
HARDWARE-SOFTWARE ALLOCATION SPECIFICATION OF

IMA SYSTEMS FOR EARLY SIMULATION

Ákos Horváth, Ábel Hegedüs, Márton Búr, Dániel Varró, Budapest University of Technology and

Economics, Department of Measurement and Information, Budapest, Hungary

Rodrigo R. Starr, Samoel Mirachi, EMBRAER, Sao Jose dos Campos, SP, Brazil

Abstract

Model-driven engineering (MDE) is becoming a

key approach in systems engineering, including

Integrated Modular Avionics (IMA) design. It relies

on systematic use of models from an early phase of

the design process to provide source code generation,

validation and analysis support. However, due to the

complexity of IMA systems – that may incorporate

hundreds of avionics functions and dozens of

execution nodes – even early stage model-based

analysis of their design can become cumbersome.

This is especially true for safety related non-

functional requirements like communication channel

redundancy or error propagation and contamination.

In this paper, we present a model-driven

framework to support the iterative design and

analysis of IMA systems using an integrated

Simulink model for analyzing the complete HW-SW

architecture of the system.

Introduction

Modern Integrated Modular Avionics systems

bring a lot of flexibility to avionics systems

development, but with this flexibility comes a more

challenging design process for precisely configuring

its hardware-software execution platform. This

significantly raises the complexity of IMA system

design compared to federated architectures, where the

application software is statically allocated to its

execution hardware.

Within IMA each possible configuration has to

fulfill several different functional and non-functional

requirements (e.g. safety, bus capacities, timing),

with some typically unknown at the early stage of

design. To overcome this limitation typical system

design approaches execute an iterative development

process, where the first iterations explore a larger part

of the design space to define the boundaries of the

system high-level architecture and later iterations

focus on low-level details within the defined

boundaries. However, due to the complexity of IMA

systems, even the early, high-level analysis can take a

considerable amount of time and effort especially,

when taking into account safety requirements,

making it viable economically to invest in tools to

automate the definition and analysis of these types of

system.

In the current paper, we present the results of the

Trans-IMA project – a co-operation between

Embraer and the Budapest University of Technology

and Economics – that defined a model-driven

approach to support the iterative design, refinement

and analysis of IMA systems. The approach is based

on the automated generation of an integrated

Simulink model for analyzing the complete

hardware-software architecture of the system using a

high-level allocation process for mapping the

avionics functions to their executing or implementing

hardware platform.

The approach was realized on the Eclipse

platform [1] as it provides cutting edge modeling

features ranging from model definition to model

querying and management.

Outline

In order to introduce our approach we first (i)

provide an overview that describes the main artifacts

of Trans-IMA and (ii) present a motivating case

study. Next, we (iii) list enabling technologies with

their main features. After (iv) describing the

modeling architecture and (v) the overview of the

tooling, we (vi) provide details for each module.

Finally, we (vii) highlight related research and (viii)

conclude the work.

Trans-IMA approach

Trans-IMA aims at defining a model-driven

framework for the synthesis of complex, integrated

Matlab Simulink models capable of simulating the

software and hardware architecture of the avionics

system of an aircraft. A high-level overview of our

approach is depicted in Figure 1.

Figure 1. The Trans-IMA approach

The avionics functions are defined using a

Functional Architecture Model (FAM). A FAM is

an abstraction of the avionics functions including

their functional decomposition and their

corresponding information links (the data flow

structure) from a Simulink model. This functional

model can have a varying level of detail, depending

on the phase of the project and the goal of the

analysis.

The underlying hardware architecture is defined

using a dedicated Platform Description Model

(PDM). PDM defines a set of generic components

(such as routers, processing units, buses, chassis etc.)

that can be used to define the overall execution and

communication architectures. The internal behavior

of these generic components is defined in various

Simulink libraries (Component Libraries) to

support the different simulation goals and provide an

extension mechanism for vendor specific hardware

elements.

Based on systems defined by a FAM and a PDM

the system architect can specify an allocation

between the functions and their execution platform.

The allocation itself includes two major phases: (i)

the mapping of avionics functions to the underlying

execution elements and (ii) the automated discovery

and selection of available communication paths in the

hardware architecture for the various information

links defined between the avionics functions. Finally,

when the allocation is complete – all functions and

information links are allocated – and fulfills the

safety and design requirements, an integrated

Simulink model – called Integrated Architecture

Model (IAM) – is automatically generated, where all

Simulink specific configurations like bus creators and

selectors, library links and model references are

configured. This integrated model can then be

submitted to a common set of tests and analyses to

generate performance figures for each allocation

configuration.

This early separation of concerns between the

functions and their execution hardware enables two

major advantages in the design process: (i) first,

during hardware supplier procurement it allows fast

evaluation of the advantages and disadvantages of

each proponent's architecture, since the (preliminary)

avionics functions are reused and only a new

hardware architecture model and allocation have to

be done for each proposal. (ii) In later phases of

design, when a platform supplier is already selected,

typically the hardware architecture is defined, but the

avionics functions may be varying based on newly

occurring derived requirements or function provider

requests that require the rapid reevaluation of several

allocation options. Again, the framework allows

reusing already defined allocations between slightly

modified functions to the same hardware architecture

allowing reallocation only of the changed parts and

thus significantly reducing reevaluation time for the

different options.

As a summary, our approach applies an

abstraction based approach for defining complex

IMA hardware-software architectures using model-

driven techniques that allows the automated

generation of an integrated Simulink representation

for analysis and simulation purposes.

