
VIATRA Solver: A Framework for the Automated
Generation of Consistent Domain-Specific Models

Oszkár Semeráth1,2, Aren A. Babikian3, Sebastian Pilarski3, and Dániel Varró1,2,3
1MTA-BME Lendület Cyber-Physical Systems Research Group, Budapest, Hungary

2Budapest University of Technolgy and Economics, Dept. of Measurement and Information Systems, Budapest, Hungary
3McGill University, Dept. of Electrical and Computer Engineering, Montréal, QC, Canada

Email: {semerath,varro}@mit.bme.hu, {aren.babikian,sebastian.pilarski}@mail.mcgill.ca

Abstract—VIATRA Solver [1] is a novel open source software
tool to automatically synthesize consistent and diverse domain-
specific graph models to be used as a test suite for the systematic
testing of CPS modelling tools. Taking a metamodel, and a set
of well-formedness constraints of a domain as input, the solver
derives a diverse set of consistent graph models where each graph
is compliant with the metamodel, satisfies consistency constraints,
and structurally different from each other. The tool is integrated
into the Eclipse IDE or it is executable from the command line.

Video demonstration: https://youtu.be/fUopeDFIUKA

I. INTRODUCTION

a) Motivation and Challenge: Model-based systems en-
gineering (MBSE) is widely used in the design of complex
cyber-physical systems (CPS) [2] by using various modeling
tools. MBSE tools help catch design flaws early, thus saving
significant costs. Moreover, they also enable the automated
synthesis and consistent co-evolution of different design arti-
facts, making the development process more productive.

As any piece of software, modeling tools are not free from
defects, and defects of a tool may propagate into the system it
is used for designing. Thus safety standards of critical CPSs
(like DO-178C in avionics) prescribe that only the output of a
qualified tool can be trusted. Unfortunately, software tool qual-
ification is extremely costly due to the lack of well-founded
and scalable cross-domain systematic testing techniques for
modeling tools. The reason for this is that, unlike in case of
testing imperative or object-oriented programs, test cases of
CPS modeling tools are highly data-driven. They take the form
of complex graph models that need to satisfy various structural
constraints (e.g. over 500 constraints in case of modeling
tools compliant with the AUTOSAR automotive standard).
Test models constructed manually by engineers are ineffective
in finding bugs in those tools.

Thus, the systematic automated testing of modeling tools
necessitates use of graph model generators to produce well-
formed (or intentionally malformed) models as test inputs. A
consistent (or well-formed) model is compliant with the meta-
model of the domain or the modeling language, connected,
and it also satisfies the extra well-formedness constraints.
Automated generation of consistent models is a challenging
task, which necessitates the use of complex logic solvers,
graph algorithms, and tight tool integration with the underlying
modeling environment. Finally, such auto-generated graphs

can be beneficial for database testing, system-level assurance
for autonomous CPS or in various benchmarking scenarios.

b) Objectives and Scope: VIATRA Solver [1] is a novel
open source software framework to automatically synthesize
consistent and diverse models to be used as a test suite for the
systematic testing of modeling tools. As input (see Figure 1), it
takes the specification of the target tool given in the form of (1)
a metamodel using the popular Eclipse Modeling Framework
(EMF), (2) a set of consistency constraints captured by graph
queries using the industrial VIATRA framework [3], and op-
tionally, (3) an initial model fragment. As output, it generates
a diverse set of consistent graph models.

Each output graph is compliant with the metamodel, satisfies
all consistency constraints, connected, contains the initial
model fragment. The output graphs are structurally different
from each other to ensure the diversity of the test suite.
Moreover, the solver is complete in the sense that it can
enumerate all structurally different graphs over a selected
equivalence relation.

