Static Type Checking
of Model Transformation Programs

Zoltan Ujhelyi

Budapest University of Technology and Economics,
Department of Measurement and Information Systems,
1117 Budapest, Magyar tudoésok krt. 2
ujhelyiz@mit.bme.hu

1 Introduction

Model transformations, utilized for various tasks, such as formal model analysis or
code generation are key elements of model-driven development processes. As the
complexity of developed model transformations grows, ensuring the correctness
of transformation programs becomes increasingly difficult. Nonetheless, error
detection is critical as errors can propagate into the target application.

Various analysis methods are being researched for the validation of model
transformations. Theorem proving based approaches, such as [5] show the possi-
bility to prove statement validity over graph-based models. For the verification of
dynamic properties model checking seems promising, but abstractions are needed
to overcome the challenge of infinite state spaces [6].

In addition to model checking, static analysis techniques have been used in the
verification of static properties. They provide efficiently calculable approximations
of error-free behaviour, such as unfolding graph transformation systems into Petri
nets [I], or using a two-layered abstract interpretation introduced in [2].

The current paper presents a static analysis approach for early detection of
typing errors in partially typed model transformation programs. Transformation
languages, such as the one of VIATRA2 [9], are often partially typed, e.g. it is
common to use statically typed (checked at compile time) graph transformation
rules with a dynamically typed (checked during execution) control structure.

The lack of static type enforcements in dynamically typed parts makes typing
errors common and hard to trace, on the other hand the static parts allow
efficient type inference. Our type checker approach uses constraint satisfaction
problems (CSP) to propagate information between the different parts of the
transformation program. Error messages are generated by a dedicated back-
annotation method from the constraint domain.

2 Overview of the Approach

2.1 Type Safety as Constraint Satisfaction Problems

To evaluate type safety of transformation programs as CSPs, we create a CSP
variable for each potential use of every transformation program variable with

the domain of the elements of the type system. The constraints are created from
the statements of the transformation program, expressing the type information
inferrable from the language specification (e.g. conditions have a boolean type).
For details about the constraint generation process see [§].

After the CSPs are evaluated, we check for two kinds of errors: (1) typing errors
appear as CSP wviolations, (2) while variable type changes can be identified by
comparing the different CSP variable representations of transformation program
variables, looking for inconsistencies (although this may be valid, it is often
erroneous, thus a warning is issued).

2.2 The Analysis Process

Our constraint-based type checking process is depicted in The input of
the static analysis is the transformation program and the metamodel(s) used by
the program, while its output is a list of found errors. It is important to note
that the instance models (that form the input of the transformation program)
are not used at all in the static analysis process.

At first, we collect every possible type
used in the transformation program (Type
System Identification). The type system con-
sists of the metamodel elements and built-in
types (e.g. string, integer). To reduce the
S) size of the type system, we prune the meta-
model to provide a superset of the types used
in the transformation program as described
| csp I [] in [7]. The type system contains all elements

solving referenced directly from the transformation

program, all their parents, and in case of
Fig. 1. Overview of the Approach relations their endpoints and inverses.
To prepare the type system for the CSP
based analysis, a unique integer set is as-
signed to each element of the type system as proposed in the algorithm in [3] to
allow efficient calculation of subtype relationships.

Then in the Analysis step we traverse the transformation program, building
and evaluating constraint satisfaction problems. Multiple traversal iterations are
used to cover the different execution paths of the transformation problem.

For performance considerations a modular traversal is used: graph transforma-
tion rules and graph patterns are traversed separately. The partial analysis results
of the rules (or patterns) are described and stored as pre- and postconditions
based on the “design by contract” [4] methodology. After a contract is created
for every reference to its corresponding rule (or pattern) the contract is used to
generate the relevant constraints instead of re-traversing the referenced rule.

This modular approach is also used for the traversal of the control structure: it
is similarly divided into smaller parts that are traversed and contracted separately.

The created CSPs can be solved using arbitrary finite domain CSP solver
tools. The results are both used to build type contracts and to provide error

Transform.
Program

Traversal Handling

feedback. The type contract of a rule (or pattern) holds the calculated types of
the parameters at the beginning and the end of the method (the difference in
the pre- and postcondition implies a type change in the parameter variable).

Finally, we look for typing errors and type changes to back-annotate them to
the transformation program (Error Feedback). CSPs are evaluated together with
the traversal to make context information also available to associate related code
segment(s) to the found errors.

3 Implementation and Future Work

We have presented a static type checker approach for model transformation
programs. It was implemented for the VIATRA2 transformation framework, and
evaluated using transformation programs of various size.

In our inital evaluation the type checker seems useful for early error identifi-
cation as it identified errors related to swapped variables or pattern calls.

As for the future, we plan to evaluate the possible usage of static program
slicing methods for model transformation programs. This would allow to generate
meaningful traces for reaching possibly erroneous parts of the transformation
programs, thus helping more precise error identification. The generated slices are
also usable to extend the system with additional validation options such as dead
code analysis to detect unreachable code segments or use-definition analysis to
detect the use of uninitialized or deleted variables.

References

1. Baldan, P., Corradini, A., Heindel, T., Konig, B., Sobociiski, P.: Unfolding Grammars
in Adhesive Categories. In: Proc. of CALCO ’09 (Algebra and Coalgebra in Computer
Science). p. 350-366. Springer (2009), LNCS 5728

2. Bauer, J., Wilhelm, R.: Static Analysis of Dynamic Communication Systems by
Partner Abstraction. In: Static Analysis, pp. 249-264. Springer Berlin / Heidelberg
(2007)

3. Caseau, Y.: Efficient handling of multiple inheritance hierarchies. In: OOPSLA
’93: Proceedings of the eighth annual conference on Object-oriented programming
systems, languages, and applications. pp. 271-287. ACM, New York, NY, USA (1993)

4. Meyer, B.: Applying ‘design by contract’. Computer 25(10), 40-51 (1992)

5. Pennemann, K.: Resolution-Like theorem proving for High-Level conditions. In:
Graph Transformations, pp. 289-304. Springer Berlin / Heidelberg (2008)

6. Rensink, A., Distefano, D.: Abstract Graph Transformation. Electronic Notes in
Theoretical Computer Science 157(1), 39-59 (May 2006)

7. Sen, S., Moha, N., Baudry, B., Jézéquel, J.: Meta-model Pruning. In: Model Driven
Engineering Languages and Systems, pp. 32-46. Springer Berlin / Heidelberg (2009)

8. Ujhelyi, Z., Horvath, A., Varr6, D.: Static Type Checking of Model Transforma-
tions by Constraint Satisfaction Programming. Technical Report TUB-TR-09-EE20,
Budapest University of Technology and Economics (Jun 2009)

9. Varro, D., Balogh, A.: The model transformation language of the VIATRA2 frame-
work. Sci. Comput. Program. 68(3), 214-234 (2007)

	Static Type Checking of Model Transformation Programs
	Zoltán Ujhelyi
	Introduction
	Overview of the Approach
	Type Safety as Constraint Satisfaction Problems
	The Analysis Process

	Implementation and Future Work

