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Abstract
Smart cyber-physical systems (CPSs) have complex interaction with their environment which is rarely known in advance, and
they heavily depend on intelligent data processing carried out over a heterogeneous and distributed computation platformwith
resource-constrained devices to monitor, manage and control autonomous behavior. First, we propose a distributed runtime
model to capture the operational state and the context information of a smart CPS using directed, typed and attributed graphs
as high-level knowledge representation. The runtime model is distributed among the participating nodes, and it is consistently
kept up to date in a continuously evolving environment by a time-triggered model management protocol. Our runtime models
offer a (domain-specific) model query and manipulation interface over the reliable communication middleware of the Data
Distribution Service (DDS) standard widely used in the CPS domain. Then, we propose to carry out distributed runtime
monitoring by capturing critical properties of interest in the form of graph queries, and design a distributed graph query
evaluation algorithm for evaluating such graph queries over the distributed runtime model. As the key innovation, our (1)
distributed runtime model extends existing publish–subscribe middleware (like DDS) used in real-time CPS applications
by enabling the dynamic creation and deletion of graph nodes (without compile time limits). Moreover, (2) our distributed
query evaluation extends existing graph query techniques by enabling query evaluation in a real-time, resource-constrained
environment while still providing scalable performance. Our approach is illustrated, and an initial scalability evaluation is
carried out on the MoDeS3 CPS demonstrator and the open Train Benchmark for graph queries.

Keywords Runtime monitoring · Graph queries · Distributed model management · Data Distribution Service (DDS)

1 Introduction

Motivation A smart and safe cyber-physical system [18,38,
39,49,56] (CPS) is a software-intensive decentralized sys-
tem that autonomously perceives its operational context
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and adapts to changes over an open, heterogeneous and
distributed platformwith amassive number of nodes, dynam-
ically acquires available resources and aggregates services
to make real-time decisions, and resiliently provides criti-
cal services in a trustworthy way. Several challenges of such
systems have been identified in [15,17,38,39,56] including
their assurance in domains like self-driving cars, autonomous
drones or various Internet-of-Things applications.

Runtime models (aka models@run.time [11,57]) provide
a rich knowledge representation to capture the runtime opera-
tional state and context of a smart CPS as typed and attributed
graphs [21] to serve as a unifying semantic basis for runtime
monitoring,management and control.On the one hand, graph
models are widely used internally in various design tools for
CPS (e.g., Capella,Artop).On the other hand, real-timeCPSs
dominantly use low-level data structures with static (i.e.,
compile time) memory allocation to ensure resource con-
straints such as memory limits or deadlines. Unfortunately,
such static data models are unable to capture dynamically
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evolving contextual information where there is no a pri-
ori upper bound on relevant contextual objects (e.g., many
pedestrians may be in contextual range of a self-driving car),
which is a major limitation.

While runtime models can be used for different pur-
poses, the current paper has a specific focus on their use
in runtime monitoring scenarios which aims to continuously
detect the violation of (safety) properties at runtime. Run-
time monitoring has frequently been addressed by runtime
verification (RV) techniques [40,44] which provide formal
precision, but offer a low-level specification language (with
simple atomic predicates to capture information about the
system). Recent RV approaches [12,29] started to exploit
rule-based techniques over a richer (relational or graph-
based) information model. Runtime models have already
been used for the assurance of self-adaptive systems (SAS)
in [16,64].

Problem statement This paper aims to promote the use
of graph models as a rich information source and the use
of graph queries as a means of runtime monitoring in the
context of distributed and resource-constrained computation
platforms. However, the direct adaptation of existing graph-
based techniques and tools needs to face several challenges
imposed by their runtime use in a distributed smart CPS.

– Distributed runtimemodelsUnlike in CPS design tools
where models are stored in a centralized way and they
evolve slowly, the underlying graph model needs to be
distributed and updated with high frequency based on
incoming sensor information and changes in network
topology. In addition, we immediately need to tackle
well-known challenges of distributed systems such as
data consistency and fault tolerance.

– Resource constraints and QoS requirements In CPS
design tools, models are manipulated on a single com-
puter (or on a cloud-based server). However, graph
models used at runtime need to be operated over a hetero-
geneous execution platform with resource-constrained
devices or other quality of service (QoS) requirements
(e.g., with reliable message delivery or delivery dead-
lines as in soft/hard real-time systems)which are frequent
in edge computing or real-time embedded systems like
industrial automation, telecom equipments or distributed
control and simulation [50].

Existing distributed runtimemodels [27,28] support graph
node-level versioning and reactive programming with lazy
loading to make the complete virtual model accessible from
every node over a Java-based platform, but not in a resource-
constrained environment.

Objectives and contributions In this paper, we present a
general framework for managing distributed runtime graph
models with focus on runtime monitoring carried out by
distributed graph query techniques specifically targeting
resource-constrained smart CPSs by extending initial results
presented in [12].

In particular, our contribution includes a distributedmodel
update protocol (specified formally as statechart models), a
distributed graph query evaluation algorithm and prototype
implementation to provide a framework with the following
key characteristics:

– Model manipulation middleware The runtime model
offers a high-level model manipulation interface to be
used by low-level sensors and high-level domain-specific
applications, which guarantees consistent model updates
in a distributed CPS setting using a novel model update
protocol.

– Distributed graph model with single source of truth
The graph of the runtime model is distributed over com-
puting nodes (participants) in such a way that each graph
element has a unique owner (following a known systems
engineering principle).

– RuntimemonitorsRuntimemonitoring is carried out by
distributed graph query evaluation directly over the dis-
tributed runtime model. For that purpose, partial query
results are passed to relevant participants to continue
evaluation. We regard query-based monitors as a high-
level protection available on top of existing (low-level)
safety monitors.

– Standard middleware for communication Our frame-
work uses the Data Distribution Service standard [50]
as a reliable underlying messaging middleware between
participants. As such, message delivery is guaranteed at
a lower abstraction layer—but in a time-triggered pro-
tocol, late message delivery still needs to be handled as
potential message loss.

– Deployment to edge devices Our graph query and
manipulation middleware is thin; thus, our runtime mod-
els can be deployed over embedded or edge devices such
as in the context of the MoDeS3 CPS demonstrator [65]
or DDS applications.

– Scalability Furthermore, we carried out an initial scal-
ability evaluation of our prototype in the context of the
MoDeS3 demonstrator (as a physical CPS platform) and
a simulated environment with increasing number of par-
ticipants.

This paper extends our initial work [12] by providing

(i) a time-triggered distributed model update protocol
which provides consistency and tolerates message
losses as faults,
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(ii) improvements to the distributed graph query evaluation
algorithm,

(ii) deployment of our framework on top of the standard
DDS communication middleware (already used in var-
ious CPS applications),

(iii) a prototype implementation and
(iv) a novel scalability evaluation which now covers both

the runtime model update and query execution phase
withmeasurements over both a physical and a simulated
platform.

The rest of the paper is structured as follows. Section 2
provides an overview of our distributed model management
and runtime monitoring approach. Section 3 revisits defini-
tions related to runtime graph models. Section 4 introduces
our proposed protocol for runtime model management. Sec-
tion 5 revisits the foundations of local search-based graph
pattern matching and describes how we applied this tech-
nique in distributed monitors. In Sect. 6, evaluation results
obtained from our prototype implementation are presented.
Section 7 discusses related work, while Sect. 8 with a sum-
mary and future research directions concludes our paper.

2 Overview of query-based distributed
runtimemonitoring

In this section, the overview of the approach is given. Fig-
ure 1 depicts the main steps and artifacts of the monitoring
approach.

During the design phase, automated monitor synthesis
transforms high-level query specifications into deployable,
platform-dependent source code for each participant that will
be executed as part of a monitoring service. Our approach
reuses a high-level graph query language [61] for specify-

Fig. 1 Distributed runtime monitoring by graph queries

ing safety properties of runtime monitors, which language
is widely used in various design tools of CPS [55]. Graph
queries can capture safety properties with rich structural
dependencies between system entities which are unprece-
dented in most temporal logic formalisms used for runtime
monitoring. Similarly, OCL has been used in [33] for related
purposes. While graph queries can be extended to express
temporal behavior [4], our currentwork is restricted to (struc-
tural) safety properties where the violation of a property is
expressible by graph queries.

The monitor synthesis process begins with a query
optimization step that transforms query specifications to
platform-independent execution plans. At this point, any a
priori knowledge about the runtime system provides optional
input for query optimization. Execution plans are passed on
to the code generator to produce platform-dependent C++
source code, which is ready to be compiled into a single exe-
cutable runtime monitor program (referred to as participant)
for the target platform. To provide better focus for the current
paper, this component will not be detailed here.

Participants are deployed to a distributed heterogeneous
computation platform which includes various types of com-
puting units ranging from ultra-low-power microcontrollers
to smart devices and high-end cloud-based servers. Some
of these devices may have resource constraints (like CPU,
memory).

Our system-level runtime monitoring framework is hier-
archical and distributed. Monitors may observe the local
runtime model of a participant, and they can collect infor-
mation from runtime models of different devices, hence
providing a distributed architecture. Moreover, one monitor
may rely on information computed by other monitors, thus
yielding a hierarchical network.

The runtime model captures data stemming from obser-
vations in the physical system. Participants are distributed
across the physical system and connected via the network.
These participants primarily process the data provided by
their corresponding sensors, and they are able to perform
edge- or cloud-based computations on the data. The runtime
model management components are deployed and executed
on the platform elements; thus, resource constraints need to
be respected during allocation. Themain responsibility of the
communication middleware is to ensure timely and reliable
communication between the components.

