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Abstract. Back-end analysis tools aiming to carry out model-based ver-
ification and validation of dynamic behavioral models frequently retrieve
sequences of simulation steps (called execution traces) as their output.
Unfortunately, as each back-end tool typically has a different represen-
tation of such traces, even the simple replay of an execution trace within
a modeling environment (i.e. outside the analysis tool) needs significant
investment. In the paper, we present a generic handling for recording
execution traces. Our approach complements static and dynamic meta-
models by introducing a generic execution trace metamodel, which can
be specialized to dedicated execution trace information for individual
DSMLs. Furthermore, we present techniques to (i) automatically gener-
ate execution traces from changes of the underlying model, and (ii) to
drive simulation according to an execution trace model. Our approach
will be exemplified by the modeling language and trace information of
the SAL model checker.

1 Introduction

Model-driven analysis aims at revealing conceptual flaws early in the design pro-
cess. In the typical approach, high-level design models (UML, BPEL [16], SysML,
etc.) are automatically transformed into mathematical models (e.g. Petri nets,
transition systems, process algebras) to carry out analysis by formal methods.
The results of the analysis are then attempted to be back-annotated to the origi-
nal source model. In case of modeling languages with dynamic behavioral seman-
tics (e.g. statecharts, workflows, etc.), the target formal analysis tools frequently
carry out simulation or model checking to ensure the (functional) correctness of
the design or validate its non-functional characteristics (e.g. performance).

In such dynamic scenarios, these back-end analysis tools typically retrieve an
execution trace (run) of the system as a positive or negative example (see Fig. 1).
Unfortunately, in most cases, a variety of back-end analysis tools are used, all of
which have different textual representation of their execution traces. As a result,
even the simple replay of an execution trace within a modeling environment
(like Eclipse) needs significant investment, which has to be repeated for each
individual analysis tool (not to mention further back-annotation problems).

In the paper, we aim at providing a generic handling for execution traces in
dynamic modeling languages with a specific focus on those retrieved by model
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Fig. 1: Modeling approach overview

checkers and simulation tools. First, (1) we propose a metamodel for execution
traces, which complements traditional static and dynamic metamodels (Fig. 1).
Based on this metamodel, (2) we define operations to support the replay of
such traces within a general purpose modeling environment (outside the original
analysis tools). Finally, (3) we investigate how execution trace models can be
produced and consumed using live (event-driven) model transformations (such
as how changes of dynamic models drive the automated creation of execution
trace models). Our techniques will be exemplified on the language and execution
traces provided by the SAL model checker [4].

The rest of the paper is structured as follows. Sec. 2 provides a brief intro-
duction to the language aspects of the SAL model checker. In Sec. 4, we present
a metamodel of execution traces. Sec. 5 discusses how an execution trace model
can be replayed to update the dynamic model, while Sec. 6 describes how exe-
cution trace models can be created. Finally, related work is discussed in Sec. 7
and Sec. 8 concludes our paper.

2 Background

We provide an informal introduction to the language of the SAL model checker,
which serves as the running example of the paper (Sec. 2.1). Then we discuss a
way how dynamic SAL models can be integrated in a modeling framework using
dynamic metamodeling techniques (Sec. 2.2).

2.1 The SAL Language

Symbolic Analysis Laboratory (SAL) [4] is a framework for combining different
tools to calculate properties of concurrent systems and it includes a simulator
and advanced tools for symbolic and bounded model checking. These tools are
used on input models captured as a transition system using a language also called
SAL. Models written in the SAL language consist of three parts: the variable
type definitions, the module specifications and the requirements.
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The variable types can be finite types (e.g. boolean, tuple), infinite types
(e.g. numbers), or subtypes. For the current paper, we will restrict our examples
to tuples where the type declaration defines a finite number of possible values.
The specification of a module consists of state variable declarations, variable
initializations and the transitions part. The state of the system model is defined
by the current value of the state variables, while the evolution of the system is
specified by transitions.

For variable initialization, SAL uses definitions, which are of the form x =
expression or x ∈ set (nondeterministic choice). The x′ form can refer to the
new value of variable x in a transition. The initialization of variables is given as a
combination of definitions [4]. Transitions are guarded commands defined in the
form g → S where g is a boolean guard and S is a list of definitions (assignments).
A guarded command is enabled if the boolean guard evaluates to true based on
the actual state of the system. The executed command is chosen from the set of
enabled commands nondeterministically. The execution consists of applying the
definitions in S by setting the new value of the contained variables.

Example SAL transition system We introduce a simple SAL example mod-
eling a thread that may perform one of two jobs during its run. Fig. 2 shows a
possible graphical notation of the SAL system on the left and the real textual
syntax of the same example on the right.

