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Formal verification is approaching a point where it will be reliably applicable to embedded software. Even
though formal verification can efficiently analyze multi-threaded applications, multi-core processors are often
considered too dangerous to use in critical systems, despite the many benefits they can offer. One reason is
the advanced memory consistency model of such CPUs. Nowadays, most software verifiers assume strict
sequential consistency, which is also the naïve view of programmers. Modern multi-core processors, however,
rarely guarantee this assumption by default. In addition, complex processor architectures may easily contain
design faults. Thanks to the recent advances in hardware verification, these faults are increasingly visible and
can be detected even in existing processors, giving an opportunity to compensate for the problem in software.
In this paper, we propose a generic approach to consider inconsistent behavior of the hardware in the analysis
of software. Our approach is based on formal methods and can be used to detect the activation of existing
hardware faults on the application level and facilitate their mitigation in software. The approach relies heavily
on recent results of model checking and hardware verification and offers new, integrative research directions.
We propose a partial solution based on existing model checking tools to demonstrate feasibility and evaluate
their performance in this context.
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1 INTRODUCTION
Concurrency in critical embedded systems is a field under intensive research. Concurrent programs
are hard to write correctly, and running them on multi-core processors is also often considered
dangerous because of their complex memory model and recently revealed design flaws[28].

From the software side, formal verification specialized to concurrent programs is steadily improv-
ing (see e.g., [19]) and tools compete annually in the various tracks of the competition on software
verification1. From the hardware side, recent results in the verification of memory consistency
models [28] and compilers [25] open new windows in the deployment of correct software on correct
hardware. All these advancements bring software and hardware verification closer and closer, but
full-stack verification of embedded computer systems will probably remain too complex for some
time.
The premise of this paper is that the most recent tools in hardware, and especially memory

consistency model verification carries the ability to detect many errors during the design of new,
but also existing microprocessors. This is increasingly important in the age where custom silicon
appliances could potentially become the future of embedded applications due to open-source
architectures and solutions such as RISC-V2.

Assumingwe are able to detect design flaws retrospectively in existing processors (which happens
more and more often, see e.g., [18]), there may be a need to decide if a given flaw will ever be
activated in an application or not. With this information, it would be easier to decide about a
potential recall of the hardware or even mitigate the problem from software.
Therefore we propose a new kind of problem in the intersection of software and hardware

verification. An exact solution needs to consider the behavior of the program, but also the execution
semantics of the hardware to a limited degree. In our opinion, much of the necessary methodology
is already known and published (e.g., in [19] and [28]), but their combination is not trivial.
In this paper, we formalize the proposed problem building on the existing methodology and

outline a possible exact solution. We also consider some approximative solutions and design one of
them based on traditional model checkers to provide a proof of concept. Finally, we evaluate two
implementations with two significantly different model checkers to demonstrate feasibility and see
how traditional model checking algorithms handle such problems.

2 BACKGROUND
This section introduces the key concepts in formal verification (of software), computer architectures
and memory consistency models to establish the foundations of our work in both the hardware
and the software world.

2.1 Formal Verification
Formal methods in computer science provide a methodology for using mathematical techniques
in the specification, design and verification of computer systems [10]. Formal verification deals
with the problem of proving or refuting if a formal system model satisfies its formal specification.
Formal verification techniques differ from traditional verification (such as testing) in that they aim
to unambiguously prove properties, often by considering every possible behavior of the system.
1https://sv-comp.sosy-lab.org/
2https://www.sifive.com/
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Awide-spread technique for automatic formal verification is model checking [10]. Given a formal
specification, model checking explores the set of possible behaviors of the model – the state space –
to check conformance. Model checking may generate a witness, which is usually an execution trace
that demonstrates how the property is satisfied/violated.

2.1.1 Partial Order Reduction. Partial order reduction (POR) is a technique usually used with
explicit state space enumeration [15]. In concurrent systems, the combinatorial explosion of the
state space is often caused by the arbitrary interleaving of independent behaviors. The goal of POR
is to eliminate the redundant interleavings by keeping track of dependencies in the model and
prioritizing independent transitions [12].

2.1.2 SymbolicModel Checking with Decision Diagrams. Many symbolicmodel checking techniques
use decision diagrams to compactly store the state space [8]. A decision diagram is similar to a
decision tree, but isomorphic sub-trees are merged. The decision encoded in the diagram is whether
a given state vector is part of a set (the state space) or not. This approach scales well with concurrent,
asynchronous systems, because the similarity of states can be exploited by the diagram [7].

2.2 Computer Architecture
Computer architectures, more precisely called instruction set architectures (ISA) are abstract models
of a processing unit, defining the interface between software and hardware. On the software side, an
ISA defines the available instruction primitives and their semantics, while it is also the specification
for the hardware implementation.
An ISA for multi-core processors needs to specify how memory operations of a processing

unit will be observable to other units. This is non-trivial because modern processors are usually
implemented with various optimizations, such as caches and read/write-buffers and often employ
out-of-order execution, meaning instructions of a program are executed in a data-driven manner
instead of the order specified by the program. The part of the ISA governing these issues is called
the memory consistency model (MCM).

2.2.1 Memory Consistency Model. The main role of the MCM is to define ordering rules. Even
though the computing units in a multi-core processor are executing in parallel, access of the (shared)
system memory will always be serialized by the memory controller and the corresponding bus –
this serialization must be done according to the ordering rules.
A memory operation can either be a store (write), load (read) or a special read-modify-write

(RMW) operation. A write is considered successful when all memory regions of the location are
updated with the new value (main system memory and cache(s), when used), while a read is
successful when the return value is bound (cannot change later on during the operation) [13]. A
RMW can be considered as a read and a write executed atomically in one operation.

