
CSP(M): Constraint Satisfaction Problem over Models?

Ákos Horv́ath and D́aniel Varŕo

Budapest University of Technology and Economics,
Department of Measurement and Information Systems,

H-1117 Magyar tud́osok krt. 2, Budapest, Hungary
{ahorvath, varro}@mit.bme.hu

Abstract. Constraint satisfaction programming (CSP) has been successfully used
in model-driven development (MDD) for solving a wide range of (combinatorial)
problems. In CSP, declarative constraints capture restrictions over variables with
finite domains where both the number of variables and their domains are required
to be a priori finite. However, the existing formulation of constraint satisfaction
problems can be too restrictive to support dynamically evolving domains and
constraints necessitated in many MDD applications as the graph nature of the un-
derlying models needs to be encoded with variables of finite domain. In the paper,
we reformulate the constraint satisfaction problem directly on the model-level by
using graph patterns as constraints and graph transformation rules as labeling
operations. This allows expressing problems composed of dynamic model ma-
nipulation and complex graph structural constraints in an intuitive way. Further-
more, we present a prototype constraint solver for the domain of graph models
built upon the VIATRA 2 model transformation framework, and provide an initial
evaluation of its performance.

Keywords:constraint satisfaction programming, graph transformation

1 Introduction

In artificial intelligence, the constraint satisfaction problem (CSP) is to find a solution to
a set of constraints that impose conditions which has to be satisfied by a set of variables.
Each variable typically takes its value from a finite domain. A solution is one (or all)
assignment of variables which satisfy each constraint.

Constraint satisfaction techniques have been successfully applied for various prob-
lems of model-driven engineering for applying design patterns [1], to support domain-
specific modeling [2] or in the context of model transformations [3]. As a commonality,
all these approaches translate high-level models to an existing (off-the-shelf) constraint
solver (like e.g. [4,5]) to provide embedded design intelligence for modeling.

However, advanced constraint solvers typically apply certain restrictions for the
CSP problem. For instance, the domains of variables are frequently required to be (a
priori) finite, moreover, many approaches disallow the dynamical addition or retraction
of constraints. Furthermore, mapping graph-like models obtained in model-driven engi-
neering to variables with finite domain can be a non-trivial task, especially, when con-
sidering the evolution of models. While recent research initiatives in CSP have started

? This work was partially supported by the EC FP6 DIANA (AERO1-030985) European Project.

to better address dynamic constraints [6], no efficient solvers are available for structural
constraints over graph-like models.

In this paper, we investigate how advanced model transformation technology can
contribute to solving dynamic constraint satisfaction problems with global constraints
over the domain of model graphs. We extend the definition of constraint satisfaction
problems by usinggraph patterns to define structural (first-order logic) constraints,
andgraph transformation rules [7] as labeling operations. Informally, all graph pattern
constraints need to be satisfied by the underlying model when searching for a specific
goal. However, instead of simple variable substitution, the labeling phase applies graph
transformation rules to carry out model manipulations on the underlying graph domain.

As an analogy, our approach allows to (i) dynamically add/remove constraints from
the problem domain, (ii) modify the domain of the variables during search and (iii)
define structural constraints in a more natural way.

Furthermore, we developed a prototype constraint solver on top of the VIATRA 2 [8]
model transformation framework by using incremental constraint evaluation and var-
ious search strategies and heuristics. An initial evaluation of the solver is carried out
using an allocation problem taken from critical systems.

The rest of the paper is structured as follows. In Sec. 2 we briefly introduce the
concept of metamodeling, graph transformation and constraint satisfaction problems.
Sec. 3 proposes our graph pattern and transformation based constraint solver. Related
work is assessed in Sec. 5, and finally, Sec. 6 concludes the paper.

2 Background

In order to introduce our approach this section briefly outlines the basics of graph trans-
formation and gives a motivating example from the avionics domain.

2.1 Running Example: Allocation of an IMA system

Fig. 1.Metamodel of an IMA architecture

As a motivating example, let us assume an
integrated modular avionics (IMA) system
composed ofJobs(also referred as appli-
cations),Partitions, ModulesandCabinets.
Jobsare the atomic software blocks of the
system defined by their memory require-
ment. Based on their criticality level jobs
are separated into two sets:critical and
simple(non-critical). For critical jobs dou-
ble or triple modular redundancy is applied
while for simple ones only one instance is
allowed. Partitions are complex software
components composed of jobs with a pre-
defined free memory space. Jobs can be al-
located to the partition as long as they fit into its memory space.Modulesare SW
components capable of hosting partitions. Finally,Cabinetsare storages for maximum

(a) Starting model
(b) Allocated model

Fig. 2.Example IMA system

(in our example) up to two modules used to physically distribute elements of the sys-
tem. Additionally a certain number of safety related requirements will also have to be
satisfied: (i) a partition can only host jobs of one criticality level and (ii) instances of
a certain critical job can not be allocated to the same partition and module. The task is
to allocate an IMA system defined by its jobs and partitions over a predefined cabinet
structure and to minimize the number ofmodulesused.