The model update and query execution messages between
the components are sent over a middleware based on a
publish–subscribe protocol that implements the real-time
data distribution service (RDDS [35]). RDDS is an exten-
sion for the DDS standard [50] of the Object Management
Group (OMG) to unify common practices concerning data-
centric communication using a publish–subscribe architec-
ture. This way, in accordance with the models@run.time
paradigm [11,57], observable changes of the real system are
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incorporated into the runtime model either periodically with
a certain frequency or in an event-driven way upon certain
triggers. Furthermore, the middleware also abstracts away
the platform- and network-specific details.

Example 1 We illustrate distributed runtime models and
query-based monitoring in the context of the Model-Based
Demonstrator for Smart and Safe Cyber-Physical Systems
(MoDeS3) [65], which is an educational platform of a model
railway system that prevents trains from collision and derail-
ment using safety monitors. The railway track is equipped
with several sensors (cameras, shunt detectors) capable of
sensing trains on a particular segment of a track connected to
some participants realized by various computing units, such
as Arduinos, Raspberry Pis, BeagleBone Blacks or a cloud
platform. Participants also serve as actuators to stop trains
on selected segments to guarantee safe operation. For space
considerations, we will only present a self-contained extract
from the demonstrator.

In the lower right part of Fig. 1, a snapshot of the System
Under Monitor is depicted, where train tr1 is on segment s4,
while tr2 is on s2. The railroad network has a static layout,
but turnouts tu1 and tu2 can change between straight and
divergent states.

Three participants are running the monitoring and con-
trolling programs responsible for managing the different
(disjoint) parts of the system marked with different patterns
in Fig. 1. A participant may read its local sensors (e.g., the
occupancy of a segment or the status of a turnout) and collect
information from participants, and it can operate actuators
accordingly (e.g., change turnout state) for the designated
segment. All this information is reflected in a distributed
runtime model which is deployed on the three computing
units.

3 Preliminaries for distributed runtime
models

This section revisits definitions related to metamodeling and
runtime models from [12]. Additionally, we describe the
required model update operations for our runtime monitor-
ing approach, and we briefly overview the Data Distribution
Service (DDS) standard [50].

3.1 Domain-specific modeling languages

Many industrial CPSmodeling tools build on the concepts of
domain-specific (modeling) languages (DSLs and DSMLs)
where a domain is typically defined by ametamodel and a set
of structural consistency constraints. A metamodel captures
an ontology, i.e., the main concepts as classes, their attributes

Participant

hostID : EInt

RailRoadElement

ModelRoot

Segment

isEnabled : EBoolean

Turnout

Train

speed : EInt

DomainElement

[0..*] participants

[0..1] straight [0..1] divergent

[0..*]domainElements

[0..*] hosts

[0..1] on
[0..1] left

[0..1] right

Fig. 2 Metamodel for MoDeS3

and relations as references of a domain in the form of graph
models.

A metamodel can be formalized as a vocabulary Σ =
{C1, . . . ,Cn1,A1, . . . ,An2 ,R1, . . . ,Rn3} with a unary predi-
cate symbol Ci for each class, a binary predicate symbol A j

for each attribute and a binary predicate symbol Rk for each
relation in the metamodel.

Example 2 Figure 2 shows a metamodel for the MoDeS3
demonstrator with Participants (identified in the network
by hostID attribute) which host DomainElements. A
DomainElement is either a Train or RailroadElement. A
Train has a speed attribute, and the train is located on a
RailroadElement. Turnouts and Segments are RailroadEle-
mentswith links to the left and right side RailroadElements.
These left and right references describe the actual con-
nections between the different RailroadElements. These
references are navigable in both directions. Furthermore,
a Turnout has additional straight and divergent refer-
ences to RailroadElements to represent the possible direc-
tions.

Structural consistency constraints References in EMF
metamodels involvemultiplicity constraints lo..up composed
of a lower bound lo and an upper bound up. In this paper, we
assume that the lower bound is always 0 (which is a frequent
assumption when working with incomplete models), while
the upper bound can be either 1 or ∗. This way we guaran-
tee that removing a reference will not result in a structurally
inconsistent model.

We also consider bidirectional associations by adopting
the concept of opposite references from EMF metamod-
els (eOpposites) where each reference type may have an
opposite reference type and vice versa (such as left and
right in Fig. 2). EMF maintains such pairs of opposite
references consistently in case of non-distributed instance
models, i.e., if a reference is created or deleted, its oppo-
site reference is created or deleted automatically. However,
maintaining such pairs of references is more complicated in
a distributed setting, for which we are proposing a protocol
in Sect. 4.2.
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3.2 Runtimemodels

The objects, their attributes, links and dependencies between
objects constitute a rich runtime knowledge base for the
underlying system captured as a runtime model [11,57].
Relevant changes in the system or its environment are con-
tinuously reflected in an event-driven or time-triggered way
in this runtime model. We assume that this runtime model
is self-descriptive in the sense that it contains information
about the computation platform and the allocation of various
services (e.g., model management, runtime monitoring) to
platform elements, which is a key enabler for self-adaptive
systems [16,64].

A runtime model M = 〈DomM , IM 〉 is a logic structure
over Σ , as in [62], where DomM = ObjM � DataM , and
ObjM is a finite set of individuals (objects) in the model,
while DataM is the domain of built-in data values (integers,
strings, etc.).

IM is an interpretation of predicate symbols in Σ defined
as follows (where op and oq are objects from ObjM , and ap
is an attribute value from DataM ):

– Class predicates If object op is an instance of class Ci ,
then the 2-valued interpretation of Ci in M evaluates to
1 denoted by [[Ci (op)]]M = 1, and it evaluates to 0 oth-
erwise.

– Reference predicates If there is a link of type Rk from
op to oq in M , then [[Rk(op, oq)]]M = 1, otherwise 0.

– Attribute predicate If there is an attribute of type A j in
op with value ar in M , then [[A j (op, ar )]]M = 1, and 0
otherwise.

3.3 Distributed runtime (graph) models

While a (regular) runtime model serves as a centralized
knowledge base, this is not a realistic assumption in a
distributed setting. In our distributed runtime model, each
participant only has up-to-date but incomplete knowledge
about the distributed system. Moreover, we assume that each
model object is exclusively managed by a single participant,
referred to as the host (i.e., owner) of that element, which
serves as the single source of truth. This way, each partic-
ipant can make calculations (e.g., evaluate a query locally)
based on its own view of the system, and it is able to modify
the mutable properties of its hosted model elements.

To extend the formal treatment todistributed runtimemod-
els, we mark which participant is responsible for storing
the value of a particular predicate in its local knowl-
edge base. For a predicate P with parameters v1, . . . , vn ,
[[P(v1, . . . , vn)]]Md@p denotes its value over the distributed
runtime model Md stored by host p.

Fig. 3 Distributed runtime model for MoDeS3

Example 3 Figure 3 shows a snapshot of the distributed run-
time model Md for the MoDeS3 system depicted in the right
part of Fig. 1. Participants deployed to three different phys-
ical computing units manage different parts of the system.
The model represents the three participants (Participant 1–
Participant 3) deployed to the computing units (depicted also
in Fig. 1), the domain elements (s1–s8, tu1, tu2, tr1 and tr2)
as well as the links between them. Each participant hosts
model elements contained within them in the figure, e.g.,
Participant 2 is responsible for storing attributes and outgo-
ing references of objects s3, s4, s5 and tr1.

3.4 Model update operations

Weassume that the followingmodelmanipulation operations
are available for a (distributed) runtime model:

– Object operations In runtime models, objects can be
created and deleted. Object update operations are imple-
mented by broadcast messages.

– Attribute operations Attribute values can be updated
locally in a distributed runtime model since the values of
attributes are always stored together with the object itself
by the host participant.

– Reference operations A link can be added or deleted
between two objects. If both ends of a link hosted by the
same participant, then such a reference update is a local
operation; otherwise, it needs to be communicated with
other participants.

3.5 The Data Distribution Service middleware

The OMG specification for Data Distribution Service (DDS)
[50] provides a common application-level interface for
data-centric implementations over a publish–subscribe com-
munication model. Additionally, the specification defines
the main features suitable for applying in embedded self-
adaptive systems.We provide a brief overview based on [50].

In data-centric systems, every data object is uniquely iden-
tified in a virtual global data space (shortly, GDS), regardless
of its physical location. For this reason, both the applica-
tions and the communication middleware need to provide
support for unique identifiers of data objects. Furthermore,
this identification enables the middleware to keep only the
most recent version of data upon updates, thus respecting the
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Participant

Subscriber Publisher

QosPolicyDataReader

take()

DataWriter

write()

Topic

DataType

Fig. 4 UML class diagram of DDS classes

performance and fault tolerance requirements of real-time
applications (that make a centralized solution impractical).
By keeping the most recent data, the middleware can provide
up-to-date information to new participants of the network.

A simplified metamodel capturing the concepts of DDS
that implement the publish–subscribe communication model
is depicted in Fig. 4. Participant is the top-level entity in a
DDS application, so we assume that each deployed program
has exactly one instance of it, and we refer to communicating
programs as participants. Participants may have an arbi-
trary number of Subscribers and Publishers that handle the
actual reading and writing of data, respectively. DataRead-
ers and DataWriters are contained within Subscribers and
Publishers. The sole role of DataWriters is to inform their
corresponding Publishers that the state of the data object is
changed, i.e., calling DataWriter::write() will not necessar-
ily cause immediate communication. Similarly, the task of a
Subscriber is to decide when to invoke DataReader::take()
that reads the new data values.