Language Specification

Output of Model Generation: Instance Models

10

Metamodel

Entry State

«abstract»

VertexTransition
src [1..1]

trg [1..1]

Well-formedness constraints
WF1: TrgToEntry WF2: NoSrcFromEntry WF3: MultipleSrc

e: Entry

t:Transition

trg

e: Entry

t:Transition

src

NEG

e: Entry

t1 t2

src src

t1 ≠ t2

Instance Models

𝑴𝟏

s1:
State

e1:
Entry

t1:
Transition

t2:
Transition

src

trg

src trg

Model
Generator

𝑴𝒏+𝟏

𝑴𝟐

s2:
State

s1:
State

t2:
Transition

t3:
Transition

src

trg

src

trg

𝑴𝟑

s2:
State

s1:
State

t1:
Transition

t2:
Transition

src

trg

src trg

SAT

UNSAT

Fig. 1: Conceptual overview of the approach

c) Envisioned Users: Our model generator framework
offers benefits to the developers of industrial MBSE tools like
Capella, Yakindu, Artop, or Papyrus (and many closed source
software products), as it produces systematically assembled
test suite used as part of development or regression testing.
Moreover, researchers can also use the tool for testing code
generators or model transformation tools. In fact, the VIATRA
Solver has already been used in several research projects at
McGill University and at Budapest University Technology and
Economics, and it receives regular feedback from software
engineers at IncQuery Labs Ltd.

https://youtu.be/fUopeDFIUKA

Fig. 2: A screenshot of the VIATRA Solver used for Yakindu Statecharts

II. FRAMEWORK USAGE

The VIATRA Solver [1] is available as a plugin integrated
into the Eclipse IDE or as a standalone command line tool. In
both cases, the input and output specifications are identical.

a) Domain specification: The core features of the frame-
work are illustrated in the context of Yakindu Statecharts [4]
which is an industrial DSL tool (by Itemis AG) for developing
reactive, event-driven systems with support for validation and
code generation. An extract of the EMF metamodel of Yakindu
Statecharts is illustrated in Figure 2 (top left) which defines
that statecharts consist of state vertices which are either regular
states or entry states. These state vertices can be connected by
(outgoing and incoming) transitions.

Consistency constraints are captured as graph patterns us-
ing the existing query language and editor of the industrial
VIATRA framework [3]. Three constraints are illustrated in
Figure 2 (top right): (1) an entry state is disallowed to have an
incoming transition; (2+3) an entry state is required to have
exactly one outgoing transition. Graph patterns capture the
erroneous case, thus a match of a graph pattern in an instance
model reports a constraint violation.

Furthermore, an EMF instance model can also be created
using an existing model editor (e.g. Yakindu) which can
serve as a seed model fragment for the solver that has to
be included in any auto-generated graph model. The domain
specification taken by the VIATRA Solver intentionally reuses
(and seamlessly integrates with) existing Eclipse-based tools
and technologies which are widely used in various (CPS)
modeling tools to increase the chance of industrial adoption.

b) Solver configuration: The configuration of the solver
can be a complex task as several parameters originating from
different (off-the-shelf) tools are required to be set correctly.
Therefore, our tool provides a lightweight configuration lan-
guage and textual editor (see Figure 2; bottom right and its
grammar in Figure 3) to support the consistent editing of

configurations and eliminate syntactic configuration errors.
The textual editor developed using Xtext supports rich editor
functionality such as syntax highlighting, cross referencing
(e.g. to navigate to metamodel or query specifications) and
content assist (e.g. to select the target metamodel, constraint
specification or underlying solver). The development of this
configuration DSL was a major software engineering challenge
due to various integration challenges in Eclipse projects.

(import epackage 〈path〉 | import viatra 〈path〉)∗
(generate {
metamodel = 〈selected packages and classes〉,
partial-model = 〈path to a model to be extended〉,
constraints = 〈selected model queries〉,
scope = { (#〈type〉 = (〈int〉 | 〈int〉 .. 〈int〉))∗ },
number = 〈int〉 , runs = 〈int〉,
solver = (SMT | Alloy | Viatra),
config = { (〈key〉=〈value〉)∗ },
log=〈path〉,stats=〈path〉,output=〈path〉
})∗

Fig. 3: Simplified grammar for configuration language

The configuration file imports the metamodel and the query
specifications and then it allows to prune them prior to model
generation. For example, one can restrict model generation to
a fragment of the metamodel by importing only certain pack-
ages or excluding certain classes and references (metamodel
block). Similarly, consistency constraints can be included or
excluded separately (constraint block).