A motivating case-study

The motivation behind the Trans-IMA approach

can be demonstrated with a simple avionics system

example including a functional architecture that may

be allocated to two different physical architectures.

The example is loosely based on the IMA system of

the A380 as described in [2]. The functional model

may be inherited from previous programs and allows

the study of different physical architectures in the

preliminary design phase.

The top-level view of the functional architecture

is shown in Figure 2, with sensors and actuators

differentiated from functions by color and label. Note

that FADEC Functions integrates a non-IMA system

that can work as a stub for software that is owned by

one of the suppliers. Functions may be decomposed

into sub-functions to form a hierarchy.

Figure 2. Functional architecture

The physical architecture has a chassis

configuration as a building block, as shown in Figure

3. The chassis has three processing units, each with

an IMA RTOS and communication bridge, powered

by two power supplies and connected to two

input/output (I/O) modules through a databus in the

backplane of the chassis. The I/O modules connect to

AFDX switches for inter-chassis communication.

Figure 3. Detailed chassis platform description

Two different platform descriptions are studied,

with the first variant shown in Figure 4. It contains

two chassis with three processing units each,

connected by two AFDX switches. In addition, they

both connect to the federated unit FADEC.

Figure 4. Platform description, variant I.

The second platform description variant, shown

in Figure 5
1
, uses three chassis, each containing only

two processing units, with only two of them

connected to the FADEC.

Figure 5. Platform description, variant II.

By studying two variants, it is possible to

evaluate the trade-offs between placing more

processing units into fewer chassis while the addition

of another chassis may increase communication

overhead in the switches and introduces constraints

on the allocation, since the third chassis is not

connected to FADEC.

In the Trans-IMA approach, this case study also

demonstrates the importance of reusing allocation

specifications as details are added to the functional

model and when switching between platform

variants.

Finally, the example illustrates that to provide

usability in addition to functionality, the Trans-IMA

tooling has to support hierarchical models and views

that focus on specific fragments of the model.

1 Note that these figures are taken directly from the Trans-IMA

Tooling without modification.

Enabling technologies

MDE relies on two key technologies that allow

the definition and manipulation of models, called,

metamodeling and model transformation,

respectively.

Metamodeling is a methodology for the

definition of modeling languages. A metamodel

specifies the syntax (structure) of a language.

Metamodels are expressed using a metamodeling

language that itself is a modeling language. The

metamodel can also be interpreted as the object-

oriented data model of the language under design.

There are several different metamodeling

environments, most widely used are the Meta Object

Facility (MOF) [3] from OMG and the Eclipse

Modeling Framework (EMF) [4] (a subset of MOF).

Model transformations (MT) are the backbone

of the MDE concept. Primarily, MTs are responsible

for transforming the various models into each other.

However, MTs can also define views on models and

synchronization between different models (like UML

class diagrams and relational database schemas).

Moreover, engineering models are frequently mapped

into mathematical domains by model transformations

to carry out model analysis as early model based

verification. Well-known approaches for high-level

declarative specification of model transformations are

the ATLAS Transformation Language (ATL) [5], the

VIATRA2 (VIsual Automated model

TRAnsformations) system [6] and the GReAT (Graph

Rewrite And Transformation) framework [7].

The Trans-IMA approach is built on top of the

Eclipse platform and integrates several open source

technologies to support the required use cases.

Eclipse modeling framework (EMF)

EMF is a core Eclipse technology that supports

the definition of domain-specific languages (DSLs)

through metamodeling and provides a code

generation facility that derives interfaces and ready-

to-use implementation for a DSL. A large number of

Eclipse applications include EMF based DSLs or

provide additional features to work with EMF models

(e.g. validation, transformation, user interface forms).

The metamodeling language of EMF is called

Ecore and it supports the definition of interconnected

metamodels (also called Ecore models) thus it is

possible to extend and integrate existing DSLs in a

straightforward way.

Ecore models are processed by the code

generation facility of EMF that also uses a generator

model which can be used to customize the generation

process. The generated code includes the interfaces

and implementation for metamodel classes, several

utility classes for processing and creating instance

models, additional classes for binding the elements of

the models to UI components and finally a fully

featured tree view-based editor for viewing, creating

and modifying instance models.

From the tool development point of view, one of

the main advantages of EMF is that it provides a

reflective API that can be used for handling instance

models conforming to any metamodel without

knowing about the metamodel when the tool is

created. Thus generic EMF tools can provide features

(e.g. validation, transformation, graph-based views)

for any DSL.

In addition, since EMF models are accessed

through interfaces, it is possible to replace the

implementation without affecting existing

applications. For example, the instance models may

be read from and stored in a database or derive from

the data representation of a legacy application.

Finally, EMF provides a command stack based

editing functionality which supports transactional

access including undoing and redoing model changes.

Thanks to its well-defined core and wide

usability, EMF is considered the de facto standard for

modeling in the Eclipse ecosystem. The high number

of EMF based tools also signifies that it is a mature

technology.

EMF-IncQuery

EMF-IncQuery [8] is a model query framework

for EMF models which includes a declarative query

language [9] based on graph patterns and a very

efficient incremental pattern matcher. Model queries

are specified in a text editor created using Xtext

which is a framework for developing textual domain-

specific languages. It is possible to define queries

over arbitrary EMF metamodels and then execute

them efficiently and incrementally, with proven

scalability [10] for complex queries and large

instance models (with millions of model elements).

Incremental execution is backed by internal caches of

partial query results, which are updated based only on

model changes without traversing the complete

model. The results of a query are always up-to-date

and instantly available to the user.

