
Model checking and test generation: towards a
combined approach to software verification

Mihály Dobos-Kovács∗, András Vörös∗†
∗Budapest University of Technology and Economics,
Department of Measurement and Information Systems,

†MTA-BME Lendület Research Group on Cyber-Physical Systems

Abstract—Ensuring the correctness of safety-critical systems is
a key aspect of the development process. Various approaches exist
to find software bugs: (1) model checking examines the mathe-
matical model of the software and proves the logical correctness,
while (2) testing is an efficient and practical technique to find
bugs. Model checking is a computationally expensive task, as it
explores all the possible states of the software, and despite the
technological advances of the last decade, software that cannot
be formally verified still exists. On the other hand, testing is
computationally cheaper than model checking, and widely used
by the industry, but providing an efficient test suite for a given
program is still under heavy research.

The goal of my work is to combine model checking and testing
to exploit the advantages of both approaches. I introduce a
new algorithm that uses an abstraction-based model checking
technique to explore the behavior of the software. In case the
model checking algorithm proves the properties of the software,
the procedure terminates. If the algorithm can not reach a
conclusion, test generation is applied, exploiting the information
gathered during state space traversal of model checking.

I. INTRODUCTION

Ensuring the correct behaviour of safety-critical systems
is an important task during system development. Various ap-
proaches exist to find software bugs with their own advantages
and disadvantages.

Model checking is one of such approaches that examines the
mathematical model of the software and proves the absence
of bugs, or provides a counterexample to correctness. Model
checking is a computationally expensive task, as it usually
explores all the possible states of the program. Despite the
technological advances of the last decade, we are still unable
to formally verify industrial software systems. There are two
barriers: on the one hand, software model checking is an
algorithmically undecidable task. On the other hand, when the
analysis is restricted to programs with finite memory and finite
data structures, state space explosion still prevents successful
verification.

Testing [8] is an effective technique to find the flaws in the
source code of software systems. Testing is a standard step in
every development process, and it is also prescribed by certain
standards. The challenge of testing is usually finding a proper
test suite, that covers the behavior of the program while still
having a feasible size. In the literature, several approaches
were published that increased the efficiency of test suits [9]
[10] [11] [12].

The goal of this work is to combine model checking with
testing to exploit the advantages of both approaches. Model
checking explores the state space to find errors or prove the
correctness of the software. However, when the verification
algorithm reaches a resource limitation, our new approach tries
to use up the information gathered during the verification and
generate a test set targeting the unexplored part of the program.
The approach can focus testing to the critical parts of the
program, and we hope that fewer test cases will lead to the
more rigorous testing of software systems.

II. BACKGROUND

Model checking is a common name of algorithms based
on the rigor of mathematics. Model checking takes a for-
mal model and a formal requirement, and verifies if the
requirement holds on the model. To utilize model checking
on computer programs, they need to be formalized. One of
these formalizations is Control Flow Automata (CFA) [2],
that consists of control locations and operations represented
as edges.

One of the model checking algorithms is the so-called
CounterExample-Guided Abstraction Refinement (or CEGAR
for short) [2] [3] [4], that is used in our framework for
exploring the behaviour of the software under analysis. The
input of the CEGAR algorithm is a formal model (CFA in the
case) and a formal requirement. The algorithm either proves
that the given requirement holds on the given model, or proves
otherwise, by giving a counterexample. Certain locations of
the CFA are marked as error locations, and the given formal
requirement is that a given error location is unreachable. Such
error locations can be created from assertions in the program.

The state space of even a simple program can be huge if
not infinite. To tackle this problem, CEGAR uses abstraction,
such as explicit value abstraction [2] or predicate abstraction
[5] [6]. In our framework, we chose predicate abstraction that
follows a set of predicates (Boolean formulas over the set
of program variables) instead of the concrete values of the
variables. Henceforth an abstract state of a program is a set
of (concrete) states that share the same control locations, and
a set of predicates describing them.

The core of the algorithm is the so-called CEGAR-loop
that consists of two distinct phases: (1) the abstraction and
(2) the refinement phase. The task of the abstraction is to
build the state space in the form of an abstract reachability



tree with the given set of predicates. If an erroneous state is
encountered during the building phase, it is the task of the
refinement to determine whether that state is reachable in the
concrete state space as well. If an error location is reachable,
then the program is unsafe, if it is not then more predicates
need to be used [7], and the abstraction continues to build
the state space. If the abstract state space contains no error
locations, then the concrete state space does not either, as the
abstract state space is an over-approximation of the possible
state space of the program, so the program is safe.