The configuration file also needs to contain parameters for
the solver itself. The most important parameters include (1)
the scope of the search (i.e. how many nodes are allowed
and of which type), (2) the number of models to be derived
consecutively, and (3) the number of independent runs of the
solver. While the VIATRA Solver implements a novel scalable
graph solver technique [5] as the core model generation
approach, it can also generate models use existing logic solvers

(e.g. Alloy or Z3) by exploiting mappings defined in [6]. The
designated solver can be selected using content assist.

Finally, the configuration file may also contain an output
folder and a CSV file for storing various statistics (stats) of
the model generation process (see next section).

c) Overview of the model generation approach: As a
key innovation reported in [5], our approach operates natively
over graph models by innovatively combining the concepts of
partial models [7], neighborhood shapes [8], incremental graph
pattern matching [9] with standard SAT-solving procedures.

Model generation starts from an abstract partial model or
a seed model fragment specified by the user. Partial models
are grown by decision and unit propagation rules adapted
from core SAT-solving techniques. Each step during model
generation refines and extends a previous partial model while
continuously ensuring that consistency constraints are not
surely violated. These checks necessitate 3-valued graph pat-
tern matching over partial models (i.e. to detect if a pattern
may, must or cannot match on an refinement), which is
approximated by rewriting constraints into regular 2-valued
incremental constraint checks supported by VIATRA [9], [3].

Model generation is carried out as a design space explo-
ration process where (the hash code of) each candidate partial
model is stored. Moreover, neighborhood shapes and predicate
abstractions help enforce the synthesis of structurally diverse
models. If a constraint violation is no longer repairable, or a
partial model is already visited before, the model generation
process backtracks. For debugging purposes, the states of the
model generation process can also be visualized as a graph.

d) Outputs: Model generation can be initiated from an
Eclipse menu or from the command line. Our framework
provides various types of output as result:

Fig. 4: Sample visualized output

• EMF instance models: First, EMF-compliant instance
models are derived, which are then serialized in a stan-
dard XMI format. These models can be loaded with
off-the-shelf modeling environments, automatically pro-
cessed by the underlying tooling, or used as test inputs.

• Graph visualizations: For manual inspection, a graph
visualization of the derived models is available in two
formats: as a PNG file as well as in a standard GML

formal, which is widely accepted by popular and pow-
erful graph drawing (and layouting) tools to improve its
readability. A sample visualisation illustrated in Figure 4.

• Statistics: The solver can record various statistics about
the model generation process, most importantly, the
execution times for a campaign. This feature is very
useful when using our solver as part of an experimental
evaluation for scientific papers - already used by the
authors themselves when preparing [10], [11], [5].

III. RESULTS OF VALIDATION STUDIES

The VIATRA Solver have been successfully applied in
multiple research projects with industrial collaborators.

• In the Trans-IMA project [12], the VIATRA Solver helped
carry out a wide range of validation tasks on an avionic
modeling environment by automated theorem proving
(with Z3 as a back-end SMT solver, and proving that there
is no counterexample for expected language properties).
We showed consistency, unambiguity and completeness
of the fragment of the DSL [6] by detecting design flaws
in the specification.

• In the R3-COP ARTEMIS project1, the VIATRA Solver
supported the testing of autonomous and cooperative
robot systems with iterative test context generation.

• The VIATRA Solver was used as background solver for
backward change propagation technique in the toolchain
of a remote health care case study in the Concerto
project2, which developed an environment for pulse and
blood pressure measurement controlled by a smart phone.

In [5] we evaluated the scalability of our approach in the
context of 6 test sets of four different domains with 5 minute
timeout. (1) A small File System (FS) example was taken
from the Alloy documentation. Ecore, the meta-metamodeling
language of EMF, has been used as a case study by different
approaches [13], [14], [15] using Alloy as a background
solver for model generation purposes. Our measurements also
covered two DSLs that were developed in industrial projects,
namely, (3) Yakindu [4] and (4) Functional Architecture Model
(FAM) developed for avionics [12]. In addition to their direct
practical relevance, these DSLs have already been used in
the context of model generation in numerous papers [16],
[6], [11] in the past. According to our scalability experiments
(illustrated in Table I), the graph solver of the VIATRA Solver
(GS) is capable of generating consistent graph models of 1-2
orders of magnitude larger (with 1000-6000 nodes) compared
to models derived by Alloy (regardless of the underlying
background solver Sat4J or MiniSat).

