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Abstract  

Model-driven engineering (MDE) is becoming a 

key approach in systems engineering, including 

Integrated Modular Avionics (IMA) design. It relies 

on systematic use of models from an early phase of 

the design process to provide source code generation, 

validation and analysis support. However, due to the 

complexity of IMA systems – that may incorporate 

hundreds of avionics functions and dozens of 

execution nodes – even early stage model-based 

analysis of their design can become cumbersome. 

This is especially true for safety related non-

functional requirements like communication channel 

redundancy or error propagation and contamination. 

In this paper, we present a model-driven 

framework to support the iterative design and 

analysis of IMA systems using an integrated 

Simulink model for analyzing the complete HW-SW 

architecture of the system. 

Introduction 

Modern Integrated Modular Avionics systems 

bring a lot of flexibility to avionics systems 

development, but with this flexibility comes a more 

challenging design process for precisely configuring 

its hardware-software execution platform. This 

significantly raises the complexity of IMA system 

design compared to federated architectures, where the 

application software is statically allocated to its 

execution hardware. 

Within IMA each possible configuration has to 

fulfill several different functional and non-functional 

requirements (e.g. safety, bus capacities, timing), 

with some typically unknown at the early stage of 

design. To overcome this limitation typical system 

design approaches execute an iterative development 

process, where the first iterations explore a larger part 

of the design space to define the boundaries of the 

system high-level architecture and later iterations 

focus on low-level details within the defined 

boundaries. However, due to the complexity of IMA 

systems, even the early, high-level analysis can take a 

considerable amount of time and effort especially, 

when taking into account safety requirements, 

making it viable economically to invest in tools to 

automate the definition and analysis of these types of 

system.  

In the current paper, we present the results of the 

Trans-IMA project – a co-operation between 

Embraer and the Budapest University of Technology 

and Economics – that defined a model-driven 

approach to support the iterative design, refinement 

and analysis of IMA systems. The approach is based 

on the automated generation of an integrated 

Simulink model for analyzing the complete 

hardware-software architecture of the system using a 

high-level allocation process for mapping the 

avionics functions to their executing or implementing 

hardware platform.  

The approach was realized on the Eclipse 

platform [1] as it provides cutting edge modeling 

features ranging from model definition to model 

querying and management. 

Outline 

In order to introduce our approach we first (i) 

provide an overview that describes the main artifacts 

of Trans-IMA and (ii) present a motivating case 

study. Next, we (iii) list enabling technologies with 

their main features. After (iv) describing the 

modeling architecture and (v) the overview of the 

tooling, we (vi) provide details for each module. 

Finally, we (vii) highlight related research and (viii) 

conclude the work. 



Trans-IMA approach 

Trans-IMA aims at defining a model-driven 

framework for the synthesis of complex, integrated 

Matlab Simulink models capable of simulating the 

software and hardware architecture of the avionics 

system of an aircraft. A high-level overview of our 

approach is depicted in Figure 1. 

 

Figure 1. The Trans-IMA approach 

The avionics functions are defined using a 

Functional Architecture Model (FAM). A FAM is 

an abstraction of the avionics functions including 

their functional decomposition and their 

corresponding information links (the data flow 

structure) from a Simulink model. This functional 

model can have a varying level of detail, depending 

on the phase of the project and the goal of the 

analysis. 

The underlying hardware architecture is defined 

using a dedicated Platform Description Model 

(PDM). PDM defines a set of generic components 

(such as routers, processing units, buses, chassis etc.) 

that can be used to define the overall execution and 

communication architectures. The internal behavior 

of these generic components is defined in various 

Simulink libraries (Component Libraries) to 

support the different simulation goals and provide an 

extension mechanism for vendor specific hardware 

elements. 

Based on systems defined by a FAM and a PDM 

the system architect can specify an allocation 

between the functions and their execution platform. 

The allocation itself includes two major phases: (i) 

the mapping of avionics functions to the underlying 

execution elements and (ii) the automated discovery 

and selection of available communication paths in the 

hardware architecture for the various information 

links defined between the avionics functions. Finally, 

when the allocation is complete – all functions and 

information links are allocated – and fulfills the 

safety and design requirements, an integrated 

Simulink model – called Integrated Architecture 

Model (IAM) – is automatically generated, where all 

Simulink specific configurations like bus creators and 

selectors, library links and model references are 

configured. This integrated model can then be 

submitted to a common set of tests and analyses to 

generate performance figures for each allocation 

configuration. 

This early separation of concerns between the 

functions and their execution hardware enables two 

major advantages in the design process: (i) first, 

during hardware supplier procurement it allows fast 

evaluation of the advantages and disadvantages of 

each proponent's architecture, since the (preliminary) 

avionics functions are reused and only a new 

hardware architecture model and allocation have to 

be done for each proposal. (ii) In later phases of 

design, when a platform supplier is already selected, 

typically the hardware architecture is defined, but the 

avionics functions may be varying based on newly 

occurring derived requirements or function provider 

requests that require the rapid reevaluation of several 

allocation options. Again, the framework allows 

reusing already defined allocations between slightly 

modified functions to the same hardware architecture 

allowing reallocation only of the changed parts and 

thus significantly reducing reevaluation time for the 

different options. 