In the query language graph patterns are

represented by a set of constraints, where variables

can refer to model elements and attributes. Structural

constraints prescribe the interconnection of model

elements of a given type, while attribute constraints

are defined using expressions. A negative application

condition (NAC) defines cases when the original

pattern is not valid, in the form of a negative sub-

pattern. In addition, check constraints allow the

execution of pure, deterministic functional methods

(with no side-effects).

The incremental pattern matcher uses a Rete-

based approach [10] that relies on a network of nodes

storing partial matches of patterns. Input nodes

represent underlying EMF model elements,

intermediate nodes are used to execute basic

operations (e.g. filtering, projection or join), while

match results are available as an output (or

production) node. The input nodes of the network are

set up to receive notifications about changes affecting

the EMF models and these nodes release update

tokens to related intermediate nodes. Rete nodes

update their caches based on these tokens and

propagate updates through the network, eventually

influencing the match results stored in production

nodes.

As a distinguishing feature, queries can be

integrated into existing applications by processing

query results through an easy-to-use API and by

taking advantage of extensions [10] for viewers and

data binding to user interface components, live

validation of constraints, query-based derived

features. EMF-IncQuery also supports query libraries

which contain reusable definitions that can be

integrated into complex queries using the pattern

composition concept of the query language.

Each EMF-IncQuery extension is developed to

work in an incremental way as well. To provide a

common foundation for these extensions, EMF-

IncQuery has an event-driven rule engine that can

also be used for tool developers and supports both

batch and incremental model transformations.

Xtend

Xtend [11] is a programming language that is

often called “modernized Java” because it is based on

Java, generates Java source code, interoperates with

any Java code but includes a large set of

improvements over Java, such as type inference,

lambda expressions, dispatch methods and template

expressions.

Since EMF-IncQuery focuses on model queries

and does not have a complete transformation

language (contrary to VIATRA2), model

transformations in Trans-IMA were developed in

Xtend. Both the query engine and event-driven rule

engine APIs are well suited for Xtend and we also

developed an internal DSL which incorporated the

basic functionality required to define event-driven

model transformations in Xtend.

Thanks to several language features, we were

able to create more concise and maintainable

transformations than would have been possible in

plain Java.

Graph layout and visualization libraries

The viewer extension of EMF-IncQuery can be

integrated with any Java based graph layout and

visualization library, we found that none of the open

source libraries can scale to the graph sizes that were

required for Trans-IMA and more importantly their

layout algorithms were unable to work incrementally.

Therefore we chose yFiles for Java [12] to

develop Trans-IMA views and integrated it with the

viewer extension of EMF-IncQuery, even though

yFiles uses AWT for visualization, while Eclipse user

interfaces are built on SWT.

The most important features of yFiles for Trans-

IMA were the following: (i) incremental layout

algorithms scaling to thousands of graph nodes and

edges, (ii) hierarchical graphs and closable group

nodes and (iii) easy fine-tuning of layout and

visualization parameters.

Modeling architecture

In order to support the envisaged model-driven

Trans-IMA approach we defined a set of EMF

metamodels to capture all the relevant information

from the functional architecture and the hardware

component libraries both defined in Matlab Simulink

(depicted in Figure 6). The driving idea behind our

modeling architecture is to (i) provide a platform

(vendor) independent modeling layer for both the

functional and hardware architecture allowing future

extensions to other simulation and specification

languages like AADL [13] and Modelica [14],

respectively, (ii) allow instance model reusability for

multiple allocation scenarios like single FAM to

multiple PDM and vice-versa and finally (iii) define

the metamodels from the beginning taking into

account traceability through the complete process.

To ease the understanding of the different

metamodeling concepts we provide small example

models from our running case-study.

Matlab Simulink

Matlab Simulink

Component
Library

Component
Library
Model

Allocation
Specificati
on Model

Integrated
Architecture

Model

Functional
Architecture

Platform
Descrption

Model

Functional
Architecture

Model

uses

instanceOf

transform

uses

import import

refers toinstanceOf

TR
A

N
S-

IM
A

 T
O

O
LI

N
G

Figure 6. Modeling architecture of Trans-IMA

Input Matlab Simulink models

The input models for the allocation process are

the Component Library and the Functional

Architecture defined in Matlab Simulink as a library

and a system, respectively. Both of them are

imported into the Trans-IMA framework carrying all

relevant information required for the allocation

process only, and does not include any other

unnecessary specification for example the internal

behavior (e.g., defined by Stateflow).

Functional architecture model

The goal of the Functional Architecture Model

is to provide a cross-domain definition framework for

capturing system functionalities and their

corresponding information links. Its purpose is to

help the system designer to focus on the high-level

definition of the different functionalities and their

interfacing without any platform/implementation

specific details. Its most important building block is a

function that represents a concept that later can be

implemented either in software or hardware.

Functions can contain other functions in any arbitrary

depth, thus describing the required abstraction on the

different levels. Additionally, it defines sensors and

actuators for representing communication interfaces

with the environment. A sample FAM is depicted in

Figure 2

Platform description model and component

library

The goal of the Platform Description Model is

twofold: (i) it describes the general hardware building

blocks available (e.g., computational unit, router,

chassis, power unit, etc) and also captures the

different vendor specific versions of these general

building blocks (e.g., Wind River PPMC74xx board,

etc).

The model is always an instance of the

Component Library Model (CLM) that is a Trans-

IMA specific representation of the Component

Library defined in Matlab Simulink. This special

instance relation between the elements of the PDM

and the CLM are captured using soft-links as

provided by the EMF-IncQuery framework. More

details about dynamic typing and traceability

between models from different domains are discussed

in [15]. Sample models for our case study are

depicted in Figure 3Figure 4 andFigure 5.