Fig. 2: Example transition system

The Thread starts in the wait state while both Job A and Job B are
initialized in the passive state. The guard of the work command requires that
the thread has to be in the wait state, while the assignments set the jobs in
the active state and the thread in the process state. There are two commands
select A and select B with similar guards (one of the jobs in the active state
and the thread in the process state) and the same assignments (set the thread in
the work state). Finally, the guard of the finish command requires the thread
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to be in the work state and its assignments set the the jobs back to passive state
and the thread in the clean state.

2.2 Dynamic metamodeling for behavioral models

Dynamic metamodeling (DMM) [11] aims at specifying the dynamic behavior
of executable modeling languages by combining metamodeling with rule based
formalisms to capture operational semantics.

In DMM, the static metamodel describing the structure of models in the
target language is extended with a dynamic (execution) metamodel capturing
the dynamic state of models during execution or simulation. Then, the dynamic
(behavioral) semantics of the language is defined by transformation rules that
modify the instances of the dynamic metamodel. These operational rules are
frequently formally defined by graph transformation techniques [9]. As a result,
DMM specifications are suitable for describing a complete execution semantics
of dynamic (behavioural) modeling languages.

Furthermore, DMM also enables to simulate dynamic models using existing
transformation engines. For this purpose, the applicability of each simulation
rule is first checked, for instance, by graph pattern matching techniques. Then
a rule is applied for a selected match (if any exists), which updates the under-
lying dynamic model to result in a new (dynamic) state. This selection can be
nondeterministic or user-driven as well. Simulation rules can be fired as long
as an enabled rule is found. This form of simulation is widely used in graph
transformation tools.

Dynamic metamodeling example The dynamic metamodeling is illustrated
to define semantics for transition systems of SAL. The left part of Fig. 3 shows
a (simplified) metamodel for SAL including both static and dynamic aspects.

rule executeCommand () = seq{
choose Cmd with

find EnabledCommand(Cmd) do seq{
call changeCommandStateToExecuted(Cmd);
forall Asnt with
find CommandsAssignment(Cmd ,Asnt) do
choose Var ,Value with find

AsntsVarAndValue(Asnt ,Var ,Value) do
call setVariableValue(Var ,Value);

forall Cmds with find Command(Cmds) do
call calculateCommandState(Cmds );}}

Fig. 3: SAL system model and command execution transformation rule

The Static Metamodel contains Guarded Commands which have a Guard
and an Assignments contained element and Variables which have a Variable
Type defined in the declaration part of the model. Their initial state is one from
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the possible values of their type. The guards contain several variable-value
conditions declaring the required value for the given variable. The assignments
also contain variable-value assignments, defining the new value for the variables.

The Dynamic Metamodel contains Command State elements, which store
the dynamic state of the command. A Command State can be disabled (when
the guard condition is false), enabled (when the guard condition is true), or
executed (to denote that the command has just fired). The Variable State
element records the current values of the corresponding variable.

Command execution rule The execution of a command can be defined in a
transformation rule based on the semantics of the SAL system when firing a
guarded command. First one command (Cmd) is chosen non-deterministically
from the enabled commands (pattern matching returns a match). Then the com-
mand state of Cmd is set to executed (the attribute value is modified) and all
the assignments of Cmd (Asnt) are processed (all matches of a pattern) by
updating the current value of variables to the state defined by Asnt (change
target of the current relation). Finally the state of every command (all found
matches) is refreshed based on the new variable states (by calling an evaluator
rule).

Dynamic models without dynamic semantics Note that dynamic models
(i.e. an explicit representation of execution-time information) are highly relevant
in themselves, i.e. they do not depend on the actual formalism we use for defin-
ing the dynamic semantics of the language. For instance, when the SAL model
checker retrieves a counterexample, the existence of a precise dynamic seman-
tic specification is not compulsory to replay the same scenario within a general
purpose modeling tool. In fact, most results of the paper are independent of the
underlying simulator, and only depend on the dynamic model itself.

3 Generic back-annotation framework for dynamic
modeling languages

Back-annotation is the reverse model transformation problem to derive corre-
sponding source design model information from the results of a formal analysis
carried out on a target model. In case of discrete event-based dynamic analysis
languages, these results are typically represented as an (execution) trace obtained
from a simulation run or as a counter-example (i.e. sequence of steps leading to
the violation of a requirement) of a model checker. Therefore the back-annotation
in this case consists of deriving a trace of the source model from a given trace
of the target model.