Unlike classic publish–subscribe protocols1,2 a Topic is
more than a routing label for messages in DDS: A Topic
is always associated with exactly one predefined DataType.
For each DataType, a set of attributes are configured to serve
as a key; thus, the topic and the key together are used for
identifying data objects in the global data space. Addition-
ally, this coupling between Topic and DataType (with the
additional QosPolicy settings) enables implementation opti-
mizations such as preallocating the resources needed to send
or receive messages of a Topic.

Real-time DDS by [35] is an extension of the DDS
standard, which tailors DDS to fit the need of real-time appli-
cation scenarios.Among other novelties, thework also shows

1 https://mqtt.org/.
2 https://www.amqp.org/.

howquality of service (QoS) and quality of data (QoD) speci-
fications can be used to ensure reliable and timelymessaging,
even over unstable or slow networks. Additionally, DDS is
also capable of detecting and reporting violations of QoS
contracts to participants. Thus, we may assume reliable and
timely delivery of messages by the underlying middleware
in the current work.

4 Amodel management protocol for
distributed runtimemodels

Next, a time-triggered protocol for distributed runtimemodel
management operating over a reliable communication mid-
dleware of the DDS standard is proposed.

4.1 Overview of assumptions

Our work addresses decentralized mixed synchronous sys-
tems [58]where participants (1) communicatemodel updates
to other participants in the first part of a time-triggered execu-
tion loop [36] (update cycle) and (2) then evaluatemonitoring
queries over a consistent snapshot of the system (query
cycle). In [12], we focused only on the query cycle, while
this paper provides a detailed description of themodel update
cycle as well. Below we summarize our main assumptions
and considerations.

Assumptions on sensing We assume that each participant
can detect relevant information about its ownmodel elements
by local sensing, which trigger model updates to its local
knowledge base (together with a time stamp). The life cycle
of anymodel element can be attached to sensor readings, i.e.,
creation and deletion of a train object in the runtime model
depend on whether a particular sensor is able to detect the
train in the real system. Such sensor readings can be periodic
(e.g., once in every 10 ms) or event-driven (e.g., when a new
train is detected). Raw sensor readings are buffered until the
next model update cycle, while the runtime model is updated
in accordance with our protocol.

Assumptions onmodel updates Conceptually, a participant
may communicate relevant model changes to other partic-
ipants either asynchronously or periodically. However, all
model update requests are registered with a time stamp and
buffered to be processed later in a time-triggered way by our
distributed model management protocol. The real processing
order of model update messages will not be time-ordered,
but our protocol tolerates lost/delayed messages and handles
common semantic corner cases (see later in Sect. 4.3) by the
end of the model update cycle. As such, distributed graph
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queries used for runtime monitoring [12] will be executed
over a consistent runtime model of the system during the
query cycle.

Assumptions on timeliness We assume approximate syn-
chrony [20] between the clocks of individual computing
units; thus, each participant can precisely detect the begin-
ning and the end of each cycle wrt. each other. In other terms,
the discrepancy between the clocks of participants is negli-
gible.

The time-triggered nature of our protocol provides an
upper bound defined by the cycle time of model updates (tu)
and cycle time of query evaluation (tq ). Thus, if no messages
arrive late, our runtime monitors will detect a relevant situa-
tion in at most 2 ∗ (tu + tq). However, a detailed evaluation
of timeliness guarantees is out of scope for the paper and left
for future work.

Assumptions on communication middleware In order to
periodically communicate model changes between partic-
ipants, our distributed model update protocol relies upon
DDS, a standard reliable communication middleware to pro-
vide several important QoS guarantees.

1. Timely and reliable message delivery of model update
messages is ensured by the DDS middleware.

2. If there is a violation of QoS guarantees, DDS notifies
participants to allow them to recover from faults as part of
the model update and query protocol. As such, the sender
of the message will be aware of such communication
fault.

3. The synchrony of physical clocks of participants is
enforced by a clock synchronization protocol[41,52];
thus, each participant receives messages with a time
stamp denoting when the update action was initiated.

4. Participants can save update messages to a preallocated
cachewith potentially limited size. Thisway, participants
running under resource constraints will not be flooded by
an excessive number of messages sent over the network,
and they are able to select messages they want to keep
based on their specific needs and preferences.

Assumptions on fault tolerance guarantees While DDS
guarantees reliablemessage delivery (i.e., a sentmessagewill
eventually arrive), it may not enforce that messages would
arrive within the time frame of their phase. As such, our fault
model considers messages that arrive outside the time frame
of their designated phase to be lost. Since DDS provides
many QoS guarantees for participants, our fault model used
in the paper is restricted to message loss or late arrival of a
message.

Fig. 5 Runtime phases of model updates and queries

Assumptions on properties of computing units We assume
that the computing units are capable of running a program
containing the implementation of the DDS standard. Based
on our initial assessment to be presented in Sect. 6.3, this
yields that the computing units need to have at least 15 MB
heap available to successfully initialize the middleware in
our case. Furthermore, the devices are assumed to be able to
run the required TCP or UDP network stack.

4.2 Amulti-phasemodel update protocol

Time-triggered execution cycle Our runtime monitoring
approach is driven by a time-triggered execution loop which
can be divided into five major conceptual phases. The
first four phases constitute the model update protocol (dis-
cussed in this section) with (1) object create, (2) object
delete, (3) link update request and (4) link update reply. The
update phase is followed by a (5) query phase (discussed in
Sect. 5.1).

Our model update protocol will be defined by complex
statecharts containingmultiple parallel regions. In this paper,
we used Yakindu Statechart Tools [67] for the specification
and simulation of the protocol.

Figure 5 shows a statechart model describing this execu-
tion cycle. Transitions are triggered by events coming from
a master clock that is available to all participants, which
is implemented using high-precision clock synchronization
across platform components.

Sensing A statechart describing the behavior of the sens-
ing services capable of detecting objects is displayed in
Fig. 6. The transitions are triggered by the events sens-
ing.appear and sensing.disappear assumed to be raised
by changes in the operational context of the system. When
those transitions fire, the sensing.objectAppeared and sens-
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Fig. 6 High-level model of object sensing services

ing.objectDisappeared flags are set/cleared according to the
events, allowing local buffering of events. These flags are
cleared at the beginning of each object create cycle. Figure 6
only depicts the sensing model for objects, but an identi-
cal model employing a different pair of flags can be used to
model the appearance/disappearance of links between two
selected objects.

Overview of messaging for model updates In our dis-
tributed model update protocol, object creation and deletion
are communicated as broadcastmessages so that participants
can register the existence of all objects. Such broadcast mes-
sages allow each participant to add or remove links to any
model object, as well as to query object attribute values or
links, even if an object is not hosted by the participant. On
the other hand, messages for link addition and removal are
sent in a peer-to-peer manner. The precise protocol of send-
ing and receiving such message will be defined by a series
of statecharts, which control the model update behavior indi-
vidually for each model element.

4.2.1 Object create phase

The first phase of the model update cycle addresses object
creation. A participant that creates a new object must send
a broadcast message with the identifier ocreate, the type C
and its participant identifier phost . Formally, the message has
[[C(ocreate)]]Md@phost = 1as content. It is necessary to notify
other participants about the creation of a new object in order

Fig. 7 Object ownership states

to allow them to create links pointing to the object (i.e., as
a target end of an edge). Recipient participants will create
a proxy object locally that represents the remote object in
the model by having the same type C, but stores the object
identifier ocreate and the host participant identifier phost as
its only attributes. Themiddle column of Table 1 summarizes
the actions a participant takes upon receiving an object create
message.

The statechart in Fig. 8 specifies the life cycle of an object,
while a parallel region (depicted in Fig. 7) shows the owner-
ship of the object.

Statechart of object creation The initial state for an object
is NoObject (Fig. 8) that represents when the object does
not exist in the model, while its ownership is initially None
(Fig. 7). From this initial state, creation is triggered when
the participant either (1) receives a data.create message
or when (2) sensing signals sensing.objectAppeared at
the beginning of the object creation phase triggered by a
timer.objCreateStart event.

– In the first case, the corresponding (broadcast) message
arrives in the object create phase. A proxy object is regis-
tered and enters the Created state, while ownership is set
to Proxy after raising event ownership.releaseObject.

– In the second case, local sensing services indicate that
an object needs to be created locally by setting the
sensing.objectAppeared flag and this flag is read at
the start of the object create phase indicated by the
timer.objCreateStart event. Then, a broadcast message
is sent on the creation of a new object and the object is

Table 1 Summary of actions
when receiving object update
messages

Object update message

Condition [[C(obj)]]Md@p = 1 (obj created at p) [[C(obj)]]Md@p = 0 (obj deleted at p)

obj is unknown Create proxy object obj Create proxy for obj and mark it as deleted

obj is present locally No-op Mark proxy for obj as deleted
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Fig. 8 Possible states of an object in our model update protocol

moved to the ServingCreate state. Once the next phase
objectDelete starts, the timer.objDeleteStart event is
raised, and if therewas nomessage loss, i.e., the broadcast
message was delivered to all other participants suc-
cessfully, the object enters the Created state, while the
ownership is set to Local.

4.2.2 Object delete phase

In the second phase of model updates, objects of the run-
time model can be deleted. The phase is similar to object
creation: The identifier odelete, the type C and the host phost
of the deleted object are sent in a broadcast message. For-
mally, [[C(odelete)]]Md@phost = 0 is sent, which is also saved
in the local knowledge base. It is necessary to notify other
participants about the deletion of an existing model element
to allow them to remove potential dangling edges originally
pointing to the deleted object. Only the host participant of the
object can initiate the deletion of the corresponding object;
otherwise, the object deletion message is ignored. Deleting
an object is irreversible, i.e., once an object is deleted, it can-
not be reverted. The last column of Table 1 summarizes the
actions to be taken upon receiving a delete object message.