As a summary, our approach applies an 

abstraction based approach for defining complex 

IMA hardware-software architectures using model-

driven techniques that allows the automated 

generation of an integrated Simulink representation 

for analysis and simulation purposes.  



A motivating case-study 

The motivation behind the Trans-IMA approach 

can be demonstrated with a simple avionics system 

example including a functional architecture that may 

be allocated to two different physical architectures. 

The example is loosely based on the IMA system of 

the A380 as described in [2]. The functional model 

may be inherited from previous programs and allows 

the study of different physical architectures in the 

preliminary design phase. 

The top-level view of the functional architecture 

is shown in Figure 2, with sensors and actuators 

differentiated from functions by color and label. Note 

that FADEC Functions integrates a non-IMA system 

that can work as a stub for software that is owned by 

one of the suppliers. Functions may be decomposed 

into sub-functions to form a hierarchy. 

 

Figure 2. Functional architecture 

The physical architecture has a chassis 

configuration as a building block, as shown in Figure 

3. The chassis has three processing units, each with 

an IMA RTOS and communication bridge, powered 

by two power supplies and connected to two 

input/output (I/O) modules through a databus in the 

backplane of the chassis. The I/O modules connect to 

AFDX switches for inter-chassis communication. 

 

Figure 3. Detailed chassis platform description 

Two different platform descriptions are studied, 

with the first variant shown in Figure 4. It contains 

two chassis with three processing units each, 

connected by two AFDX switches. In addition, they 

both connect to the federated unit FADEC. 

 

Figure 4. Platform description, variant I. 

The second platform description variant, shown 

in Figure 5
1
, uses three chassis, each containing only 

two processing units, with only two of them 

connected to the FADEC. 

 

Figure 5. Platform description, variant II. 

By studying two variants, it is possible to 

evaluate the trade-offs between placing more 

processing units into fewer chassis while the addition 

of another chassis may increase communication 

overhead in the switches and introduces constraints 

on the allocation, since the third chassis is not 

connected to FADEC. 

In the Trans-IMA approach, this case study also 

demonstrates the importance of reusing allocation 

specifications as details are added to the functional 

model and when switching between platform 

variants. 

Finally, the example illustrates that to provide 

usability in addition to functionality, the Trans-IMA 

tooling has to support hierarchical models and views 

that focus on specific fragments of the model. 

                                                      

1 Note that these figures are taken directly from the Trans-IMA 

Tooling without modification. 



Enabling technologies  

MDE relies on two key technologies that allow 

the definition and manipulation of models, called, 

metamodeling and model transformation, 

respectively. 

Metamodeling is a methodology for the 

definition of modeling languages. A metamodel 

specifies the syntax (structure) of a language. 

Metamodels are expressed using a metamodeling 

language that itself is a modeling language. The 

metamodel can also be interpreted as the object-

oriented data model of the language under design. 

There are several different metamodeling 

environments, most widely used are the Meta Object 

Facility (MOF) [3] from OMG and the Eclipse 

Modeling Framework (EMF) [4] (a subset of MOF).  

Model transformations (MT) are the backbone 

of the MDE concept. Primarily, MTs are responsible 

for transforming the various models into each other. 

However, MTs can also define views on models and 

synchronization between different models (like UML 

class diagrams and relational database schemas). 

Moreover, engineering models are frequently mapped 

into mathematical domains by model transformations 

to carry out model analysis as early model based 

verification. Well-known approaches for high-level 

declarative specification of model transformations are 

the ATLAS Transformation Language (ATL) [5], the 

VIATRA2 (VIsual Automated model 

TRAnsformations) system [6] and the GReAT (Graph 

Rewrite And Transformation) framework [7]. 

The Trans-IMA approach is built on top of the 

Eclipse platform and integrates several open source 

technologies to support the required use cases. 

Eclipse modeling framework (EMF) 

EMF is a core Eclipse technology that supports 

the definition of domain-specific languages (DSLs) 

through metamodeling and provides a code 

generation facility that derives interfaces and ready-

to-use implementation for a DSL. A large number of 

Eclipse applications include EMF based DSLs or 

provide additional features to work with EMF models 

(e.g. validation, transformation, user interface forms). 

The metamodeling language of EMF is called 

Ecore and it supports the definition of interconnected 

metamodels (also called Ecore models) thus it is 

possible to extend and integrate existing DSLs in a 

straightforward way. 

Ecore models are processed by the code 

generation facility of EMF that also uses a generator 

model which can be used to customize the generation 

process. The generated code includes the interfaces 

and implementation for metamodel classes, several 

utility classes for processing and creating instance 

models, additional classes for binding the elements of 

the models to UI components and finally a fully 

featured tree view-based editor for viewing, creating 

and modifying instance models. 

From the tool development point of view, one of 

the main advantages of EMF is that it provides a 

reflective API that can be used for handling instance 

models conforming to any metamodel without 

knowing about the metamodel when the tool is 

created. Thus generic EMF tools can provide features 

(e.g. validation, transformation, graph-based views) 

for any DSL. 