Ordering rules might be specified by using litmus tests (both Intel and AMD do this [6, 23]), which
are small concurrent programs containing memory operations executed on different computing
units (threads), along with a specification of forbidden outcomes. Outcomes are always defined as
values of local non-shared memory or registers (when applicable) after storing and loading data
to and from shared memory regions. Forbidden outcomes therefore specify what results may not
occur when executing the test program by observing and constraining how memory operations
can affect each other.

2.2.2 Sequential Consistency. The baseline for the ordering rules is the program order, the order in
which the program specifies the memory operations. Every processor must ensure that a single
thread running on a single computing unit observes its own effect as if the instructions were
executed in program order, but this may be relaxed for other threads running on other computing
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1 A = 1 ;
2 u = A ;
3 w = B ;

1 B = 1 ;
2 v = B ;
3 x = A ;

Fig. 1. Litmus test for the TSO model. The outcome (u,v,w, x) = (1, 1, 0, 0) is forbidden by SC but allowed by
TSO.

units. The most conservative approach, which specifies that instructions of every thread should be
observable by every thread according to program order, is called sequential consistency (SC).
SC corresponds to a very simple computer architecture where every memory operation goes

directly to the memory (without caches or buffers) in program order, and the memory serves the
requests one-by-one. Due to its natural simplicity, SC is the consistency model implicitly assumed by
programmers and also most formal verification algorithms – we could call it a programmer-centric
memory model [13].

Modern processors, however, rarely guarantee SC by default. Since the memory is usually orders
of magnitude slower than the processor, various optimizations are employed to compensate this
difference, some of which require the relaxation of SC [13].

2.2.3 Relaxed Memory Models. There are generally 6 possible relaxations of SC: reordering Write-
to-Read, Write-to-Write, Read-to-Write and Read-to-Read when these instructions apply to different
addresses, as well as early reading of own or other unit’s write [13]. Introducing a write buffer, for
example, will cause a possibleWrite-to-Read reordering, i.e., reads from different addresses may
overtake writes, potentially reading a value that should have been overwritten in SC. An important
MCM with this relaxation is total store ordering (TSO), which was proposed for the SPARC V8
architecture[27]. A litmus test illustrating the relaxed behavior is given in Figure 1.
Nowadays, the most common MCM is weak ordering (WO), which employs all 6 relaxations

[9, 11]. This allows aggressive optimizations in the processor implementation, offering a huge
speedup compared to SC. Since WO does not preserve the order of memory operations on different
addresses and also allows the early reading of writes, the only way to reliably synchronize between
cores is to introduce a special instruction, often called a memory barrier or fence. These denote
points in the execution where all memory operations issued before the synchronization must be
finished completely before further operations are to be issued.
When using relaxed memory models, many well-known mutual exclusion protocols will fail:

e.g., Peterson’s algorithm [14], used as a running example in this paper, is known to work only
with SC. The C language used to be defined over SC, but many modern languages (such as C11
and Java) are now defined over WO. This requires additional care from the programmer, but also
provides a substantial speedup.

2.2.4 Memory Models of Programming Languages. Since programming languages are higher-level
abstractions than the ISA, most of them define their own memory model that is implemented for
each ISA through the compiler [25]. Programmers can then specify the minimum guarantee they
expect from the platform, tuning the execution of their memory operations between optimizable
and strictly sequential depending on the needs of the application.
In C/C++11, the ordering modes for a single store or load include seq_cst and relaxed, which

correspond to SC and WO [17]. There are also less relaxed modes such as acquire and release,
which provide a middle ground. A synchronization occurs when thread A issues a release store and
thread B issues an acquire load that reads the value stored by thread A. Accordingly, operations
issued before this point in thread A will be visible to B, while operations of B issued after this point
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1 C co r r _R_ r e l a x e d _ r e l a x e d_W_r e l a x e d _ r e l a x e d
2 { [ x ] = 0 ; }
3 / ∗ Ass ign ing d i f f e r e n t v a l u e s to ' x ' ∗ /
4 P0 ( a t om i c _ i n t ∗ x ) {
5 STORE ( x , 1 , memory_order_re laxed ) ;
6 STORE ( x , 2 , memory_order_re laxed ) ;
7 }
8 / ∗ Reading back the va lue o f ' x ' two t imes ∗ /
9 P1 ( a t om i c _ i n t ∗ x ) {
10 in t r1 = LOAD( x , memory_order_re laxed ) ;
11 in t r2 = LOAD( x , memory_order_re laxed ) ;
12 }
13 / ∗ Forb idden outcome : r1 = 2 and r2 = 1 ∗ /
14 e x i s t s ( 1 : r1 = 2 / \ 1 : r2 = 1 )

Fig. 2. The corr_R_relaxed_relaxed_W_relaxed_relaxed litmus test using the macros defined in Figure 3.

will not be visible to A. Furthermore, an explicit memory fence instruction is provided to force
synchronization (the other modes are also often implemented in terms of fence instructions).
Programming language-level memory models enable the formal analysis of a concurrent pro-

gram without considering compiler, operating system and hardware specifics, assuming these are
implemented correctly, i.e., they provide the guarantees defined by the programming language-level
memory model.

2.3 Formal Verification of Memory Models
With the increasing complexity of ISAs and hardware implementations, there is more and more
emphasis on the formal verification of hardware designs. This is motivated by the exponentially
increasing cost of detecting a design flaw, and also by the fact that there has been a number of
occasions when such a flaw was not detected before the commercial release of the affected product.
Regarding MCMs, a famous example that we use in the paper is the so-called ARM Read-Read

Hazard[4]. In this case, two successive reads to the same address could reorder themselves in a
way disallowed by the specification[5], which specifies that every processing core must observe its
own memory operations in program order, and no other thread might observe them in a different
order. A litmus test that can reveal the problem is shown in Figure 2.

Formal verification of memory models includes at least three stages due to the various abstraction
layers. On the lowest level, the hardware implementation must be checked against the ISA to
manufacture correct chips (see Section 3.1 and [28]). On the middle level, compiler mappings
from programming language memory models to different ISAs should also be verified to ensure
guarantees offered to the programmer (see Section 3.2 and [25]), while on the highest level relaxed
memory models should also be considered in the formal verification of software and algorithms
(see e.g., Section 3.4).