In the paper, we first propose a generic framework for the back-annotation
of simulation traces. In this framework, we assume the existence of the following
traditional modeling and transformation concepts:

– static, dynamic and trace metamodels for both the source and target
domains to precisely define the taxonomy for instance models;
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– operational semantics to specify the dynamic behaviour of the target
analysis model during simulation;

– structural model transformation which derives a (static) target model
from an arbitrary source model;

– traceability links created by the model transformation to store the struc-
tural correspondence between the elements of the source and target models.

Using these concepts back-annotation necessitates the definition of precise
transformations for:

1. trace generation rules derived from the operational semantic rules of the
model to record a simulation run as a trace model observing the changes of
the dynamic model.

2. trace processing rules to replay the execution of a simulation run on the
dynamic model using an arbitrary trace of the same model.

3. trace mapping (back-annotation) rules to derive a source trace model
from the target trace model using traceability links existing between the
models.

In this paper we focus on the problem of generating a trace from the output
of the simulation and processing the persisted traces.

3.1 Metamodels of dynamic modeling languages

We assume the existence of various metamodels in the context of a dynamic mod-
eling language (DML), which are exemplified together with main relationships
in Fig. 4.

First, a static metamodelMMstat defines the static structure of a language
including possible types of model elements, their main attributes and relations
with other model elements. An instance of this metamodel is called the static
model (Mstat), e.g. a concrete Petri net structure.

Next, a dynamic metamodel MMdyn uses and extends the static meta-
model MMstat for storing information related to dynamic behaviour (e.g. cur-
rent state, value, configuration) of a structural element. The dynamic model
(Mdyn) is an instance of the MMdyn, e.g. the current marking of a given Petri
net place.

Finally, a trace metamodel (MM trc) is defined for the language to repre-
sent simulation runs of the Mdyn. The MM trc uses the MMdyn for recording
how the dynamic model changed and the MMstat for describing which static
element is concerned. A trace model (M trc) is an instance of the MM trc, e.g.
the sequence of fired transitions of a Petri net. The M trc describes the changes
of Mdyn, therefore it is represented as a change model in terms of [5].

While execution traces are traditionally interpreted as a sequence of ele-
mentary operations, in the current paper, we use hierarchical trace models con-
sisting of micro steps (atomic operations on Mdyn) and macro steps (complex
operations on Mdyn), which is compliant with recent approaches [12] to define
semantics for big-step DMLs like statecharts.
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Fig. 4: Metamodels and instances of a dynamic model

Given the set of micro steps as terminal symbols T , the hierarchy of macro
steps as non-terminal symbolsNT , and a grammarGr implied by the operational
semantics description of the language (see below), a trace model can be formally
interpreted as the abstract syntax tree AST of a well-formed sentence of the
grammar GR.

3.2 Operational semantics and traces for dynamic models

The simulation of a DML is performed in accordance with the operational se-
mantics of the language defined by simulation rules. In our framework we assume
that simulation rules are defined as intra-model transformations illustrated in
Fig. 5 (see also [10,7,21]).

The execution of a rule in the transformationMT sym : (Mstat,Mdyn)∆Mdyn
′

modifies the Mdyn by also taking into account Mstat and results in a new Mdyn
′.

During a simulation run, the changes of the dynamic model are recorded as a
sequence of micro steps as part of the derived trace model M trc. Furthermore,
the hierarchy of macro steps in M trc is in direct correspondence with the trans-
formation rules fired during the simulation run. Therefore, we assume that the
simulation rules MT sym imply a grammar GR, which defines well-formed exe-
cution traces.

The Mdyn is used as an input to create the trace model (M trc) for a spe-
cific simulation run using a trace generating transformation (CDT gen :
CMdyn 7→ M trc) which can be automatically generated from MT sim. The cre-
ated M trc contains the micro steps of the change in a macro step hierarchy.

The M trc can be used to replay the execution of a specific simulation run. The
trace processing transformation (CDT proc : M trc 7→ CMdyn) generates
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Fig. 5: Simulation and trace generating transformation

dynamic model changes that are applied to Mdyn, after which the model state
(Mdyn’) will be the same as after the execution of a simulation rule.

3.3 Forward model transformation with traceability links

We assume the existence of a unidirectional structural model transformation
MT src2trg (see Fig. 6) which generates a static target model M trg

stat from a given
static source model Msrc

stat. This MT is also responsible for deriving the initial
state of M trg

dyn from the initial state of Msrc
dyn.

Fig. 6: Forward model transformation and back-annotation

We also assume that this transformation generates traceability links (TR)
between the source and target models in order to record the structural corre-
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spondence between the model elements. As we only rely upon these traceability
links for back-annotation, any kind of forward model transformation approaches
and tools can be used.