A sample system composed of a critical job with two instances and two partitions
with a single cabinet is shown in Fig. 2(a) with a possible allocation depicted in Fig. 2(b)
defined over the metamodel captured in the VPM formalism [9] in Fig. 1. Newly created
elements are highlighted in grey. Throughout the paper we will use this example to
demonstrate the technicalities of our constraint satisfaction technique over models.

2.2 Graph Patterns and Graph Transformation

Graph patterns(GP) are frequently considered as the atomic units of model transfor-
mations [8]. They represent conditions that have to be fulfilled by a part of the instance
model. The VIATRA 2 notation in particular, describes them as a disjunction of pattern
bodiesGP = ∨PBi , where a pattern is fulfilled if at least one of its pattern body is
fulfilled. Pattern bodies PB= (SC,AC,NACj) consist of (i)structural conditions SC
prescribing the existence of nodes and edges of a given type, (ii)attribute conditions
(AC) allowing term evaluation over the attributes of the matched elements (marked by
thecheck keyword) and (iii) arbitrary number of negative application conditions. Aneg-
ative application condition NAC= ¬GP, defined by a negative subpattern, prescribes
contextual conditions for the original pattern which are forbidden in order to find a
successful match. Negative conditions can be embedded into each other in an arbitrary
depth (e.g. negations of negations), where the expressiveness of such patterns converges
to first order logic [10].

A match mfor a graph patternGP in a instance modelM denoted bym : GP−→M
means that (i)m : PBi 7→ M,(∃PBi ∈ GP) there exists an injective, type conformant
total morphismm from one of its pattern bodiesPBi = (SCi ,ACi ,NACi, j) to the instance

model; (ii)m′ : NACi, j 7→M,(6 ∃NACi, j) if no matches exist for any embedded NACs of
that pattern bodyPBi and (iii) all attribute conditionsACi are fulfilled bym.

Graph transformation [7] provides a high-level rule and pattern-based manipulation
language for graph models. Graph transformationGT = (LHS,RHS,AMA) rules can
be specified by using a left-hand side –LHS (or precondition) pattern determining the
applicability of the rule, a right-hand side –RHS(postcondition) pattern which declar-
atively specifies the result model after rule application, and additional attribute manip-
ulationAMAactions .

The applicationof a GT rule to a host modelG alters the model by replacing the
pattern defined byLHSwith the pattern defined byRHS. This is performed by (i) finding
a matchingm : LHS−→ G of theLHSpattern in model graphG; (ii) removing a part
of the model graphM that can be mapped toLHS but not toRHS; (iii) adding new
elements to the which exist inRHSbut not in LHS and finally (iv) performing the
attribute manipulation operations described inAMA. A graph transformationstep is
denoted formally asG

r,m
=⇒ H, whereH is the resulting model;r and m denote the

applied rule and the matching, respectively.
Example. Sample graph patterns and transformation rules are depicted in Fig. 3.

The jobInstancewithoutPartition pattern matches an input parameterJobInstance JIns
which is not already allocated to aPartition P by the j1 jobs relation (elements of the
NAC are encapsulated by theNEG rectangle).

TheallocateJobInstance GT rule allocates theJobInstance JI to thePartition P1 (by
thejobs j1 relation) if it is not already allocated to theP2 Partition and decreases theMP
free memory attribute of theP1 partition by the memory requirement ofJob J captured
in MJ. We use a combined representation that jointly defines the left hand side (LHS) of
the graph transformation rule, and the model manipulation operations to be carried out
where newly created elements and attribute manipulation operations are tagged with an
add andset keywords, respectively.

3 Constraint Satisfaction Programming

In this section, we provide a detailed description of our constraint satisfaction frame-
work and its conceptual foundations and demonstrate how to apply it on the IMA system
allocation problem introduced in Sec. 2.1.

