. 



 

 

Figure 10: Allocated Communication Channels 

 

Health Monitoring Group 

The group consists of steps to define the Health 

Monitoring tables for module, partition and 

application level along with the different error 

entities and actions to be carried out. 

All these definitions are done by the system 

architect by hand. The framework gives support for 

early validation (e.g., naming conventions, required 

action definitions etc.) based on the specification of 

the different tables and the system-specific 

requirements for health monitoring tables.. 

The defined tables are saved in the Platform 

Description model with the appropriate references 

from the PSMRoot of the Integration model. 

ICD Group 

In this group steps related to the description of 

interfaces and messages provided and required by 

applications. These are user driven mapping steps, 

where PIM types and messages, are refined with 

platform specific information like encoding, default 

value, etc.  

Figure 11 describes how the Temp PIM type is 

refined into the Int1_100 PSM representing an 

integer value with a domain of 1-100. The Int1_100 

type is based on the predefined 16 bit unsigned 

integer type from the ICD with additional constraints 

over its domain. Based on these PSM types, complex 

messages are defined following a similar way, where 

the ICD provides the basic structures like arrays, 

buffer, etc. 

 

Figure 11: Definition of the Temp value in ICD 

Artifact Generation Group  

Finally, when the prerequisite steps for a certain 

code generator is finished the actual textual 

representation is synthesized by separate dedicated 

code generators. 

In our case the ICD generator simple serializes 

the model into its XML representation using the built 

in support of the Eclipse Modeling Framework. As 

for the other artifacts we hand-coded the generators 

in java to derive the required formats defined by the 

two platforms. 

The communication architecture, depicted in 

Figure 8, is mapped to ARINC 653 ports through the 

defined mapping process and then automatically 

generated both the ARINC 653 and the VxWorks 653 

specific module and ApplicationDescription XML 

configuration tables. A fragment of the generated 

configuration tables capturing the communication 

channel depicted in Figure 10 is captured in Figure 

12. 

 

Figure 12: Example ARINC 653 Module and 

VxWorks Application Description configuration 



Traceability 

Additionally, as an essential requirement of DO-

178B certification, continuous traceability has been 

carried out from the high-level requirements to the 

deployed applications (depicted in Figure 13).  

 

Figure 13: Traceability between models and 

configuration artifacts 

In case of the design phase we used (i) inter-

model traceability based on the Integration Model 

that keeps track of all manipulations done during the 

PIM-PSM mapping process and (ii) model-to-

configuration traceability with XMI files connecting 

generated configuration elements to their 

corresponding model entities. This allowed end-to-

end traceability from the PIADL model to the 

generated configuration tables. It is important to 

mention that the current implementation requires an 

explicit definition of traceability elements between 

the various models. However, currently we are 

investigating special live model transformations [25] 

to give support for automatic generation of 

traceability elements without explicit definition. 

Verification and Validation Support 

Keeping the design and verification aspects 

tightly synchronized, enables early validation as close 

as possible to the corresponding model/code 

development time, thus providing better feedback and 

error detection. To support early validation of 

modeling artifacts during our development process 

we used contracts to guard each steps. 

Contracts 

During a development process certain steps 

require external COTS tools (e.g., Matlab, SAL, etc.) 

or user interaction to perform their task. In order to 

guarantee that the result of these steps is acceptable 

and the process can continue, the definition of 

contracts [26] is a well-known paradigm.  

The idea is to guard both the input and output of 

a step by specific constraints. Thus, a contract is 

composed of a precondition and a postcondition. In 

our interpretation a precondition defines constraints 

that need to be fulfilled by the input of the step in 

order to allow its execution, while the postcondition 

guarantees that the process can continue only if its 

constraints are satisfied by the output. 

In our approach we used graph patterns (GP) 

[27] to capture such contracts. GPs are frequently 

considered as the atomic units of model 

transformations. They represent conditions (or 

constraints) that have to be satisfied by a part of the 

underlying model. Based on these contracts we 

investigated two promising approaches to support 

early validation and verification. 

On-The-Fly Evaluation of Contracts 

One of the main advantage using contracts to 

specify constraints on the input and output (model) of 

each step in the development process is that it allows 

fine grain (step level) validation of model changes 

throughout the whole workflow. However, graph 

patterns can express complex model constraints 

containing cycles, attribute conditions, transitive 

closures and recursive calls. Additionally, as these 

queries are executed rather frequently in interactive 

modeling applications, they have a significant impact 

on the runtime performance of the tool, and also on 

the end user experience. 