3.4 Back-annotation of dynamic execution traces

In the paper, back-annotation of a target DML to a source DML is defined as a
transformation CDT trg2src which is able to generate the Msrc

trc from an arbitrary
M trg

trc if such source trace exists. The CDT trg2src makes use of the TR to identify
corresponding elements in source and target models.

Given that the traces contain model changes, we propose to define the CDT trg2src

as a change driven model transformation [22].
In many practical cases, no formal operational semantics is available for the

source DML (e.g. in case of UML or BPEL). Or in other terms, their formal
semantics is defined in denotational way by mapping them to a formal target
DML like Petri nets [26,14]. It is worth pointing out that our back-annotation
framework only assumes that

– a target trace M trg
trc is made available by some analysis tool, which is com-

pliant with the formal operational semantics GRtrg of the target (analysis)
DML,

– the macro steps of the source (design) DML can be identified based on an
informal behavioural description.

4 Execution trace models

4.1 Capturing execution traces in dynamic models

Our overall goal is to provide a generic framework for replaying an execution
trace retrieved by a back-end analysis tool within a general modeling framework
(e.g. EMF). The replay mechanism is generic enough to be reusable and easily
adaptable for various dynamic modeling languages. Such an investment would
also significantly reduce the cost of back-annotation for different pairs of source
and target languages.

For that purpose, we first introduce a generic execution trace metamodel,
(Sec. 4.2) which complements dynamic metamodels by providing an abstraction
how a counter example or simulation trace is captured in various analysis tools.
Obviously, this metamodel need to be refined when integrating a specific analysis
tool (like SAL), but generic replaying operations for an execution trace will be
captured already on this abstract level (Sec. 4.3).

Then we define a bidirectional synchronization technique between execution
trace models and dynamic models. In other terms, we demonstrate how a step
in the execution trace model can be replayed by updating the dynamic models
appropriately (Sec. 5). Furthermore, we also describe how an execution trace
model can be automatically derived during a simulation run by observing only
the changes of the underlying dynamic model (Sec. 6).
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4.2 Abstract execution trace metamodel

Essentially, an execution trace model captures the changes between two subse-
quent states of the dynamic model. This way, the execution trace metamodel
(see Fig. 7) complements the existing static and dynamic metamodels as well.

Fig. 7: Execution trace metamodels

Trace is the root element of the execution trace model, which contains the
(top-level) steps of the recorded execution. The last relation specifies the last
step that was executed in the simulation (i.e. the last changes occurred). The
first relation defines the beginning of the trace (wrt. a specific run).

Step is an abstract representation of one or more dynamic model changes
which occur within the same atomic transaction. The sequence of changes hap-
pening after each other define an ordering between the steps represented by the
next relation (where the source step precedes the target in the trace).

As we observed in the traces retrieved by various back-end analysis tools,
steps are frequently organized into a step hierarchy. As a consequence, we also
distinguish between SimpleSteps (i.e. elementary changes in the dynamic model),
CompoundSteps, which themselves contain several lower-level steps (as repre-
sented by substeps aggregation).

Representations for simple steps SimpleSteps record elementary changes
specific to a certain model element in the underlying dynamic model (called the
scope of the step) as retrieved by the model checker or simulator in an execution
trace. However, different back-end tools record such information in different style.
In fact, different bits of information within a trace can be represented differently
even within a single tool.

We found three essentially different ways how transitions of the dynamic
model are persisted in an execution trace in different tools, which we call (1)
snapshot (which store everything for the new state), (2) change (which store the
delta between the old and the new state), and (3) trigger (which saves the event
caused the transition in the dynamic model).
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Snapshot This simple representation is used when every step in the trace stores
all the dynamic information required to describe the new state of the model
element. A single snapshot element therefore records a reference to a dynamic
model element (scope relation) and the value representing its dynamic state
after the step (new value relation). This approach is usually taken in anal-
ysis tools when significant changes are possible in two neighboring states
in the execution trace of the dynamic model (e.g. parallel workflows). It
is easy to implement but results in complex (and verbose) execution trace
representations.

Change This simple step represents only the modification (delta) between two
subsequent states of a dynamic model element. A change element stores
the reference to the model element (scope relation) and both the dynamic
state before the modification (old value relation) and after (new value rela-
tion). Recording the modifications of the dynamic model is effective when
the number of updated dynamic elements in a given step is limited (as it
stores more information for a model element compared to snapshots). For
example transition systems or Petri nets.

Trigger The third step type can be used for event-driven languages (like state-
chart simulators) where the update of the dynamic model is triggered by an
event (e.g. receiving a message). In this case, the step only records the event
itself (event relation) instead of all the effects of triggered by the event. Fur-
thermore, the dynamic model element directly targeted by the event (e.g.
the receiver of the message) is stored (scope relation). This representation is
advantageous when effects of the event can be (forward or backward) simu-
lated knowing the current state of the dynamic model and the trigger itself.
As a result, only this third step type relies upon the existence of dynamic
operational semantics to drive simulation over the dynamic model.