Allocation specification model

The Allocation Specification Model (ALS)

contains all information that is defined during the

Trans-IMA allocation process and is neither part of

the FAM nor the PDM. This mainly includes: the

mapping of the functions to the execution counterpart

in the PDM, the information links to their

corresponding communication paths, the routing

tables for the communication paths and the software

modeling components for the RTOSes (like, task, I/O

Driver, etc. and partitions for IMA).

As an example from, the allocation of functions

AMS and Display system from the motivating

example (see the FAM in Figure 2) to partitions of

IMARTOSes (see the PDM in Figure 3) is illustrated

in Figure 7. The partitions are created automatically

by the ALS editor (see more details in Section

Allocation specification editor) based on the

selection of the user. Note that while the view shows

the IMARTOS containing the partition which in turn

encapsulates the function in order to help the user,

the three elements are stored in separate models to

allow fully flexible allocations. The two functions are

connected with an information link and the view

distinguishes links already allocated to paths by a

different color (e.g., green).

Figure 7. Allocation specification, variant I.

Integrated architecture model

The final output of the development process is

the Integrated Architecture Model (IAM). It is a

Matlab Simulink model that is capable of simulating

the allocated HW-SW system of the aircraft. It

directly refers to the Simulink representation of the

Functional Architecture Model and contains the

instantiated Matlab Simulink elements of the

Component Library as defined by the system

architect in the Platform Description Model. Its

ultimate goal is to be able to simulate the integrated

system and through these simulations validate some

of its dependability aspects.

Overview of Trans-IMA tooling

A high-level overview of the internal

architecture of the Trans-IMA framework is depicted

in Figure 8. The different boxes represent different

modules that encapsulate key functionalities of the

overall system, while the red arrows represent the

dataflow between these modules. These modules are

explained in detail in the next section.

Simulink
Importer

Simulink
Exporter

Simulink to
FAM

Transformation

PDM Editor
Allocation

Specification
Editor

IAM Transformation

Traceability
Generator

PDM2Simulink

import

Computational
Library

Generalization

transform input

instantiate

input

generate

ALS2Simulink

import

input

TR
A

N
S-

IM
A

 T
o

o
lin

g
E

cl
ip

se
 p

la
tf

o
rm

Figure 8. Overview of the Trans-IMA framework

Simulink exporter/importer

This module handles the seamless integration of

Matlab Simulink models and libraries to the Trans-

IMA framework by providing a set of various import

and export strategies.

Simulink to FAM transformation

The Simulink to FAM model transformation

step is responsible for automatically transforming the

imported Simulink model into its corresponding

FAM representation.

Computational library generalization

The generalization step is used to import the

different Computation library components (e.g.,

vendors’ specific details, etc) to the Eclipse platform

and generate their representing EMF models.

PDM editor

Based on the imported Computation Library

components the PDM Editor is used to design the

platform description model. It is a graphical editor

with multiple viewpoints for highlighting different

segments (power, data etc.) of the underlying model.

Allocation specification editor

The ALS Editor provides a high-level IDE for

defining the allocation between the functional and

hardware architectures specified in the FAM and the

PDM. As its key aspects it supports (i) multiple

viewpoints on the underlying system, (ii) automated

communication channel routing in the hardware level

and (iii) on-the-fly consistency validation using well-

formedness constraints defined as EMF-IncQuery

patterns.

IAM transformation

The IAM Transformation is responsible for

generating the simulation-ready IAM model for

Matlab Simulink. It consists of two parts, where (i)

the PDM2Simulink model transformation simply

instantiates a Simulink representation of the Platform

Description based on the defined PDM and its

corresponding Computation Library elements and (ii)

the ALS2Simulink transformation that is used to

generate the Integrated Architecture Model based on

the allocation defined in Allocation Specification

Editor. Additionally, the transformation does not

create a completely new Simulink model as it

(re)uses the Simulink representations of the FAM

(through the import process) and the generated PDM

Traceability generator

To support the requirements imposed by DO-

178C on traceability the Trans-IMA tooling provides

a Traceability Generator module that generates

traceability matrices for the complete process.

Trans-IMA modules

Matlab-Simulink importer/exporter

The main objective of the model

importer/exporter is to allow manipulation of

Simulink models within the Eclipse platform.

Additionally, it provides direct traceability between

the Matlab and Eclipse representations.

In order to support the Trans-IMA requirements

our module provides the following key features:

(i) access to a running Matlab instance, (ii) Simulink

library and model reference support and (iii) multiple

import modes and options.

Communicating with Matlab

Our solution for converting Simulink models is

based on a direct connection to a running Matlab

instance. To access and process the models we use

command line functions and scripts. During

communication, the client sends commands to a Java

remote method invocation (RMI) based server

component. The server evaluates them by using the

built-in Matlab Java interface, and passes the

return values back to the client after execution. In

case of import, the result of this process is a

serialized EMF representation of the Simulink model.

Upon export, a Simulink system based on an EMF

model is created.

As a unique feature, this integration also allows

model initialization to be executed directly within

Matlab. Furthermore, unlike many other external

Simulink tools, that work directly on the persisted

models, our solution uses the command line to

process the models; therefore it is not affected by the

various model format changes (e.g., mdl, slx).

