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ABSTRACT

Automatically synthesizing consistent models is a key prerequisite

for many testing scenarios in autonomous driving or software tool

validation where model-based systems engineering techniques are

frequently used to ensure a designated coverage of critical cor-

nercases. From a practical perspective, an inconsistent model is

irrelevant as a test case (e.g. false positive), thus each synthetic

model needs to simultaneously satisfy various structural and at-

tribute well-formedness constraints. While different logic solvers

or dedicated graph solvers have recently been developed, they fail

to handle either structural or attribute constraints in a scalable way.

In the current paper, we combine a structural graph solver that

uses partial models with an SMT-solver to automatically derivemod-

els which simultaneously fulfill structural and attribute constraints

while key theoretical properties of model generation like complete-

ness or diversity are still ensured. This necessitates a sophisticated

bidirectional interaction between different solvers which carry out

consistency checks, decision, unit propagation, concretization steps.

We evaluate the scalability and diversity of our approach in the

context of three complex case studies.
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• Software and its engineering→Domain specific languages;

• Mathematics of computing→ Solvers.
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1 INTRODUCTION

The automated generation of test data is a core challenge for the

effective testing of many software engineering applications. For

many system-level testing scenarios e.g. for autonomous driving

[32] or for taxation systems [64], such test data takes the form of

a (typed and attributed) graph model. Moreover, when complex

design or simulation tools are used in model-based systems engi-

neering of safety-critical cyber-physical systems, those software

tools themselves need to be tested with the same level of scrutiny

as the underlying critical system itself (as part of software tool

qualification [46]), otherwise the output of those tools cannot be

trusted without further tests. Since such design and simulation tools

frequently represent the underlying models internally as graphs,

the quality assurance of tools also highly depends on the automated

synthesis of consistent graph models as test data.

However, the automated synthesis of such consistent graph-

based models that satisfy (or deliberately violate) a set of well-

formedness constraints is a very challenging task. While various

underlying logic solvers like SAT, SMT (Satisfiability Modulo Theo-

ries) or CSP (Constraint Satisfaction Problem) solvers have been

repeatedly used for such purposes in tools, like in USE [16, 17],

UML2CSP [11], Formula [28], various theorem provers [4], or Alloy

[25] thanks to many favorable theoretical properties (e.g. soundness

or completeness) such solvers primarily excel in detecting inconsis-

tencies and not in deriving models used as test cases. As such, the

use of logic solver based model generators is frequently hindered

in practical testing scenarios by the lack of scalability [56, 64] (i.e.

models with limited size can be generated) and diversity [27, 55]

(i.e. models with identical structures are derived).

https://doi.org/10.1145/3365438.3410962
https://doi.org/10.1145/3365438.3410962
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FamilyTree Member

age : EInt 

[0..*] members
[0..2] parents

Figure 1: Metamodel of a Family Tree domain

Recent model generators [56, 63, 64] have successfully improved

on scalability by lifting the model synthesis problem on the level

of graph models by using meta-heuristic search [63] possibly com-

bined with an SMT-solver [64]. Alternatively, partial model refine-

ment [56] can be used as search strategy while efficient query/con-

straint evaluation engines [66, 68] validate the constraints during

state space exploration. However, there are also important restric-

tions imposed by these tools such as lack of completeness [63, 64]

or lack of attribute handling [56] in constraints.

In this paper, we propose a model generation technique which

can automatically derive consistent graph models that satisfy both

structural and attribute constraints. For that purpose, the struc-

tural constraints are satisfied along partial model refinement (like

[56]) while attribute constraints are satisfied by repeatedly call-

ing the Z3 SMT-solver [12] (like [64]). However, as a concep-

tual extension to preceding work, we define refinement units

(in analogy with an abstract DPLL procedure modulo theories

(Davis–Putnam–Logemann–Loveland) [39] or SMT-solvers [38])

with consistency checking, decision, unit propagation and con-

cretization steps to enable a bidirectional interaction between a

graph solver and an SMT-solver where a decision in one solver can

be propagated to the other solver and vice versa. In particular,

• We define 3-valued logic semantics for evaluating structural

and attribute constraints over partial models.

• We propose qualitative abstractions to uniformly represent

attribute constraints as (structural) relations in a model.

• We define a mapping from attribute constraints to an SMT-

problem interpreted by an SMT-solver.

• We propose a generic model generation process with bidirec-

tional interaction between structural and attribute solvers.

We present the detailed description of an attribute solver for

numeric (e.g. int or double) constraints.
• We evaluate a prototype implementation of the approach on

three case studies to assess scalability and diversity proper-

ties of model generation.

As a main added value with respect to existing results, our ap-

proach provides good scalability for automatically generating con-

sistent models with structural and attribute constraints while still

providing completeness and diversity.

2 PRELIMINARIES

2.1 Running example

We illustrate the challenges of handling both structural and attribute

constraints in model generation for a simple domain of family

trees with a metamodel shown in Figure 1 and well-formedness

(WF) constraints defined by graph patterns (in the VQL language

[67, 68]) listed in Figure 2. This domain is intentionally chosen to

contain only few domain concepts, while it can demonstrate all key

technical challenges of constraint evaluation.

private pattern memberHasParent(m: Member) { Member.parents(m, _); }
@Constraint pattern twoMembersHaveNoParent(m1: Member, m2: Member) {

FamilyTree.members(f, m1); FamilyTree.members(f, m2); m1 != m2;
neg find memberHasParent(m1); neg find memberHasParent(m2);

}
@Constraint pattern negativeAge(m: Member) {

Member.age(m,mAge); check(mAge<0);
}
@Constraint pattern parentTooYoung(child: Member, parent: Member) {

Member.parents(child, parent);
Member.age(child, c); Member.age(parent, p); check(p <= (c + 12));

}

Figure 2: Structural & numerical constraints in Family Tree

A FamilyTree contains Members with an integer age attribute.
Members are related to each other by parents relations. The vio-
lating cases of the three WF constraints are defined by VQL graph

patterns that all consistent family tree models need to respect:

• twoMembersHaveNoParent: There is at most one member in

a family tree without a parent;

• negativeAge: All age attributes of family members are non-

negative numbers;

• parentTooYoung: There must be more than 12 years of dif-

ference between the age attribute of a parent and a child.

In this paper, we use color coding to separate logic and numeric

reasoning. The first constraint is a structural constraint (i.e. only

navigation along object references) while the second constraint is

a numerical constraint which accesses the age attribute (mAge) of a
family member m and checks if the value of age is negative. The third
constraint contains both structural and numerical clauses which

mutually depend on each other. (1) If a new parents reference is
created between two family members then a new numerical con-

straint needs to be enforced between the respective age attributes

(logic→numeric dependency). (2) If the age attribute of two family

members is already determined then a new parents reference may

(or must not) be added between them (numeric→logic dependency).

Our paper investigates how to generate consistent models in

the presence of such mutual dependencies between structural and

attribute constraints. The bidirectional interaction is exemplified in

the paper for numerical attributes, but the conceptual framework

is applicable to attributes of other domains (e.g. strings, bitvectors)

assuming the existence of an underlying solver (e.g. SMT-solver)

for the background theory of the respective attribute. Our model

generation framework semantically relies on model refinement

carried out by 3-valued constraint evaluation over partial models.