It is worth highlighting that a trace information may contain a combination
of these step representations for the different dynamic elements, which means
that our trace model is highly adaptable.

Navigation Our step representation also respects navigation constraints, i.e.
it is possible to navigate in the trace both forwards and backwards without
having to traverse the whole trace model to find the required modifications of
the dynamic model. Therefore the presented simple steps ensure that only the
current and either the next or previous step is required to navigate in that
direction.

Dynamic model elements The relations existing between the execution trace
metamodel and the dynamic execution model have two kind of targets. Elements
of the dynamic model are one, while values may be either model elements or
attributes (e.g. string, integer, boolean, double, float). In the current paper, we
assume that elements of the static metamodel are left unaltered during the replay
of an execution trace model, e.g. we do not create or delete guarded commands,
for instance.
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4.3 Tool-specific execution trace metamodels

When integrating the trace representation of a specific tool (e.g. SAL in our case),
the abstract execution trace metamodel can be refined and adjusted to needs of
the tool. For this metamodel refinement, we rely upon standard generalization
between classes and relations (as available in MOF or in ontologies).

In case of the SAL language, the top-level simulation steps are the execu-
tion of guarded commands while the modifications are variable assignments.
Furthermore, the dynamic model stores the actual state of transitions as well,
which changes along with the variable state changes. The additionally defined
types are shown on Fig. 7 and detailed in the following. An example for the
instance model can be seen on Fig. 9.

Guarded Command Execution is the elementary simulation step in SAL tran-
sition systems. It is specialized from Compound Step and contains the dynamic
model changes caused by the execution of the command. The substeps aggrega-
tion is also refined as sal change which targets the new change types.

State Variable Change is specialized from Change step and describes the
modification of SAL variable during the execution of the commands variable
assignments. The scope of the change is the variable while the values target
the scalar elements representing the state of the variable before and after the
command execution.

Guarded Command Change is also specialized from the Change step and
represents that the execution of the command may change the state of other
commands as well (enabling or disabling them) and can be used also to store
which command was executed. Note that in the example, selectA and selectB
are different commands with equal effects thus the step has to record which was
executed. The scope of the change is the command and the values are the state
before and after the step.

5 Replaying Execution Traces

Execution trace models record scenarios retrieved by a run of an external simu-
lator or model checker (e.g. SAL) in a form which is independent of the back-end
analysis tool and compatible with an underlying modeling framework.

Now, we show how such execution trace models can be replayed within a
modeling framework. For this purpose, we distinguish between two cases, (1)
when only the dynamic model of the language is available without operational
simulation rules (e.g. Fig. 3), and (2) when operational rules are also available in
addition to the dynamic model itself. In this latter case, simulation rules can be
modified directly. Howver, since the first case handles a more generic situation,
our investigations will be primarily directed that way.

So, in the more general first case, replaying the trace requires the processing
of the subsequent step in the execution trace model, and a direct update of the
underlying dynamic model accordingly. We use model transformations for this
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purpose (Sec. 5.1).Furthermore, we also propose a simple interface providing ba-
sic operations to drive the replay of execution trace models within the modeling
framework (Sec. 5.2).

5.1 Processing execution trace models to update dynamic models

In general, in order to update the underlying dynamic model, the replayer tool
needs to have access to the current state of the dynamic model and the next
step in the execution trace, which captures how the current state needs to be
changed. This is again illustrated using our SAL transition system as an ex-
ample. Fig. 8 demonstrates how the execution trace model (top) is used for
stepping forward (imitating the execution of a guarded command) and modifies
the dynamic model. Note that the illustration is simplified by leaving out most
relations defined in the metamodel between the execution trace model and the
dynamic model. These are similar thread clean to for each substep. Also, the
substeps of selectA executes are hidden for clarity.

Fig. 8: (Forward) Replaying execution traces

First the last processed step in the trace (selectA executes of type Guarded
Command Executes) and the subsequent step (finish executes) are retrieved
along the last and next relations. Then the State Variable Change elements
(thread clean, jobA passive, jobB passive) are processed and the corresponding
variables (thread, jobA and jobB) are updated in the dynamic model. Finally the
Guarded Command Changes (GCC)) are processed and their state modified to
executed using the new value relations. The update of dynamic models can be
automated using transformation rules.
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5.2 Trace manipulation interface

In our prototype implementation, operations of the trace manipulation inter-
face are implemented by transformations over the generic execution model, i.e.
they are highly domain-independent. However, for space considerations, we only
informally describe the main tasks carried out by (1) complex interface oper-
ations for traces, which are assembled from (2) elementary trace manipulation
operations.