Handling libraries and model references

In Simulink, models are built up from blocks,

and blocks are collected in special models called

libraries. Generally, models are created by copying

blocks from libraries to models. Once a block is

added to a model, a feature called a library link

connects it to the original block. This keeps its

internal structure synchronized with the block in the

Simulink library as long as the link status is active.

Special blocks, called model references allow

referencing complete, already existing models. This

mechanism is similar to linking to library blocks, and

needs to be supported as well.

These linking and referencing methods are

respected by the importer/exporter. They do not only

help the maintainability of the models, but also

reduce the import/export time. For example, libraries

imported only once can be referred multiple times.

To ease the allocation processes, customizable

import traversal strategies are supported regarding

library links and model references.

Import traversal strategies

A traversal strategy consists of an import mode

and arbitrary number of import filters. The Matlab

importer/exporter module provides various import

modes based on the aspects of hierarchical modeling

of Matlab-Simulink:

 Shallow: only blocks within non-linked

blocks are imported

 Deep: each block inside each subsystem is

imported. Each referenced model is

imported as an individual model with

direct model referencing in the parent

model

 Flattening: each model reference block is

imported as though it was a subsystem

 Referencing: for blocks with active links,

each source library is imported once as an

individual model, but may be referenced

multiple times

Additionally, filtering allows precise model

element selection. This customizable option controls

which hierarchy levels to import, based on the

parameters of the blocks.

Exporting models from EMF

The main purpose of the Simulink model export

is to support the generation of complex IAM models.

To achieve this, the following three features are

supported: (i) to be able to reuse already existing

models and libraries, (ii) automatic copying from

libraries to models and (iii) creation of new systems.

Simulink to FAM transformation

Imported Simulink models contain model

elements such as blocks, ports, signal connections

and properties. However, in the Trans-IMA approach

the same imported model describes the functional

architecture of the system, which represents

functions, sensors, actuators and the data flow

between them.

The challenge in creating a Simulink to FAM

transformation is that an automated abstraction is

required which derives an instance model of a DSL

from an instance model described with general

purpose Simulink.

The transformation identifies the type of

elements based on well-defined tags used in the

subsystems of the imported model. The Simulink

model of the functional architecture is often

embedded in an environment model that supplies

inputs and checks outputs against expected results.

Therefore, the transformation also has to find the

root blocks of the functional architecture, which is

done by using EMF-IncQuery to query subsystems

with a given tag regardless of where they are in the

containment hierarchy.

After creating the hierarchy of the functional

architecture (root, intermediate and leaf functions),

the transformation identifies information links

represented by complex signal flows in Simulink.

Outports of leaf functions may be connected to

inports of other leaf functions through block

hierarchy, bus creators and selectors, goto and from

blocks. These complex flows are compressed by the

transformation into direct links, while traceability

information is also stored about which functional

element represents which block, port or signal flow.

Finally, certain properties of the Simulink

elements represent attributes of the functional

elements, such as design assurance level (DAL) or a

list of requirements that are related to them. The

transformation extracts the values of properties and

converts them into the proper data type (e.g.

enumeration for DAL values instead of strings).

The transformation is defined as a set of

precondition-action rules, where preconditions are

model queries and actions are specified in Xtend.

Computational library generalization

The platform description model specifies the

hardware architecture of the system and contains

elements representing routers, processing units,

chassis, power supplies and different buses. These

concepts are defined by the PDM metamodel and the

instance models conform to it. However, a specific

system architecture does not contain a generic router,

it uses a specific router from a library of available

components compiled from the offering of suppliers.

To support changes in such a computational

library any time, this library is represented by a

separate EMF model in Trans-IMA. However, since

the aim of this approach is to simulate the

functionality of the specified hardware in Simulink,

the elements of the library are also defined as

Simulink models.

Similarly to the FAM, the computational library

is created as an output of an automated

transformation. The elements of the library are

subsystems in Simulink, and their tags and location in

the Simulink library hierarchy are used to identify

the PDM concept that they specialize. The

traceability between the library component and the

corresponding Simulink block is also stored and used

in the IAM transformation step.

Since the computational library and the PDM

models that use components from this library can be

modified independently, it is important to handle

cases where the component referred by a PDM

element does not exist (e.g. it was deleted or an older

version of the library is used, where it was not

available yet). Storing simply a unique identifier of

the component would make navigation, validation

and editing cumbersome, therefore soft links

managed by model queries are used to create type

references between PDM element and component.

Apart from validating that the component

selected for an element is indeed a specialization of

the type of the element (e.g. a power supply must

refer to a component that represents a specific power

supply, not a router), further constraints can be

specified for components. For example, a given

router component may have a precise number of

ports. These constraints are also validated on the

PDM instance model.

PDM editor

The specification of a complex platform

description model involves several, often

interconnected tasks, such as:

 Definition of the physical containment

hierarchy (which modules are contained

by a chassis, how many independent

modules are there).

 Design of the power connections between

producers and consumers.

 Specification of environment sensors and

actuators.

 Description of communication ports and

data connections.

 Specification of operating systems and

communication bridges of processing

units.

The PDM editor of the Trans-IMA approach

supports all these tasks by extending the tree view

based editor generated by EMF with complex model

editing commands and different graph-based views

that focus on a given task.

The set of available complex commands

depends on the current selection. For example, if a

data connection is possible between two selected

elements, a command can create the required data

ports and connections, which would otherwise

require an error-prone sequence of atomic editing

operations from the user.

Multiple graph-based views are created using

the EMF-IncQuery viewer technology and visualized

by yFiles. These views highlight different segments

of the PDM model, for example the communication

view shows data connections and the elements

participating in them, but omits power supplies and

power connections. The content and layout of the

views are defined by annotations on declarative

model queries, which make it very easy to extend or

modify the views.