3.1 Constraint Problem specification

Constraint Satisfaction Problem for Variables of Finite Domain A CSP(FD) is a
problem composed of a finite set of variables, each of which is associated with a finite
domain, and a set of constraints that restricts the values the variables can simultane-
ously take. In a more precise way a constraint satisfaction problem is a triple:(Z,D,C)
whereZ is a finite set of variablesx1,x2, ...,xn; D is a function which maps every vari-
able inZ to a set of objects of arbitrary type; andC is a finite (possibly empty) set
of constraints on an arbitrary subset of variables inZ. The task is to assign a value to
each variable satisfying all the constraints. Solutions to CSPs are usually found by (i)

constraint propagationa reasoning technique to explicitly forbid values or domains for
variables by predicting future subsequent constraint violations and (ii)variable labeling
searching through the possible assignments of values to variables already restricted by
the (propagated) constraints.

Planner Algorithms Planner algorithms [11] are hierarchical problem solving proce-
dures subdividing the original problem into smaller parts. A planner(I ,E,O)→ P, is a
structure whereI is a logic formula of the initial state,E is the logic formula of the goal
state, whileO is the set of permitted operations. The outputP is a sequence of opera-
tions (called plan) providing a trajectory from the initial to the goal state. An operation
o = (C,A) is a pair whereC stands for a precondition defined in first order logic andA
for actions. Preconditions must hold before performing its specific operation.

3.2 CSP(M): Constraint Satisfaction Problem over Models

We now define constraint satisfaction problems over models (CSP(M)) by combining
CSP for finite domainsandplanner algorithms(see in Sec. 3.1). In principle, our ap-
proach generalizes planner algorithms with the definition ofglobal constraintsthat
can additionally restrict certain trajectories of the search space and extends traditional
CSP(FD) by introducinglabeling rulesto define and solve constraint problems over
models even with dynamic model manipulation such as element creation and deletion.

A CSP(M) consist of aninitial model; agoal that have to be satisfied by thesolution
modelto be searched;global constraintsthat need to be satisfied by all models traversed
during the search and finally a set oflabeling rulescapturing the permitted operations.
Formally a CSP(M)(M0,C,G,L) : Ms is a structure where:M0 is the initial model;C
is a set of global constraints;G is a set of subgoals which together in conjunction form
the goal andL is a set of labeling rules. The outputMs is the solution model satisfying:

– (i) M0 ; Ms; there exists a trajectoryMo
l1→M1

l2→ ..
ln→Mn wherei = 1..n : l i ∈ L.

Meaning thatMs is reachable fromM0 through a sequence of applied labeling rules.
– (ii) ∀Gi ∈G : Ms |= Gi ; Ms satisfies all subgoalsGi

– (iii) ∀Ci ∈C : Ms |= Ci ; Ms also satisfies all global constraintsCi

– (iv) ∀Mi ,∀Cj ∈C : M0 ; Mi ∧Mi ; Ms∧Mi |= Cj ; along the trajectory from the
initial to the solution model all visited modelMi satisfies each global constraint.

As models in MDD are usually described as graphs we instantiate our formalism
on graph transformation using the VIATRA 2 [8] language. This way models are cap-
tured by typed graphs over a given metamodel while subgoals and global constraints
are defined using graph patterns and finally labeling rules are described as graph trans-
formation rules. However, this formalism can also be incorporated into other modeling
approaches such as MOF models, OCL constraints and QVT rules.

Goal and Global constraints Both subgoals and global constraints are defined by
graph patterns. The goalG is the conjunction of subgoals where a subgoal (graph pat-
tern) is a disjunction of alternate pattern bodies.

Fig. 3.Goals, Labeling rules and Global constraints of the running example

A subgoal or global constraintC described by the graph patternGP is either apos-
itive or negativeconstraint. A negative constraint is satisfied by a model (M |= C) if it
does not have a match inM, formally m : GP−→M, (6 ∃m). While a positive constraint
is satisfied if its representing graph pattern has a match inM; m : GP−→ M, (∃m). A
further restriction on positive constraints can be formulated by stating that they are sat-
isfied iff their representing graph pattern has apredefinedpositive number (Cardinality)
of matches, formally|{m : GP−→M}|= Cardinality. In our running example all pat-
terns are considered asnegative constraints.

Labeling rules Labeling rules are described as graph transformation rules. A labeling
rule l is enabled when the preconditionLHSl of its representing graph transformation
rule is applicable to the underlying modelM, formallym: LHSl −→M,(∃m). However,
additional properties are used to refine the execution order and semantics of an enabled
rule application:

– Priority (integer: 0..100): Defines a precedence relation on labeling rules. It orga-
nizes the labeling rules into sets based on their priorities. In each state the solver
selects its next step from the set with the highest priority. In our running example
we use the same priority for all labeling literals.