Interface for trace manipulation Our initial prototypical implementation1

contains the following three high-level trace manipulation operations, which are
directly available from the graphical user interface to navigate in an execution
trace model, and keep the dynamic model synchronized with the actual position
in the trace.

Step forward This function finds the last step in the trace (either by the last or
first relation) and if there exists a next step in the execution trace then that
step is processed and every modification represented by substeps is carried
out on the dynamic execution model. The last relation is updated to target
the processed step.

Step backward One of the advantages of the execution trace model is the
ability to navigate in either direction along the execution. This function can
be used to revert the modifications of the actual step on the dynamic model.
First the last step is retrieved using the last relation, then the modifications
are processed depending on the step type used. Snapshot steps are reverted
by finding the previous step and updating the dynamic model based on its
substeps. Change substeps can be rolled back by using the old value relation
to set the scope element in its previous state. However, reverting a Trigger
step is not always feasible. Finally, the last relation is set to target the
previous step, if there is one, otherwise the relation is deleted.

Reset This function can be used to roll back the execution to the beginning
of the trace. It can be implemented by (1) collecting the initial values from
static model or (2) storing the initial state in the first step of the trace. In
both cases, the initial state of the dynamic model is resumed and the last
pointer is deleted to signal that the execution is in its initial state.

Skip to end TODO: Maybe, we should also introduce fast forward to the end of
the trace, if this is not too complex

These functions provide the most useful functionality required for a user to
replay and simulate the execution stored in the execution trace model. Further-
more, they also enable automated animation by calling the interface repeatedly
using short time intervals between calls.

1 More information available at http://viatra.inf.mit.bme.hu
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Elementary trace manipulation operations In order to provide these high-
level user interface operations, elementary operations have also been defined to
manipulate and traverse execution trace models. To increase generality, these
operations were defined directly over the generic execution trace metamodel.

– firstStep(): Step Find the first step of the trace to resume simulation.
– lastStep(): Step Find the last step of the trace to resume simulation.
– nextStep(): Step Traverse the trace horizontally to find the next step from

the last position.
– previousStep(): Step Traverse the trace horizontally to find the previous

step from the last position.
– unfoldStep(Step): Step* Traverse the trace vertically to find substeps of

a given step and ensure that every modification is processed.
– getDynamicElement(Step): Element Return the corresponding dynamic

model element for a given simple step.
– executeStep(Step Modify the dynamic execution model using Snapshot

and Change step representation types.

Processing Trigger steps. The processing of a trigger step is carried out dif-
ferently as it only records the event, which triggered the execution of a macro
step (sequence of elementary steps, as in case of statecharts), but not the actual
modifications themselves. For this reason, in this case we assume the existence of
operational semantic rules for processing the events within the modeling frame-
work. As a consequence, a trigger step can be processed by (1) accessing the
event of the trigger step, (2) offering it to the operational semantic rules, when
(3) the update of the dynamic model is carried out by these simulation rules.

5.3 Elaboration on the generic trace handling

Traces persisted with the generic trace metamodel can be replayed without defin-
ing a completely new transformation for every specific language. In this section
we show how the low-level operations and high-level functions of the trace ma-
nipulation interface are implemented in Viatra2.

Horizontal traversing of a trace We define graph patterns for traversing
the trace on a given hierarchy level. Listing 1.1 shows the patterns for finding
the last executed step in the trace (lastStep), the step following a given step
(nextStep ) and the step following the last executed step (nextStep). Note that
the nextStep pattern is used to return the previous step as well by finding a
match for Step with the NextStep known.

pattern lastStep(Step ,Trace) = {
trace(Trace ); step(Step);
trace.last(R,Trace ,Step);

}
pattern nextStep_(Step , NextStep) = {
step(Step); step(NextStep );
step.next(R,Step ,NextStep );
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}
pattern nextStep(NextStep ,Trace) = {
step(NextStep );
find lastStep(LastStep ,Trace);
find nextStep_(LastStep ,NextStep );

}

Listing 1.1: Last and Next step patterns

Vertical traversing of a trace The substeps of a step are retrieved in order
when traversing the trace vertically. Listing 1.2 shows the graph pattern that
searches for substeps in a higher-level Step. When looking for the first substep,
the nextStep pattern is used to ensure that the selected substep has no preceed-
ing step. Otherwise, the same pattern is used to find the next substep.

pattern unfoldStep(Step , LastSubstep , Substep) = {
// first substep
check(LastSubstep == undef );
step(Step); step(Substep );
step.substep(R,Step ,Substep );
neg find nextStep_(BeforeFirst ,Substep );