In addition, since EMF models are accessed 

through interfaces, it is possible to replace the 

implementation without affecting existing 

applications. For example, the instance models may 

be read from and stored in a database or derive from 

the data representation of a legacy application. 

Finally, EMF provides a command stack based 

editing functionality which supports transactional 

access including undoing and redoing model changes. 

Thanks to its well-defined core and wide 

usability, EMF is considered the de facto standard for 

modeling in the Eclipse ecosystem. The high number 

of EMF based tools also signifies that it is a mature 

technology. 

EMF-IncQuery 

EMF-IncQuery [8] is a model query framework 

for EMF models which includes a declarative query 

language [9] based on graph patterns and a very 

efficient incremental pattern matcher. Model queries 

are specified in a text editor created using Xtext 

which is a framework for developing textual domain-

specific languages. It is possible to define queries 

over arbitrary EMF metamodels and then execute 

them efficiently and incrementally, with proven 

scalability [10] for complex queries and large 



instance models (with millions of model elements). 

Incremental execution is backed by internal caches of 

partial query results, which are updated based only on 

model changes without traversing the complete 

model. The results of a query are always up-to-date 

and instantly available to the user. 

In the query language graph patterns are 

represented by a set of constraints, where variables 

can refer to model elements and attributes. Structural 

constraints prescribe the interconnection of model 

elements of a given type, while attribute constraints 

are defined using expressions. A negative application 

condition (NAC) defines cases when the original 

pattern is not valid, in the form of a negative sub-

pattern. In addition, check constraints allow the 

execution of pure, deterministic functional methods 

(with no side-effects). 

The incremental pattern matcher uses a Rete-

based approach [10] that relies on a network of nodes 

storing partial matches of patterns. Input nodes 

represent underlying EMF model elements, 

intermediate nodes are used to execute basic 

operations (e.g. filtering, projection or join), while 

match results are available as an output (or 

production) node. The input nodes of the network are 

set up to receive notifications about changes affecting 

the EMF models and these nodes release update 

tokens to related intermediate nodes. Rete nodes 

update their caches based on these tokens and 

propagate updates through the network, eventually 

influencing the match results stored in production 

nodes. 

As a distinguishing feature, queries can be 

integrated into existing applications by processing 

query results through an easy-to-use API and by 

taking advantage of extensions [10] for viewers and 

data binding to user interface components, live 

validation of constraints, query-based derived 

features. EMF-IncQuery also supports query libraries 

which contain reusable definitions that can be 

integrated into complex queries using the pattern 

composition concept of the query language. 

Each EMF-IncQuery extension is developed to 

work in an incremental way as well. To provide a 

common foundation for these extensions, EMF-

IncQuery has an event-driven rule engine that can 

also be used for tool developers and supports both 

batch and incremental model transformations. 

Xtend 

Xtend [11] is a programming language that is 

often called “modernized Java” because it is based on 

Java, generates Java source code, interoperates with 

any Java code but includes a large set of 

improvements over Java, such as type inference, 

lambda expressions, dispatch methods and template 

expressions. 

Since EMF-IncQuery focuses on model queries 

and does not have a complete transformation 

language (contrary to VIATRA2), model 

transformations in Trans-IMA were developed in 

Xtend. Both the query engine and event-driven rule 

engine APIs are well suited for Xtend and we also 

developed an internal DSL which incorporated the 

basic functionality required to define event-driven 

model transformations in Xtend. 

Thanks to several language features, we were 

able to create more concise and maintainable 

transformations than would have been possible in 

plain Java. 

Graph layout and visualization libraries 

The viewer extension of EMF-IncQuery can be 

integrated with any Java based graph layout and 

visualization library, we found that none of the open 

source libraries can scale to the graph sizes that were 

required for Trans-IMA and more importantly their 

layout algorithms were unable to work incrementally. 

Therefore we chose yFiles for Java [12] to 

develop Trans-IMA views and integrated it with the 

viewer extension of EMF-IncQuery, even though 

yFiles uses AWT for visualization, while Eclipse user 

interfaces are built on SWT. 

The most important features of yFiles for Trans-

IMA were the following: (i) incremental layout 

algorithms scaling to thousands of graph nodes and 

edges, (ii) hierarchical graphs and closable group 

nodes and (iii) easy fine-tuning of layout and 

visualization parameters. 

 



Modeling architecture 

In order to support the envisaged model-driven 

Trans-IMA approach we defined a set of EMF 

metamodels to capture all the relevant information 

from the functional architecture and the hardware 

component libraries both defined in Matlab Simulink 

(depicted in Figure 6). The driving idea behind our 

modeling architecture is to (i) provide a platform 

(vendor) independent modeling layer for both the 

functional and hardware architecture allowing future 

extensions to other simulation and specification 

languages like AADL [13] and Modelica [14], 

respectively, (ii) allow instance model reusability for 

multiple allocation scenarios like single FAM to 

multiple PDM and vice-versa and finally (iii) define 

the metamodels from the beginning taking into 

account traceability through the complete process.  