III. OVERVIEW OF APPROACH

In our work, we aim to combine model checking and testing
to analyze the safety of software (illustrated on Fig. 1). As
a result of limited resources (time, memory, etc.), formal
verification cannot always succeed. Should that happen, the
verification task needs to be terminated, and test generation is
applied. The test generation method can use the output of the
model checking procedure: the Abstract Reachability Tree. The
role of applying model checking is to decide the correctness
of the software (safe depicted as a tick, unsafe depicted as a
cross). However, when verification fails to reach a conclusion,
then test running can still find bugs. If testing finds no errors
either, then the safety of the program is undecided with the
given resources (depicted as a question mark).

Fig. 1. Combining model checking and testing

Once the CEGAR algorithm terminates, the information
gained during the traversal needs to be extracted. The algo-
rithm stores this information in the so-called Abstract Reachi-
bility Tree. Each node in the tree corresponds to an abstract
state, while the children of the node denote the abstract states
reachable via an operation from the parent node. Each node
of the tree has one of the following four types:

• Unreachable: Nodes whose abstract state is part of the
state space, but no input exists that drives the program to
these states. These nodes can be removed from the tree.

• Covered: If a node A in the tree shares the same control
location as a node B, and the predicates of A imply the
predicates of B , then B is covered (by A).

• Expanded: A node is expanded if the tree contains the
nodes that are reachable from that node via an operation.

• Incomplete: All nodes that are not unreachable, covered
or expanded are incomplete.

Incomplete nodes represent the ”doorway” to the untra-
versed part of the state space, as all the possibly reachable
states are reachable through them. (All the error states that are
reachable from a covered node are reachable from the node
that covers it, while all the error states that are reachable from
an expanded node are reachable from one of its children.) The
goal of test generation is to guide the program through these
doorways, which can be achieved by creating an SMT problem
[1] from the operations and guards on the path from the root
to the incomplete node, and solving the problem for the input
variable (note, that this method does not provide any coverage
guarantee). This procedure will be detailed in the followings.

For example, a part of an Abstract Reachability Tree is
depicted on Fig. 2. The node with l3 is unavailable as no
such x exists that satisfies 3 ≤ x < 3. The node with l1 in the
bottom left corner is covered by the node labelled l1 in the
center. The node with l1 in the center and the node with l0
are expanded, while the node labelled l2 is incomplete.

Fig. 2. (Part of an) Abstract Reachibility Tree.

IV. GENERATING TEST CASES

Using the information extracted from CEGAR, test cases
can be generated utilizing more approaches.

A. Boundary value analysis of input variables

Boundary value analysis is a black box testing technique,
that assumes, that errors happen more frequently at the ex-
treme/boundary values of variables. It is similar to testing
based on equivalence partitioning, however, it focuses rather
on the corner cases (and does not build equivalence classes
explicitly). In our setting, we do local boundary analysis, that
is motivated by traditional boundary analysis techniques, but
focuses the boundary values by the unexplored part of the state
space.

To do boundary value analysis, for each input variable the
possible maximum and minimum values should be found.
As mentioned earlier, an SMT problem can be constructed
out of the operations on the path to an incomplete node.



Solving this problem gives one possible combination of many
for the input variables. By giving the solver an optimization
constraint, such as the value of one of the variables should
be minimal/maximal, such a solution can be found, where the
given variable is on one of its boundary values. Some solvers
can solve the optimization problem [13].

The solution of the optimization problem is a combination
of input values that guides the execution to the given incom-
plete node, while one of the input values is minimal/maximal.
This minimal/maximal value can differ for the same variable
if an other incomplete node is reached. These minimal or
maximal values are local: the program can accept lower/higher
input values than these boundary values, but on the given
path, and on the state space that is reachable from the given
incomplete node, these are the local minimal/maximal values.
The computed values focus onto the unexplored part of the
software.