2.4 Execution Graphs
An efficient way to describe executions of parallel programs is to use execution graphs [19]. An
execution graph is a directed acyclic graph that defines a partial order of instances of operations
(with concrete parameters), encoding explicit dependencies but not specifying a total execution
order. Typically, these dependencies will come from either the program order (po) or memory

ACM Trans. Embedd. Comput. Syst., Vol. 18, No. 4, Article 111. Publication date: October 2019.



111:6 L. Bajczi et al.

operations. An advantage of execution graphs over the interleaving semantics of model checking is
that the source of data for read operations (i.e., the write operation that produced the data) can
also be denoted by a dependency between the memory operations (“read-from”, rf ).
This approach can also be used to describe the behavior of hardware pipelines implementing a

memory model [21]. In this case, the graph is often called a “happens before” graph as it is used
to reconstruct a possible set of behaviors leading to an observed outcome (i.e., operations had to
happen before other operations to produce the output). Many types of dependencies can introduce
a “happens before” arc, including the two mentioned above [2]. Note that a valid “happens before”
graph is always acyclic – if there is a cycle, the graph cannot be an execution graph because there
is no legal total ordering of the operations (nothing can happen before itself).

In this paper, we use execution graphs for both purposes (see e.g., Figures 5 and 7), building on
the related work presented in the next section.

3 RELATEDWORK
To the best of our knowledge, the approach proposed in this paper is the first of its kind. There are,
however, concepts and research that are closely related to our methodology around the boundaries
of the following three topics: hardware verification, compiler verification and software verification.

3.1 MCM Verification with TriCheck
In [28], the authors introduce a tool called TriCheck to demonstrate howMCM inconsistencies can be
found, applied to the open-source RISC-V architecture. TriCheck builds on three other tools to verify
memory consistency models: PipeCheck [21] to build and analyze a “microarchitecturally happens
before” graph describing the dependencies between stages of the pipeline executing different
memory operations; CCICheck [24], which extends the methodology to verify the coherence-
consistency interface related to caching; and COATCheck [22] that further extends the verification
to consider virtual address memory consistency.

The goal of the tool is to formally prove that forbidden outcomes of litmus tests can indeed never
occur in a specific hardware implementation. The main idea is that any outcome that does not
introduce a cyclic dependency between the operations has an execution graph and therefore may
actually be observable.
In a different project [3], a complementary tool3 called litmus7 has been introduced that can

be used to actually observe these executions on real hardware. By applying different timings, the
tool can make these execution corner-cases appear more frequently, often raising the number of
forbidden results to a few dozens in every billion executions.
TriCheck was the main inspiration for this work. Even though it aims to help hardware manu-

facturers to avoid errors in the implementation, there are well-known cases when a design flaw
was revealed well after the release of the CPU, such as the already mentioned ARM Read-Read
Hazard[5], or the more famous Spectre attack[18] (although Spectre is not in the scope of our work).
TriCheck can be used to verify already released processors to possibly reveal rare but critical faults
in embedded systems to facilitate their repair. Whether or not a design flaw will be activated in a
certain application is the main focus of our work.
Furthermore, the methodology of building dependency graphs to define the partial order of

execution steps can be generalized to give an exact – although not very feasible – solution to the
problem we introduce (see Section 5).

3http://diy.inria.fr/doc/litmus.html
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3.2 Compiler Verification for Weak Memory Models
As mentioned in Section 2.2.4, memory models of programming languages are mapped to memory
models of an ISA by a compiler. From the correct software–correct compiler–correct hardware
triple, [25] addresses the correct compiler problem. Using a new intermediate weak memory model
(IMM), they modularize the proofs of correctness of compilation from concurrent programming
languages with WO memory semantics to multi-core architectures. The case study yields the first
machine-verified compilation correctness results for models that are weaker than x86-TSO.

3.3 Library Correctness over WOMemory
As in other types of software, concurrent applications also use libraries for basic building blocks.
There had been work verifying concurrent libraries over SC, but not much had been known about
their correctness over WO. The framework proposed in [26] enables the specification of concurrent
libraries declaratively and verifies their behavior with regard to this specification in a compositional
way. The framework is suitable for encoding standard memory models such as SC and TSO, as
well as the memory model of the C11 language. Applicability has been demonstrated on libraries
implementing locks, exchangers, queues and stacks.
This work and the next one are similar to our work in that they seek to consider the memory

model in the verification of concurrent software.

3.4 Stateless Model Checking for C/C++
In [19], a novel approach is proposed for the stateless model checking of concurrent programs
written in RC11, a “repaired” version of C/C++11 without dependency cycles (introduced in [20]).
They use a variant of stateless model checking combined with partial order reduction to generate
all consistent execution graphs (instead of states, which would imply an interleaving semantics).
The significance of the algorithm is that it considers the weak memory model in the verification
process. The resulting tool, called RCMC, is shown to scale significantly better than traditional
model checkers. In [1], an extension is proposed to consider the release-acquire memory model as
well.

In addition to the relevance of the goal, this approach may turn out to be the closest to how an
optimal solution to the problem proposed in this paper would look like.

4 OVERVIEW
Context. Assume there is a multi-core processor with a relaxed MCM specified by litmus tests as

seen in Section 2.2.1, as well as a concurrent program in e.g., C/C++11 that is to be executed by this
processor. Also, assume that the processor is known to have a design flaw that causes one of the
forbidden outcomes of a litmus test to be occasionally observable, but this flaw cannot be repaired
practically because the hardware is already manufactured.

Motivation. Because of the enormous cost of repairing or recalling the hardware, we want to
check if the program even activates the fault. The fault is activated only if the program can produce
the behavior described by the litmus test – in this case, the forbidden output will be observable and
may affect the correctness of the program. Detecting the activation also gives an opportunity to
mitigate the problem from software.