– Execution mode(forall — choose): Defines whether a rule is simultaneous applied
at all possible matches (forall) (as a single transition) or only once on a randomly
selected single matching (choose). In the running example all labeling rules are
using choose type execution mode.

Example. Our running example formalized as a CSP(M) problem is depicted in
Fig. 3. ThejobInstancewithoutPartition, partitionwithoutModule andmodulewithoutCab-
inet subgoals formulating thegoal describe that in a solution model eachJobInstance,
Partition andModule is allocated to a correspondingPartition, Module andCabinet, re-
spectively. For example, thejobInstancewithoutPartition subgoal captures its require-
ment using a double negation (NAC and negative constraint) stating that there areno
unallocatedjob instanceJI in the solution model. Similar double negation is used in
case of the other two subgoals.

Global constraintsformulate the safety and memory requirements. Thepartition-
MemoryHigherThan0 pattern captures the simple memory constraint that all partitions
must have higher than zero free memory. The safety requirement stating that a partition
can only host jobs of one criticality level is captured by thepartitionCriticalityLevel-
Similar pattern. As it is anegative constraintit describes the (positive) case where the
P1 partition holds two job instancesJ1 andJ2 of a simple and a critical jobJob1 and
Job2, respectively. ThecriticalInstanceonSamePartition andcriticalInstanceonSameM-
odule patterns restrict in a similar way that no job instancesJ1 andJ2 of a critical job
Job can be allocated to the same partitionP1 or moduleM1.

Finally, labeling rulesdescribe the allocation operations. TheallocatePartition graph
transformation rule defines how a partitionP can be allocated to a moduleM1. As
a common technique in graph transformation based approaches, a negative application
condition stating that the partition is not already allocated is used to indicate that the rule
should only be used for unallocated partitions. On top of that theallocateModule rule

uses an additional NAC to forbid allocation of moduleM to cabinetC1 when two other
modulesM1 andM2 are already presented onC1, while theallocateJobInstance defines
an additional attribute operation to decrease the free memory valueMP of partitionP1
by the required memoryMJ of the allocated jobJ. ThecreateModule rule simply creates
a moduleM without any precondition.

Although not demonstrating in our ongoing example, our constraint framework is
able to dynamically add and remove subgoals and labeling rules during the traversal of
the state space in response to changes made in the original formulation of the problem.
This allows to address problems which can change over time and solutions are relying
on already made decisions such as reconfiguration of system components. In this case
the requirement of the provided QoS (e.g., at least three service nodes must be running)
by the system can vary over time and reconfiguration needs to be applied on the actual
system state.

3.3 Solving CSP over Models

To traverse the search space of a constraint program introduced in Sec. 3.2, we define
the solver as a virtual machine that maintains a 4-tuple(CG,CS,AM,LS) as a state.
CG is called thecurrent goal; CS is theconstraint store; AM is theactual model; and
finally LS is thelabeling store. The (i)current goalstores the subgoals that still need to
be satisfied; the (ii)constraint storeholds all constraints the solver has satisfied so far
while the (iii) actual modelrepresents the underlying actual model and finally the (iv)
labeling storecontains all enabled labeling rules. An element in the labeling store is a
pair (l ,m), wherel is a labeling rule andm is a valid match of its preconditionLHSl in
AM; formally m : LHSl −→ AM.

Initially, theCG, CSandLSare initialized with thegoal, global constraintsand the
enabledlabeling rulesof the CSP(M) problem, respectively, whileAM is set to the ini-
tial model. The solver proceeds by selecting an enabledlabeling rule(l ,m) and applies
it to AM resulting inAM′. After eachlabeling ruleapplication (and after initialization)
CS is checked for consistency. In principle, whenever (i) aglobal constraintin CS is
violated the solver backtracks, (ii) asubgoalin CG is satisfied byM it is moved toCS
and (iii) vica-versa moved fromCS to CG if it becomes unsatisfied and finally (iv) a
successful termination is reached whenCG becomes empty.

Formally, a transition in the search space is a pair of 4-tuples of(CG,CS,AM,LS)→
(CG′,CS′,AM′,LS′), which describes a step between the two states. A transition is pos-

sible iff ∃(l ,m) ∈ LS whereAM
l ,m
=⇒ AM′ i.e., a labeling rule can be applied on the

actual model for a certain match. A goalG can be proved if there exists a trajectory
of individual steps(CG,CS,M0,LS) ; (/0,CS′,Ms,LS) for a satisfiable constraint store
CS. In other words, a solution model is found if there exists a sequence of labeling rule
applications, that lead to an emptyCG and satisfiableCS.