} or {
// more substeps
step(Step); step(Substep ); step(LastSubStep );
step.substep(R,Step ,Substep );
step.substep(R2,Step ,LastSubstep );
find nextStep_(LastSubstep ,Substep );

}

Listing 1.2: Unfold step pattern

Forward stepping Listing 1.3 shows the generic implementation of the for-
ward stepping function in the Viatra2 transformation language. First, the Step
following the last executed step of the trace is found. Then the last relation is
updated to record that the stepping in the trace. Next the substeps of Step are
retrieved in order and executed.

rule stepForward () =
choose Step with find nextStep(Step) do seq{
call setLastRelation(Step);
iterate choose Substep with

find unfoldStep(Step ,LastSubstep ,Substep) do seq{
call executeStep(Substep );
update LastSubstep = Substep;

}
}

Listing 1.3: Forward stepping

Executing steps The simple step types Snapshot and Change both refer to a
model element and a value corresponding to the element. Listing 1.4 shows the
graph patterns defined for retrieving this information from the persisted Step.
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pattern stepScope(Step , Scope) = {
step(Step);
element(Scope );
step.scope(_,Step ,Scope);

}
pattern stepValue(Step ,Value) = {
change(Step);
value(Value );
step.newValue(_,Step ,Value );

} or {
snapshot(Step);
value(Value );
step.value(_,Step ,Value);

}
pattern elementValueRel(Element ,ValueRel) = {
element(Element );
value(Value );
element.value(ValueRel ,Element ,Value );

}

Listing 1.4: Execute step patterns

When executing a step, the action depends on the type of the Step. Com-
pound steps are unfolded and their substeps are executed in order. Snapshot and
Change steps are executed by first retrieving the scope and value elements from
the Step and the relation between them from the model (VR). Then the target
of the relation is replaced with the Value persisted in the step.

rule executeStep(in Step) = seq{
if(find CompoundStep(Step) seq{
// execute substeps
iterate choose Substep with

find unfoldStep(Step ,LastSubstep ,Substep) do seq{
call executeStep(Step);
update LastSubstep = Substep;

}
} else
if(find Change(Step) || find Snapshot(Step))
// find Scope , Value and relation
choose Scope with find stepScope(Step , Scope) do
choose Value with fing stepValue(Step ,Value) do
choose VR with find elementValueRel(Step ,VR) do
if(find Element(Value))
setRelationTo(VR,Value);

else if(find Trigger(Step))
call DSMTraceProcessor.executeTrigger(Step);

}

Listing 1.5: Execute step rule

Finally, for Trigger steps an external transformation is invoked that imple-
ments the handling of trigger steps for a given DSM. This solution ensures that
the generic transformation can be used for an arbitrary DSM which has it’s
trace persisted in model conforming to the generic trace metamodel, even if it
specialises it for domain-specific Triggers.

6 Creating execution traces during simulation

In order to non-intrusively record the model changes performed by any sim-
ulator, we propose an approach which uses the live transformation support of
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Viatra [20]. Live transformation rules run in the background, and fire whenever
the models are changed (either by a user, the simulator, or by any other means).
Thus, the execution trace can be generated by creating trace model elements cor-
responding to change operations (e.g. create, update, delete) – analogously to
the change history model generation approach elaborated in [22]). These special
transformation rules are independently specified and executed from the simula-
tor, therefore this approach can also be used for custom simulators (e.g. native
Java implementations), as long as they operate on models stored in a modeling
framework.

6.1 Execution trace generation

The execution of a simulator can be divided into three phases, which are repeated
iteratively: (a) evaluation, where the possible actions are calculated, (b) decision
points, where nondeterminism is resolved (e.g. by selecting the action to be
executed), and (c) application, where the model is modified.

In order to create a complete execution trace, the decisions are recorded
in the model at every decision point. However, the decisions in themselves are
only understandable if the semantics of the target model is given. Therefore, the
modifications of the application phase are recorded as substeps of the decisions.
In our example, the decision point can be recognized by the modification of the
state of an enabled guarded command to the executed state.

Creating the step hierarchy. Every decision point in the simulation corre-
sponds to a top-level step in the trace. The bounded parameters can be recorded
either as attributes of the step (by creating relations to the selected model el-
ements), or as substeps of the decision. The top-level step is connected to the
preceding step in the trace and the last relation of the trace is updated to the
new step to record which step is built at the moment. The modifications are
stored as substeps of the decision step.

Trace and runtime model connections. Both the bounded parameters and the
modifications refer to the elements of the dymamic model. This correspondence
is recorded in the trace model, with relations created in the substeps and pointing
at the appropriate elements.