Statechart of object deletion Deletion of an object that is in
the Created state (Fig. 8) depends on the ownership of the
object (Fig. 7).

– A hosted object (i.e., ownership.Local is active) is
deleted by first entering the ServingDeleted state and

sending a broadcast message to all participants in the
system about the deletion. Then, if all participants have
been successfully notified about the deletion of the object
(i.e., fault.isDeleteMsgLost is false) at the end of the
object delete phase, the object goes to Deleted state.

– A proxy object (i.e., ownership.Proxy is active and thus
owned by an other participant) is immediately brought to
Deleted state upon receiving a data.delete event in the
object delete phase.

Furthermore, if a participant receives a data.create for
an object that is not known, i.e., while the object is in the
initial state NoObject, it transitions to the Deleted state to
ensure that participants have a synchronized knowledge on
the state of model objects. It must be noted that an object in
the Deleted state is never included in any match during the
query phase.

4.2.3 Link update request phase

In this third phase of themodel update protocol, link additions
and removals are initiated (in arbitrary order) betweenobjects
in a peer-to-peer manner.

Link creation Adding a link from object osrc to otrg is done
without sending any messages if either (i) both objects are
hosted by the same participant phost or (ii) their hosts are
different, but the structural consistency checks can be done
locally by the host of osrc.
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Fig. 9 Participant roles during reference update

Otherwise, link addition from object osrc to otrg is initiated
by the host of osrc (denoted as psrc). Formally, a message is
sent with [[R(osrc, otrg)]]Md@psrc = 1 as content. To main-
tain a consistent model, the local knowledge base keeps
the [[R(osrc, otrg)]]Md@psrc = 0 entry until receiving an
acknowledgment message from the host of the target object
containing [[R(osrc, otrg)]]Md @ptrg = 1 in the subsequent
link update reply phase. However, if the link cannot be added
for some reason, e.g., a multiplicity constraint would be vio-
lated, the reply from ptrgwill be [[R(osrc, otrg)]]Md @ptrg = 0.
From this information, the host of osrc will also deduce that
the link cannot be set; thus, a consistent truth value is main-
tained by both parties.

Statechart of link creation Figure 10 shows the possible
states of a link, while a participant’s role is modeled sepa-
rately in Fig. 9. The respective initial states are NoLink and
Server. Similarly to object creation, adding a link can start at a
participant after (1) receiving a data.addRequestwhile in the
reference request phase orwhen (2) the local sensing services
signal sensing.linkAppeared at the beginning of the refer-
ence request phase indicated by the timer.objCreateStart
event.

– In case (1), the participant is serving the reference add
request, so that it stays in the Server state, while the link
transitions fromNoLink toAddRequest. Then, at the start
of the reference reply phase, it sends back an acknowl-
edgment to the requester and enters the AddReply state.
Upon successful delivery of the reply message, the refer-
ence is created and it enters the LinkExist state. While in
AddRequest, if the new reference would violate a mul-
tiplicity constraint, a reject is sent back to the requester
and the link is not created, its next state is NoLink.

– In case (2), the participant takes the Requester role and
the reference moves to the AddRequest state. Once the
request is successfully delivered, the reference’s state
changes to AddReply where it is waiting for the reply
message. Once acknowledged, the link is added and it
enters the LinkExist state.

Link removal The removal of a directed link leading from
object osrc to otrg is similarly done without sending any
messages if either (i) both objects are hosted by the same
participant phost or (ii) they are hosted by different partic-
ipants, but structural consistency can be ensured locally by
the host of osrc.

Otherwise, removing a link can be initiated by partici-
pant psrc, the host of the source object osrc by sending a
request to participant ptrg hosting the target object otrg. For-
mally, to initiate removing a reference of type R, the content
of the messages is [[R(osrc, otrg)]]Md @psrc = 0. Reference
removal requests will not have corresponding reply mes-
sages, because we assumed lower multiplicity bounds for
references to be 0; thus, such requests would always be
acknowledged.

Statechart of link removal Table 2 briefly summarizes the
actions to be taken upon receiving reference update request
messages, while the right part of Fig. 10 shows the states
related to the removal of an existing reference. Similarly to
deleting an object, the removal of a reference that is in the
state LinkExist can be triggered in two ways: either receiv-
ing a message in the reference request phase initiating the
removal or via the local sensors. In the former case, there is
no extra condition, the link simply goes to state NoLink. If
the removal is triggered by reading sensing.linkDisappeared
= true at the beginning of the reference request phase, the
reference enters the RemoveRequested state. Once the tar-
get participant is delivered the removemessage, the link goes
to NoLink.

4.2.4 Link update reply phase

The only special attention is needed for handling the addition
of inverse links (which need to be updated simultaneously)
with [0..1] multiplicities due to the potential race condition
between participants. In such a case, the target object of a link
update request may reject the corresponding add request to
ensure structural consistency, i.e., to respect the upper mul-
tiplicity bound. Thus, when a link with an opposite is to be
added, the host of the target object needs to acknowledge the
operation for the host of the source object in a subsequent
link update reply phase.

– In case of success, both parties are consistently notified
about the change by replying [[R(osrc, otrg)]]Md @ptrg =
1; thus, the opposite references can be set automatically
at both participants without sending extra messages over
the network.

– If a structural inconsistency is detected at the target
object, the reference add request is rejected by sending
[[R(osrc, otrg)]]Md@ptrg = 0.

123



Distributed graph queries over models@run.time for runtime monitoring of cyber-physical systems

Table 2 Summary of actions for
reference update request
messages

Reference update request message

Condition [[R(src, trg)]]Md@p = 1 (reference
add request)

[[R(src, trg)]]Md@p = 0 (reference
remove request)

Link exists No-op Delete opposite link

Link does not exist If multiplicity constraints hold, add
opposite and send
acknowledgment, otherwise send
reject to request

No-op

Fig. 10 Possible states of a reference in our model update protocol

4.3 Fault tolerance to handle message loss

As model update messages sent by a participant might get
delayed; thus, a message will eventually arrive but possibly
after its deadline (outside the respective phase). These cases
are always detectable by the sender of the message, and our
protocol conceptually handles such latecoming messages as
message loss (i.e., the message is lost within the given cycle).

Message loss during object update Nevertheless, our object
update protocol can recover from faults eventually caused
by message loss thanks to extra states introduced in Fig. 8.

For object create, if at least one message was not delivered,
in ServingCreate state, fault.isCreateMsgLost is set to true
based on notifications coming from the communication mid-
dleware. Then, the object enters the CreateMsgLost state and
the broadcast message at the beginning of the next object cre-
ate phase is repeated. This loop is iterated until eventually
everyone is notified about the existence of the object.

Furthermore, the protocol is able to handle cases when
a sensor reports that the object under creation should be
immediately deleted (the sensing.objectDisappeared flag
is set) while recovering from lost creation messages. When
this happens, object enters the Deletion composite state and
the deletion procedure will begin in the object delete phase.
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Likewise, upon deleting an object, the DeleteMsgLost
state is entered (from state ServingDelete) if the middleware
detects issues with delivering the messages by the end of
the object delete cycle. At the beginning of the object delete
phase, the object returns to ServingDelete and the deletion
broadcastmessages are retransmitted. Again, this loop is iter-
ated until eventually each remote participant is notified about
the deletion.

Message loss for reference updates Similarly to object
update, our reference update protocol is prepared to toler-
ate message loss avoid inconsistencies thanks to the extra
states AddMessageLost and RemoveMessageLost intro-
duced for fault tolerance purposes. When reference addition
is requested (i.e., while having the role Server), the AddMes-
sageLost is reached if the request message is lost. Then,
at the beginning of the next reference request phase, the
data.addRequest is resent and the state AddRequest is
entered. If a reply message is lost as a server during
a reference add, the same AddMessageLost is reached,
but the reference in this case will return to the state
AddReply and will retransmit the previously lost answer
(either data.addReplyAck or data.addReplyReject).

Tolerating a message loss in case of a reference remove
request is a simpler task compared to reference add because
a remove request that is sent when transitioning from LinkEx-
ist to RemoveRequested does not need to be acknowledged.
Once such a message is delivered, the edge can be safely
removed until the requester is looping between RemoveMes-
sageLost and RemvoeRequested states.

4.4 Semantic aspects of consistency

While providing a formal proof of consistency for our dis-
tributed model update protocol is outside the scope of the
current paper, we highlight some aspects and corner cases
which need to be tackled to establish desirable semantic prop-
erties like consistency or termination.

Termination Our protocol aims to avoid deadlocks (i.e.,
two participants are mutually waiting for each other) and
livelocks (when they are continuously sending messages to
each other). Deadlock avoidance is achieved by (1) restrict-
ing each cycle to messages of a particular type and (2) using
a time-triggered execution which continuously progresses to
the next phase regardless of the arrival ofmessages. Livelocks
are avoided by ensuring that a bounded number of messages
(requests and replies for eachmodel element) are sent in each
phase.

Local consistency wrt. sensor readings By local consis-
tency, we mean that durable local events detected by sensors
attached to a model element will eventually be reflected in
the (local) runtime model of the participant. Since each sen-
sor reading is recorded as a local event with a time stamp,
causality of such sensing events (e.g., an object appearance
or disappearance is observed by the owner participant) is
easily established in the update cycle (e.g., a corresponding
object is created or deleted in the runtime model), but events
detected in cycle t are reflected in the runtime model in cycle
t + 1. This gives a guarantee that the owner of a model ele-
ment can make a decision based exclusively on the runtime
model within at most two cycle period 2 ∗ T .