2.2 Domain-specific partial models

Domain specification. We formalize the concepts in a target

domain ⟨Σ, 𝛼⟩ using an algebraic representation with a signa-

ture Σ and an arity function 𝛼 : Σ → N. Such a signature

Σ = {T1, . . . , T𝑛, R𝑡 , . . . , R𝑟 , P1, . . . , P𝑝 , A1, . . . , A𝑎, 𝜀,∼} can be easily

derived from metamodeling formalisms like EMF [65].

• Unary predicate symbols {T1, . . . , T𝑡 } (with 𝛼 (T𝑖 ) = 1) are

defined for each EClass and EEnum in the domain (e.g.

FamilyTree), Bool denotes the EBoolean type, Int denotes

integer numbers types like EInt or EShort, etc.
• Binary predicate symbols {R1, . . . , R𝑟 } (with 𝛼 (R𝑖 ) = 2) are

defined for each EReference and EAttribute in the metamodel.
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For example, parents represent the parent reference be-

tween two Members, and age represents the age attribute
relation between a Member and an EInt.

• Structural predicate symbols {P1, . . . , P𝑝 } are 𝑛-ary predi-

cates derived from graph queries (with 𝛼 (P𝑖 ) = 𝑛 equal

to the number of formal parameters of a graph query); e.g.

parentTooYoung becomes a binary predicate symbol.

• Attribute predicate symbols {A1, . . . , A𝑎} represent 𝑛-ary

predicates derived from attribute (check) expressions of

queries (with 𝛼 (A𝑖 ) = 𝑛); e.g. check𝑝≤𝑐+12 (𝑐, 𝑝) is a binary
attribute predicate with parameters 𝑐 and 𝑝 .

• A special unary symbol 𝜀 denotes the existence of objects.
• A special binary symbol ∼ denotes the equivalence relation
between two objects, which can be represented explicitly.

Partial models. Partial models are frequently used to explicitly

represent uncertainty in models [13, 50], which is particularly rele-

vant for intermediate steps of a model generation process. We use

3-valued partial models where the traditional truth values true (1)
and false (0) are extended with a third truth value 1/2 to denote

unknown structural parts of the model [19, 47, 57]. Similarly, we

extend the domain of traditional numeric values (e.g. 1 or 2.1) with
? to denote an unknown numeric value.

Definition 2.1. Given a signature ⟨Σ, 𝛼⟩, a numerical partial model
is a logic structure 𝑃 = ⟨O𝑃 ,I𝑃 ,V𝑃 ⟩ where:

• O𝑃 is the finite set of objects in the model,

• I𝑃 gives a 3-valued logic interpretation for each symbol

s ∈ Σ as I𝑃 (s) : (O𝑃 )𝛼 (s) → {0, 1, 1/2},
• V𝑃 gives a numeric value interpretation for each object in

the model:V𝑃 : O𝑃 → R ∪ {?}.

Note that this definition uniformly handles domain objects (e.g.

Member) and data objects (e.g. Int), which is frequently the case

in object-oriented languages. Next, we capture some regularity

restrictions to exclude irrelevant (irregular) partial models:

Definition 2.2. A partial model 𝑃 = ⟨O𝑃 ,I𝑃 ,V𝑃 ⟩ is regular, if it
satisfies the following conditions:

R1 ∀𝑜 ∈ O𝑃 : I𝑃 (𝜀) (𝑜) > 0 (non-existing objects are omitted)

R2 ∀𝑜 ∈ O𝑃 : I𝑃 (∼)(𝑜, 𝑜) > 0 (∼ is reflexive)

R3 ∀𝑜1, 𝑜2 ∈ O𝑃 : I𝑃 (∼)(𝑜1, 𝑜2) = I𝑃 (∼)(𝑜2, 𝑜1) (∼ is symmet-

ric)

R4 ∀𝑜1, 𝑜2 ∈ O𝑃 : (𝑜1 . 𝑜2) ⇒ I𝑃 (∼)(𝑜1, 𝑜2) < 1 (if two

objects are different, then they cannot be equivalent)

R5 ∀𝑜 ∈ O𝑃 : [(I𝑃 (Int) (𝑜) = 0) ∨ (I𝑃 (Real) (𝑜) = 0)] ⇒
[V𝑃 (𝑜) = ?] (domain objects do not have a value)

R6 ∀𝑜 ∈ O𝑃 : [V𝑃 (𝑜) ≠ ?] ⇒ [(I𝑃 (Int) (𝑜) = 1) ∨
(I𝑃 (Real) (𝑜) = 1)] (objects with values are numbers)

R7 ∀𝑜 ∈ O𝑃 : [I𝑃 (Int) (𝑜) = 1)] ⇒ [(V𝑃 (𝑜) = ?) ∨ (V𝑃 (𝑜) ∈
N)] (only natural numbers are bound to Int objects)

Example 2.3. Figure 6 illustrates partial models. In State 1, we

have three concrete objects (where 𝜀 and ∼ are 1): FamilyTree 𝑓 1

and a Member𝑚1, and an unbound Int data object 𝑎1 (with ? value).
The partial model also contains an abstract "new objects" node that
represents multiple potential new nodes (using 1/2 values for 𝜀

and for ∼, denoted by dashed border), and a "new integers" node
representing the potential new integers. In Figure 6, predicates with

value 1 are denoted by solid lines (as for the member edge between

𝑓 1 and𝑚1 in State 1) and predicates with value 1/2 are denoted by

dashed lines (like the potential parents edge in State 1).

2.3 Refinement and concretization

During model generation, the level of uncertainty in partial models

will be gradually reduced by refinements. In a refinement step,

uncertain 1/2 values can be refined to either 1 or 0, or unbound
values ? are refined to concrete numerical values. This is captured

by an information ordering relation𝑋 ⊑𝐿 𝑌 := (𝑋 = 1/2) ∨ (𝑋 = 𝑌 )
where an 𝑋 = 1/2 is either refined to another value 𝑌 , or 𝑋 = 𝑌

remains equal. An information ordering can be defined between

numerical values 𝑥 and 𝑦 similarly 𝑥 ⊑𝑁 𝑦 := (𝑥 = ?) ∨ (𝑥 = 𝑦).
A refinement from partial model 𝑃 to partial models 𝑄 is a map-

ping that respects both information ordering relations (⊑𝐿 /⊑𝑁 ).

Definition 2.4. A refinement from regular partial model 𝑃 to reg-

ular partial model 𝑄 (denoted as 𝑃 ⊑ 𝑄) is defined by a refinement

function between the objects of the partial model ref : O𝑃 → 2
O𝑄

which respect the information ordering:

• For each 𝑛-ary symbol 𝑠 ∈ Σ, each object 𝑝1, . . . , 𝑝𝑛 ∈ O𝑃 ,

and for each refinement 𝑞1 ∈ ref (𝑝1), . . . , 𝑞𝑛 ∈ ref (𝑝𝑛):

I𝑃 (𝑠) (𝑝1, . . . , 𝑝𝑛) ⊑𝐿 I𝑄 (𝑠) (𝑞1, . . . , 𝑞𝑛).

• For each object 𝑝 ∈ O𝑃 and its refinement 𝑞 ∈ ref (𝑝):

V𝑃 (𝑝) ⊑𝑁 V𝑄 (𝑞).

• All objects in 𝑄 are refined from an object in 𝑃 , and existing

objects 𝑝 ∈ O𝑃 must have a non-empty refinement.

Model generation is carried out along refinements by eventually

resolving all uncertainties to obtain a concrete model.