To ease the understanding of the different 

metamodeling concepts we provide small example 

models from our running case-study. 
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Figure 6. Modeling architecture of Trans-IMA 

Input Matlab Simulink models  

The input models for the allocation process are 

the Component Library and the Functional 

Architecture defined in Matlab Simulink as a library 

and a system, respectively. Both of them are 

imported into the Trans-IMA framework carrying all 

relevant information required for the allocation 

process only, and does not include any other 

unnecessary specification for example the internal 

behavior (e.g., defined by Stateflow).  

Functional architecture model 

The goal of the Functional Architecture Model 

is to provide a cross-domain definition framework for 

capturing system functionalities and their 

corresponding information links. Its purpose is to 

help the system designer to focus on the high-level 

definition of the different functionalities and their 

interfacing without any platform/implementation 

specific details. Its most important building block is a 

function that represents a concept that later can be 

implemented either in software or hardware. 

Functions can contain other functions in any arbitrary 

depth, thus describing the required abstraction on the 

different levels. Additionally, it defines sensors and 

actuators for representing communication interfaces 

with the environment. A sample FAM is depicted in 

Figure 2 

Platform description model and component 

library 

The goal of the Platform Description Model is 

twofold: (i) it describes the general hardware building 

blocks available (e.g., computational unit, router, 

chassis, power unit, etc) and also captures the 

different vendor specific versions of these general 

building blocks (e.g., Wind River PPMC74xx board, 

etc). 

The model is always an instance of the 

Component Library Model (CLM) that is a Trans-

IMA specific representation of the Component 

Library defined in Matlab Simulink. This special 

instance relation between the elements of the PDM 

and the CLM are captured using soft-links as 

provided by the EMF-IncQuery framework. More 

details about dynamic typing and traceability 

between models from different domains are discussed 

in [15]. Sample models for our case study are 

depicted in Figure 3Figure 4 andFigure 5. 



Allocation specification model 

The Allocation Specification Model (ALS) 

contains all information that is defined during the 

Trans-IMA allocation process and is neither part of 

the FAM nor the PDM. This mainly includes: the 

mapping of the functions to the execution counterpart 

in the PDM, the information links to their 

corresponding communication paths, the routing 

tables for the communication paths and the software 

modeling components for the RTOSes (like, task, I/O 

Driver, etc. and partitions for IMA). 

As an example from, the allocation of functions 

AMS and Display system from the motivating 

example (see the FAM in Figure 2) to partitions of 

IMARTOSes (see the PDM in Figure 3) is illustrated 

in Figure 7. The partitions are created automatically 

by the ALS editor (see more details in Section 

Allocation specification editor) based on the 

selection of the user. Note that while the view shows 

the IMARTOS containing the partition which in turn 

encapsulates the function in order to help the user, 

the three elements are stored in separate models to 

allow fully flexible allocations. The two functions are 

connected with an information link and the view 

distinguishes links already allocated to paths by a 

different color (e.g., green). 

 

Figure 7. Allocation specification, variant I. 

Integrated architecture model 

The final output of the development process is 

the Integrated Architecture Model (IAM). It is a 

Matlab Simulink model that is capable of simulating 

the allocated HW-SW system of the aircraft. It 

directly refers to the Simulink representation of the 

Functional Architecture Model and contains the 

instantiated Matlab Simulink elements of the 

Component Library as defined by the system 

architect in the Platform Description Model. Its 

ultimate goal is to be able to simulate the integrated 

system and through these simulations validate some 

of its dependability aspects. 

Overview of Trans-IMA tooling 

A high-level overview of the internal 

architecture of the Trans-IMA framework is depicted 

in Figure 8. The different boxes represent different 

modules that encapsulate key functionalities of the 

overall system, while the red arrows represent the 

dataflow between these modules. These modules are 

explained in detail in the next section. 
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Figure 8. Overview of the Trans-IMA framework 

Simulink exporter/importer 

This module handles the seamless integration of 

Matlab Simulink models and libraries to the Trans-

IMA framework by providing a set of various import 

and export strategies. 

Simulink to FAM transformation 

The Simulink to FAM model transformation 

step is responsible for automatically transforming the 

imported Simulink model into its corresponding 

FAM representation.  

Computational library generalization 

The generalization step is used to import the 

different Computation library components (e.g., 



vendors’ specific details, etc) to the Eclipse platform 

and generate their representing EMF models. 

PDM editor 

Based on the imported Computation Library 

components the PDM Editor is used to design the 

platform description model. It is a graphical editor 

with multiple viewpoints for highlighting different 

segments (power, data etc.) of the underlying model. 

Allocation specification editor 

The ALS Editor provides a high-level IDE for 

defining the allocation between the functional and 

hardware architectures specified in the FAM and the 

PDM. As its key aspects it supports (i) multiple 

viewpoints on the underlying system, (ii) automated 

communication channel routing in the hardware level 

and (iii) on-the-fly consistency validation using well-

formedness constraints defined as EMF-IncQuery 

patterns. 