Furthermore, we proposed distance and diversity metrics in
[11] to characterize models sequences generated by graph gen-
erators. We executed diversity measurements in the Yakindu
statechart domain (see a brief extract in Figure 5). According
to these diversity metrics, models generated by our solver

1R3-COP (Resilient Reasoning Robotic Co-operative Systems). ARTEMIS
project n 100233, www.r3-cop.eu/

2CONCERTO ARTEMIS project. www.concerto-project.org/

www.r3-cop.eu/
www.concerto-project.org/

Problem size Largest model (#Objects)
#Class #Ref #WF. GS Sat4J MiniSat

FS 4 4 7 4750 87 89
Ecore 19 33 24 2000 38 41
FAM 9 15 23 6250 58 61
Yakindu 10 6 25 1000 – –

TABLE I: Maximal model size comparison

(GS) produced more diverse models than Alloy (A) compared
with multiple configuration affecting diversity (s=0..20). In
this measurement, we also included 1250 manually created
statechart models (Human), which performed between (GS)
and (A). As a summary, our model generation technique
significantly outperformed Alloy and manually created models
with respect to diversity.

Fig. 5: Internal diversity [11] of Graph Solver and Alloy

IV. RELATED WORK

Existing generators of consistent models (such as
EMFtoCSP [16], USE [14] or Formula [17], Clafer [18])
usually take the high-level specification of the modeling lan-
guage and translate it to a logic representation and then derive
consistent (graph-)models using back-end logic solvers (like
KodKod [19], Korat [20] or the Z3 SMT-solver [21]). Unfor-
tunately, despite their conceptual elegance, existing techniques
only scale for tree-like models [22] but they do not scale
for complex graph structures. Random model generators (like
RandomEMF) scale much better, but they cannot provide any
guarantees for consistent models. Only very recent research
results such as [23], [5] attempted to generate consistent
models natively, i.e. without mapping them into backend
solvers. A detailed comparison of model generator approaches
and expected graph properties is provided in [10] that covers
graph generators developed in other disciplines (like graph
databases or network science).

While all these tools are able to generate consistent models,
favorable scalability was only reported in [23], [5] to syn-
thesize graph models with at least 1,000 nodes. Thanks to
the innovative foundational techniques and algorithms reported
in [5], [10], [11], the VIATRA Solver provides unique incre-
mentality, completeness and diversity guarantees: (1) it can
enumerate all different models with respect to a customizable
equivalence class (based on neighborhood shapes), and (2) if
no models are derived up to a certain size, then search can
continue from these partial solutions. Finally, (3) the derived
set of models can be more diverse than other approaches
using logic solvers in the backend, thus our solver is more
appropriate to be used e.g. for mutation testing scenarios.

REFERENCES

[1] Viatra Solver Project, http://github.com/viatra/VIATRA-Generator.
[2] J. Whittle, J. Hutchinson, and M. Rouncefield, “The state of practice in

model-driven engineering,” IEEE Software, vol. 31, no. 3, pp. 79–95,
2014.

[3] D. Varró, G. Bergmann, Á. Hegedüs, Á. Horváth, I. Ráth, and Z. Ujhelyi,
“Road to a reactive and incremental model transformation platform:
three generations of the VIATRA framework,” Software and Systems
Modeling, vol. 15, no. 3, pp. 609–629, 2016.

[4] Yakindu Statechart Tools, Yakindu, 2017, http://statecharts.org/.
[5] O. Semeráth, A. S. Nagy, and D. Varró, “A graph solver for the

automated generation of consistent domain-specific models,” in 40th Int.
Conf. on Software Engineering. Gothenburg, Sweden: ACM, 2018.

[6] O. Semeráth, A. Barta, A. Horváth, Z. Szatmári, and D. Varró, “Formal
validation of domain-specific languages with derived features and well-
formedness constraints,” Software and Systems Modeling, vol. 16, no. 2,
pp. 357–392, 2017.