To apply boundary value analysis systematically, the SMT
problem should be solved twice for each input variable: for
the first time the optimization constraint should be to minimize
the current variable, for the second time to maximize it. Out of
each solution of the SMT problem, a test case can be generated
that tests the software for the minimal/maximal value of one
input variable.

B. Robustness testing

The philosophy behind robustness testing is similar to
boundary value analysis. The difference is that by robustness
testing the errors are assumed to happen on the extremes of
arithmetic conditional expressions.

The process of finding the necessary input values is similar
to the method described in the previous subsection. The SMT
problem with an optimization constraint needs to be solved,
and using the solution, a test case can be generated. However
the optimization constraint is not to minimize/maximize one
of the input variables rather to minimize/maximize one of the
variables that happen to be a result of an arithmetic expression.

For example, let us assume that (z ≤ 5) arithmetic condi-
tional expression is given in a guard, where z is a positive
integer. According to robustness testing the errors are more
frequent on the extremes, so the possible minimal and maximal
value of variable z should be determined, and used in the test
cases. As the value of z might depend on the value of other
variables, an SMT problem needs to be constructed and solved,
as described earlier.

To apply robustness testing systematically, again the SMT
problem should be solved twice for each variable in an arith-
metic expression: for the first time the optimization constraint
should be the minimization of the variable, for the second time
the maximization. These test cases test the software for errors
that happen in arithmetic conditions, for an input or computed
variables on boundary values.

C. Finding number representation errors

In a computer program, every variable is stored on a finite
number of bits. As a result, the range of every variable is a

finite set (all the integer have a minimal and a maximal value,
the floating-point variables are stored using the exponent and
mantissa, etc.). A number representation error occurs when
such a value is reached during the running of the software,
that cannot be represented using the type of the variable.

For example. Let x, y, z be 4 bit unsigned integers (meaning,
that the finite range of these variables is {0, 1, ..., 15}. Let
x = 8 and y = 8 hold. If z = x + y, then z should be 16,
which is not part of the domain of the variable, so it cannot
be represented. This kind of error is called overflow/underflow,
and a common problem in embedded systems.

Formal methods should take into consideration these char-
acteristics of real-life program variables. Model checking does
logical analysis (in our specific use-case; other model checkers
can do bit-precise verification as well), so the range of every
integer variable is the set of integers (Z), while the range of
every floating point variables is the set of real numbers (R).
As a result, formal methods may miss some software bugs that
are related to the representation of numbers.

Finding these kinds of errors is different from the earlier
methods: as it does not aim the untraversed part of the state
space, rather the traversed one. The aim is to find errors, that
model checking might have missed. To identify these errors,
those variables should be found first, whose value might be
unrepresentable. These variables are those that store the result
of an arithmetic operation (such as adding, multiplying, etc.
variables). This information can be extracted from the source
code.

Fig. 3. A C code, and the corresponding ART (fraction)



Numerous SMT problems can be constructed from the
operations and guard expressions on the path to the leafs of
the ART. However, new constrains must be added, that state
the possible range of each input variable. The optimization
constraint should be the minimization/maximization of the
variables under analysis (whose value might be unrepre-
sentable). If in the solution of the SMT problem the value
of the variable is outside the representable range, then an
overflow/underflow occurred. Again, using the solution a test
case can be generated that reproduces the error.

There are other kinds of number representation errors as
well, but they are not discussed here.

V. CASE STUDY

On Fig. 3 a simple C program is depicted, that receives two
input numbers and behaves differently based on their sum. A
part of the source code is depicted below, with a fraction of
the abstract reachability tree corresponding to the code. The
root of the fraction is l0 while the incomplete nodes are l2
and l3. The three methods described earlier will be presented
using the paths from l0 to l2 and l3. Furthermore let us assume
that all variables are unsigned integers.