Challenges. Detecting if a program will activate the fault is not possible without analyzing its
dynamic behavior, because the trigger is two or more simultaneously executed sequences of memory
operations. Dynamic detection, however, means that the patterns described by the litmus test(s)
must be mapped to the state space of the program, which is in itself hard to compute. Furthermore,
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1 / / Header
2 # include < s t d a t om i c . h>
3 #define STORE ( adr , va l , ord ) a t om i c _ s t o r e _ e x p l i c i t ( adr , va l , ord )
4 #define LOAD( adr , ord ) a t om i c _ l o a d _ e x p l i c i t ( adr , ord )
5
6 / / G l o b a l v a r i a b l e s
7 _Atomic in t w = 0 ;
8 _Atomic in t f l a g [ 2 ] = { 0 , 0 } ;
9 _Atomic in t t u rn = 0 ;
10
11 / / Code o f Thread 0
12 void t h r e ad0 ( ) {
13 STORE(& f l a g [ 0 ] , 1 , memory_order_re laxed ) ;
14 STORE(& turn , 1 , memory_order_re laxed ) ;
15 in t m_flag , m_turn ;
16 do {
17 m_f lag = LOAD(& f l a g [ 1 ] , memory_order_re laxed ) ;
18 m_turn = LOAD(& turn , memory_order_re laxed ) ;
19 } while ( m_f lag == 1 && m_turn == 1 ) ;
20 / / c r i t i c a l s e c t i o n
21 STORE(&w, 1 , memory_order_re laxed ) ;
22 STORE(&w, 2 , memory_order_re laxed ) ;
23 / / end o f c r i t i c a l s e c t i o n
24 STORE(& f l a g [ 0 ] , 0 , memory_order_re laxed ) ;
25 }
26
27 / / Code o f Thread 1
28 void t h r e ad1 ( ) {
29 STORE(& f l a g [ 1 ] , 1 , memory_order_re laxed ) ;
30 STORE(& turn , 0 , memory_order_re laxed ) ;
31 in t m_flag , m_turn ;
32 do {
33 m_f lag = LOAD(& f l a g [ 0 ] , memory_order_re laxed ) ;
34 m_turn = LOAD(& turn , memory_order_re laxed ) ;
35 } while ( m_f lag == 1 && m_turn == 0 ) ;
36 / / c r i t i c a l s e c t i o n
37 in t r1 = LOAD(&w, memory_order_re laxed ) ;
38 in t r2 = LOAD(&w, memory_order_re laxed ) ;
39 / / end o f c r i t i c a l s e c t i o n
40 STORE(& f l a g [ 1 ] , 0 , memory_order_re laxed ) ;
41 }

Fig. 3. Running example: Peterson’s mutual exclusion algorithm with a critical section matching the
corr_R_relaxed_relaxed_W_relaxed_relaxed litmus test in Figure 2. Note that if mutual exclusion works, these
instructions will not match the litmus test, as they cannot be executed in parallel.
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of the Program
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Gℓ

Candidate
Abstractions
Gℓ

ℓ

Fig. 4. Overview of the formal problem definition.

the mapping problem is parametric, because any subset of the program’s threads could match the
threads of the litmus test, with any subset of shared variables. Last, but not least, the computation
of the state space must take the memory model into account to yield a complete solution.

Approach. First, we formally define the goal as a decision problem, then outline a precise theo-
retical solution that considers the most recent results in the related work. Since currently no tool
exists that could solve the problem in a precise way, we propose an underapproximation built on
existing model checkers and model transformations to demonstrate the approach in practice and
get an initial picture about how the existing solvers can handle this class of problems.

Running Example. We will use Peterson’s algorithm for mutual exclusion [14] to illustrate the
concepts of our approach. This algorithm is known to require sequential consistency to guarantee
its properties. The implementation shown in Figure 3 uses relaxed memory operations, which will
break the algorithm on relaxed memory models. In the critical section, the instructions are from
the threads of the corr_R_relaxed_relaxed_W_relaxed_relaxed litmus test. If mutual exclusion is
not guaranteed, these instructions can be executed in parallel. We will use this to demonstrate the
capabilities and limitations of the proposed underapproximation.

5 FORMAL PROBLEM STATEMENT
Informally, our goal is to detect the activation of a hardware fault of a given processor in a given
concurrent program p. We will use a litmus test ℓ to characterize the situation when the fault
activates. ℓ is selected by a specialized MCM verification tool such as TriCheck (see Section 3.1)
by proving that a forbidden outcome is allowed by the concrete hardware implementation. We
assume there is such a litmus test for every class of situations when the fault activates because
manufacturers should provide a litmus test for every guarantee they give [16] and there are
complementary approaches to synthesize a comprehensive litmus test suite [23]. Note that the
following considerations apply to the theoretical problem definition only and do not describe a
concrete (let alone efficient) algorithm.

The overview of the following ideas is as follows (see Figure 4 for an illustration). Starting from p,
we generate execution graphsGc that could occur on an arbitrary (faulty) memory controller. These
graphs capture the control semantics of the program but contain inconsistent memory operations.
Next, we take the execution graph of ℓ corresponding to the forbidden outcome and extend it
with every possible (transitive) dependency between its operations that still enables the fault to
activate (Gℓ). We further extend these graphs with arbitrary operations and control dependencies,
keeping the consistency of memory operations apart from those of the litmus test but ignoring
actual control flow and consistent control dependencies (Gℓ). The intersection of these two sets
of graphs – if non-empty – contains the execution graphs of p that activate the fault found by ℓ:
Gc ∩ Gℓ .
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Fig. 5. Two variants of an execution graph of Peterson’s algorithm as presented in Figure 3. This graph shows
a situation where mutual exclusion is achieved.
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Fig. 6. Forbidden but observable execution graph of the corr_R_relaxed_relaxed_W_relaxed_relaxed litmus
test over the w memory location, extended by an sb dependency.
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sb: Starts-Before
fb: Finishes-Before
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2

Fig. 7. The “happens before” graph of the corr_R_relaxed_relaxed_W_relaxed_relaxed litmus test on a sample
hardware, created by TriCheck [28]. Write serialization denotes the execution order in the memory controller.
Arrows marked with 1○ and 2○ belong to an example and are not part of the original graph. Note the lack of
cycles which makes a forbidden output observable: the numbering of the nodes gives a topological order with
no “backward” arcs, which is a feasible execution. Also note that this outcome would be impossible had the
hardware correctly implemented a PPO dependency between nodes 14 and 12 as it would introduce a cycle.
This is also the case with the additional fb dependency marked with 2○, but not with the sb relation marked
with 1○.