6.2 Trace generation example

We again use the context of the transition system example of Sec. 2.1. The deci-
sion phase in the simulation means that an enabled command has to be selected.
This decision is stored as a step in the trace model using the Guarded Command
Executes element introduced in the SAL-specific trace metamodel. Fig. 9 shows
both the runtime (up) and trace (bottom) models as they change as follow-up
to the execution of the command by the simulator. The illustration is simplified
by leaving out most of the relations between the execution trace model and the
dynamic model. These are similar select executed to for each substep. Also, the
substeps of start executes are hidden for clarity. As the states of dynamic model
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1 @Trigger
2 rule variableStateChange () = {
3 precondition pattern pre(VS ,V) = {
4 VariableState(VS);
5 Variable(Var);
6 VariableState.var(_,VS ,Var);
7 Value(V);
8 VariableState.cur(_,VS ,V);
9 check(V == cur(VS));
10 Trace(T);

11 GCEx(GCE);
12 Trace.last(_,T,GCE);
13 }
14 action {
15 new(VarStCh(VSC));
16 new(GCEx.sal_ch(_,GCE ,VSC);
17 new(VarStCh.var(_,VSC ,Var);
18 new(VarStCh.old(_,VSC ,cur(VS));
19 new(VarStCh.new(_,VSC ,V);
20 update cur(VS) = V;}}

Fig. 9: Execution trace generation

elements are updated, these changes are recorded by event-driven transforma-
tion rules as Guarded Command Change substeps, while variable value changes
are persisted as State Variable Change substeps. Furthermore, the last relation
is updated in the trace.

The bottom part of Fig. 9 shows a sample event-driven transformation rule.
The precondition of the rule describes the expected event (in the form of a
graph pattern), while the action is performed in case of an event (defined as
model manipulations). This rule activates when the Value (line 7) of a Variable
(line 5) changes (line 9). Since the current value of every variable is stored during
the execution (line 20), the value change (line 15) can be recorded as a substep
(VarStCh in line 16) of the last guarded command execution (GCEx in line 11)
in the trace model (line 10).

7 Related Work

While many trace model exists in related work such as [6,29,3,24,2,8]. These
approaches generally define static trace models which record the correspondence
between various model structures. The current paper focuses dynamic (execu-
tion) traces created for sequences of steps.
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Execution traces are used in many cases, for understanding distributed sys-
tems [15], recovering behaviour [13], improving performance [19]. Dynamic traces
were defined for individual languages such as UML sequence diagrams [27], UML
Activity Diagrams [23], Concurrent Object-Oriented Petri Nets [18]. However,
these solutions lack a generic, domain-independent representation for traces.

In [1] metamodels are introduced for execution traces (as a standalone do-
main) to record runtime information of program executions. They propose to
build the metamodel on KDM [17] and identify several trace types on the pro-
gramming language level. Unfortunately, the metamodel and the supporting
techniques are wrok in progress.

The objective of [23] is to define a Tool-Independent Performance Model for
mapping design and architectural models to performance models (used for ana-
lyzing system performance design-time). The introduced workbench is designed
to include simulation and analysis capabilities and derive execution sequences
(scenarios) from UML activity diagrams for driving the simulation.

M3Actions [25] is a framework to develop execution semantics for MOF meta-
models. It consists of a graphical editor for defining the structure and behaviour
of models, a generic interpreter and debugger for executing them and a trace
recorder for storing execution runs. The framework focuses on support for mod-
eling operational semantics and the recorded traces are low-level.

The main contribution of our approach wrt. related work is that the pro-
posed execution trace metamodel and bidirectional synchronization technique
are independent from the underlying simulation tool. Furthermore, persisted ex-
ecution traces can be replayed in a modeling environment without the further
use of (external) simulators and model checkers.

8 Conclusion

In the paper, we investigated how execution traces retrieved by model checker or
simulation tools can be integrated and replayed in modeling frameworks. We pro-
posed a generic execution trace metamodel, which complements traditional static
and dynamic metamodels. Furthermore, we also discussed automated means to
(1) produce execution trace models by processing changes of the dynamic model,
and (2) replay traces by updating the underlying dynamic model. As a result
traces can be navigated without the use of external analysis tools.

Our generic execution trace model was derived after investigating the traces
retrieved by various formal analysis tools (using different modeling formalisms
such as Petri nets, transition systems or process algebras). Currently, as an ongo-
ing work, we are investigating how such execution trace models back-annotated
to high-level modeling languages such as statecharts or BPEL.

Acknowledgements. This work has been partially supported by the European
projects SENSORIA (IST-2005-016004) and SecureChange (ICT-FET-231101).
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