IAM transformation 

The IAM Transformation is responsible for 

generating the simulation-ready IAM model for 

Matlab Simulink. It consists of two parts, where (i) 

the PDM2Simulink model transformation simply 

instantiates a Simulink representation of the Platform 

Description based on the defined PDM and its 

corresponding Computation Library elements and (ii) 

the ALS2Simulink transformation that is used to 

generate the Integrated Architecture Model based on 

the allocation defined in Allocation Specification 

Editor. Additionally, the transformation does not 

create a completely new Simulink model as it 

(re)uses the Simulink representations of the FAM 

(through the import process) and the generated PDM  

Traceability generator 

To support the requirements imposed by DO-

178C on traceability the Trans-IMA tooling provides 

a Traceability Generator module that generates 

traceability matrices for the complete process. 

Trans-IMA modules 

Matlab-Simulink importer/exporter 

The main objective of the model 

importer/exporter is to allow manipulation of 

Simulink models within the Eclipse platform. 

Additionally, it provides direct traceability between 

the Matlab and Eclipse representations. 

In order to support the Trans-IMA requirements 

our module provides the following key features:  

(i) access to a running Matlab instance, (ii) Simulink 

library and model reference support and (iii) multiple 

import modes and options. 

Communicating with Matlab 

Our solution for converting Simulink models is 

based on a direct connection to a running Matlab 

instance. To access and process the models we use 

command line functions and scripts. During 

communication, the client sends commands to a Java 

remote method invocation (RMI) based server 

component. The server evaluates them by using the 

built-in Matlab Java interface, and passes the 

return values back to the client after execution. In 

case of import, the result of this process is a 

serialized EMF representation of the Simulink model. 

Upon export, a Simulink system based on an EMF 

model is created. 

As a unique feature, this integration also allows 

model initialization to be executed directly within 

Matlab. Furthermore, unlike many other external 

Simulink tools, that work directly on the persisted 

models, our solution uses the command line to 

process the models; therefore it is not affected by the 

various model format changes (e.g., mdl, slx). 

Handling libraries and model references 

In Simulink, models are built up from blocks, 

and blocks are collected in special models called 

libraries. Generally, models are created by copying 

blocks from libraries to models. Once a block is 

added to a model, a feature called a library link 

connects it to the original block. This keeps its 

internal structure synchronized with the block in the 

Simulink library as long as the link status is active.  

Special blocks, called model references allow 

referencing complete, already existing models. This 



mechanism is similar to linking to library blocks, and 

needs to be supported as well. 

These linking and referencing methods are 

respected by the importer/exporter. They do not only 

help the maintainability of the models, but also 

reduce the import/export time. For example, libraries 

imported only once can be referred multiple times. 

To ease the allocation processes, customizable 

import traversal strategies are supported regarding 

library links and model references. 

Import traversal strategies 

A traversal strategy consists of an import mode 

and arbitrary number of import filters. The Matlab 

importer/exporter module provides various import 

modes based on the aspects of hierarchical modeling 

of Matlab-Simulink: 

 Shallow: only blocks within non-linked 

blocks are imported 

 Deep: each block inside each subsystem is 

imported. Each referenced model is 

imported as an individual model with 

direct model referencing in the parent 

model 

 Flattening: each model reference block is 

imported as though it was a subsystem 

 Referencing: for blocks with active links, 

each source library is imported once as an 

individual model, but may be referenced 

multiple times 

Additionally, filtering allows precise model 

element selection. This customizable option controls 

which hierarchy levels to import, based on the 

parameters of the blocks.  

Exporting models from EMF 

The main purpose of the Simulink model export 

is to support the generation of complex IAM models. 

To achieve this, the following three features are 

supported: (i) to be able to reuse already existing 

models and libraries, (ii) automatic copying from 

libraries to models and (iii) creation of new systems. 

Simulink to FAM transformation 

Imported Simulink models contain model 

elements such as blocks, ports, signal connections 

and properties. However, in the Trans-IMA approach 

the same imported model describes the functional 

architecture of the system, which represents 

functions, sensors, actuators and the data flow 

between them. 

The challenge in creating a Simulink to FAM 

transformation is that an automated abstraction is 

required which derives an instance model of a DSL 

from an instance model described with general 

purpose Simulink. 

The transformation identifies the type of 

elements based on well-defined tags used in the 

subsystems of the imported model. The Simulink 

model of the functional architecture is often 

embedded in an environment model that supplies 

inputs and checks outputs against expected results. 

Therefore, the transformation also has to find the 

root blocks of the functional architecture, which is 

done by using EMF-IncQuery to query subsystems 

with a given tag regardless of where they are in the 

containment hierarchy. 

After creating the hierarchy of the functional 

architecture (root, intermediate and leaf functions), 

the transformation identifies information links 

represented by complex signal flows in Simulink. 

Outports of leaf functions may be connected to 

inports of other leaf functions through block 

hierarchy, bus creators and selectors, goto and from 

blocks. These complex flows are compressed by the 

transformation into direct links, while traceability 

information is also stored about which functional 

element represents which block, port or signal flow. 

Finally, certain properties of the Simulink 

elements represent attributes of the functional 

elements, such as design assurance level (DAL) or a 

list of requirements that are related to them. The 

transformation extracts the values of properties and 

converts them into the proper data type (e.g. 

enumeration for DAL values instead of strings). 