In our framework to provide on-the-fly 

evaluation of constraints, we applied EMF-IncQuery, 

a state-of-the-art pattern matcher engine over EMF 

models based on incrementally maintained caches, 

resulting in (almost) instantaneous contract 

evaluation. More details are available in [28]. 

Without going into details the simplified 

example contract depicted in Figure 14 captures the 

condition that, “if there exist an Application with an 

ApplicationInstance (as the precondition), then after 

the allocation step there cannot be 

ApplicationInstances that are not allocated to a 



Partition (as the postcondition)”. For more details 

see [24]. 

 

Figure 14: Contract for Application Allocation 

Validation of end-to-end traceability 

One key question in end-to-end traceability is to 

demonstrate that any target element can be traced 

back to its corresponding requirement. Showing this 

ability in a model driven development process can be 

problematic as separate part of models can be parts of 

the traceability (e.g., in our case the integration 

model is also part of the traceability) resulting in 

complex trace paths. 

To solve this issue, our idea is to validate the 

existence of such trace paths through contracts and 

show that complete traceability is present in the 

whole mapping process from the PIADL down to the 

generated artifacts. The idea is based on the 

following assumptions: (i) defining the traceability 

relation, as a contract, between the input and output 

of a step is relatively simple, (ii) if a step is 

completed in the process and its contracts are 

validated then their postconditions can be treated as 

valid statements over the model, and finally, (iii) 

using the defined workflow of the development 

process all steps required for the generation of a 

configuration element can be followed back to its 

starting point (e.g., import step, creation step, etc.) 

allowing an induction based reasoning over the 

contracts of the traversed steps to show the existence 

of a valid traceability path.. However, it only proves 

the existence and does not provide the traceability 

matrix; future work is required to automatically 

generate it. 

Related Work 

There are numerous approaches in the literature 

introducing various model based techniques for the 

development of embedded system. Here we give a 

brief summary of some current EU research projects 

with significant relevance to design and verification 

of embedded systems involving model based 

techniques. 

INDEXSY [15] aims to realize industrial 

implementations of cross-domain architectural 

concepts [17] developed in the GENESYS [29] 

project and give tool support based on MDD for its 

three target domains: automotive, aerospace and 

railway. 

COCONUT [30] focuses on the definition of a 

formal framework [31] based on a tight integration of 

design and verification through refinement steps of 

an embedded platform design flow, from 

specifications to logic synthesis and software 

compilation.  

TopCased [32] is an open source tool-kit (over 

the Eclipse platform) for the design, development and 

deployment of safety critical system using novel 

MDD techniques and support for languages like 

AADL and SysML. 

CHESS [33] seeks to improve Model Driven 

Development practices and technologies to (i) better 

address safety, reliability and robustness 

functionalities as required by the aeronautical and 

railway industry and (ii) develop techniques to 

guarantee the correctness of assembled component 

embedded systems by reusing certification artifacts 

of the components used for the complete system. 

FRESCOR [23] aimed to integrate advanced 

flexible scheduling techniques directly into an 

embedded systems design methodology, covering all 

the levels involved in the implementation, from the 

OS primitives, through the middleware, up to the 

application level using contracts to define the 

application requirements. 

CHARTER [34] focuses on cost-reduction of 

certification of critical embedded systems by 

integrating real-time Java, model-driven 

development, rule-based compilation, and formal 

verification into a novel development process called 

Quality-Embedded Development (QED). 

Conclusion and Future Work 

Our approach demonstrated that Model-Driven 

Engineering can be effectively applied for the 

systematic development of ARINC 653 configuration 

tables. Additionally, we demonstrated the use of 



model based validation techniques such as (i) 

complete end-to-end traceability from the high-level 

models down to the generated artifacts and (ii) model 

based on-the-fly validation of design contracts during 

the development process. 

However, during the evaluation of the proposed 

technologies we have encountered gaps and 

shortcoming that point to future work and new 

research directions: 

One key issue for the success of MDE in the 

safety-critical domain is the certification of model 

transformation. MT serves as the backbone of almost 

all model based technologies from code and model 

synthesis through model validation techniques to 

simulation. Up to date many work has been done 

regarding the V&V of transformations [35], however, 

certification issues were rarely covered in recent 

publications. Additionally, the complexity of tools 

may impose high qualification costs on tool vendors  

As development of safety-critical system usually 

requires large number of developers the need for 

advanced collaborative support for the definition 

models like versioning, distributed development, 

access control etc. is becoming a key question 

[36][35]. 

Finally, MDE promises an easier way of 

integrating various tools based on a common 

integrated model (or model bus [32]) that allows their 

input and output models of the various tools to be 

treated in a common way. Additionally, it can give 

support for model based traceability a common 

requirement by various certification authorities. 
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