Global query consistency of runtime model By global con-
sistency of the (distributed) runtime model, we mean that by
the time the query cycle starts, each participant has updated
its ownhostedmodel elements, and synchronized the changes
with the rest of the platform participants. As such, a query
initiated by two different participants will always provide the
same result set within the query cycle.

The assumed single source of truth principle (i.e., each
model element has a unique owner) ensures that no contra-
dictory updates will ever be communicated. But in case of
message loss during model update phase, some participants
may have outdated information about some model elements.
Nevertheless, the owner of the model element will always be
notified about lost messages; thus, a query accessing such a
model element will still use the previous (consistent) state
of the object, and the new state will be reflected when all
participants are successfully notified (see below).

A potential race condition may occur when two partici-
pants attempt to add a reference between a pair of objects,
but this reference also has an inverse reference with at most
one multiplicity; thus, only one of the reference add oper-
ations can succeed. For a consistent model update, the one
with the later time stamp should be enforced by introducing a
self-loop transition in state AddRequest and one participant
will act as a server, while the other will act as a requester.

Eventual update consistency in case of message loss While
global consistency prevents reading contradicting informa-
tion in case of a message loss, such message loss may still
prevent to delay the effects of a particular model update. In
this case, according to our assumption on the communication
middleware, notification is provided to the sender partici-
pant about the failure of delivering the message. This way
the owner of a model element can prevent inconsistencies by
tracking the last state surely known to all other participants
as the consistent information and will repeatedly resend the
message containing the change. For example, if some par-
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pattern closeTrains(
St : RailroadElement ,
End : RailroadElement

) {
Train.on(T,St);
Train.on(OT,End);
T != OT;
RailroadElement.connectedTo(St, Mid);
RailroadElement.connectedTo(Mid , End);
St != End;

}

Graph query in the VIATRA Query Language

CloseTrains(St ,End) =
RailroadElement(St)∧
RailroadElement(End)∧

∃T : Train(T) ∧ On(T ,St)∧
∃OT : Train(OT) ∧ On(OT ,End)∧
¬(T = OT)∧
∃Mid : RailroadElement(Mid) ∧ ConnectedTo(St ,Mid)∧
ConnectedTo(Mid ,End)∧
¬(St = End)

Query as formula

Graphical query representation

(a) (b)

(c)

Fig. 11 Safety monitoring objective closeTrains specified as graph pattern

ticipants are not yet notified about the creation of an object
then the object is considered to be non-existing (i.e., it is
in the CreateMsgLost state). This way, update consistency is
eventually achieved when the update is successfully commu-
nicated to all recipients. Therefore, all updateswill eventually
take effect unless there is a more recent action which over-
rides its effect.

5 Distributed runtimemonitoring

5.1 Graph queries for specifying safety monitors

We rely on the VIATRA Query Language (VQL) [10] to
capture the properties to be monitored. VIATRA has been
intensively used in various CPS design tools to provide scal-
able queries over large systemmodels. Based on our previous
work [12], the current paper continues to reuse this declara-
tive graph query language for runtime monitoring. The main
benefit is that monitored properties can be captured on a high
level of abstraction over the runtime model, which eases
the definition and comprehension of runtime monitors for
engineers (compared to monitors written in an imperative
language). Moreover, this kind of specification is free from
any platform-specific or deployment details.

The expressiveness of the VQL language converges to
first-order logic with transitive closure; thus, it provides a
rich language for capturing a variety of complex structural
conditions and dependencies. Technically, a graph query is
used to capture an erroneous behavior, situation occurring in
the runtime model. Thus, any result (or match) of a query
(or pattern) highlights a violation of the safety property at
runtime.

Example 4 In the railway domain, safety standards prescribe
a minimum distance between trains on track [1,5]. Query
closeTrains captures a (simplified) description of the mini-
mum headway distance to identify violating situations where
trains have only limited space between each other. Techni-
cally, one needs to detect whether there are two different
trains on twodifferent railroad elements,which are connected
by a third railroad element. Any match of this pattern high-
lights track elements where passing trains need to be stopped
immediately. Figure 11a shows the graph query closeTrains
in a textual syntax, Fig. 11b displays it as a graph formula,
and Fig. 11c shows a graphical illustration as a graph pattern.

5.1.1 Syntax

Definition 1 (Graph query) A graph query (or graph pattern)
is a first-order logic (FOL) formula, formally ϕ(v1, . . . , vn),
over (object and value) variables [62].

A graph query ϕ can be inductively constructed (see
Table 3) by using atomic predicates of runtime models
C(v), R(v1, v2) and A(v1, v2) (with C,R,A ∈ Σ), equal-
ity between variables v1 = v2, standard FOL connectives ∨
and ∧, quantifiers ∃ and ∀, and positive (call) or negative
(neg) query calls.

The VQL language supports the hierarchical specification
of runtime monitors as a query may explicitly use results of
other queries (alongpositive or negative query calls). Further-
more, distributed evaluation will exploit a spatial hierarchy
between computing units.
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Table 3 Semantics of graph
patterns (predicates) 1. [[C(v)]]MZ :=IM (C)(Z(v))

2. [[A(v1, v2)]]MZ :=IM (A)(Z(v1), Z(v2))

3. [[R(v1, v2)]]MZ :=IM (R)(Z(v1), Z(v2))

4. [[∃v : ϕ]]MZ :=max{[[ϕ]]MZ ,v �→x : x ∈ ObjM }
5. [[∀v : ϕ]]MZ :=min{[[ϕ]]MZ ,v �→x : x ∈ ObjM }
6. [[v1 = v2]]MZ :=1 iff Z(v1) = Z(v2)

7. [[ϕ1 ∧ ϕ2]]MZ :=min([[ϕ1]]MZ , [[ϕ2]]MZ )

8. [[ϕ1 ∨ ϕ2]]MZ :=max([[ϕ1]]MZ , [[ϕ2]]MZ )

9. [[¬ϕ]]MZ :=1 − [[ϕ]]MZ
10. [[call(ϕ(v1, . . . , vn))]]MZ :=

{
∃Z ′ : Z ⊆ Z ′ ∧ ∀i∈1..n :
Z ′(vci ) = Z(vi ) : [[ϕ(vc1, . . . , v

c
n)]]MZ ′

11. [[neg(ϕ(v1, . . . , vn))]]MZ :=1 − [[call(ϕ(v1, . . . , vn))]]MZ

5.1.2 Semantics

Definition 2 (Variable binding) A variable binding Z is a
mapping of query variables to objects and data values in a
model M . Formally, Z : {v1, . . . , vn} → DomM [62].

Definition 3 (Bound and free variables) A variable vB is a
bound variable in a mapping Z if vB is mapped by Z to
an element of DomM . Otherwise, variable vF is a free (or
unbound) variable.

A graph pattern ϕ(v1, . . . , vn) may be evaluated over
a (centralized) runtime model M along a variable bind-
ing Z (denoted by [[ϕ(v1, . . . , vn)]]MZ ) in accordance with
the semantic rules defined in Table 3 [62]. In the rest of
the paper, we may use the shorthand [[ϕ(v1, . . . , vn)]] for
[[ϕ(v1, . . . , vn)]]MZ when M and Z are clear from context.

Definition 4 (Complete match) A variable binding Z that
includes all variables of query ϕ is called a (complete) match
if ϕ is evaluated to 1 over M : [[ϕ(v1, . . . , vn)]]MZ = 1 [62].

Definition 5 (Partial match) A variable binding Z p over a
subset of variables of query ϕ is called a partial match if all
predicates in ϕ with bound parameters are evaluated to 1 over
M .

5.1.3 Local search-based pattern matching

Graph query evaluation (aka graph pattern matching) is the
process of finding all complete matches [63]. When evalu-
ation starts, an initial binding may be given for a subset of
query variables to objects and values in the model, which
should be extended to a complete match.

There are multiple query evaluation strategies avail-
able [23]. Our framework uses a local search-based pattern
matching strategy to find matches of monitoring queries
based upon the foundational algorithms and model-sensitive
query evaluation plans [63].

Query execution is guided by a search plan. When com-
puting such search plans, the fundamental challenge is to
determine the order in which all predicates included in the
query should be evaluated during query execution to opti-
mize performance. Various approaches have been proposed
for this challenge [32,63], and their discussion is out of scope
for this paper. In our context, search plans are regarded as an
ordered list of all the predicates in a query.

During query execution, an operation is executed in each
search step to evaluate the predicate corresponding to the
actual step. An operation is one of the following two types
based on the current binding of predicate variables to model
elements:

– An extend operation evaluates a predicate with at least
one free variable. Execution of such operations requires
iterating over all potential variable substitutions and
selecting the ones for which the predicate evaluates to
1.

– A check operation evaluates a predicatewith only bound
variables. Execution of such operations simply requires
determining whether the predicate evaluates to 1 over the
actual variable binding.

The sketch of a recursive query evaluation algorithm over
a centralized model is shown in Algorithm 1. The recursive
ExecuteQuery function takes the query ϕ, the index idx of
the current operation in the search plan and a partial match
Z p as parameters. In line 2, the executor looks up the search
plan for the given query from a global storage. Then, in line 3,
the algorithm checks if idx points to the end of the operation
list. If this is the case, a match has been found and should
be returned. Otherwise, the matching procedure continues
by initializing an empty match set (line 4) and extracting the
predicate enforced in the current search step and storing this
predicate to PRED (line 5). Based on the variable bindings
at the current stage of the query evaluation, the algorithm
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categorizes the current operation as either an extend or a
check in line 6. In case of an extend operation (lines 7–11),
all potential variable bindings are calculated (lines 7–8) and
the predicate PRED is evaluated on them (line 9). For each
newpartialmatch Z ′

p obtained thisway, thematching process
recursively continues with the next search step (lines 10–11).
If the current search operation is categorized as a check and
the execution continues in line 13, then PRED is applied over
the values mapped by Z p partial match. If this evaluation
returns 1, the evaluation proceeds recursively with the next
search operation (lines 14–15). Finally, in line 16, allmatches
found in subsequent search steps are returned. To find all
matches in the model for query ϕ, ExecuteQuery should
be called with (ϕ, 0, Z p) parameters (lines 17–18).