The transformation is defined as a set of 

precondition-action rules, where preconditions are 

model queries and actions are specified in Xtend. 



Computational library generalization 

The platform description model specifies the 

hardware architecture of the system and contains 

elements representing routers, processing units, 

chassis, power supplies and different buses. These 

concepts are defined by the PDM metamodel and the 

instance models conform to it. However, a specific 

system architecture does not contain a generic router, 

it uses a specific router from a library of available 

components compiled from the offering of suppliers. 

To support changes in such a computational 

library any time, this library is represented by a 

separate EMF model in Trans-IMA. However, since 

the aim of this approach is to simulate the 

functionality of the specified hardware in Simulink, 

the elements of the library are also defined as 

Simulink models. 

Similarly to the FAM, the computational library 

is created as an output of an automated 

transformation. The elements of the library are 

subsystems in Simulink, and their tags and location in 

the Simulink library hierarchy are used to identify 

the PDM concept that they specialize. The 

traceability between the library component and the 

corresponding Simulink block is also stored and used 

in the IAM transformation step. 

Since the computational library and the PDM 

models that use components from this library can be 

modified independently, it is important to handle 

cases where the component referred by a PDM 

element does not exist (e.g. it was deleted or an older 

version of the library is used, where it was not 

available yet). Storing simply a unique identifier of 

the component would make navigation, validation 

and editing cumbersome, therefore soft links 

managed by model queries are used to create type 

references between PDM element and component. 

Apart from validating that the component 

selected for an element is indeed a specialization of 

the type of the element (e.g. a power supply must 

refer to a component that represents a specific power 

supply, not a router), further constraints can be 

specified for components. For example, a given 

router component may have a precise number of 

ports. These constraints are also validated on the 

PDM instance model. 

PDM editor 

The specification of a complex platform 

description model involves several, often 

interconnected tasks, such as: 

 Definition of the physical containment 

hierarchy (which modules are contained 

by a chassis, how many independent 

modules are there). 

 Design of the power connections between 

producers and consumers. 

 Specification of environment sensors and 

actuators. 

 Description of communication ports and 

data connections. 

 Specification of operating systems and 

communication bridges of processing 

units. 

The PDM editor of the Trans-IMA approach 

supports all these tasks by extending the tree view 

based editor generated by EMF with complex model 

editing commands and different graph-based views 

that focus on a given task. 

The set of available complex commands 

depends on the current selection. For example, if a 

data connection is possible between two selected 

elements, a command can create the required data 

ports and connections, which would otherwise 

require an error-prone sequence of atomic editing 

operations from the user. 

Multiple graph-based views are created using 

the EMF-IncQuery viewer technology and visualized 

by yFiles. These views highlight different segments 

of the PDM model, for example the communication 

view shows data connections and the elements 

participating in them, but omits power supplies and 

power connections. The content and layout of the 

views are defined by annotations on declarative 

model queries, which make it very easy to extend or 

modify the views. 

Finally, the live validation extension of EMF-

IncQuery is also integrated with the PDM editor and 

it alerts the designer immediately if the constraints, 

specified by annotated model queries, are violated by 

the instance model. 



Allocation specification editor 

When performing the allocation of functions to 

the platform, the editor has to provide visual 

information on: 

 The hierarchy of functions, the 

information links between them and 

whether they are allocated or not. 

 The structure of the platform 

description model, especially the data 

connection paths between processing units. 

 The details of the allocation of both 

individual functions and the data 

connection paths selected for the 

information links. 

While the allocation of a function is 

straightforward by simply selecting one of the 

available RTOSes, the allocation of an information 

link is challenging. First, only information links 

between elements that are already allocated can be 

selected. Next, based on where the elements are 

allocated, all possible data connection paths are 

collected from the PDM model. This process is 

helped by queries and uses a specialized depth-first 

search to identify all possible paths (even through 

routers and data buses). These paths are visualized in 

the editor in a separate yFiles view also driven by the 

EMF-IncQuery viewer extension. 

The path selection is aided by weight functions 

(e.g. number of connections) which are evaluated on 

each path. When one of the paths is selected, the 

allocation is stored in the ALS model. This 

involves the configuration of software ports, IMA 

partitions, input-output drivers of communication 

bridges, and routing tables of routers. 

As an example, consider that function AMS is 

allocated to the IMARTOS running on 

ProcessingUnit 1 in Chassis 1 (see Figure 3 and 

Figure 4) and function Display system is allocated to 

Processing Unit 1 of Chassis 2. Figure 9 shows two 

possible communication paths that can be used for 

the information link between the two functions. Both 

alternatives pass through the communication bridge 

of their processing unit and the backplane data bus of 

the chassis. However, one path leads through AFDX 

Switch 1 using one set of I/O Modules, while the 

other passes AFDX Switch 2 through another set of 

I/O Modules. The ALS Editor can visualize any 

number of possible paths with overlapping parts 

correctly displayed without redundant elements. 