Example. Let us consider that our running example is in the initial stateS0 de-
picted in Fig. 4. The actual model is the initial modelM0 (detailed in Fig. 2(a)); the
current goalCGcontains thejobInstancewithoutPartition and thepartitionwithoutModule
subgoals; the constraint storeCSholds all global constraints and themodulewithoutCab-
inet subgoal while the labeling storeLSholds the following pairs: (allocateJobInstance,

Fig. 4.Example State Space

CJI1), (allocateJobInstance, CJI2) and (createModule, /0). The solver has three enabled
labeling rules (transitions)t1, t2, t3 resulting in statesS1, S2, S3. For example,S1 is
traversed by applying theallocateJobInstance labeling rule on the critical job instance
CJI1. In S1 the actual model changed with an additionalj1 jobs relation (highlighted
in grey) between partitionP1 and job instanceCJI1; the current goal and constraint
store did not change and contains the same elements as inS0 while the labeling store
changed to: (allocateJobInstance, CJI2) and (createModule, /0). For easier readability,
actual models of the states are depicted in Fig. 4 in a simplified way without type infor-
mation e.g., the elementCJI1: JobInstance is denoted asCJI1.

3.4 Search Strategies

Most algorithms for solving CSPs systematically traverse the possible search space.
Such algorithms are guaranteed (in case of finite search space) to find a solution, if one
exists, or to prove that the problem is irresolvable.

The most common algorithm for performing systematic search isbacktrackingbased
on depth-first search. Backtracking incrementally builds candidates to the solutions, and
abandons each partial candidate (”backtracks”) as soon as it determines that it cannot
possibly be completed to a valid solution. In our case it means that in the actual state
a global constraint is violated or its labeling store is empty, thus backtracks the last
applied step and continue with a different one. One of the main drawbacks of the sim-
ple backtracking algorithm isthrashing; i.e. repeated failure due to the same reason.
Thrashing occurs because the backtracking algorithm does not identify the root cause
of a conflict, i.e., the unsatisfiable global constraint or subgoal leading to a dead-end.
Therefore, search in different parts of the search space keeps failing for the same reason.

In order to overcome trashing we implemented two additional search strategies:

Random Backjumping is a backtracking strategy based on the assumption that a
traversal might be in a dead-end if no solution was found within a certain amount of
time (deadline). When the solver exceeds this deadline, it jumps back to a state at least
as high as the half of the actual depth of the search space tree. This way the solver can
restart the traversal from an earlier state and continue on different random transitions.
However, to keep the completeness of the traversal we implemented a simple policy
introduced in [12] that is to increase the height of the backjump each time it is used.
This approach is obviously not effective to prove unsatisfiability because all the runs
except the last are wasted but has a good average performance in certain real scenarios.

Guided traversal by Petri net abstraction is a state space traversal strategy which
conducts search towards the most promising candidate paths calculated according to a
Petri net abstraction of graph transformation systems introduced in [13]. A marking of
the derived (cardinality) Petri net abstracts from the actual structure of the correspond-
ing model, and stores only the number of elements of each type (in the metamodel).
This way, we solve an integer linear programming problem of the derived Petri net to
obtain an optimal transition occurrence vector (storing only how many times a labeling
rule needs to be applied) leading to a designated target state (formulated as a target
submarking). Then the search strategy first explores those branches (i.e. labeling rule
applications) which are consistent with this hint. If no solution is found on the level of
CSP(M), then the next optimal transition occurrence vector candidate is derived, and
the exploration of the CSP(M) problem continues.

Note that due to the abstraction, the transition occurrence vector might not represent
a feasible trajectory in the search space of the CSP(M) problem. However, it provides a
good lower bound on the minimal number of labeling rule applications required to reach
a solution model if its corresponding solution submarking can be precisely estimated or
calculated. The first transition occurrence vector calculated for our running example is
(2,1,1,1) meaning that to achieve a solution submarking derived from a solution model
where all job instances and partitions are allocated, theallocateJobInstance rule has to
be applied twice while the other three only once.

3.5 Optimization

To further reduce the size of the traversed state space we introduce two additional opti-
mization techniques that complement our search strategies described in Sec. 3.4.

Look-ahead pattern Additional restrictions on the applicability of labeling rules can
be formulated by incorporating a subset of global constraints calledlook-aheadcon-
straints into the precondition (LHS) of rules. These constraints are validated in the
precondition of labeling rules to prevent unnecessary steps which would violate these
constraints. Currently, this is a manual hint by the designer, but in the future, we plan
to automate this task by applying critical pair analysis [14] or transformations of graph
constraints to preconditions [15].