Finally, the live validation extension of EMF-

IncQuery is also integrated with the PDM editor and

it alerts the designer immediately if the constraints,

specified by annotated model queries, are violated by

the instance model.

Allocation specification editor

When performing the allocation of functions to

the platform, the editor has to provide visual

information on:

 The hierarchy of functions, the

information links between them and

whether they are allocated or not.

 The structure of the platform

description model, especially the data

connection paths between processing units.

 The details of the allocation of both

individual functions and the data

connection paths selected for the

information links.

While the allocation of a function is

straightforward by simply selecting one of the

available RTOSes, the allocation of an information

link is challenging. First, only information links

between elements that are already allocated can be

selected. Next, based on where the elements are

allocated, all possible data connection paths are

collected from the PDM model. This process is

helped by queries and uses a specialized depth-first

search to identify all possible paths (even through

routers and data buses). These paths are visualized in

the editor in a separate yFiles view also driven by the

EMF-IncQuery viewer extension.

The path selection is aided by weight functions

(e.g. number of connections) which are evaluated on

each path. When one of the paths is selected, the

allocation is stored in the ALS model. This

involves the configuration of software ports, IMA

partitions, input-output drivers of communication

bridges, and routing tables of routers.

As an example, consider that function AMS is

allocated to the IMARTOS running on

ProcessingUnit 1 in Chassis 1 (see Figure 3 and

Figure 4) and function Display system is allocated to

Processing Unit 1 of Chassis 2. Figure 9 shows two

possible communication paths that can be used for

the information link between the two functions. Both

alternatives pass through the communication bridge

of their processing unit and the backplane data bus of

the chassis. However, one path leads through AFDX

Switch 1 using one set of I/O Modules, while the

other passes AFDX Switch 2 through another set of

I/O Modules. The ALS Editor can visualize any

number of possible paths with overlapping parts

correctly displayed without redundant elements.

Figure 9. Two path variants for the AMS

allocation

The same functional architecture may be used in

different allocations; similarly, the same platform

description may be used in several allocation

specifications. Therefore, the allocations

specification editor must not modify the FAM and

PDM models in any way when creating the

allocations. Additionally, the editor also handles

incomplete allocations, when the PDM or FAM

models changed after the allocation. To avoid

inconsistency problems, the editor supports the

deletion of allocations and properly removes

configuration elements as needed.

Figure 10. Allocation specification, variant II.

Figure 10 shows the functions AMS and Display

system allocated to the same IMARTOS as a variant

of the allocation described in Figure 7. Allocation

specification, variant Although separate partitions are

created for the two functions, the information link

between them is not allocated manually, since no

physical communication path is needed. Note that

these different ALS models refer to the same FAM

and PDM models and can describe design

alternatives.

IAM transformation

A complete allocation (i.e. when all functional

elements and information links are allocated)

provides all the information required to synthetize an

integrated architecture model of the system that is

executable in Simulink. The Simulink model is

created in EMF and later exported with our Matlab-

Simulink Exporter.

PDM to Simulink transformation

The main block hierarchy of the IAM model is

created based on the PDM by (i) traversing the

model, (ii) copying blocks from the Computational

Library for each element, (iii) preparing the power

and data connections specified in the model.

The model is traversed by using model queries

that abstract the detailed containment hierarchy of

heterogeneous elements (e.g. chassis has slots with

slotted elements and backplanes with buses).

Each PDM element has a component type from

the Computational Library, and these components in

turn represent blocks in a Simulink library. Model

queries are used to find the corresponding library

block for each element and copy it to the IAM

model.

Finally, based on power and data connections in

the PDM, the transformation creates inports and

outports on the copied blocks and creates signal

flow connections where specified. Note that the

PDM ports are more complex than Simulink ports

(e.g. it can represent fan-in, bidirectional ports);

therefore often multiple Simulink ports are created

for one PDM port.

ALS to Simulink transformation

The IAM is completed by (i) inserting the blocks

representing functions into the structure prepared by

the PDM to Simulink transformation and (ii)

configuring the signal flows for information links.

Functions in the FAM also correspond to library

block in the input Simulink model. Based on the

allocation, these library blocks are found by model

queries and inserted into tasks inside execution

containers (partitions for IMA or inside Federated

RTOS).

The information links describe where the output

of a function has to be routed, while the path through

the PDM is stored in the ALS model. The

transformation creates the signal flow

corresponding to the information link, keeps track

of how deep the signal is packaged into signal buses

and creates availability signals for each segment that

are used in the simulation to inject faults.

Finally, the transformation puts the complete

IAM into a single library block which has the same

interface (inports and outports) as the FAM, therefore

it can be inserted into the existing environment

model for simulation.

Traceability generator

The Trans-IMA tooling uses multiple,

interconnected models as illustrated on Figure 6.

While the correspondence between model elements

can be used to explore traceability through design

artifacts, it is important to provide traceability

information in a representation that is (i) stored

separately from the artifacts themselves, (ii) remains

in synch with changing models, (iii) supports queries

and traceability specific views for navigating on

traceability chains and (iv) provides export

capabilities to document formats used in certification

(e.g. traceability matrix).

External traceability models

We created a traceability metamodel that defines

concepts to represent domain models, their elements

and traceability relationships between them,

independent of the other Trans-IMA DSLs. This

metamodel is extended in order to interconnect with

the Simulink, FAM, PDM and IAM models, but the

framework that handles traceability models deals

only with the base metamodel. Therefore, the

framework can be reused in different tools as well.