 

Figure 9. Two path variants for the AMS 

allocation 

The same functional architecture may be used in 

different allocations; similarly, the same platform 

description may be used in several allocation 

specifications. Therefore, the allocations 

specification editor must not modify the FAM and 

PDM models in any way when creating the 

allocations. Additionally, the editor also handles 

incomplete allocations, when the PDM or FAM 

models changed after the allocation. To avoid 

inconsistency problems, the editor supports the 

deletion of allocations and properly removes 

configuration elements as needed. 

 

Figure 10. Allocation specification, variant II. 

Figure 10 shows the functions AMS and Display 

system allocated to the same IMARTOS as a variant 

of the allocation described in Figure 7. Allocation 



specification, variant Although separate partitions are 

created for the two functions, the information link 

between them is not allocated manually, since no 

physical communication path is needed. Note that 

these different ALS models refer to the same FAM 

and PDM models and can describe design 

alternatives. 

IAM transformation 

A complete allocation (i.e. when all functional 

elements and information links are allocated) 

provides all the information required to synthetize an 

integrated architecture model of the system that is 

executable in Simulink. The Simulink model is 

created in EMF and later exported with our Matlab-

Simulink Exporter. 

PDM to Simulink transformation 

The main block hierarchy of the IAM model is 

created based on the PDM by (i) traversing the 

model, (ii) copying blocks from the Computational 

Library for each element, (iii) preparing the power 

and data connections specified in the model. 

The model is traversed by using model queries 

that abstract the detailed containment hierarchy of 

heterogeneous elements (e.g. chassis has slots with 

slotted elements and backplanes with buses). 

Each PDM element has a component type from 

the Computational Library, and these components in 

turn represent blocks in a Simulink library. Model 

queries are used to find the corresponding library 

block for each element and copy it to the IAM 

model. 

Finally, based on power and data connections in 

the PDM, the transformation creates inports and 

outports on the copied blocks and creates signal 

flow connections where specified. Note that the 

PDM ports are more complex than Simulink ports 

(e.g. it can represent fan-in, bidirectional ports); 

therefore often multiple Simulink ports are created 

for one PDM port. 

ALS to Simulink transformation 

The IAM is completed by (i) inserting the blocks 

representing functions into the structure prepared by 

the PDM to Simulink transformation and (ii) 

configuring the signal flows for information links. 

Functions in the FAM also correspond to library 

block in the input Simulink model. Based on the 

allocation, these library blocks are found by model 

queries and inserted into tasks inside execution 

containers (partitions for IMA or inside Federated 

RTOS). 

The information links describe where the output 

of a function has to be routed, while the path through 

the PDM is stored in the ALS model. The 

transformation creates the signal flow 

corresponding to the information link, keeps track 

of how deep the signal is packaged into signal buses 

and creates availability signals for each segment that 

are used in the simulation to inject faults. 

Finally, the transformation puts the complete 

IAM into a single library block which has the same 

interface (inports and outports) as the FAM, therefore 

it can be inserted into the existing environment 

model for simulation. 

Traceability generator 

The Trans-IMA tooling uses multiple, 

interconnected models as illustrated on Figure 6. 

While the correspondence between model elements 

can be used to explore traceability through design 

artifacts, it is important to provide traceability 

information in a representation that is (i) stored 

separately from the artifacts themselves, (ii) remains 

in synch with changing models, (iii) supports queries 

and traceability specific views for navigating on 

traceability chains and (iv) provides export 

capabilities to document formats used in certification 

(e.g. traceability matrix). 

External traceability models 

We created a traceability metamodel that defines 

concepts to represent domain models, their elements 

and traceability relationships between them, 

independent of the other Trans-IMA DSLs. This 

metamodel is extended in order to interconnect with 

the Simulink, FAM, PDM and IAM models, but the 

framework that handles traceability models deals 

only with the base metamodel. Therefore, the 

framework can be reused in different tools as well. 

The external traceability models are created 

using annotated model queries that identify 

relationships between domain elements of different 



models. The queries and instance models are the 

inputs of the framework that interprets the queries, 

iterates through all relationships represented by query 

results and stores domain elements. It is possible to 

select different modes for this storage, including (i) 

direct reference, (ii) unique identifier or (iii) soft link 

derived feature. 

Synchronization of traceability models 

The domain models may change after the 

traceability model has been created. Since the models 

may be large, it is important to synchronize the 

contents of the traceability model without recreating 

existing parts. We use the event-driven rule engine of 

EMF-IncQuery to add, remove or update domain 

objects and relationships in the traceability models 

incrementally. 

Navigating on traceability chains 

One of the most important use cases of 

traceability is to navigate through a chain of links to 

follow the evolution of artifacts. For example, it is 

possible to select a Simulink block that represents a 

function, follow a traceability link to the FAM then 

another link to the function allocation in the ALS and 

on to the blocks in the final IAM model. 

Once again, the visualization of traceability 

models and chains are supported through model 

queries over the traceability model and yFiles views 

driven by the viewer extension of EMF-IncQuery. 

Exporting traceability models 

While it is important to create and use 

traceability models inside the Trans-IMA tooling, 

there are cases when this traceability information is 

needed outside of the tool in a human readable (and 

often standard) format. 