Algorithm 1 Query execution algorithm outline
1: function ExecuteQuery(ϕ, idx,Z p)
2: searchPlan ← LookupPlan(ϕ)
3: if size(searchPlan) = idx then return {Z p}

4: matches ← ∅
5: PRED ← predicate evaluated by searchPlan[idx]
6: if searchPlan[idx] is an extend then
7: for e in {all candidates in M} do
8: Z ′

p ← Z p ∪ {vF �→ e}
9: if [[PRED]]MZ ′

p
= 1 then

10: next ← idx + 1
11: matches←matches∪ExecuteQuery(ϕ,next,Z p)

12: else
13: if [[PRED]]MZp

= 1 then
14: next ← idx + 1
15: matches←matches∪ExecuteQuery(ϕ,next,Z p)

16: return matches
17: procedure FindAllMatches
18: allMatches ← ExecuteQuery(ϕ, 0,∅)

Example 5 Table 4 shows a possible search plan for the clos-
eTrains query. Each row represents a search operation. The
first column is the assigned operation number (or index).
The second column (predicate) shows which predicate is
evaluated by the given step, and the third column shows the
variables that are already bound by the previous operations
when the current operation begins execution. The fourth col-
umn shows the search operation type (check or extend)which
is based on the variable bindings prior to the execution of the
search operation: If the predicate parameters are all bound,
then it is a check; otherwise, it is an extend.

5.2 Execution of distributed runtimemonitors

To evaluate graph queries in a distributed setting, we propose
to deploy queries to the same target platform where the run-
time model is maintained in a way that is compliant with the
distributed runtime model and the potential resource restric-

tions of computing units in the platform. If a graph query
engine is provided as a service by a participant, it can serve
as a local monitor over the runtime model. However, such
local monitors are usable only when all objects of the graph
traversed and retrieved during query evaluation are stored by
the same participant, which is not the general case. There-
fore,while the local evaluationof queries is still preferable for
performance reasons, a distributed monitor needs to gather
information from remote model fragments constituting the
distributed model Md and monitors run by different partici-
pants.

5.2.1 A query cycle

Monitoring queries are evaluated during the so-called query
cycle. We assume that the search plan for each monitoring
query has been made available to all participants prior to this
query cycle phase and each participant uses this same search
plan for query evaluation.

When participants compute matches in a distributed way,
they simultaneously evaluate predicates of the query on the
values of the bounded variables. However, in cases when a
predicate evaluation cannot be computed based on the local
knowledge of a participant, the matching should be dele-
gated to the participant hosting the corresponding part of
the distributed runtime model Md . The delegation is possi-
ble through proxies representing remote objects in the local
runtime model.

We extend Algorithm 1 for a distributed platform shown
in Algorithm 2. A monitor execution at a participant can
be initiated by calling FindAllMatches (line 24 in Algo-
rithm 2). There were two key cases that had to be taken into
consideration:

– Delegating execution The distributed runtime model Md

refers to the unified knowledge of multiple participants
about the system, where each element of the model is
owned by a single participant. This way, if the distributed
query execution algorithm is finding matches over the
complete runtime model, it needs to take into account
matches formed by joining the locally stored parts of
the complete model. To support the distributed execu-
tion, we added an extra condition for evaluating extend
search operations to check whether the value for the
newly bound variable is part of the local knowledge base.
If this is not the case, query execution is delegated to the
owner of the data. This extension is shown in lines 12–13
inAlgorithm2,while receiverwill execute theContinue
procedure.

– Gathering matches Delegating a query execution to
a remote participant can be done asynchronously in
accordance with the actor model [31] (see lines 13–14
in Algorithm 2). This way, finding local matches can
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Table 4 Search plan for query
closeTrains

#idx Predicate Bound variables Type

0 Train(T) Extend

1 On(T , St) T Extend

2 RailroadElement(St) T, St Check

3 ConnectedTo(St,Mid) T, St Extend

4 RailroadElement(Mid) T, St, Mid Check

5 ConnectedTo(Mid,End) T, St, Mid Extend

6 RailroadElement(End) T, St, Mid, End Check

7 ¬(St = End) T, St, Mid, End Check

8 On(OT ,End) T, St, Mid, End Extend

9 Train(OT) T, St, Mid, End, OT Check

10 ¬(T = OT) T, St, Mid, End, OT Check

continue without waiting for replies from remote par-
ticipants. However, the execution finishes, i.e., neither
FindAllMatches nor Continue cannot be completed
before awaiting all matches from remote participants and
fusing them with the local results (see lines 27–28 and
lines 22–24, respectively).

Algorithm 2 Distributed query execution outline
1: function ExecuteQuery(ϕ,idx,Z p)
2: searchPlan ← LookupPlan(ϕ)
3: if size(searchPlan) = idx then return {Z p}

4: matches ← ∅
5: PRED ← predicate evaluated by searchPlan[idx]
6: if searchPlan[idx] is an extend then
7: for e in {all candidates in M} do
8: Z ′

p ← Z p ∪ {vF �→ e}
9: if [[PRED]]MZ ′

p
= 1 then

10: next ← idx + 1
11: matches←matches∪ExecuteQuery(ϕ,next,Z p)

12: if e is not owned by current participant then
13: future←Continue(sender,ϕ,idx,Z ′

p)
14: store future
15: else
16: if [[PRED]]MZp

= 1 then
17: next ← idx + 1
18: matches←matches∪ExecuteQuery(ϕ,next,Z p)

19: return matches
20: procedure Continue(sender,ϕ,idx,Z p)
21: matches←ExecuteQuery(ϕ, idx, Z p)

22: await all futures stored in ExecuteQuery
23: add remote results to matches
24: send matches to sender
25: procedure FindAllMatches
26: allMatches ← ExecuteQuery(ϕ, 0,∅)

27: await all futures stored in ExecuteQuery
28: add remote results to allMatches

p1:Participant p2:Participant p3:Participant

3. [[CloseTrains]]@p2 
    Next operation index: 4;  
    Variable binding:  
      T -> tr2
     St -> s2 
    Mid -> s3 

2. [[CloseTrains]]@p2 
    Next operation index: 1;  
    Variable binding: 
     T -> tr1 

1. [[CloseTrains]]@p1 
    Next operation index: 0;  
    Variable binding: empty 

4. [[CloseTrains]]@p3 
    Next operation index: 6;  
    Variable binding: 
      T -> tr2
     St -> s2 
    Mid -> tu1 
    End -> s8 

5. [[CloseTrains]]@p1 
    Next operation index: 6;  
    Variable binding: 
      T -> tr1
     St -> s4 
    Mid -> s3
    End -> s2 

6. [[CloseTrains]]@p3 
    Next operation index: 6;  
    Variable binding: 
      T -> tr1
     St -> s4 
    Mid -> s5
    End -> s6 

Fig. 12 Query execution requests across participants while evaluating
closeTrains

Example 6 Figure 12 shows the beginning of a query evalua-
tion sequence formonitor closeTrains initiated at Participant
1 over the runtime model depicted in Fig. 3. Calls are asyn-
chronous (cf. actor model),

and numbers represent the order between time stamps of
messages. In this example, only (the first few) requests are
shown and replies are omitted to keep the illustrative example
simple.

When the query is initiated (message 1, shortly, m1), its
query identifier is sent along with the initially empty list of
variable bindings and the search operation index 0. Then,
according to the first search operation, participant p1 will
look for appropriate variable values variable T potentially
satisfying the predicate Train. Two objects are considered:
tr1 and tr2 out of which tr1 is managed by the remote partic-
ipant p2, so that m2 is sent from p1 to p2 delegating query
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execution by supplying the query identifier, the index of the
next search operation and the computed variable binding.
Once p1 sent the message in a non-blocking way, it proceeds
with the execution of the search plan. Next, when the binding
with T → tr2, St → s2 and Mid → s3 is computed by p1 in
search step #3, it is sent to p2 in m3 along with the next oper-
ation index, 4. The next message m4 sent by p1 is when it
computes the T → tr2, St → s2,Mid → tu1 and End → s8
binding and sends it to p3, the host of s8. The last two mes-
sages depicted in Fig. 12, m5 and m6, are sent by p2 and are
both follow-up messages for the initial request sent by p1 in
m2.

5.2.2 Semantics of distributed query evaluation

Each query is initiated at a designated computing unit which
is responsible for calculating query results by aggregating the
results retrieved from its neighbors. This aggregation consists
of computing matches based on the local knowledge base
and waiting for matches from remote participants and adding
them to the result set.

Message delays and/or message losses may cause partici-
pants to wait for results infinitely. This issue is handled by the
time-triggered execution, where the end of the query cycle
will force participants to report their results. As such, any
unfinished partial matches can be reported as potential viola-
tions of a safety property, which may result in false positive
alerts, but critical situations will not be missed.

5.2.3 Performance optimizations

Each match sent as a reply to a participant during distributed
query evaluation can be cached locally to speed up the re-
evaluation of the same query within the query cycle. This
caching of query results is analogous to memoing in logic
programming [66].

Currently, cache invalidation is triggered at the end of each
query cycle by the local physical clock, which we assume to
be (quasi-)synchronous with high precision across the plat-
form.

This memoing approach also enables units to selectively
store messages in the local cache depending on their specific
needs. Furthermore, this can incorporate to deploy query ser-
vices to computing units with limited amount of memory and
prevent memory overflow due to the several messages sent
over the network.