5.1 Control Consistent Execution Graphs
A trivial case is when p contains ℓ directly as a concurrently executable subprogram. More in-
teresting cases, however, include the execution of additional operations between and around the
instructions of the litmus test. These additional instructions cannot introduce additional observ-
able outcomes, but they may remove some by adding more dependencies – potentially (but not
necessarily) removing the observable forbidden outcome (e.g., by serializing the parallel threads
with some form of synchronization). To characterize this, we introduce two additional types of
dependencies between memory operations.

Definition 1. An operation A “starts before” (sb) operation B if Amust always be issued before B.
An operation A “finishes before” ( fb) operation B if 1) A is a write operation and the stored value must
be visible to all threads in the whole memory hierarchy (including caches) or 2) A is a read operation
and the final loaded value must be available in the calling thread before B is issued.

A fb dependency can denote multiple situations: 1) a read operation reads the value stored in a
write operation (rf ), 2) a different result of a read would divert the control flow and prevent the
execution of another memory operation (control dependency), 3) a sequential memory operation
always finishes before any operation can starts that are after it in program order (on the same
thread) and starts only after all operations finished that are before it in program order, 4) a release
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store starts only after all operations finished that are before it in program order and 5) an acquire
load always finishes before any operations starts that are after it in program order (see [2] for the
justification of 3–5).4 This dependency is transitive, but only through other fb dependencies. A sb
dependency can model when the logical order of instructions in an execution implies an ordering
between the issuing of operations (i.e., program order and fb dependencies, transitively).

To reason about potential executions of a concurrent program (either a litmus test or the program
under analysis), we will use execution graphs with “reads-from” (rf ) dependencies between read
and write operations and extended with sb and fb dependencies. In addition to the consistent
execution graphs used in [19], we will define control consistent execution graphs to model behaviors
with arbitrary memory consistency errors (instead of only the errors of the specific processor under
consideration).

Definition 2. A control consistent execution graph Gc is an execution graph of program p (see
[19]) in which rf arcs are unrestricted, i.e., a read operation may read from any write operation in the
graph as long as the stored and loaded values are the same. Note that the control flow must obey the
loaded values and the control structures of p (i.e., we assume that the processor is flawless apart from
the memory controller).

Two control consistent execution graph of Peterson’s algorithms as presented in Figure 3 can be
seen on Figure 5. The numbered rf dependencies denote the two cases: with 1○ the graph is not
consistent but control consistent, with 2○ it is also consistent.

5.2 Fault Activating Execution Graphs
A litmus test with an observable forbidden outcome comes with a “happens before” graph Hℓ that
denotes the various dependencies between the pipeline stages of different memory operations. As
seen before, if this graph is acyclic, it means that the forbidden outcome may be observable. As an
example, see Figure 7 that denotes a situation in which the ARM Read-Read Hazard is observable
on a processor. On this graph, a sb dependency applies to the first stage of each instruction, while
a fb dependency orders the last stage of the first instruction before the first stage of the second
instruction.

If we have the set of all control consistent executions Gc of p, we can check whether any of them
is “similar” to the execution graph Gℓ of ℓ with the forbidden (but observable) outcome. To do this,
we generate a set of execution graphs Gℓ derived from Gℓ by adding sb and fb dependencies in
every possible way both to Gℓ and Hℓ as specified above, such that Hℓ remains acyclic. These will
be the candidate abstractions of execution graphs in Gc .
The last thing to check is if any of these candidates can be extended into a “quasi-consistent”

execution graph in Gc . A “quasi-consistent” execution graph is an execution graph which is
consistent in the sense defined in [19] (there exists a program over WO that can produce the
described executions) except for the rf arcs originally present in execution graphs in Gℓ . The
extensions, denoted by Gℓ and called fault activating execution graphs can be realized by iteratively
applying the following transformations on elements of Gℓ in a way that no new (transitive) sb and
fb dependencies appear between the original memory operations of the litmus test:
(1) Insert any new node X before the first existing node A (such that X is po before A, denoted

by X → A).

4Assuming that these situations indeed lead to a fb relationmeans that the hardware is correct, whichmay seem contradictory.
Nevertheless, the specific hardware fault that we are looking for will be considered separately, and there is always a “first
error” that can be found without assuming a faulty hardware.
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(2) Insert any new node X after the last existing node A (such that A → X ), or insert a new
node X after an existing non-terminal node A followed by any node B (such that A → B and
A → X but B 9 X and X 9 B).

(3) Insert any new node X between an existing node A and a set of existing nodes B in which
for every node B ∈ B we have A → B (such that A → X and X → B for every B ∈ B).

(4) Insert a fb dependency between any two nodes without introducing a cycle to denote control
dependency.

(5) Insert a rf arc consistently between a write and a read that does not have an incoming rf arc.
Figure 6 shows the forbidden but observable execution graph of the litmus test from Figure 2

(corr_R_relaxed_relaxed_W_relaxed_relaxed) extended with a sb dependency (an element of Gℓ).
This dependency does not prevent the forbidden outcome, as Hℓ extended with it (Figure 7 with
the sb arc marked with 1○) is still acyclic. Also note that the graph can be extended with the
transformations above to get the control consistent execution graph in Figure 5.