Definition 2.5. A regular (see Definition 2.2) partial model 𝑃 is

concrete, if (a) I𝑃 does not contain 1/2 values, and (b)V𝑃 does not

contain ? values for integer and real data objects (for object 𝑜 where
I𝑃 (Int) (𝑜) = 1 or I𝑃 (Real) (𝑜) = 1).

Example 2.6. Figure 6 illustrates several refinement steps. Be-

tween State 0 and State 1, new object is split into two objects by

refining ∼ to 0 between new object and𝑚1, creating a single con-

crete object 𝑚1 by refining ∼ on 𝑚1 to 1. Simultaneously, type

Member is refined to 1, FamilyTree refined to 0, and reference pred-
icate members from 𝑓 1 to𝑚1 is refined to 1. Eventually, the value
of data object 𝑎1 is refined from ? to 2 in State 4.2.

2.4 Constraints over partial models

Syntax. Both structural (logical) and numerical constraints can

be evaluated on partial models. For each graph pattern we derive a

logic predicate (LP) defined as P(𝑣1, . . . , 𝑣𝑛) ⇔ 𝜑 , where 𝜑 is a logic
expression (LE) constructed inductively from the pattern body as

follows (assuming the standard precedence for operators).

• if 𝑠 ∈ Σ is an n-ary predicate symbol (i.e. T, R, P, A, 𝜀 or ∼)
then 𝑠 (𝑣1, . . . , 𝑣𝑛) is a logic expression;

• if 𝜑1 and 𝜑2 are logic expressions, then 𝜑1 ∨𝜑2, 𝜑1 ∧𝜑2, and

¬𝜑1 are logic expressions;

• if 𝜑 is a logic expression, and 𝑣 is a variable, then ∃𝑣 : 𝜑 and

∀𝑣 : 𝜑 are logic expressions.
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For each attribute constraint, we derive attribute predicates (as
helpers) by reification to enable seamless interaction between struc-

tural and attribute solvers along a compatibility (if and only if) oper-

ator⇔ (see Figure 3). In case of numbers, such an attribute predicate

is tied to a numerical predicate defined as A(𝑣1, . . . , 𝑣𝑛) ⇔ 𝜓 where

𝜓 is constructed from numeric expressions. The expressiveness of
those expressions are limited by the background theories of the

underlying backend SMT solver. Here we define a core language of

basic arithmetical expressions, which is supported by a wide range

of numerical solvers:

• each variable 𝑣 , constant symbol and literal (concrete num-

ber) 𝑐 is a numerical expression,

• if𝜓1 and𝜓2 are numerical expressions, then𝜓1 +𝜓2,𝜓1 −𝜓2,

𝜓1 ×𝜓2 and𝜓1 ÷𝜓2 are numerical expressions.

• if𝜓1 and𝜓2 are numerical expressions then𝜓1 < 𝜓2,𝜓1 > 𝜓2,

𝜓1 ≥ 𝜓2,𝜓1 ≤ 𝜓2,𝜓1 = 𝜓2,𝜓1 ≠ 𝜓2 are numerical predicates.

Example 2.7. Graph pattern parentTooYoung(child, parent)
from Figure 2 is formalized as the following logic predicate:

parentTooYoung(child, parent) ⇔ parents (child, parent)∧
age (child, 𝑐) ∧ age (parent, 𝑝) ∧ check𝑝≤𝑐+12 (𝑐, 𝑝)

where check𝑝≤𝑐+12 (𝑐, 𝑝) ⇔ 𝑝 ≤ 𝑐 + 12 is a numerical predicate.

Later such predicates will help communicate between different

solvers, e.g. if check𝑝≤𝑐+12 (𝑐1, 𝑝1) is found to be 1 by the graph

solver for some members 𝑐1 and 𝑝1 then the numerical predicate

𝑝1 ≤ 𝑐1 + 12 needs to be enforced by a numerical solver for the

respective data objects and vice versa.

Semantics. A logic predicate P(𝑣1, ..., 𝑣𝑛) ⇔ 𝜑 can be evaluated

on a partial model 𝑃 along a variable binding𝑍 : {𝑣1, . . . , 𝑣𝑛} → O𝑃

(denoted as J𝜑K𝑃𝑍 ), which can result in three truth values: 1, 0 or 1/2.
The inductive rules of evaluating the semantics of a logic expression

is illustrated in Figure 3. Note that𝑚𝑖𝑛 and𝑚𝑎𝑥 takes the numerical

minimum and maximum values of 0, 1/2 and 1.
A numerical predicate A(𝑣1, . . . , 𝑣𝑛) ⇔ 𝜓 can also be evaluated

on a partial model 𝑃 along variable binding 𝑍 : {𝑣1, . . . , 𝑣𝑛} → O𝑃

(denoted as L𝜑M𝑃𝑍 ) with a result of 1, 0 or 1/2. The inductive rules cap-
turing the semantics of logic expressions are illustrated in Figure 3.

Note that 𝑥 ⟨cmp⟩ 𝑦 means the truth value of numerical compar-

ison ⟨cmp⟩ (e.g. 3 < 5 is 1), while 𝑥 ⟨op⟩ 𝑦 means the numerical

value of the result of an operation ⟨op⟩ (e.g. 3 + 5 is 8).

Constraint approximation. When a predicate is evaluated on

a partial model, then the 3-valued semantics of constraint eval-

uation guarantees that certain (over- and under-approximation)

properties hold for all potential refinements or concretizations of

the partial model. For all logic and numeric predicates 𝜑 and 𝜓 ,

if 𝑃 ⊑ 𝑄 then J𝜑K𝑃 ⊑𝐿 J𝜑K𝑄 and L𝜓M𝑃 ⊑𝐿 L𝜓M𝑄 , consequently:

• Logic under-approximation: If J𝜑K𝑃 = 1 in a partial

model 𝑃 then J𝜑K𝑄 = 1 in any partial model𝑄 where 𝑃 ⊑ 𝑄 .

• Numeric under-approximation: If L𝜓M𝑃 = 1 in a partial

model 𝑃 then L𝜓M𝑄 = 1 in any partial model𝑄 where 𝑃 ⊑ 𝑄 .

• Logic over-approximation: If J𝜑K𝑄 = 0 in a partial model

𝑄 then J𝜑K𝑃 ≤ 1/2 in a partial model 𝑃 where 𝑃 ⊑ 𝑄 .

• Numeric under-approximation: If L𝜓M𝑄 = 0 in a partial

model 𝑄 then L𝜓M𝑃 ≤ 1/2 in a partial model 𝑃 where 𝑃 ⊑ 𝑄 .