In our running example theallocateJobInstancerule can be further restricted re-
garding the memory consumption of theJIns job instance making thepartitionsMem-
oryHigherThanglobal (look-ahead) constraint obsolete. Its modified version with the
extra check condition on the required and available memory is depicted in Fig. 5.

Fig. 5.Modified allocateJobInstance rule

Exception priority In order to explicitly restrict the number of application of labeling
rules along a trajectory we introduced a priority class calledexception. Exceptionrules
have the lowest priority and will only be selected when no other labeling rules are en-
abled. In any trajectory if the number of applications of an exception rule exceeds its
predefined value the solver backtracks and continues along another transition. Excep-
tion rules are used as hints by the solver to avoid state space explosion especially, when
the Petri net based abstraction cannot predict the number of labeling rule applications
for element creationrules without preconditions such as thecreateModule rule in the
running example.

3.6 Implementation

We implemented an experimental solver for CSP(M) including all the techniques above
on top the VIATRA 2 model transformation framework, which offers efficient rule- and
pattern-based manipulation of graph models by the means of graph transformation. In
order to implement the solver using graph based state representation we had to address
the problems ofconstraint evaluation, typed graph comparisonandbacktracking.

For effectiveevaluationof constraint satisfiability we rely upon the incremental pat-
tern matcher component [16] of the framework. In case of incremental pattern match-
ing, the matches of a pattern are stored to be readily available in constant time, and
they are incrementally updated when the model changes. As matches of patterns are
cached, this reduces the evaluation of constraints and preconditions of labeling rules to
a simple check. This way, the solver has an incrementally maintained up-to-date view of
its constraint store and enabled labeling rules. Furthermore, incrementality provides an
efficientconstraint propagationtechnique to immediately detect constraints violations
after a labeling rule is fired.

As for backtrackingbetween states, we implemented a simple transaction mech-
anism that saves the atomic model manipulation operations applied on the model in
an undo stack. This stack not only allows us to backtrack the manipulations but also
ease the computation of difference between neighbour states. This feature is also useful
in problems that require solutions that are ”nearest” to a given initial model (e.g. for
reconfiguration rules).

For comparison of graphswe adapted the DSMDIFF [17] algorithm, which relies
on (i) signatures (for nodes and edges) composed of type and name information and (ii)
containment relation between nodes of the graph. It is also important to mention that to
keep the memory consumption low, we serializedalready visited statesas strings and
applied the algorithm directly on them.

The introduced solver is already in use in the context of the DIANA [18] European
project as its underlying allocation engine for a system-level integration scenario.

4 Evaluation

To evaluate the performance of our CSP(M) solver, we carried out experiments1 based
on our running IMA allocation example. We assume that we have to allocate different
software workloads (functionalities) on a system of three modules (which corresponds
to the avionics architecture used in the DIANA project).

Each row in Table 4 defines a software workload allocation test case. TheSimple
Job, Critical Job, andPartition rows define the actual number of software components
to be allocated where critical jobs are separated based on their redundancy scheme into
double (DMR) and triple (TMR) modular redundancy.All Job Instancesrepresents the
total number of job instances to be allocated. For our initial measurement (denoted by
ATTR) we assume that each job requires the same amount of memory (30 units) and
each partition offers the same free memory (300 units).

Due to the random strategy of our solver we considered an allocationcompleted
if a solution was found within 200 seconds. In each case we executed the solver ten
times and present the number ofCompleted Allocations. Runtimeperformance and tra-
versedState Spacesize of the completed allocations are also presented by their mini-
mum (min), maximum (max) and average (avg) values for each test case.

During the analysis and profiling of our implementation we have discovered that
the performance bottleneck in our system is mainly related to the model management
component of the underlying VIATRA 2 transformation framework (which is obviously
not optimized for constraint solving purposes). In almost all cases we have observed
that core attribute manipulation functions (e.g.,setValue) are the most time consuming.
This is due to the low-level notification mechanism that keeps the incremental pattern

Table 1.Runtime performance of the IMA allocation problem

matcher up-to-date after changes in the model space, which is more effective for graph
manipulations rather than attribute changes.

Therefore we also evaluated our approach without attribute manipulation (i.e., mem-
ory requirements) on the running example denoted byNON ATTR.. In order to solve a
conceptually similar problem we defined an additional global constraint stating that a
partition can not affiliate more than ten job instances. Results show that (i) in both cases
solutions were found traversing only a small number of states compared to the size of
the problem, (ii) theNON ATTR.implementation scales almost up to twice the size in
the number of job instances to allocate and (iii) due to the heuristic character of the state
space traversal the runtime performances can vary up to two order of magnitudes.