The external traceability models are created

using annotated model queries that identify

relationships between domain elements of different

models. The queries and instance models are the

inputs of the framework that interprets the queries,

iterates through all relationships represented by query

results and stores domain elements. It is possible to

select different modes for this storage, including (i)

direct reference, (ii) unique identifier or (iii) soft link

derived feature.

Synchronization of traceability models

The domain models may change after the

traceability model has been created. Since the models

may be large, it is important to synchronize the

contents of the traceability model without recreating

existing parts. We use the event-driven rule engine of

EMF-IncQuery to add, remove or update domain

objects and relationships in the traceability models

incrementally.

Navigating on traceability chains

One of the most important use cases of

traceability is to navigate through a chain of links to

follow the evolution of artifacts. For example, it is

possible to select a Simulink block that represents a

function, follow a traceability link to the FAM then

another link to the function allocation in the ALS and

on to the blocks in the final IAM model.

Once again, the visualization of traceability

models and chains are supported through model

queries over the traceability model and yFiles views

driven by the viewer extension of EMF-IncQuery.

Exporting traceability models

While it is important to create and use

traceability models inside the Trans-IMA tooling,

there are cases when this traceability information is

needed outside of the tool in a human readable (and

often standard) format.

We have created a model-to-text transformation

that uses model queries and Xtend to process a

traceability model created in Trans-IMA and prepares

a traceability matrix in HTML. This matrix can be

explored, printed and used in certification to ensure

that the allocation is correct.

Matlab-based simulation of IAM models

Because the IAM is represented in Simulink,

several analyses can be carried out using this model,

specially leveraging some infrastructure already

developed in previous projects at Embraer. The

current section highlights a few of those analyses.

One of the difficult points of designing an IMA

system is that single failures or spatially correlated

failures may affect several systems at the same time,

more so than with federated systems. For example, a

memory or processor failure may bring down

applications from two or three different systems at

the same time. Certainly, depending on the criticality

level of the functions, the system has to be designed

in such a way that the effects of a failure like this are

tolerable.

Due to the amount of failure modes and the

different components, this analysis is very time

consuming. One possible way to speed it up,

especially in the early or middle design phases, when

there are still several changes happening in the

systems definitions, is to use simulation to ensure full

coverage of all the failure cases.

As an example, suppose there is a CAS message

whose absence (false negative) has catastrophic

consequences. Therefore, it must be ensured that no

single failure is able to cause this situation and that

any combination of two failures has a probability rate

smaller than 10
-9

 per flight hour to cause this event. A

combinatorial search of all the pairs of failures may

ensure these cases are covered or find all the possible

cases faster than a traditional analysis would. This

method can also be used to generate better fault-

isolation rules for the systems. This usually has only

minor safety impact but it is very important for

reducing operational costs.

Another example were having a time-domain

simulation model is useful is to analyze increase in

crew workload due to failures. In this case, the IAM

(plus the other models needed by the flight simulator)

is loaded in the simulation and test runs are done with

pilots.

Additionally, Simulink makes it easy to do

several (but not all) timing-related simulations.

Different physical platforms and different allocations

may produce different time delays for some results.

Some of these time delays may be very relevant for

handling qualities. However, as a known

disadvantage Simulink is not well suited for

simulating the asynchronous aspects of the system.

The ultimate goal of the Trans-IMA approach is

to provide significant speed up in the early simulation

based analysis of the complete HW-SW system,

where the tooling is aiming to ease the allocation

process by the application of abstraction based

model-driven engineering techniques.

Related work

As the definition and configuration of avionics

systems constitute a significant part of the complete

aircraft development, research in the area is very

active to provide better tooling and analysis both in

academia and industry. The current section shortly

highlights similar research directions on IMA and

ARINC 653 design from the literature

One key area is to increase development

effectiveness by using model-based techniques such

as: early model-based validation and analysis using

formal methods such as model checking and theorem

proving [16], automated generation of application

source code for ARINC 653 compatible RTOSs from

high-level models [17], advanced IDE and validation

support for the definition of ARINC-653

configuration artifacts such as Partition Operating

System (POS), Module Operating System (MOS) and

health monitoring tables [18], high-level architectural

design of partition level application and their internal

structure using state machines [17] and multi-aspect

optimization of IMA systems taking into account

simultaneously physical factors, software and

hardware allocation and communication architecture

in the optimization process [19].

Similar to our work, both [20] and [21] proposed

a mainly simulation based early validation of IMA

systems using the Cheddar and the SystemC

simulation framework, respectively. However, both

approaches focus on scheduling of partitions and

their communication means, while in our case we

simulate the behavior of the system in case of

element level (e.g., partition, router, etc) errors and

provide feedback on dependability characteristics.

Finally, our work in certain aspects is a direct

continuation of the DIANA framework [22]

developed in cooperation with Embraer, GMV, NLR

and Thales in a European FP6 project. We applied

similar contract based validation analysis for each

design step and also followed the same abstraction

based refinement and allocation concept to derive the

ARINC 653 configuration artifacts for the mos, pos

and health tables.

Conclusion and future work

In the current paper, we introduced an

abstraction based allocation approach for defining

complex HW-SW avionics architectures using

model-driven techniques to allow Simulink based

analysis.

As an additional achievement the resulting

Trans-IMA framework was built on state-of-the-art,

open source technologies with Eclipse providing core

functionalities and common user interface elements,

Eclipse Modeling Framework (EMF) as the

foundation for all domain models and EMF-IncQuery

for the efficient, realization of the automated model

queries and transformations. We plan to submit some

parts of the framework to the PolarSys Working

Group [23] to support the open source initiative with

reusable tools.