We have created a model-to-text transformation 

that uses model queries and Xtend to process a 

traceability model created in Trans-IMA and prepares 

a traceability matrix in HTML. This matrix can be 

explored, printed and used in certification to ensure 

that the allocation is correct. 

Matlab-based simulation of IAM models 

Because the IAM is represented in Simulink, 

several analyses can be carried out using this model, 

specially leveraging some infrastructure already 

developed in previous projects at Embraer. The 

current section highlights a few of those analyses. 

One of the difficult points of designing an IMA 

system is that single failures or spatially correlated 

failures may affect several systems at the same time, 

more so than with federated systems. For example, a 

memory or processor failure may bring down 

applications from two or three different systems at 

the same time. Certainly, depending on the criticality 

level of the functions, the system has to be designed 

in such a way that the effects of a failure like this are 

tolerable. 

Due to the amount of failure modes and the 

different components, this analysis is very time 

consuming. One possible way to speed it up, 

especially in the early or middle design phases, when 

there are still several changes happening in the 

systems definitions, is to use simulation to ensure full 

coverage of all the failure cases. 

As an example, suppose there is a CAS message 

whose absence (false negative) has catastrophic 

consequences. Therefore, it must be ensured that no 

single failure is able to cause this situation and that 

any combination of two failures has a probability rate 

smaller than 10
-9

 per flight hour to cause this event. A 

combinatorial search of all the pairs of failures may 

ensure these cases are covered or find all the possible 

cases faster than a traditional analysis would. This 

method can also be used to generate better fault-

isolation rules for the systems. This usually has only 

minor safety impact but it is very important for 

reducing operational costs. 

Another example were having a time-domain 

simulation model is useful is to analyze increase in 

crew workload due to failures. In this case, the IAM 

(plus the other models needed by the flight simulator) 

is loaded in the simulation and test runs are done with 

pilots.  

Additionally, Simulink makes it easy to do 

several (but not all) timing-related simulations. 

Different physical platforms and different allocations 



may produce different time delays for some results. 

Some of these time delays may be very relevant for 

handling qualities. However, as a known 

disadvantage Simulink is not well suited for 

simulating the asynchronous aspects of the system.  

The ultimate goal of the Trans-IMA approach is 

to provide significant speed up in the early simulation 

based analysis of the complete HW-SW system, 

where the tooling is aiming to ease the allocation 

process by the application of abstraction based 

model-driven engineering techniques.  

Related work 

As the definition and configuration of avionics 

systems constitute a significant part of the complete 

aircraft development, research in the area is very 

active to provide better tooling and analysis both in 

academia and industry. The current section shortly 

highlights similar research directions on IMA and 

ARINC 653 design from the literature 

One key area is to increase development 

effectiveness by using model-based techniques such 

as: early model-based validation and analysis using 

formal methods such as model checking and theorem 

proving [16], automated generation of application 

source code for ARINC 653 compatible RTOSs from 

high-level models [17], advanced IDE and validation 

support for the definition of ARINC-653 

configuration artifacts such as Partition Operating 

System (POS), Module Operating System (MOS) and 

health monitoring tables [18], high-level architectural 

design of partition level application and their internal 

structure using state machines [17] and multi-aspect 

optimization of IMA systems taking into account 

simultaneously physical factors, software and 

hardware allocation and communication architecture 

in the optimization process [19]. 

Similar to our work, both [20] and [21] proposed 

a mainly simulation based early validation of IMA 

systems using the Cheddar and the SystemC 

simulation framework, respectively. However, both 

approaches focus on scheduling of partitions and 

their communication means, while in our case we 

simulate the behavior of the system in case of 

element level (e.g., partition, router, etc) errors and 

provide feedback on dependability characteristics. 

Finally, our work in certain aspects is a direct 

continuation of the DIANA framework [22] 

developed in cooperation with Embraer, GMV, NLR 

and Thales in a European FP6 project. We applied 

similar contract based validation analysis for each 

design step and also followed the same abstraction 

based refinement and allocation concept to derive the 

ARINC 653 configuration artifacts for the mos, pos 

and health tables. 

Conclusion and future work 

In the current paper, we introduced an 

abstraction based allocation approach for defining 

complex HW-SW avionics architectures using 

model-driven techniques to allow Simulink based 

analysis.  

As an additional achievement the resulting 

Trans-IMA framework was built on state-of-the-art, 

open source technologies with Eclipse providing core 

functionalities and common user interface elements, 

Eclipse Modeling Framework (EMF) as the 

foundation for all domain models and EMF-IncQuery 

for the efficient, realization of the automated model 

queries and transformations. We plan to submit some 

parts of the framework to the PolarSys Working 

Group [23] to support the open source initiative with 

reusable tools.  

As for the future we aim to enhance our 

framework to support: (i) the automatic generation of 

routing tables based on the allocation specification, 

(ii) the automatic calculation of the communication 

paths based on safety and bandwidth constraints and 

finally, (iii) automated instantiation and allocation of 

safety-critical redundant functions. 
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