Our measurement shows that our constraint solver based upon incremental pattern
matching is able to solve non-trivial problems of model oriented constraints. On the
other hand further investigations have to be directed to combine them with constraints
over regular attributes.

5 Related Work

Applications of CSP in MDD. While constraint satisfaction techniques have been suc-
cessfully applied in the context of MDD. [19] proposes an approach for partial model
completion based on constraint logic programming. [2] support efficient domain spe-
cific modeling by transforming constraints to a Prolog representation. In [1], poor de-
sign patterns are detected by using off-the-shelf CSP techniques and tools. [20] defines
an interactive guided derivation algorithm to assist model designers by providing hints
about valid editing operations that maintain global correctness of models.

In the context of model transformations, [21] proposes constraint solving as a graph
pattern matching strategy. [3] proposes Constraint Relation Transformation an exten-
sion of QVT Relations with numerical constraints by integrating local numerical con-
straint solving (over attributes of model elements).

Recent approaches like [22–24] aim at automatically creating instance models, which
conform to a given metamodel and a set of constraints. This model generation problem
is solved by existing back-end tools like Alloy, or by a dedicated theorem prover for
Horn-like clauses as in [24]. This problem can also be interpreted as a special (re-
stricted) CSP problem without numeric constraints on attributes.

In all these papers, constraint satisfaction techniques are used to assist model-driven
development. The main innovation of our work is just the opposite: it investigates how
model transformation techniques can contribute to solve complex constraint satisfaction
problems over complex structural constraints and dynamic labeling rules.

State Space Exploration for GT. There are several state space exploration ap-
proaches [25,26] to analyze graph transformation systems. Common in these solutions
that they store system states as graphs and directly apply transformation rules to ex-
plore the state space similar to our approach. Their main difference is that they use an
exhaustive state space exploration to verify certain conditions in the graph transforma-
tion system, while our approach rely on guided traversals.

1 For our experiments, we used a average PC with Core Duo@1.8 GHz and 2GB RAM running
Windows XP and Java SDK 1.6

CSP-specificResearch in the field of constraint satisfaction programming has been
conducted towards flexible and dynamic constraints [6, 27]. Our approach shows sim-
ilarities with both approaches as (i) it also allows to add (or remove) additional con-
straints during the solution process as defined in the dynamic extension, and (ii) can
give support for cost based optimization defined over the constraint (flexible) even in
the case of complex structural constraints.

6 Conclusion and Future Work

In the current paper, we have presented a novel approach defining constraint problems
directly over models (denoted shortly asCSP(M)) using graph transformation rules and
graph patterns. As a distinctive feature from a CSP point of view, we extended tradi-
tional labeling by using model manipulation as provided by graph transformation to
dynamically create and delete model elements. Furthermore, not demonstrated in the
current paper but our framework also allows todynamically add/removesubgoals and
labeling rules to alter the constraint problem to address problems defined in dynamic
constraint satisfaction programming [27].

We have also built (and initially evaluated) a prototype solver implementation on
top of the VIATRA 2 model transformation framework using incremental pattern match-
ing that provides an efficientconstraint propagationtechnique to immediately detect
constraint violation. Moreover, the solver integrates various strategy (e.g. random back-
jumping, directed search) to guide the state space traversal.

As the main innovation, we argued that model transformation technology can effi-
ciently contribute to formulate and solve constraint satisfaction problems with complex
structural constraints and dynamic labeling rules.

In the future, we plan to investigate (i) how can traditional constraint programming
concepts can be combined with our approach to effectively handle constraints over at-
tributes, (ii) further state space optimization by automatic detection of look-ahead pat-
tern based on critical pair analysis and finally (iii) other structural constraint based
frameworks such as Alloy for a detailed comparison.

References

1. El-Boussaidi, G., Mili, H.: Detecting patterns of poor design solutions using constraint prop-
agation. In: MoDELS ’08: Int. Conference on Model Driven Engineering Languages and
Systems. (2008) 189–203

2. White, J., Schmidt, D., Nechypurenko, A., Wuchner, E.: Introduction to the generic eclipse
modelling system. Eclipse Magazine (6) (2007) 11–18

3. Petter, A., Behring, A., M̈uhlhäuser, M.: Solving constraints in model transformation. In:
ICMT’09: International Conference on Model Transformation, Zürich, Switzerland (2009)

4. Intelligent Systems Laboratory, Swedish Institute of Computer Science: Sicstus User’s man-
ual (2009)http://www.sics.se/sicstus/docs/latest4/pdf/sicstus.pdf.