5.3 Fault Activations of the Program
The intersection of the control consistent execution graphsGc ofp and the fault activating execution
graphs Gℓ will be denoted by Ge . This set contains execution graphs that are consistent with the
control flow and dependencies specified by p (because they are in Gc ) but also consistent with
the WO memory model apart from the fault described by ℓ (because they are in Gℓ), therefore all
overapproximations introduced in the definitions above are excluded. Furthermore, Ge contains
every execution graph of p that activates the hardware fault described by ℓ. Based on this, the
problem statement is as follows.

Problem Statement 1. Given a concurrent program p and a litmus test ℓ, let L be the set of
execution graphs of ℓ that correspond to the forbidden outcome with any set of shared memory
locations in p. For each Gℓ ∈ L, let Gℓ be the set of fault activating execution graphs as defined
above and let Gc be the set of control consistent execution graphs of p. Then the question of having an
activation of the fault described by ℓ in p or not is equivalent to deciding Ge = Gc ∩ Gℓ

?
= ∅.

According to this definition, Figure 5 shows an execution graph that describes an activation of
the ARM Read-Read Hazard over variable w.

5.4 Outline of an Exact Solution
The definition of Problem 1 includes the generation of multiple infinite sets of execution graphs,
which is definitely not feasible in practice. An exact solution should efficiently generate candidate
execution graphs that may be in the intersection and prove that it is an element of both sets. In
this section, we outline a solution that could build on existing, although rather new techniques to
generate and check such candidates.

The key observation is that every execution graph in Ge is almost a consistent execution graph
of p, the only inconsistency is exactly the one described by the execution graph of the litmus test
that corresponds to the forbidden outcome. The algorithm presented in [19] (the efficient RCMC
model checking algorithm) is capable of enumerating all consistent execution graphs of p and it can
be extended to keep track of fb dependencies introduced by control structures as well. It can also
do this with litmus tests, and although these consistent execution graphs will not contain the one
leading to the forbidden outcome, we may use them to detect when p behaves like the litmus test.
This can be done by matching the execution graphs of the ℓ on the execution graph of p as graph
patterns, allowing a “program order” relation to match on a path of “program order” arcs.
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Fig. 8. A potential execution graph of the
corr_R_relaxed_relaxed_W_relaxed_relaxed lit-
mus test over the flag[0] memory location.
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Fig. 9. A potential execution graph of the
corr_R_relaxed_relaxed_W_relaxed_relaxed lit-
mus test over the w memory location.

Once we have a match (denote it by G), we have to trace back the transitive sb and fb relations
induced by po, rf and fb dependencies (introduced by control structures and other memory opera-
tions) into the “microarchitecturally happens before” graph Hℓ of the forbidden outcome. If the
additional dependencies introduce a cycle, this execution may not activate the fault because Hℓ is
not an execution graph. Otherwise, the matched execution graph may describe a situation when
the hardware fault activates. To verify this, we change the rf dependencies between the matched
memory operations to correspond to the forbidden outcome, obtaining Ge , which is an element of
Gℓ (because it is consistent apart from the activated fault and a valid extension of the forbidden
execution graph of the litmus test).

The last thing to check is whetherGe ∈ Gc , i.e., if it is consistent with the control flow defined by
p for the read values. This can be done either by the extended RCMC algorithm or by simulating p
with mocked read operations returning the values specified by Gc – if the simulation can yield the
same control flow as the original execution graph, we have a fault activating program execution.
On the other hand, the fault activation may cause the program to read values that divert the control
flow – yielding a new control flow graph. In this case, Ge was not in Gc , but the new graph G ′

e is.
One last time, we have to trace back the dependencies of G ′

e into Hℓ to see if there is a cycle (in
which case there is no fault activation), but if not, we have that Ge ∈ Gc and G ′

e ∈ Gℓ , so G ′
e is a

fault activation of program p.
In the running example, there are two matches in the sample execution graph in Figue 5 (inter-

preted with the consistent rf relation marked with 2○), denoted by the two colors: Figure 8 shows
the one over the flag[0] variable and Figure 9 the one over w. Both figures show the additional
dependencies implied by the execution graph of Peterson’s algorithm. Tracing them back to the
“happens before” graph in Figure 7, we can see that the match related to flag[0] introduces a cycle
(the fb arc marked with 2○), so there will be no fault activations associated with those memory
operations, but the other one related to w – as seen in the illustration of the problem statement –
does not introduce a cycle. When we change the rf arcs according to the forbidden but observable
outcome, we effectively switch from the rf arc marked with 2○ to the one marked with 1○. This
execution graph is control consistent because the values read from w do not matter in terms of the
control flow (as seen in Figure 3).

In order for the above approach to work, there always has to be a consistent execution graph of
p which differs from the actual fault activating graph in the rf arcs only. We prove that this is the
case.
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Theorem 5.1. If a concurrent program p has an execution graphGe ∈ Ge , there exists an execution
graph G such that Ge and G differs only in rf dependencies between operations matched to the litmus
test, i.e., for every fault activating execution graph there is an equivalent execution graph where the
fault does not activate.

Proof. We prove by contradiction. Assume there is a p which has an execution graph Ge ∈ Ge
but no corresponding fault-free execution graph G. This is possible only if the control flow of p
depends on the outcome in such a way that the matched operations are issued only in case of the
forbidden outcome. Due to causality, the condition responsible for “diverting” execution may not
be after the last involved operation. However, if it is before the last operation, its result may not be
known during the decision. This would imply that it is possible to decide if an outcome is forbidden
based on the results of a subset of the operations, which means the litmus test is not minimal (i.e., it
contains unnecessary operations) and there is a minimal litmus test that should be checked instead.
Since we assume a set of minimal litmus tests (which is always possible), this is a contradiction
(see Section 7 for a discussion of limitations). �

6 APPROXIMATIVE SOLUTIONS
The hardest part of solving Problem 1 is precisely keeping track of and tracing back the additional
dependencies to the “microarchitecturally happens before” graph of the hadrware implementation.
Therefore, we consider and evaluate approximative solutions which under- or overapproximate
the "happens before" graph at the cost of introducing false negatives or false positives. In addition,
as there are very few available tools that generate execution graphs of concurrent programs over
relaxed memory models, and probably none of them could solve the presented problem out of
the box, we implement a partial solution based on traditional model checkers with interleaving
semantics (corresponding to SC) and investigate its properties.