Semantics of Logic Predicates

JP(𝑣1, . . . , 𝑣𝑛) ⇔ 𝜑K𝑃𝑍 := I𝑃 (P) (𝑍 (𝑣1), . . . , 𝑍 (𝑣𝑛)) ⇔ J𝜑K𝑃𝑍
LA(𝑣1, . . . , 𝑣𝑛) ⇔ 𝜓M𝑃𝑍 := I𝑃 (A) (𝑍 (𝑣1), . . . , 𝑍 (𝑣𝑛)) ⇔ L𝜓M𝑃𝑍

where 𝑋 ⇔ 𝑌 :=


0 if (𝑥 = 1, 𝑦 = 0) or (𝑥 = 0, 𝑦 = 1)
1 if (𝑥 = 1, 𝑦 = 1) or (𝑥 = 0, 𝑦 = 0)
1/2 otherwise

Semantics of Logic Expressions (𝜑)

JT(𝑣)K𝑃𝑍 := I𝑃 (T) (𝑍 (𝑣))
JR(𝑣1, 𝑣2)K𝑃𝑍 := I𝑃 (R) (𝑍 (𝑣1), 𝑍 (𝑣2))

JP(𝑣1, . . . , 𝑣𝑛)K𝑃𝑍 := I𝑃 (P) (𝑍 (𝑣1), . . . , 𝑍 (𝑣𝑛))
JA(𝑣1, . . . , 𝑣𝑛)K𝑃𝑍 := I𝑃 (A) (𝑍 (𝑣1), . . . , 𝑍 (𝑣𝑛))

J𝑣1 ∼ 𝑣2K𝑃𝑍 := I𝑃 (∼)(𝑍 (𝑣1), 𝑍 (𝑣2))
J𝜀 (𝑣)K𝑃𝑍 := I𝑃 (𝜀) (𝑍 (𝑣))
J¬𝜑K𝑃𝑍 := 1 − J𝜑K𝑃𝑍

J𝜑1 ∧ 𝜑2K𝑃𝑍 :=𝑚𝑖𝑛(J𝜑1K𝑃𝑍 , J𝜑2K𝑃𝑍 )
J𝜑1 ∨ 𝜑2K𝑃𝑍 :=𝑚𝑎𝑥 (J𝜑1K𝑃𝑍 , J𝜑2K𝑃𝑍 )
J∃𝑣 : 𝜑K𝑃𝑍 :=𝑚𝑎𝑥{J𝜀 (𝑣) ∧ 𝜑K𝑃𝑍,𝑣 ↦→𝑜 : 𝑜 ∈ O𝑃 }
J∀𝑣 : 𝜑K𝑃𝑍 :=𝑚𝑖𝑛{J¬𝜀 (𝑣) ∨ 𝜑K𝑃𝑍,𝑣 ↦→𝑜 : 𝑜 ∈ O𝑃 }
Semantics of Numerical Expressions (𝜓 )

L𝜓1 ⟨cmp⟩ 𝜓2M𝑃𝑍 :=

{
1/2, if L𝜓1M𝑃𝑍 or L𝜓2M𝑃𝑍 is ?

L𝜓1M𝑃𝑍 ⟨cmp⟩ L𝜓2M𝑃𝑍 , otherwise

L𝜓1 ⟨op⟩ 𝜓2M𝑃𝑍 :=

{
?, if L𝜓1M𝑃𝑍 or L𝜓2M𝑃𝑍 is ?

L𝜓1M𝑃𝑍 ⟨op⟩ L𝜓2M𝑃𝑍 , otherwise

L𝑣M𝑃𝑍 := V𝑃 (𝑍 (𝑣))
L literal M𝑃𝑍 := literal (e.g. concrete numbers)

Figure 3: Inductive semantics of graph predicates

Using these properties, model generation becomes amonotonous

derivation sequence of partial models which starts from themost ab-

stract partial model where all predicate constraints are evaluated to

1/2. The partial model is gradually refined, thus more andmore pred-

icate values are evaluated to either 1 or 0. The under-approximation

lemmas ensure that when an error predicate is evaluated to 1 it will
remain 1, thus exploration branch can be terminated without loss

of completeness [69]. The over-approximation lemmas assure that

if a partial model can be refined to a concrete model where error

predicate is 0, then it will not be dropped.

3 MODEL GENERATIONWITH REFINEMENT

3.1 Functional overview

Our model generation approach takes the following inputs:

(1) the signature of a domain ⟨Σ, 𝛼⟩ with structural logic sym-

bols P1, . . . , P𝑝 and numerical attribute symbols A1, . . . , A𝑎 ,
(2) a logic theory consisting of the negation of the error pred-

icates and the compatibility of the predicate symbols with

their definition (i.e. the axioms): T = {¬E1, . . . ,¬E𝑒 ,
(P1 ⇔ 𝜑P1 ), . . . , (P𝑝 ⇔ 𝜑P𝑝 ), (A1 ⇔ 𝜓A1 ), . . . , (A𝑎 ⇔
𝜓A𝑎 )}

(3) some search parameters (e.g., the required size, or the re-

quired number of models).
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Figure 4: Schematic overview of a refinement unit

The output of the generator is a sequence of models 𝑀1, . . . , 𝑀𝑚 ,

where each𝑀𝑖 is (1) a regular concrete model of ⟨Σ, 𝛼⟩, which is (2)

consistent withT , i.e. no error predicates have amatch J¬E𝑗 K𝑀𝑖 = 1
(for any 𝑖, 𝑗 ), and all predicates P𝑗 and A𝑗 are compatible their

definition JP𝑗 ⇔ 𝜓P𝑗 K𝑀𝑖
= 1 and LA𝑗 ⇔ 𝜓A𝑗 M𝑀𝑖

= 1 (for any 𝑖, 𝑗 ),

and it (3) adheres to search parameters (e.g., |O𝑀𝑖
| = size).

The model generator framework combines individual refinement
units to solve structural and numerical problems. Each refinement

unit analyzes a partial model (which is an intermediate state of the

model generation), and it collaborates with other units by refining

it. This is in conceptual analogy with the interaction of background

theories in SMT-solvers [38, 39]. A refinement unit provides four

main functionalities, as illustrated in Figure 4:

• Consistency check: The refinement unit evaluates whether

a partial model may satisfy the target theory (thus it can

be potentially completed to a consistent model), or it surely

violates it (thus no refinement is ever consistent).

• Decision: The unit makes an atomic decision by a single re-

finement in the partial model (e.g. adding an edge by setting

a 1/2 value to 1) which is consistent with the target theory.

This new information makes the model more concrete, thus

reducing the number of potential solutions.

• Unit propagation: After a decision, the unit executes fur-

ther refinements necessitated by the consequences of previ-

ous refinements wrt. the target theory without introducing

new information or excluding potential solutions. This step

automatically does necessary refinements on the partial par-

tial model without making any decisions.

• Concretization: Finally, the unit attempts to complete the

partial model in a single refinement step by setting all un-

certain 1/2 edges to 0, and checks if the concrete model is

consistent with the target theory or not.

In this paper, we combine two of such refinements units: we

reuse a graph solver [56] as structural refinement unit to efficiently

generate the structural part of models (i.e. to reason about J𝜑K𝑃𝑍 ),
and we propose a novel numerical refinement unit that uses effi-

cient SMT-solvers in the background to solve the numerical part of

models to reason about L𝜓M𝑃𝑍 . The refinement units interact with

each other bidirectionally via the refinement of partial models: the

structural refinement unit refine truth values on attribute predicates

(based on the structural part of the error predicates), which need to

be respected by the numerical refinement unit. Symmetrically, the

numerical refinement unit can refine attribute predicates (based

on the numerical part of the error predicates), which need to be

respected by the structural refinement unit in turn.

3.2 State space exploration by refinements

Our model generation framework derives models by exploring the

search space of partial models along refinements carried out by

refinement units. As such, the size of the partial models is continu-

ously growing up to a designated size, while the exploration process

tries to intelligently minimize the search space. The detailed steps

of this exploration process are illustrated in Figure 5.

0. Initialization: First, we initialize our search space with an

initial partial model. This is derived either from an existing initial

model provided by an engineer (thus each solution will contain this

seedmodel as a submodel), or it can be themost general partial model
𝑃0 = ⟨O𝑃0

,I𝑃0
,V𝑃0

⟩ where O𝑃0
= {new} has a single element,V𝑃0

is 1/2 for every symbol, andV𝑃0
(new) = ?.