5. Official website of ILOG Solver:http://www.ilog.com/products/cp/.
6. Miguel, I., Shen, Q.: Dynamic flexible constraint satisfaction. Applied Intelligence, 13(3)

(2000) 231–245

7. Rozenberg, G., ed.: Handbook of Graph Grammars and Computing by Graph Transfor-
mations, Chapter: Algebraic Approaches to Graph Transformation. Volume 1: Foundations.
World Scientific (1997)

8. Varró, D., Balogh, A.: The Model Transformation Language of the VIATRA2 Framework.
Science of Computer Programming68(3) (October 2007) 214–234

9. Varró, D., Pataricza, A.: VPM: A visual, precise and multilevel metamodeling framework
for describing mathematical domains and UML. Journal of Software and Systems Modeling
2(3) (October 2003) 187–210

10. Rensink, A.: Representing first-order logic using graphs. In: ICGT 2004: 2nd International
Conference on Graph Transformation, Rome, Italy. (2004) 319–335

11. Weld, D.S.: An introduction to least commitment planning. AI Magazine15(4) (1994) 27–61
12. Baptista, L., Margues-Silva, J.: Using randomization and learning to solve hard real-world

instances of satisfiability. In: CP ’00: 6th International Conference on Principles and Practice
of Constraint Programming. (September 2000) 489–494

13. Varró-Gyapay, S., Varŕo, D.: Optimization in graph transformation systems using petri net
based techniques. Electronic Communications of the EASST2 (2006)

14. Heckel, R., K̈uster, J.M., Taentzer, G.: Confluence of typed attributed graph transformation
systems. In: ICGT ’02: International Conference on Graph Transformation. (2002) 161–176

15. Ehrig, H., Ehrig, K., Habel, A., Pennemann, K.H.: Theory of constraints and application
conditions: From graphs to high-level structures. Funda. Inf.74(1) (2006) 135–166

16. Bergmann, G.,̈Okrös, A., Ŕath, I., Varŕo, D., Varŕo, G.: Incremental pattern matching in the
VIATRA transformation system. In: GRaMoT’08, 3rd Int. Workshop on Graph and Model
Transformation. (2008)

17. Lin, Y., Gray, J., , Jouault, F.: Dsmdiff: A differentiation tool for domain-specific models.
European Journal of Information Systems, Special Issue on Model-Driven Systems Devel-
opment 16(4) (2007) 349–361

18. Official website of the Distributed equipment Independent environment for Advanced avioN-
ics Applications (DIANA) European project:http://diana.skysoft.pt.

19. Sen, S., Baudry, B., Precup, D.: Partial model completion in model driven engineering using
constraint logic programming. In: INAP’07: International Conference on Applications of
Declarative Programming and Knowledge Management, Würzburg, Germany (2007)

20. Janota, M., Kuzina, V., Wasowski, A.: Model construction with external constraints: An
interactive journey from semantics to syntax. In: MoDELS ’08: Int. Conference on Model
Driven Engineering Languages and Systems. (2008) 431–445

21. Rudolf, M.: Utilizing constraint satisfaction techniques for efficient graph pattern matching.
In: 6th Int. Workshop on Theory and Application of Graph Transformations. (2000) 238–251

22. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model transformation
from UML to Alloy. Software and Systems Modeling (2009)

23. Winkelmann, J., Taentzer, G., Ehrig, K., Küster, J.M.: Translation of restricted ocl constraints
into graph constraints for generating meta model instances by graph grammars. Electron.
Notes Theor. Comput. Sci.211(2008) 159–170

24. Jackson, E., Sztipanovits, J.: Constructive techniques for meta and model level reasoning.
In: MoDELS ’07: Int. Conference on Model Driven Engineering Languages and Systems.
(October 2007) 405–419

25. Rensink, A.: The GROOVE simulator: A tool for state space generation. In: Applications of
Graph Transformations with Industrial Relevance (AGTIVE). (2004) 479–485

26. König, B., Kozioura, V.: Counterexample-guided abstraction refinement for the analysis of
graph transformation systems. In: TACAS ’06: Tools and Algorithms for the Construction
and Analiysis of Systems. (2006) 197–211

27. Schiex, T.: Solution reuse in dynamic constraint satisfaction problems. In: In Proceedings
of the 12th National Conference on Artificial Intelligence, AAAI Press (1994) 307–312