5.2.4 Semantic guarantees and limitations

Consistency Our approach ensures that query execution ini-
tiated at any two participants will not yield contradicting
query results. This is achieved by the single source of truth

principle when only an owner of an object can serve a read
request during query execution.

Furthermore, in case of a communication failure, the
results may contain incomplete or uncertain matches by the
end of the query cycle. However, (1) these will overesti-
mate the complete set of query results and (2) two result
sets obtained by two different platform units will still not
contradict each other.

Termination We can guarantee that query evaluation ter-
minates despite potential message losses, i.e., there is no
deadlock or livelock in the distributed query protocol. To
show this property, it is enough to see that (1) the evaluation
of queries is a monotonous process in terms of search oper-
ation execution and (2) a search operation cannot halt the
execution. Condition (1) holds because whenever a partici-
pant is executing an operation that incurs query delegation,
the delegation will start from the next operation in the plan.
This way execution will never go back to a previous opera-
tion. Condition (2) holds because the model size is bounded;
thus, all model elements can be traversed.

Assumptions and limitations There are also several assump-
tions and limitations of our approach. We only assumed
delay/loss of messages, but not the failures of computing
units. We also excluded the case when participants mali-
ciously send false information. Instead of refreshing local
caches in each cycle, the runtime model could incorporate
information aging which may enable to handle other sources
of uncertainty (which is currently limited to consequences
of message loss). Finally, in case of longer cycles, the run-
time model may no longer provide up-to-date information at
query evaluation time. We believe that some of these limita-
tions can be handled in future work by various adaptations
of the query evaluation protocol.

6 Evaluation

Weconductedmeasurements to evaluate the scalability of our
distributed runtime model and query evaluation technique to
address the following research questions:

Q1: How does the distributed model update technique scale
with increasing size of models and number of partici-
pants?

Q2: How does the distributed graph query execution tech-
nique perform with increasing model size and number
of participants?

As a main conceptual extension wrt. [12], we conducted
measurements for (1) bothmodel update and query phases (2)
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with increasing number of participants, (3) on both physical
and virtual platforms (4) running DDS as communication
middleware.

6.1 Measurement setup

We carried out experiments on two different platforms to
increase the representativeness of our measurements.

Real CPS platform We used the real distributed (physical)
platform of the CPS demonstrator which consists of 6 inter-
connected BeagleBone Black (BBB) devices (all running
embedded Debian Jessie with PREEMPT-RT patch) con-
nected to the railway track itself. This arrangement represents
a distributed CPS with several computing units having only
limited computation and communication resources. We used
these units to maintain the distributed runtime model, and
evaluate monitoring queries. This way we are able to pro-
vide a realistic evaluation; however, we cannot evaluate the
scalability of the approach wrt. the number of computing
units due to the fixed number of devices in the platform.

Real CPS benchmark For the measurements over the real
CPS platform, we rely on the MoDeS3 railway CPS demon-
strator as the domain of our experiments to synthesize various
distributed runtimemodels. Since the original runtimemodel
of MoDeS3 has only a total of less than 100 objects and a
total of six participants, we scaled up this initial model. To
ensure that structurally consistent models are generated, we
followed a template-based method, which is a simplified ver-
sion of [30]. Altogether, we used the same model generator
and queries as in [12] to obtain comparable results.

Virtual CPS platform To evaluate scalability wrt. increasing
number of participants, we deployed our framework over a
virtual platform with Docker containers. This way, we can
increase both the model size and dynamically add new par-
ticipants. The containers were running Ubuntu Linux 18.04
LTS, and they were all deployed to the same server machine
with 32 cores and 240 GBmemory. A dedicated Docker net-
work was created and assigned to the containers allowing
them to communicate over a virtual local area network.

Virtual CPS benchmark For the measurements over the
virtual platform, we used the model generator and graph
queries of the openTrainBenchmark [54] bymaking only the
necessary technological adaptations for a DDS-compatible
execution platform.
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Fig. 13 Number of model objects registered by a single participant

DDS middleware We used a commercial DDS imple-
mentation provided by RTI3 which supports the QoS set-
tings included in the DDS specification. Furthermore, RTI
provides additional options to fine-tune applications. We
made minor modifications to the initial profile provided
in high_throughput.xml to ensure timely message deliv-
ery. Namely, we increased the max_samples for the data
writer to allow increased write throughput. Furthermore,
we set the max_flush_delay to 100 ms to ensure
periodic sending of buffered messages and increased the
max_send_window_size to allow larger batches of
transport messages. These two parameters are both RTI’s
own extensions to the standard.

6.2 Benchmark results over real CPS platform

6.2.1 Model update throughput

In the first set of experiments, we assessed how the model
update throughput is affected by the size of the runtime
model. Each BBB was running a single participant, while
each participantwas sending 70, 700, 7000 and70,000 broad-
cast update messages, while also listening to model updates
sent by other participants.

Figure 13 shows our results. Each line represents a sepa-
rate scenario where 420, 4.2k, 42k and 420k objects in total
were created by the participants, respectively. Furthermore,
lines in the plot depict the median of how many objects a
single participant registered over time during the experiment
(both local and remote objects).

Figure 13 implies that the throughput of model updates is
not affected by the actual size of the model or the number of
participants. The average throughput measure is processing
797 object updates per second. Additionally, the results also
point out that our approach scales up to 420k model objects
hosted across 6 participants.

3 https://www.rti.com/products/dds-standard.
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Table 5 Memory footprint of
the prototype

Objects (count) Total memory (MB) Model size (MB) Avg. object footprint (Byte)

420 14.77 0.59 1404.76

4,200 15.89 1.71 407.14

42,000 27.76 13.58 323.33

420,000 146.50 132.32 315.05

Conclusion The evaluation results show that the perfor-
mance of the object update protocol is independent from the
number of model objects already present in the model, i.e.,
the creation/update of one object does not depend on the size
of the entire model, which is a key property for scalability.

6.3 Memory footprint

Wemeasured the heapmemory consumptionof our prototype
maintaining a runtime model on a single BeagleBone unit.
As a baseline, we measured the total memory consumption
(second column in Table 5) including memory allocated for
the required DDS data structures without creating any model
objects. Then, we created 420, …, 420k model objects with
their references and checked the total memory consumption
(third column in Table 5). Based on this, we calculated the
average memory consumption of an object (fourth column in
Table 5).

Conclusion Concerning the memory use of a single runtime
model object (approx. 300–400 bytes for larger models), we
consider our runtime model to be lightweight, which is very
promising in terms of scalability wrt. model size.

Limitation However, the loaded libraries and initial DDS
data structures (mainly DDS topics) in our setup prevent our
prototype to be deployed on devices with less than 15 MB
memory. Note that only around 3MBofmemory is dedicated
to message buffers introduced by our middleware configura-
tion (i.e., to send batch messages to increase throughput),
and the rest of memory consumption would be noticed for
any DDS-based implementation using the same (industrial)
library. The measured memory usage is in accordance with
the memory benchmark results provided by RTI.4

In fact, there is a new standard called DDS-XRCE [26]
dedicated to low-memory devices. This standard is an exten-
sion of the initial DDS specification designed to support
resource-constrained environments, which could provide a
much lower runtime overhead. However, as of today, no
implementation was available to us.

4 https://www.rti.com/products/benchmarks.

6.3.1 Query execution times

The query execution times over models deployed to a single
BBBwere first measured to obtain a baseline evaluation time
of monitoring for each rule (referred to as local evaluation).
Then the execution times of system-level distributed queries
were measured over the platform with 6 BBBs, evaluating
two different allocations of objects (standard and alternative
evaluations).

In Fig. 14, each result captures the times of 30 consecu-
tive evaluations of queries. A query execution starts when a
participant initiates evaluation, and terminates when all par-
ticipants have finished collecting matches and sent back their
results to the initiator.

Overhead of distributed evaluation On the positive side,
the performance of graph query evaluation on a single unit is
comparable to other graph query techniques reported in [54]
for models with approximately 0.5 M objects, which shows
a certain level of maturity of our prototype. Furthermore,
the CPS demonstrator showed that distributed query evalua-
tion yielded runtimes, which are comparable with runtimes
yielded by local evaluation on models over 4200 objects.
However, distributed query evaluation was the slowest on
larger models and had problems with Train locations, which
is a simple query with large result set size that roughly equals
to 10% of the complete model size; thus, communication of
results imposes intense network traffic.

Altogether, our measurement results in Fig. 14 indicate
one order of magnitude better scalability for query execution
compared to results reported in [12].

Impact of allocation on query evaluation Similarly as
in [12], we synthesized different allocations of model ele-
ments to computing units to investigate the impact of
allocation of model objects on query evaluation. With the
real CPS benchmark model in particular, we chose to allo-
cate all Trains to a dedicated BBB, and assigned every other
node stored previously on this BBB to the rest of the partic-
ipants.

Interestingly, the difference in runtimes compared to the
standard distributed scenario is negligible, while previous
results [12] showed 19.92× slowdown for extreme cases.
However, since that initial prototype, we managed to signif-
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Fig. 14 Query execution times in MoDeS3 case study

icantly improve the distributed query evaluation algorithm,
and exploit the high data throughput of the DDS communi-
cation middleware.

Conclusion As a combined effect of our optimized dis-
tributed query evaluation algorithm and the use ofDDS as the
underlying communication middleware, scalability of dis-
tributed query evaluation improved significantly, i.e., we can
evaluate queries over runtime models which are an order of
magnitude larger than the ones presented in [12].