[7] M. Famelis, R. Salay, and M. Chechik, “Partial models: Towards
modeling and reasoning with uncertainty,” in 34th Int. Conf. on Software
Engineering. Piscataway, NJ, USA: IEEE Press, 2012, pp. 573–583.

[8] A. Rensink and D. Distefano, “Abstract graph transformation,” ENTCS,
vol. 157, no. 1, pp. 39–59, 2006.

[9] Z. Ujhelyi, G. Bergmann, Á. Hegedüs, Á. Horváth, B. Izsó, I. Ráth,
Z. Szatmári, and D. Varró, “EMF-IncQuery: An integrated development
environment for live model queries,” Sci. Comput. Program., vol. 98,
pp. 80–99, 2015.

[10] D. Varró, O. Semeráth, G. Szárnyas, and Á. Horváth, “Towards the
automated generation of consistent, diverse, scalable and realistic graph
models,” in Graph Transformation, Specifications, and Nets. Springer,
2018, vol. 10800 LNCS, pp. 285–312.

[11] O. Semeráth and D. Varró, “Iterative generation of diverse models
for testing specifications of dsl tools,” in Fundamental Approaches to
Software Engineering. Springer, 2018, pp. 227–245.

[12] Á. Horváth, Á. Hegedüs, M. Búr, D. Varró, R. R. Starr, and S. Mirachi,
“Hardware-software allocation specification of IMA systems for early
simulation,” in 2014 IEEE/AIAA 33rd Digital Avionics Systems Confer-
ence (DASC), Oct 2014, pp. 4D3–1–4D3–15.

[13] F. Büttner, M. Egea, J. Cabot, and M. Gogolla, “Verification of ATL
transformations using transformation models and model finders,” in 14th
International Conf. on Formal Engineering Methods,ICFEM’12. LNCS
7635, Springer, 2012, pp. 198–213.

[14] M. Kuhlmann, L. Hamann, and M. Gogolla, “Extensive validation of
OCL models by integrating SAT solving into use,” in TOOLS’11 -
Objects, Models, Components and Patterns, ser. LNCS, vol. 6705, 2011,
pp. 290–306.

[15] M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, and R. Drechsler,
“Verifying UML/OCL models using boolean satisfiability,” in Design,
Automation and Test in Europe. IEEE, 2010, pp. 1341–1344.

[16] C. A. González, F. Büttner, R. Clarisó, and J. Cabot, “EMFtoCSP: a tool
for the lightweight verification of EMF models,” in Formal Methods in
Software Engineering Rigorous and Agile Approaches, 2012, pp. 44–50.

[17] E. K. Jackson, T. Levendovszky, and D. Balasubramanian, “Automat-
ically reasoning about metamodeling,” Software & System Modeling,
vol. 14, pp. 271–285, 2015.

[18] K. Bak, Z. Diskin, M. Antkiewicz, K. Czarnecki, and A. Wasowski,
“Clafer: unifying class and feature modeling,” Software & Systems
Modeling, vol. 15, pp. 811–845, 2016.

[19] E. Torlak and D. Jackson, “Kodkod: A relational model finder,” in Tools
and Algorithms for the Construction and Analysis of Systems. Springer,
2007, pp. 632–647.

[20] H. Zhong, L. Zhang, and S. Khurshid, “Combinatorial generation of
structurally complex test inputs for commercial software applications,”
in 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE). ACM Press, 2016, pp. 981–986.

[21] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools and
Algorithms for the Construction and Analysis of Systems, 14th Int. Conf.
(TACAS 2008), ser. LNCS, vol. 4963. Springer, 2008, pp. 337–340.

[22] B. Elkarablieh, Y. Zayour, and S. Khurshid, “Efficiently generating
structurally complex inputs with thousands of objects,” in ECOOP 2007
Object-Oriented Programming. Springer, 2007, pp. 248–272.

[23] G. Soltana, M. Sabetzadeh, and L. C. Briand, “Synthetic data generation
for statistical testing,” in 32nd IEEE/ACM Int. Conf. on Automated
Software Engineering (ASE). IEEE, oct 2017, pp. 872–882.

http://github.com/viatra/VIATRA-Generator
http://statecharts.org/

	Introduction
	Framework Usage
	Results of Validation Studies
	Related Work
	References