To apply boundary value analysis on the left hand side
(from l0 to l2), the input variables should be found first. These
variables are x and y. Therefore the optimization constraints
and the solutions of the SMT problem will be the following:

• max(x): {(x = 5), (y = 0)}
• min(x): {(x = 0), (y = 0)}*

• max(y): {(x = 0), (y = 5)}
• min(y): {(x = 0), (y = 0)}*

To apply robustness testing on the left hand side (from l0
to l2), the variables in arithmetic conditions should be found
first. The only variable is z, because of the [z ≤ 5] condition.
Therefore the optimization constraints and the solutions of the
SMT problem will be the following:

• max(z): {(x = 5), (y = 0)}*

• min(z): {(x = 0), (y = 0)}
To find errors of number representations on the right hand

side (from l0 to l3), the variables that can overflow/underflow
need to be identified first. The only variable is z, because the
it is the only variable that stores the result of an arithmetic
operation (x + y). Let us assume, that the range of x, y, z is
the integers between 0 and 15 (4 bit unsigned integer). The
optimization constraints and the solutions of the SMT problem
will be the following:

• max(z): {(x = 15), (y = 15)}*

• min(z): {(x = 3), (y = 3)}*

The first case, when both x and y are 15, the value of z is 30,
so an overflow occurred.

VI. CONCLUSION

Ensuring correctness is a key aspect of the development
process in the safety-critical domain. However, it is not a trivial

*One out of many possibilities

task. Existing approaches, such as model checking and testing
both have their advantages and disadvantages: model checking
can prove the correctness for the price of heavy computations,
while testing can efficiently find bugs in software.

By combining them, it is possible to exploit the advantages
of both worlds. If the verification has enough resources to
complete the task, then the correctness can be decided. If it
is aborted as the resources are not sufficient, the information
gathered during the state space traversal can be used to
generate test cases focusing on the unverified part of the state
space.

The novelty of the presented approach is that by using the
information provided by the verification algorithm, the targeted
test suite can be generated that results in fewer test cases.

A. Future Work

There is much work left. In the following, we introduce
some important directions:

• In the future, further test generating methods (eg. based
on equivalence classes) need to be developed to cover a
greater part of the state space.

• More CEGAR abstraction methods are needed to be
analyzed to extend our method.

• A common pattern in software is input inside a cycle,
which often breaks abstraction. Methods need to be
devised to provide values for such inputs during test case
generation. That is the main weakness of our approach.

REFERENCES

[1] L. De Moura and N. Bjørner, ”Satisfiability modulo theories: introduc-
tion and applications,” Communications of the ACM, vol. 54, no. 9, pp.
69-77, 2011.

[2] D. Beyer and S. Löwe, Explicit-State Software Model Checking Based
on CEGAR and Interpolation, Lecture Notes in Computer Science, vol.
7793, pp. 146-162, 2013.

[3] E. Clarke, O. Grumberg, S. Jha, Y. Lu and H. Veith, Counterexample-
guided Abstraction Refinement for Symbolic Model Checking, J. ACM,
vol. 50, no. 5 pp. 752-794, 2003.

[4] Á. Hajdu, T. Tóth, A. Vörös and I. Majzik, A configurable CEGAR
framework with interpolation-based refinements, Lecture Notes in Com-
puter Science, vol. 9688, pp. 158-174, 2016.

[5] S. Graf s H. Saidi, Construction of abstract state graphs with PVS,
Lecture Notes in Computer Science, vol. 1254, pp. 72-83, 1997.

[6] D. Beyer and M. Dangl, SMT-based Software Model Checking: An Ex-
perimental Comparison of Four Algorithms, Lecture Notes in Computer
Science, vol. 9971, 2016.

[7] K. L. McMillan, Applications of Craig interpolants in model checking.,
Lecture Notes in Computer Science, vol. 3440, pp. 1-12, 2005.

[8] I. S. T. Q. Board, Certified Tester Foundation Level Syllabus, 2018.
[9] N. Tillmann, J. de Halleux and T. Xie, Pex for Fun: Engineering an

Automated Testing Tool for Serious Games in Computer Science, 2018.
[10] J. de Halleux and N. Tillmann, Moles: Tool-Assisted Environment

Isolation with Closures, Lecture Notes in Computer Science, vol. 6141,
pp. 253-270, 2010.

[11] C. Cadar, D. Dunbar and D. Engler, KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs, in
Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, 2008.

[12] G. LiIndradeep, G. Sreeranga and P. Rajan, KLOVER: A Symbolic
Execution and Automatic Test Generation Tool for C++ Programs,
Lecture Notes in Computer Science, vol. 6806, pp. 609-615, 2011.

[13] L. M. d. Moura s N. Bjørner, Z3: An Efficient SMT Solver, TACAS,
2008.