6.1 Relaxed Solutions
There are many trivial relaxed solutions such as reporting a potential activation when threads of a
program contain the instructions specified in the litmus test (without considering dependencies or
control structures). These can be used to quickly determine true negatives before moving on to a
more expensive solution.

Although currently not available in any tool, a relaxed solution that is very close to the precise
answer would involve a model checker like RCMC (see Section 3.4 and [19]) that can enumerate
the consistent execution graphs of a program and a relaxed evaluation of "inserted instructions"
that will always report a true activation but maybe also false positives. As mentioned in Section 5.4,
detecting an execution graph of a litmus test in a consistent execution graph of the program can
be precisely formalized as a graph pattern matching problem, where the pattern comes from the
structure of the litmus test (a similar approach for model checkers is presented in Section 6.3). By
omitting any of the remaining steps of the outlined exact solution we can report a chance of a
fault activation for each match based on the fact that the program indeed performs the memory
operations just like the litmus test. Depending on how much of the additional dependencies we
consider, we may rule out a varying amount of false positives. This solution may still be useful if
the program simply does not use the types of operations involved in the litmus test in that specific
way.

6.2 Stricter Solutions
When proving that an activation is indeed present, stricter solutions might be able to provide
a proof with fewer resources or simpler tools. Similarly to the relaxed solution outlined in the
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previous section, we can define a stricter algorithm by modifying how we approximate cycles in
the “happens before” graph. One possibility that is again very close to the precise solution is to
report “no cycle” whenever there is any additional dependency between the operations matched by
the litmus test, i.e., some control structures, non-relaxed memory operations or operations on an
address used in the matching litmus test affect how the threads execute. These situations might
cause an activation but not always (false negatives), while in every other case the instructions on
different threads of the litmus test can be executed in parallel, which corresponds to the execution
of the litmus test. In this case, checking the control consistency of the forbidden outcome is not
even necessary as we do not consider execution graphs where this might be an issue. This solution
could detect when programs execute memory operations in the litmus test in an unconstrained,
truly parallel way.

6.3 Partial Solution with Model Checking
In this section, we define a special partial solution that works with traditional model checkers.
Although most model checkers assume SC during state space generation, an important advantage is
that they are general solvers that allow us to formalize a solution based on out-of-the-box tools. We
call this a partial solution because the limitation to SC has serious consequences on completeness.

6.3.1 Problem Statement for Model Checking. The stricter problem we want to solve with the
model checking-based approach is as follows.

Problem Statement 2. Given a concurrent program p and a litmus test ℓ, decide whether p has a
state s in the space of sequentially consistent behaviors SSC such that

(1) for any instance of ℓ where the memory locations are bound to shared variables of p and threads
of the litmus test are bound to threads of p, and

(2) any thread t of the litmus test
(3) there is a sequence of operations π executable from s s.t.
(a) π contains the operations of t in the program order of ℓ, immediately starting with the first

one,
(b) π does not have any operations reading or writing a variable used by the instance of ℓ inserted

between operations of the litmus test,
(c) π does not have any control instruction that evaluates any variable that (transitively) got its

value from a read operation of ℓ, and
(d) π does not have any sequential operation reading or writing any variable apart from those in

the litmus test.

Problem 2 is essentially parametric pattern matching on the state space and is related to the model
checking of regular properties [10]. The constraints on π ensure that in WO no synchronization
between the threads can occur during the execution of a litmus test thread and no fb dependency
is introduced by control instructions (condition 3c). Furthermore, if there is a state from which
every litmus test thread can be executed this way, we have that the threads can run independently.
Therefore, no transitive dependencies will appear in the “happens before” graph of the litmus test
and the forbidden outcome will be observable.

6.3.2 Matching Litmus Tests in the State Space. To detect a path π in the state space SSC that
satisfies the constraint defined in Problem 2, we generate nondeterministic finite automata for each
thread of the litmus test. As an example, see Figure 10 which describes a satisfying path for thread
P1 of the litmus test from Figure 2. Notice that the automaton is parametric, i.e., it uses the symbols
t to constrain the thread executing the given operation and v for the memory location affected
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q0 cond(t, v) q1 q2

ld_rel(t, v)ld_rel(t, v)

!ld_rel(?, ?) !ld_rel(t, v)

ld_rel(?, ?)

ld_rel(?, ?)

Fig. 10. The automaton for P1 in the litmus test from Figure 2. The informal notation !a matches any memory
operation other than a, while cond(t, v) means thread t evaluated a condition dependent on the value of v to
determine control flow. Parameters are t for thread and v for variable.

1 X = 1 ;
2 X = 2 ;

1 r1 = X ;
2 i f ( r 1 == 2 )
3 r2 = X ;

Fig. 11. Would this program trigger the Read-Read Hazard? X is a shared variable with initial value of 0.

(there would be more parameters for variables if the litmus test accessed more). This means that
q1 → q2 must read a relaxed store from the same thread and to the same variable as q0 → q1.