As for the future we aim to enhance our

framework to support: (i) the automatic generation of

routing tables based on the allocation specification,

(ii) the automatic calculation of the communication

paths based on safety and bandwidth constraints and

finally, (iii) automated instantiation and allocation of

safety-critical redundant functions.

References

[1] Eclipse Foundation, The Eclipse platform and

IDE: http://www.eclipse.org.

[2] Moir, I., A. Seabridge, 2008, Aircraft systems:

mechanical, electrical and avionics subsystems

integration, John Wiley & Sons.

[3] The Object Management Group, Meta Object

Facility (MOF) core specification version 2.0

http://www.omg.org/docs/formal/06-01-01.pdf.

[4] Eclipse Foundation, Eclipse Modeling

Framework: http://www.eclipse.org/emf.

http://www.eclipse.org/
http://www.omg.org/docs/formal/06-01-01.pdf
http://www.eclipse.org/emf

[5] ATLAS Transformation Language,

http://www.eclipse.org/atl/.

[6] VIATRA2: VIsual Automated model

TRAnsformations, http://wiki.eclipse.org/VIATRA2.

[7] GReAT: Graph Rewrite And Transformation

http://www.escherinstitute.org/Plone/tools/suites/mic/

great.

[8] EMF-IncQuery, http://www.eclipse.org/incquery/

[9] Bergmann, G., Z. Ujhelyi, I. Ráth, D. Varró,

2011, A Graph Query Language for EMF models,

Theory and Practice of Model Transformations,

Fourth International Conference, vol. 6707, pp. 167-

182

[10] Ujhelyi, Z., G. Bergmann, Á. Hegedüs, Á.

Horváth, B. Izsó, I. Ráth, Z. Szatmári, D. Varró,

2014, EMF-IncQuery: An Integrated Development

Environment for Live Model Queries, Science of

Computer Programming

[11] Xtend, http://www.eclipse.org/xtend

[12] yFiles for Java, http://www.yworks.com/yfiles

[13] International Society for Automotive Engineers,

Architecture Analysis and Design Language,

http://www.aadl.info.

[14] Modelica Association, The Modelica open-

source declarative language, https://modelica.org/

[15] Hegedüs, Á., Á. Horváth, D. Varró, 2012,

Query-driven soft-interconnections of EMF models,

In Proceeding of the 15th International Conference

on Model Driven Engineering Languages and

System, Innsbruck, Austria, Springer.

[16] Miller, P. Steven., 2009, Bridging the Gap

Between Model-Based Development and Model

Checking, 2009, In Proc. of 15
th
 International

Conference on Tools and Algorithms for the

Construction and Analysis of Systems, York, UK,

Springer, pp 443-453.

[17] Gamatie, A., C. Brunette, R. Delamare, T.

Gautier, J.-P. Talpin, 2009. A Modeling Paradigm for

Integrated Modular Avionics Design. In Software

Engineering and Advanced Applications, pp 134–

143.

[18] Choi, Eu-Teum, Ok-Kyoon Ha, Yong-Kee Jun,

2014, Configuration Tool for ARINC 653 Operating

Systems, Vol. 9. No. 4. Int. Journal of Multimedia

and Ubiquitous Engineering, SERSC, Australia.

[19] Annighofer, B.; E. Kleemann, F. Thielecke,

2013, Automated selection, sizing, and mapping of

Integrated Modular Avionics Modules, Digital

Avionics Systems Conference (DASC), IEEE/AIAA

pp.2E2-1,2E2-15

[20] Lafaye, Michael, Marc Gatti, David Faura,

Laurent Pautet, 2011. Model Driven Early

Exploration of IMA Execution Platform. In Digital

Avionics Systems Conference (DASC), IEEE/AIAA,

pp. 7A2 -1 – 7A2 -11.

[21] Delange, Julien, Laurent Pautet, Alain Plantec,

Mickael Kerboeuf, Frank Singhoff, Fabrice Kordon,

2009. Validate, Simulate, and Implement ARINC 653

Systems Using the AADL. In Proceedings of the

ACM SIGAda annual international conference on

Ada and related technologies, pp 31 – 44.

[22] Horváth, Á., D. Varró, T. Schoof, 2010, Mode-

Driven Development of ARINC 653 Configuration

Tables, In Digital Avionics Systems Conference

(DASC) , IEEE/AIAA, pp 5.A.5-1 – 5.A.5-115

[23] PolarSys, Open Source Tools for Embedded

Systems, http://polarsys.org/

Acknowledgements

This work was partially supported by the

CONCERTO (ART-2012-333053).

Email addresses

Ákos Horváth: ahorvath@mit.bme.hu

Rodrigo R. Starr: rodrigo.starr@embraer.com.br

Samoel Mirachi

s:amoel.mirachi@embraer.com.br

33rd Digital Avionics Systems Conference

October 5-9, 2014

http://www.eclipse.org/atl/
http://wiki.eclipse.org/VIATRA2
http://www.escherinstitute.org/Plone/tools/suites/mic/great
http://www.escherinstitute.org/Plone/tools/suites/mic/great
http://www.eclipse.org/incquery/
http://www.eclipse.org/xtend
http://www.yworks.com/yfiles
http://www.aadl.info/
https://modelica.org/
http://polarsys.org/
mailto:ahorvath@mit.bme.hu
mailto:rodrigo.starr@embraer.com.br
mailto:samoel.mirachi@embraer.com.br