1. Decision: Next, we select an unexplored decision candidate

proposed by a refinement unit, and execute it to refine the par-

tial model by adding new nodes and edges, or by populating a

data object with a concrete value. In our setup, this decision step

is executed mainly by the structural refinement unit which has

more impact on model generation. If no decision candidates are left

unexplored, the search concludes with an UNSAT result.

2. Unit propagation: After a decision, the framework executes

unit propagation in all refinement units until a fixpoint is reached

in order to propagate all consequences of the decision.

3. State coding: The search can reach isomorphic partial models

along multiple trajectories. To prevent the repeated exploration of

the same state, a state code is calculated and stored for a new partial

model by using shape-based graph isomorphism checking [42, 43].

If exploration detects that a partial model has already been explored,

it drops the partial model and continues search from another state.

Otherwise the framework calculates the state code of the newly

explored partial model and continues with its evaluation.

4. Consistency check: Next, each refinement unit checks

whether the partial model contains any inconsistencies that cannot

be repaired. Structural refinement unit evaluates the (logic) under-

approximation of the error predicates (see Section 2.4), which can

detect irreparable structural errors. The numerical refinement unit

carries out a satisfiability check of the numerical constraint deter-

mined by a call to the numerical solver.

5. Concretization: Then the framework tries to concretize the

partial model to a fully-defined solution candidate by resolving

all uncertainties, and checks its compliance with the target theory

and model size. If no violations are found and the model is of

given size, then the instance model is stored as a solution. Note

that this directly ensures the correctness of all solutions. If this

concretization fails, it indicates that something is missing from the

model, so the refinement process continues.

6. Approximate distance & Add to state space: When a par-

tial model is refined, our framework estimates its distance from

a solution [33]. This heuristic is based on the number of missing

objects and the number of violations in its concretization. Then,

the new partial model is added to the search space of unexplored

decisions where the exploration continues at 1. Decision.
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Figure 5: Overview of exploration strategy for model generation

Further heuristics: For selecting the next unexplored decision

to refine, we use a combined exploration strategy with best-first

search heuristic, backtracking, backjumping and random restarts

with an advanced design space exploration framework [21, 56].

Example 3.1. Figure 6 illustrates a model generation run to derive

a family tree. Search is initialized with a FamilyTree f1 as root and
two (abstract) objects to represent new objects and new integers.

State 1 highlights the execution of a decision refinement that

splits the new object and the new integer, creating a new Member
𝑚1 with its undefined age attribute.

In State 2.1, a loop parent edge is added as a decision. When

investigating error predicate parentTooYoung(child, parent), the
search reveals that all conditions of the error predicate are surely

satisfied on objects 𝑚1 and 𝑎1 except for attribute predicate

check𝑝≤𝑐+12. Therefore, the structural refinement unit can re-

fine the partial model by setting I𝑆2.1 (check𝑝≤𝑐+12) (𝑎1, 𝑎1) to

0 without excluding any valid refinements, which implies that

L𝑝 ≤ 𝑐 + 12M𝑆2.1
𝑝 ↦→𝑎1,𝑐 ↦→𝑎1

= 0. The numerical refinement unit (with

the help of an underlying SMT solver) can detect that no value

V𝑆2.1 (𝑎1) can be bound to object 𝑎1 such that V𝑆2.1 (𝑎1) ≤
V𝑆2.1 (𝑎1) + 12 is false, therefore the model cannot be finished

to a consistent model thus it can be safely dropped.

In State 2.2, a new Member𝑚2 is added to the FamilyTree, the
framework attempts to concretize the model by resolving all un-

certainty in State 3.1. First, the structural refinement unit con-

cretizes in the structural part of the model, all 1/2 values are set
to 0 (e.g. all the potential parent edges disappear). Then, sample

valid values are generated for the attributes by the numerical re-

finement unit. When the concretization is checked, error pattern

twoMembersHaveNoParent(𝑚1,𝑚2) indicates that there are some

missing parent edges, so the framework drops the concretization

but continues to explore State 2.2.

Eventually, after adding a parent edge in State 3.2, the frame-

work is able to concretize a model in State 4.2 that satisfies the

target theory, thus concluding the search with a consistent model.

3.3 Structural refinements by a graph solver

Our structural refinement unit uses a graph solver [56].

The structural consistency of a partial model can be verified by

checking the compatibility of all predicates P as JP ⇔ 𝜑PK𝑃𝑍 . If a
predicate is incompatible with its definition, or an error predicate

is satisfied, the partial model is inconsistent (see Section 2.4).

Our framework operates on a graph representation of partial

models (without a mapping to a logic solver), thus structural predi-

cates are evaluated directly on this graph representation. The query

rewriting technique [57] enables to efficiently evaluate the 3-valued

semantics of logic predicates J𝜑K𝑃𝑍 by a high-performance incre-

mental model query engine [67, 68], which caches and maintains

the truth values of logic predicates during exploration.

Structural refinements are implemented by graph transforma-

tions [56, 69]. Decisions are simple transformation rules that rewrite

a single 1/2 value to a 1 in the partial model, or an equivalence pred-

icate ∼ to 0 to split an object to two (like m1 is separated from new
object in State 1). On the other hand, concretization rewrites all 1/2
values to 0, and self-equivalences to 1.

The compatibility of predicate symbols is checked by structural

unit propagation rules, which are derived from error predicates to

refine a partial model when needed to avoid a match of an error

predicate. We rely on two kinds of unit propagation rules:

• We derive unit propagation rules from the structural con-

straints imposed by the metamodel to enforce type hierarchy,

multiplicities, inverse references, and containment hierarchy

[56]. For example, when a new Member is created, a new Int
is also created with an age predicate between them.

• From each error predicate E(𝑣1, . . . , 𝑣𝑛), unit propagation
rules are derived to check when a 1 (or 0) value would satisfy

the error predicate JE(𝑣1, . . . , 𝑣𝑛)K𝑃 = 1. In such cases, the

value is refined to the opposite 0 (or 1). Such unit propagation
rules may add numerical implications of error predicates.

3.4 Numerical refinements by SMT-solvers

The numerical refinement unit is responsible for maintaining the

compatibility of numerical constraints and attribute predicates,

checking consistency of numerical constraints, and deriving con-

crete numeric values in the model.

Numerical refinement is based on a purely numerical problem

created from a partial model. Let 𝑃 be a partial model with attribute

predicates A1, . . . , A𝑎 defined by𝜓A1 , . . . ,𝜓A𝑎
. Let ONum

𝑃
denote the

set of data objects where JInt(𝑣) ∨ Real(𝑣)K𝑃𝑣 ↦→𝑜 ≥ 1/2. For each

data object 𝑜 ∈ ONum
𝑃

, we create a numeric variable V(𝑜) denoting
its potential value. If JInt(𝑣)K𝑃𝑣 ↦→𝑜 ≥ 1/2, then the type of this

variable is integer, while if JReal(𝑣)K𝑃𝑣 ↦→𝑜 ≥ 1/2 then it is real.