The automata generated this way can be coupled with the model to compute the synchronous
product of their state spaces, assuming states of the model are labeled with memory operations
and control instructions to be performed next. If the model checker supports properties specified
in computational-tree logic, an expression can describe the state s from which there is a satisfying
path π for every thread of a given litmus test instance, i.e., every generated automaton can leave
its initial state in the next step of some π and reach its accepting state.5

6.3.3 Scope of the Partial Solution. Because of the SC semantics assumed by the model checker,
the state space SSC we use is just a subset of the real state space SWO that can result from the WO
semantics. Therefore the fault activations that are only reachable in SWO will be false negatives.
In the running example, the model checking approach would not detect the Read-Read Hazard
on w (from Figure 9) because in SSC there is no state from which both threads could start (as the
algorithm ensures mutual exclusion in SC). Without the mutual exclusion algorithm, that is, the
critical sections alone, this approach would also find and report the problem like the stricter solution
outlined in Section 6.2.

7 LIMITATIONS
The most serious limitation of all approaches presented in this paper is that we ignore the effect of
other parts of a processor (outside of the MCM). The execution of a program can depend on many
internal optimizations, some of which might affect the memory operations issued by a computing
unit. One of these is speculative execution [18]. Consider the concurrent program in Figure 11
executed on a hardware with the Read-Read Hazard (described by Figure 2). Without speculative
execution, the forbidden outcome (r1, r2) = (2, 1) is not observable because that would mean the
read operations were reordered (we know that the writes are ordered correctly) – but there can be
no second read to reorder if the first one reads 1. With speculative execution, however, there is
a chance the processor issues the second read due to branch prediction (this is legal because the
5The template for this expression is EF (∧t∈ℓ EX (startedt ∧ EFacceptedt )), where startedt and acceptedt mean that the
automaton for thread t left its initial state or accepted the path, respectively.
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read should be side-effect free), which could indeed trigger the Read-Read Hazard and give us the
forbidden outcome (in this case, Theorem 5.1 does not hold).

Furthermore, as highlighted in Section 6, the approximative approaches we proposed and evalu-
ated are either under- or overapproximations and therefore only a best-effort solution aiming to
inspire further research towards the precise problem described in Section 5.
A serious threat to the applicability of our approach is that even though we speculate that the

set of litmus tests provided by a processor manufacturer covers every interesting situation, this
is likely not the case. A promising direction to mitigate this problem is [23], which proposes an
approach to synthesize a comprehensive litmus test suite.

There are also various threats to the validity of our measurements, including the implementation
of the approach, the proper configuration of the tools we used and other usual threats related to
measuring the running time of computer programs.
Last, but not least, the solutions we proposed are not optimal. The model checking of regular

properties combined with CTL on concurrent programs is not well-researched, but there are
promising techniques that could improve our solutions, such as abstraction-based techniques.

8 EVALUATION
To demonstrate the applicability of the methodology introduced in previous sections we have
developed a proof-of-concept implementation of the model checking-based approach. In this
section we present an exploratory evaluation of how it scales along the dimensions of the problem
and with different model checkers.

The Model Checkers. We implemented the model checking-based approach from Section 6.3
based on two model checkers: spin[15] and nuXmv [8]. Spin seemed to be a good candidate
because of its flexible input language Promela, and also due to dynamic partial order reduction
that is usually very efficient for concurrent, asynchronous models. nuXmv, on the other hand, is a
symbolic model checker that uses decision diagrams and SAT solving, which is also traditionally
suitable for concurrent program-like models, and it offers CTL model checking that enables an easy
formalization of the criteria from Problem 2.

The Models. We used simple synthetic input programs, each with 2 ≤ t ≤ 20 threads and
5 ≤ v ≤ 50 variables, as well as 1 ≤ l ≤ 10 litmus tests that have to be matched. The input programs
consist of stores and loads in threads, either all of them with sequential or all of them with relaxed
ordering. We have experimented with different allocation of the shared variables to the threads
and instructions, but will report results only for the randomly assigned models as there was little
difference and it is the most realistic.

The Results. Measurements were conducted on a bare-metal server machine rented from the
Oracle Cloud (BM.Standard.E2.64), with 64 cores and 512 GB of RAM, running Ubuntu 18.04. We
used benchexec6 to measure and limit the resource consumption of each process to 16 GB of memory
and 1200s of running time. Scaling of both tools is illustrated in Figure 12, while a comparison of
the tools for each problem is shown in Figure 13. We can conclude that nuXmv scaled much better
than spin, possibly because partial-order reduction was less applicable due to the automata we used
as a regular property. In the three dimensions of the problem, the number of variables had little
effect on the running time. The number of threads and litmus test, however, did affect performance
in various degrees. While spin shows super-exponential scaling in both dimensions, nuXmv scales
nearly or even below exponentially.

6https://github.com/sosy-lab/benchexec
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Fig. 12. Spin and nuXmv performance graphs, scaling by number of litmus tests, variables and threads. nuXmv
could finish more tests in the given timeframe (1200s) and memory constraint (16GB). Furthermore, nuXmv
scaled much better resulting in an almost linear regression, albeit on a logarithmic scale.
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Fig. 13. Spin and nuXmv performance comparison. nuXmv performed better than spin both in terms of
execution time and memory usage.

9 CONCLUSION AND FUTUREWORK
In this paper, we have proposed a new kind of formal verification problem to decide if a concurrent
program will activate a fault in the memory consistency model of a processor when executed
on it. We have outlined an exact solution based on the most recent advances of software and
memory consistency model verification, and considered some approximative solutions. We have
also implemented and evaluated a partial solution that is based on traditional model checkers.
The results indicate that the proposed problem can be solved, but traditional model checking

tools are currently not suitable to address the full problem and they are also not prepared for
this use case. Recent tools, however, are promising, and the gap between hardware and software
verification is closing. We hope to provide a motivation for the integration and improvement of
these methodologies and also a tool to system engineers to address the faults of existing hardware
which would be expensive to repair or recall.

As we consider this only a first step in a new direction, we have a lot of future work. We
plan to experiment with more approximative solutions and more model checkers, identifying the
most efficient techniques. Furthermore, we plan to design purpose-built algorithms based on the
methodology of [19] and [28] that can precisely solve the problem and work on new abstraction-
based techniques to increase efficiency.
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