Threats to validity The generalizability of our experimen-
tal results is limited by certain factors. First, to measure the
performance of our approach, the platform devices (1) exe-
cuted only query services and (2) connected to an isolated
local area network via Ethernet. Performance on a real net-
work with a busy channel would likely have longer delays
and message losses, thus increasing execution time. Then
we assessed performance using a single query plan synthe-
sized automatically by the VIATRA framework but using
heuristics to be deployed for a single computation unit. We
believe that execution times of distributed queries could fur-
ther decrease with a carefully constructed search plan.

6.4 Virtual CPS benchmark results

Scalability of query evaluation over a virtual platform
With the virtual CPS platform, we aimed at assessing how
our query-based runtime monitoring approach performs wrt.
the number of participants in the platform. To achieve this,
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Fig. 15 Train Benchmark scalability evaluation results

we adapted the model generator component of Train Bench-
mark [54] to also supply the generatedmodelswith allocation
information. Then, we generated models with objects 1.3–
250k for four different allocations to 2, 5, 10 and 20
participants, respectively. Figure 15 shows the runtimes of
30 subsequent query evaluations over a virtual CPS platform
consisting of multiple Docker containers.

The results show that initially, query execution times are
approximately the same for all allocations. Then, starting
from 64k objects, execution times over the same model
size gradually start decreasing as the number of partici-
pants increases. The biggest gain on average is for the query
SwitchSet query: Evaluation on a platform with 20 partici-
pants over amodelwith 250k elements is 2.28× faster than on
a platform with only 2 participants. This means that increas-
ing the degree of distribution in the system yields lower
execution times for queries if the models are larger than a
certain size.
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Conclusion Increasing the number of participants results in
lower query evaluation time for models of a given size, but
there is room for improvement for the actual speedup factor.

Threats to validity. The generalizability of our experimental
results is limited by certain factors. First and foremost, we
ran Linux containers on a remote server located in a cloud
infrastructure, so that we had very limited influence on the
allocation of the machines and the potential workload that
is present on the same physical host as our instances. Fur-
thermore, the network is also virtualized and the latency of
a virtualized network is most likely significantly lower than
a physical one. Additionally, to measure the performance
of our distributed model management approach, participants
executed only model management tasks. Finally, we did not
use fault injection to investigate the fault tolerance capabili-
ties of our protocol by enforcing message losses.

7 Related work

Runtime models The models@run.time paradigm [11]
serves as the conceptual basis for the Kevoree frame-
work [46]. This framework originally aimed at providing an
implementation and adaptation of the de facto EMF stan-
dard for runtime models [22]. KMF allows sharing objects
between different nodes, as opposed to our current work
where the model elements can only be modified by their host
participant, thanks to the single source of truth principle.
Additionally, several assumptions applied to KMF heavily
depend on the Java programming language and the Eclipse
modeling framework, which questions its applicability to
resource-constrained environments.

The work presented in [28] combines reactive pro-
gramming, peer-to-peer distribution and large-scale models-
@run.time to leverage the challenges introduced by con-
stantly changing runtime models. The basic idea is to
asynchronously communicate model changes as chunks,
where chunks can be processed individually regardless of
other elements in the model. A prototype for this approach
is also provided as an extension to KMF.

Other recent distributed, data-driven solutions include the
global data plan (GDP) [68]. This work suggests a data-
centric approach for model-based IoT systems engineering
with a special focus on cloud-based architectures, providing
flexibility and access control in terms of platform com-
ponents and data produced by sensors. However, data are
represented by time series logs, which is considered as low-
level representation compared to graph models employed by
our approach.

Another distributed solution for the models@run.time is
presented in [64] as a modeling language for executable

runtime megamodels (EUREMA). This project is primarily
concerned with specifying the self-adaptation strategy fol-
lowing a model-based approach—while the data storage and
representation is out of its scope.

Adaptive exchange of distributed partial models was
studied in [25]. The authors propose a role-based model syn-
chronization approach for efficient knowledge sharing. First,
they identify three strategies for model synchronization.
Then, with the help of different roles, they show optimiza-
tions for knowledge sharing in terms of performance, energy
consumption,memory consumption and data privacy. In con-
trast, data ownership is exclusive, and based on the platform
in our approach and global approach, system-level queries
are computed based on the local information.

Distributed graph databases There are existing databases
that use graphs as the underlying data representation.
One of such databases is JanusGraph (formerly known as
TITAN) [59]. It provides support for storing and querying
very large graphs by running over a cluster of computers. In
addition to storing data in a distributed way within a cluster,
it also supports fault tolerance by replication and multiple
simultaneous query executions by transactions. Even though
it claims to execute complex graph traversals in real time, the
framework provides no QoS assurance regarding response
time.

OrientDB [14] is a multimodel database that has a native
graph database engine where graph data may or may not
be defined by a corresponding schema. However, in case of
both JanusGraph and OrientDB, deployment of the database
to memory-constrained devices is not supported by default,
which is a fundamental need for distributed CPSs.

The authors in [27] introduce GreyCat, an implementa-
tion for temporal graphs. By adding time stamps to graph
nodes, it allows identifying a node along its timeline. The
tool can be used on top of arbitrary storage technologies,
such as in-memory or NoSQL databases. As opposed to our
approach, they use a per-node locking approach to prevent
inconsistencies.

Finally, it is worth pointing out that the adaptation of tradi-
tional design time modeling approaches from model-driven
software engineering to runtime models introduced in this
current paper also fits the general research directions sug-
gested in [7], while in [42] DDS is suggested as a key enabler
technology for allowing timely and reliable data delivery for
modern model-based applications.

Runtimeverification approaches For continuously evolving
and dynamic CPSs, an upfront design time formal analysis
needs to incorporate and check the robustness of compo-
nent behavior in a wide range of contexts and families of
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configurations, which is a very complex challenge. Thus,
consistent system behavior is frequently ensured by runtime
verification (RV) [40],which checks (potentially incomplete)
execution traces against formal specifications by synthesiz-
ing verified runtime monitors from provenly correct design
models [34,44]. These approaches focus on the temporal
behavior of the system: Runtime verification of data-driven
behavior is not their main goal.

Recent advances in RV (such as MOP [43] or LogFire
[29]) promote to capture specifications by rich logic over
quantified and parameterized events (e.g., quantified event
automata [8] and their extensions [19]). Moreover, Havelund
proposed to check such specifications on-the-fly by exploit-
ing rule-based systems based on the RETE algorithm [29].
However, these techniques consider relations between events
and do not take models as a first class citizen of the runtime
analysis.

Traditional RV approaches use variants of temporal logics
to capture the requirements [9].Recently, novel combinations
of temporal logics with context-aware behavior description
[2,24] (developed within the R3-COP and R5-COP FP7
projects) for the runtime verification of autonomous CPS
have appeared and provided a rich language to define cor-
rectness properties of evolving systems. These approaches
introduced the concept of contextmodels and can also be rep-
resented in the graph-based approach of this paper. Recently,
monitoring approaches to analyze topological properties in
a discrete space have appeared [48]. Qualitative and quanti-
tative analysis is supported. However, complex data-driven
behavior is not the focus of the approach.

Runtime verification of distributed systems While there
are several existing techniques for runtime verification of
sequential programs, the authors of [47] claim that much
less research was done in the area for distributed systems.
Furthermore, they provide the first sound and complete algo-
rithm for runtimemonitoring of distributed systems based on
the 3-valued semantics of LTL.

The recently introduced Brace framework [69] supports
RV in distributed resource-constrained environments by
incorporating dedicated units in the system to support global
evaluation of monitoring goals. There is also focus on eval-
uating LTL formulae in a fully distributed manner in [3] for
components communicating on a synchronous bus in a real-
time system. These results can provide a natural extension of
our work into the temporal directions. Additionally, machine
learning-based solution for scalable fault detection and diag-
nosis system is presented in [6] that builds on correlation
between observable system properties.

Distributed graph queries Highly efficient techniques for
local search-based [13] and incremental graphmodel queries
[60] as part of the VIATRA framework were developed,
which mainly builds on RETE networks as a baseline tech-
nology. In [53], a distributed incremental graph query layer
deployed over a cloud infrastructure with numerous opti-
mizationswas developed. Distributed graph query evaluation
techniques were reported in [37,45,51], but none of these
techniques considered an execution environment with lim-
ited resources.

8 Conclusions and future work

In this paper, we proposed a runtime verification approach
for distributed CPS. The solution is a time-triggered and dis-
tributed runtime model management approach that keeps the
information in a model close to the data sources. Models
and high-level graph queries provide an expressive language
to capture correctness requirements during runtime. Our
solution is built on top of the standard DDS reliable com-
munication middleware that is widely used in self-adaptive
and resource-constrained CPS applications. The main goal
of this paper was to extend our former solution [12] with the
efficiency and QoS guarantees provided by DDS.

Our approach introduces an efficient handling of a dis-
tributed knowledge base stored as a graph over a hetero-
geneous computing platform. Consistent manipulation and
update of the knowledge base are defined as a distributed
and time-triggered model management protocol and imple-
mented by exploiting the QoS guarantees provided by the
DDS communication middleware.

The scalability of our approach was evaluated in the con-
text of the physical system of MoDeS3 CPS demonstrator
with promising results such as high throughput for model
updates and good scalability with increasing change sizes
and number of participants.

In the future, we will investigate in details what gen-
eral properties does the proposed distributed runtime model
protocol guarantee (e.g., global consistency, fairness and live-
ness). The results will be formulated as theoremswith formal
proofs.

Moreover, as a long-term goal, we plan to integrate the
graph query-based approach with temporal logic languages
to support an even wider range of specifications. In addition,
more efficient query evaluation algorithms have to be incor-
porated into the system to provide near real-time analysis
capabilities.
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