The numerical problem derived from the partial model is defined

over those variables. First, if the value of a data object 𝑜 ∈ ONum
𝑃

is

already known in the partial model (i.e.V𝑃 (𝑜) ≠ ?), then we assert

its value as a numerical equation: V𝑃 (𝑜) = V(𝑜). Next, for each
attribute A𝑖 , we assert its definition𝜓

A𝑖
for all data objects:

• If LA𝑖 (𝑣1, . . ., 𝑣𝑛)M𝑃𝑣 ↦→𝑜 = 1, we assert𝜓A𝑖 (V(𝑜1), . . .,V(𝑜𝑛))
• If LA𝑖 (𝑣1, . . ., 𝑣𝑛)M𝑃𝑣 ↦→𝑜 = 0, we assert ¬𝜓A𝑖 (V(𝑜1), . . .,V(𝑜𝑛))
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Figure 6: Sample exploration process example

• If LA𝑖 (𝑣1, . . ., 𝑣𝑛)M𝑃𝑣 ↦→𝑜 = 1/2, then nothing is asserted.

The entire numerical problem Ψ𝑃 is constructed as the conjunction

of the respective numerical clauses, which can be solved by an

SMT-solver like Z3 [12]. The SMT-solver calculates the satisfiability

of the numerical problem as a consistency check for partial models.

An unsatisfiable numerical problem Ψ𝑃 would imply that the partial

partial 𝑃 model cannot be completed with consistent numerical

values, thus it can be dropped.

If the problem is satisfiable, then each variable can be bound

to a concrete number (value), and the value assigned to V(𝑜) is
recorded in the partial model asV𝑃 (𝑜). This step is used to complete

partial models by bounding all unbounded data objects during

concretization.
Additionally, fixing a potential value for a single data object

can be used as a decision. However, in a typical model generation

setting, the number of potential values that can be assigned to an

object is huge, thus this step proved to be impractical.

The numerical consequences of the constructed Ψ𝑃 can be used

to refine a partial model during unit propagation. In our framework,

three kinds of unit propagation operations are supported:

• When the values of objects 𝑜1, ..., 𝑜𝑛 are all known in a partial

model, then the truth value of L𝜓A𝑖 (𝑣1, ..., 𝑣𝑛)M
𝑃
𝑣 ↦→𝑜 can be

calculated in the model without calling an SMT solver.

• If an attribute predicate A𝑖 has an unknown value

LA𝑖 (𝑣1, . . ., 𝑣𝑛)M𝑃𝑣 ↦→𝑜 = 1/2, and Ψ𝑃 ∧𝜓A𝑖 (𝑜1, ..., 𝑜𝑛) is proved
to be inconsistent by the SMT-solver, thenI𝑄 (A𝑖 ) (𝑜1, . . . , 𝑜𝑛)
must be set to 0 in the refined partial model 𝑄 . Similarly,

if Ψ𝑃 ∧ ¬𝜓A𝑖 (𝑜1, ..., 𝑜𝑛) is inconsistent, the attribute can be

refined to 1. In our case studies, this step was impractical

thus this feature was not used.

• An unique solution for V(𝑜) can be used to setV𝑃 (𝑜).

Example 3.2. We form a numerical problem based on the

partial model of State 4.1 in Figure 6. Since check𝑝≤𝑐+12 is

a condition in the error pattern parentTooYoung(child, parent),
I𝑆2.1 (check𝑝≤𝑐+12) (𝑎1, 𝑎1) must be set to 0 in the model and the

logical operator of check𝑝≤𝑐+12 should be negated. Since Member
𝑚1 is a parent of Member𝑚2, we have that 𝑝 ↦→ 𝑎1 and 𝑐 ↦→ 𝑎2 . It

follows that 𝑎1 ≰ 𝑎2 + 12. Similarly, since Member𝑚2 is a parent

of Member𝑚1, we have that 𝑎2 ≰ 𝑎1 + 12. The numerical problem

to solve here is (𝑎1 ≰ 𝑎2 + 12) ∧ (𝑎2 ≰ 𝑎1 + 12). Feeding it into an

SMT-solver, we will be informed that this problem is unsatisfiable.

3.5 Soundness and Completeness

With the combination of the structural and numerical refinement

units, our proposed approach generates models with numerical

attributes using partial model refinement. Our approach is sound: it
generates consistent solutions only. This is guaranteed by the direct

evaluation of the error predicates and compatibility predicates on

the final stage of model refinement. Our approach is structurally
complete: for a given scope (size), it is able to generate all models

with different graph structures, which is ensured by the approxima-

tion lemmas in Section 2.4 and in [56, 69]. We intentionally avoid

fulfilling numerical completeness, since even simple models could

have potentially infinite number of attribute bindings.

4 EVALUATION

We conducted various measurements to address the following re-

search questions:

RQ1: What are the costs and benefits of calling a SMT-solver con-

tinuously during exploration or calling it as postprocessing?

RQ2: How do the different exploration steps contribute to the exe-

cution time for generating the first model and incrementally

generating subsequent models?
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RQ3: What is the scalability of model generation when deriving

large models with structural and attribute constraints?

RQ4: How structurally diverse are the synthesized models com-

pared to model generation without attribute constraints?

4.1 Target Domains

We perform model generation campaigns in three complex case

studies. The target domain artifacts as well as output models and

measurement results are available on GitHub (https://github.com/

viatra/VIATRA-Generator) and as a virtual machine (https://doi.

org/10.5281/zenodo.3950552).

Fam: The FamilyTree domain is presented in Section 2 as our

running example. We use the metamodel shown in Figure 1 which

captures parenthood relations and the age of family tree members

(with 2 classes, 3 references and 1 numeric attribute). Furthermore,

3 constraints are defined as graph predicates that place structural

and numerical restrictions on family tree members. The initial

model used for model generation contains a single FamilyTree
node. While this domain looks simple, there is a subtle mutual

dependency between structural and attribute constraints, which

provides extra challenges for the interaction of different solvers.

Sat: The Satellite domain (introduced in [22]) represents inter-
ferometry mission architectures used for space mission planning at

NASA. Such an architecture consists of collaborating satellites and

radio communication between them, which are captured by a meta-

model with 15 classes, 5 references and 2 numerical attributes. Ad-

ditionally, 18 constraints are defined as graph predicates to capture

restrictions on collaborating satellites. The initial model contains a

single root node as the starting point for model generation.

Tax: The Taxation domain (used in [63, 64]) represents the per-

sonal income tax management application used by the Government

of Luxembourg. We reused the original metamodel which con-

tains 54 classes (including 15 Enum classes), 52 relations and 92

attributes, 44 of which are numerical. Additionally, we replicated

the OCL constraints used in [64] as graph predicates.

In order to independently replicate the case study of [64] in a

pure EMF context with strict containment hierarchy (instead of

UML), we include a Resource class in the metamodel that contains

instances of the Household class, which was the root class of the

original Taxation metamodel. This allows the instantiation of mul-

tiple Household instances within the same model generation task.

To enforce the same number of objects, we include an initial model

containing a predefined number of Household instances and we

prevent the generation of further instances of that class as in [64].

General setup: To account for warm-up effects and memory

handling of the Java 8 VM, an initial model generation task is per-

formed before the actual measurements and the garbage collector

is called explicitly between runs. We performed the measurements

on an enterprise server
1
.

4.2 RQ1: Integration with an SMT-solver

Measurement setup: We compare three model generation ap-

proaches that call an SMT-solver in fundamentally different ways:

• postSMT (used as a baseline) does not make any SMT solver

calls during model generation only as a postprocessing step.

1
12× 2.2 GHz CPU, 64GiB RAM, CentOS 6, Java 1.8, 12 GiB Heap
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Figure 7: Calls to SMT-solvers wrt. size of generated models

• contSMT calls the SMT solver at every model generation step

to repeatedly evaluate numerical constraints.

• qualSMT qualitatively approximates a numerical constraint

with a manually added structural constraint that enforces an

acyclic graph structure for families. Then model generation

first addresses the structural constraints while the qualitative

abstraction is resolved to concrete numerical attribute values

in a postprocessing step.

Note that the SMT-solver is not used to derive models satisfying

the structural constraints, only the numerical constraints as poor

scalability was reported in [4, 54] for structural constraints.

For RQ1, we perform measurements exclusively in the Fam

domain, which contains a complex dependency between structural

and numerical constraints, thus it is expected to serve as a stress

test for SMT-solver calls. We aim to generate models of different

size: from 5 to 10 objects with an increment of 1, and from 20 to 100

objects with an increment of 20. The range for numeric values were

not bounded a priory. Ten runs are executed for each approach and

model size with a timeout of 5 minutes, and the median of runtimes

is taken.

Analysis of results: Figure 7 compares the execution times for

the three approaches. Unsurprisingly, postSMT could only generate

models of size 5 and 6 (with a failure rate of over 90% for larger mod-

els). These figures imply if there ismutual dependency between both
numerical and structural constraints in a domain, then the handling

of numerical constraints cannot be postponed to a postprocess-

ing phase while focusing exclusively on structural constraints first

during model generation as the SMT-solver cannot correct the

incompatibilities introduced by an inconsistent structure.

Additionally, we notice that qualSMT is faster than contSMT by

a factor of 3 for larger models. This is partly attributed to the use of

VIATRA as a back-end solver for the qualSMT approach, which has

been shown in [4, 56] to perform better than Z3 (used in postSMT )
for generating model structures. Moreover, future model generation

strategies may skip calls to the SMT-solver in certain steps. While

the extra structural constraint that enforces an acyclic graph struc-

ture for families was added by human intuition, providing such

qualitative abstractions of numerical constraints in an automated

way is also a promising direction of future research.

RQ1: Mutual dependencies between structural and numerical con-
straints necessitate repeated calls to an SMT-solver during model
generation, which cannot be postponed to postprocessing step. Qual-
itative structural abstractions of numerical constraints may accel-
erate model generation by introducing an approximate causality.

https://github.com/viatra/VIATRA-Generator
https://github.com/viatra/VIATRA-Generator
https://doi.org/10.5281/zenodo.3950552
https://doi.org/10.5281/zenodo.3950552
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4.3 RQ2: Cost of exploration phases

Measurement setup:We perform measurements in all three do-

mains to compare runtimes and their distribution between the

different phases of model generation. For each domain, we generate

models with an increasing minimum model size of 20, 40, 60, 80

and 100. Again, the range for numeric values were not bounded.

We exclude larger model sizes to ensure high success rates and to

enable cross-domain comparison of execution phases. For the Tax

domain, the initial model contains one instance of the Household
class for every 20 generated nodes (which is the typical size of a

household in the models generated in [64]) to balance the difficulty

of model generation regardless of the target model size.

We execute 10 runs per target model size and take the median

runtime values. For each model generator run, we aim to produce

the first 10 models within a timeout of 1 hour.

Analysis of results: The decomposition of runtime measure-

ments for all three domains are shown in Figure 8a - Figure 8c. Each

phase of model generation is represented by a different color. The

initialization phase (0.9 seconds for Fam, 3.5 seconds for Sat, 150

seconds for Tax) is a one-time penalty which is proportional to

the complexity of the metamodel and the WF constraints.

In the Fam domain, the runtime is dominated by SMT solver

calls. This is attributed to the fact that this domain needs to enforce

a global structural constraint (acyclicity as discussed in Section 4.2)

by solving numerical constraints while the numerical constraints

of other domains are dominantly local (e.g. to fill attribute values).

However, extra cost of generating subsequent models is low. In

the Sat case study, generating the first model takes less than 30

seconds (dominated by the time required for state encoding), but

the cost of incrementally generating the next model is relatively

larger. For the target model sizes, execution times in the Tax case

study are still dominated by the initialization phase due to the large

metamodel and numerous constraints of the domain, while the

actual model generation and constraint solving phases were rapid.

RQ2: Different phases of model generation can be dominating for
modeling problems with different characteristics. For domains with
global numeric constraints such as Fam, runtime is dominated by
SMT-solver calls. For structure-dominant challenges, such as Sat,
runtime is dominated by state encoding, and the incremental time
required to generate additional models is larger. For domains with
a large and complex metamodel such as Tax, the initialization
phase can be substantial, but the sheer complexity of the domain
does not directly influence the actual model generation.

4.4 RQ3: Scalability of model generation

Measurement setup:We perform measurements in all three do-

mains with increasing model sizes starting from 100 objects with a

step size of 50/100 objects and timeout of 1 hour. A single model is

generated in each run. A campaign of 10 runs is executed for each

measurement point and the median of successful execution times

is taken (i.e. that provide a finite model as result within the given

time). We terminate the scalability measurement for a case if any

of the 10 runs at a particular size fails to output a finite model. For

the Tax domain, we provide Household instances as part of the

initial model following the 1-to-20 ratio discussed in Section 4.3.

Analysis of results:Measurement results for RQ3 are shown

in Figure 8d-Figure 8f. Interestingly, the proposed approach scaled

best for the largest metamodel of the Tax case deriving models

with 1,100 objects within an hour. Furthermore, we were able to

generate models with 1,200 objects within the same time limit with

a success rate of 80%. Model generation with 100% success rate

scaled up to 300 objects for the Fam and Sat domains. However,

root cause of scalability limits was very different (the SMT-solver

in Fam and graph solver in Sat). These results also a posteriori

validate our choice of including Fam as a case study, which turned

out to be the most complex one for assessing the use of SMT-solvers.

RQ3: Our approach was able to generate consistent models with
300 objects for all three case studies within an hour. For the Tax
case, scalability is comparable to figures reported in [64] with well
over 1000 objects.

4.5 RQ4: Diversity

Measurement setup: To evaluate the structural diversity of the

generated models, we used a neighbourhood-based [44] internal

diversity metric [55, 58], which correlates with mutation score in

mutation testing scenarios. This metric calculates the proportion of

different local neighborhoods of nodes included in a graph model.

We checked the structural diversity of models only; the measure-

ment and generation of diverse attribute values with the underlying

solver requires further research and beyond the scope of the paper.

We used a neighborhood range=3, which classifies two objects

to be identical, if they cannot be distinguished with at most 3 navi-

gations (hops). To measure structural diversity, the values of data

objects are not taken into account. We measured the diversity of

10-10 models for all three case studies with 100 objects (Fam+N,

Sat+N, Tax+N). As a comparison, we generated 10-10 models

without bounding the attributes values or respecting the attribute

constraints (Fam-N, Sat-N, Tax-N) by the graph solver [56].

Analysis of Results: The distribution of internal diversity is

illustrated in Figure 9. Note that Fam+N,Fam-N, Sat+N and Sat-N

showed similarly high internal diversity 80%, while diversity values

were somewhat lower for Tax+N and Tax-N.

RQ4: Our approach provides similar structural diversity when
generating consistent models with structural and numerical con-
straints compared to the diversity provided by a graph solver [56].

4.6 Threats to validity

Construct validity. We replicated the Tax case study [64] in a

new technological context, which involved (1) to create an Ecore

metamodel from an equivalent UML diagram and (2) to manually

transform the OCL constraints into equivalent VQL graph patterns.

The Ecore metamodel was kindly provided to us by the authors

of [64], while we validated each replicated OCL constraint by per-

forming manual equivalence checks. We used similar number of

Household objects as in [64] and investigated the output models by

graph visualization tools to ensure that similar model generation

outputs are obtained, but we refrain from direct numerical compar-

ison of execution times due to those technological differences.

Internal Validity. To strengthen internal validity, our experi-

ments include a warm-up run executed prior to the actual measure-

ments to decrease the fluctuation of runtime results caused by the
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Java VM instead of the natural fluctuation of solver runtimes. As

the exploration strategy relies on some randomness, our scalability

measurements only report cases with over 90% success rate.

External Validity.We mitigate threats to external validity by

including a diverse set of case studies which involve calls to both

a structural and a numerical solver. However, our approach is as

scalable as the underlying attribute solver. While we were able to

generate large consistent models in all three cases, the numeric

constraints in our case studies are limited to basic arithmetic op-

erations (excluding e.g. trigonometric operations and quadratic

equations). We focused on numeric attributes as they are the most

frequent data types. Handling models containing different kinds of

attributes (e.g., string or bitvectors) can be a challenge in terms of

performance (although the underlying Z3 solver promises efficient

background theorems for both [12, 71]). Additionally, the numeric

values derived by the SMT-solver may not be diverse.

5 RELATEDWORK

We provide an overview of graph generation approaches that derive

consistent graphs. We also discuss some key numerical abstractions

and decision procedures.

Logic solver approaches. These approaches translate graphs

andWF constraints into a logic formulae and use underlying solvers

to generate graphs that satisfy them. Back-end technologies used

for this purpose include SMT solver such as Z3 [26, 52, 70], SAT-

based model finders (like Alloy [25]) [3, 5, 9, 23, 30, 35, 54, 59, 60, 62],

CSP-solvers [8, 10, 11, 18], theorem provers [4], first-order logic [6],

constructive query containment [41], higher-order logic [20] and

an incremental query engine [56].

For most of these approaches, scalability is limited to small

models/counter-examples. These approaches are either a priori

bounded (where the search space needs to be restricted explicitly)

or they have decidability issues. Furthermore, handling of numeric

constraints is not available for some of these approaches, particu-

larly ones based on SAT-solvers and first-order logic formulations.

Uncertainmodels. Partial models are similar to uncertain mod-

els, which offer a rich specification language [13, 48] amenable to

analysis. They provide a more intuitive, user-friendly language

compared to 3-valued interpretations, but without handling addi-

tional WF constraints. Potential concrete models compliant with

an uncertain model can be synthesized by the Alloy Analyzer [50],

or refined by graph transformation rules [49].

Iterative approaches. Iterative approaches generate models by

multiple solver calls. An iterative approach is proposed specifically

for allocation problems in [29] based on Formula. In [59] models

are generated in by calling Alloy in multiple steps, where each

step extends the instance model by a few elements. Finally, an



Automated Generation of Consistent Models with Structural and Attribute Constraints MODELS ’20, October 18–23, 2020, Virtual Event, Canada

iterative, counter-example guided synthesis is proposed for higher-

order logic formulae in [36]. For these approaches, when scalability

evaluation is included, it is limited to 50 nodes.

Symbolic model generation techniques. Certain techniques

use abstract (or symbolic) graphs for analysis purposes. A tableau-

based reasoning method is proposed for graph properties [1, 40, 51],

which automatically refines solutions based on WF constraints, and

handles the state space in the form of a resolution tree as opposed

to a partial model. When scalability evaluation is included, these

techniques demonstrated to derive only small graphs (< 10 objects).

Different approaches use abstract interpretation [44], or pred-

icate abstraction [14, 19, 45] for partial modeling. In those ap-

proaches, concretization is used to materialize (typically small)

counter-examples for designated safety properties in a graph trans-

formation system. However, their focus is to support model check-

ing of abstract graph transformation systems, which can evaluate

complex trajectories, but do not scale in the size of the models.

Hybrid approaches. These approaches divide the model gen-

eration task into multiple sub-tasks and use a different underlying

techniques to resolve each one. The PLEDGE model generation tool

[64] provides such a scalable implementation by combining meta-

heuristic search for model structure generation with an SMT-solver

based approach for attribute handling. The Evacon tool [24] imple-

ments a search-based evolutionary testing approach followed by

symbolic execution to generate tests for object-oriented programs.

Autograph [52] sequentially combines a tableau-based approach for

model structure generation with an SMT-solver based approach for

attribute handling. Such approaches combine multiple techniques

in a sequential manner, which is a conceptual restriction for mu-

tually dependent structural and numerical constraints. Moreover,

none of these techniques assure completeness of model generation.

Another category of hybrid approaches involves assessing mul-

tiple components of the model generation task in parallel. This

requires the implementation of a certain decision procedure such as

DPLL(T) [15, 39] to iterate between underlying techniques, or com-

bine them by sharing variables in their proofs [38]. Such decision

procedures are presented alongside their associated properties (e.g.

soundness and completeness) at an abstract level in [7, 39], which

allows for formal reasoning about their implementations. However,

those approaches handle graph-based models inefficiently [59, 69],

thus the scalability of those techniques is limited.

Numerical abstractions. Handling numeric (integer or real)

variables and constraints in model generation scenarios re-

quires their abstract interpretation through numerical abstract do-

mains [37, 61]. Numerical abstract domains may be used to summa-

rize object attributes in value analysis of heap programs [14, 31, 34].

Summarized dimensions [19] were introduced to succinctly repre-

sent attributes of a potentially unbounded set of objects via multi-

objects. This approach enables attribute handling in three-valued

partial models, and allows checking for refinements by abstract sub-

sumption [2]. But these approaches do not generate graph models.

The uniqueness of our approach lies in combining numerical

abstractions with partial models to guarantee soundness and com-

pleteness, while generating models with favorable scalability.

6 CONCLUSIONS

In this paper, we proposed an automated model generation ap-

proach to derive consistent models that satisfy structural and nu-

merical constraints, which necessitates a bidirectional interaction

between a graph solver and an SMT-solver. As a conceptual nov-

elty, we proposed so-called refinement units that carry out con-

sistency checking, decision, unit propagation and concretization

steps in conceptual analogy with background theories used in

SMT-solvers as part of an abstract DPLL procedure [39]. There-

fore, refinement units can seamlessly incorporate different kinds

of solvers (in a manner similar to [38]) for handling attribute con-

straints in the presence of a graph solver that handles partial mod-

els. We implemented our approach in the Viatra Solver frame-

work [53]. The source code of our approach is publicly available

(https://github.com/viatra/VIATRA-Generator).

We prepared a publicly available measurement environment

(https://doi.org/10.5281/zenodo.3950552), and we carried out a de-

tailed experimental evaluation of our approach in three complex

case studies to assess scalability and diversity. We obtained favor-

able scalability results by consistently deriving models with over

250 objects in two cases within an hour, and models with over

1000 objects in the third case with same time limits. These model

sizes are substantially larger than logic solver based model gener-

ation approaches (e.g. Alloy or Z3) could derive in the presence

of structural constraints (see [4, 56, 64]). Moreover, our approach

maintains other favorable quality attributes such as diversity and

completeness investigated in depth in [55, 69].
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