
PREPRINT 1

Automated Generation of Consistent Graph
Models with Multiplicity Reasoning

Kristóf Marussy, Oszkár Semeráth and Dániel Varró

Abstract—Advanced tools used in model-based systems engineering (MBSE) frequently represent their models as graphs. In order to

test those tools, the automated generation of well-formed (or intentionally malformed) graph models is necessitated which is often

carried out by solver-based model generation techniques. In many model generation scenarios, one needs more refined control over

the generated unit tests to focus on the more relevant models. Type scopes allow to precisely define the required number of newly

generated elements, thus one can avoid the generation of unrealistic and highly symmetric models having only a single type of

elements. In this paper, we propose a 3-valued scoped partial modeling formalism, which innovatively extends partial graph models

with predicate abstraction and counter abstraction. As a result, well-formedness constraints and multiplicity requirements can be

evaluated in an approximated way on incomplete (unfinished) models by using advanced graph query engines with numerical solvers

(e.g. IP or LP solvers). Based on the refinement of 3-valued scoped partial models, we propose an efficient model generation algorithm

that generates models that are both well-formed and satisfy the scope requirements. We show that the proposed approach scales

significantly better than existing SAT-solver techniques or the original graph solver without multiplicity reasoning. We illustrate our

approach in a complex design-space exploration case study of collaborating satellites introduced by researchers at NASA Jet

Propulsion Lab.

Index Terms—D.2.11.b Domain-specific architectures, E.1.d Graphs and networks, F.4.1.d Logic and constraint programming,

I.6.4 Model Validation and Analysis

✦

1 INTRODUCTION

MODEL-based systems engineering frequently uses
complex modeling tools, like Capella, Artop, Matlab

Simulink or Yakindu Statecharts. When these modeling
tools are used in safety-critical systems, safety standards
(like DO-330 [1] for avionics systems) may prescribe that
(1) only the output of a qualified tool can be trusted, and
(2) such a tool should meet the same requirements as the
critical system component it designs. However, such quality
assurance for the software running in modeling tools is very
complex, which makes tool qualification an extremely costly
process. As such, automated techniques for synthesizing
effective test suites used in the software quality assurance
of complex modeling tools would be highly beneficial.

The automated synthesis of high-quality test cases is a
recurrent challenge in many areas of software and systems
engineering in order to simultaneously improve quality and
productivity. Since test cases created manually by engineers
can easily miss important corner-cases of specifications,
certain application areas (e.g. safety-critical software) sub-
stantially rely on such automated test case generators.

This paper focuses on automated model generators which
represent tests in the form of graph models. This is a
subclass of generators with high practical relevance but also
high complexity. For example, graphs may models complex

• The authors are with the Department of Measurement and Infrormation
Systems, Budapest University of Technology and Economics, Hungary
and the MTA-BME Lendület Cyber-Phyisical Systems Research Group.
E-mail: {marussy,semerath}@mit.bme.hu, daniel.varro@mcgill.ca

• Dániel Varró is with McGill University.

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be
accessible.

test stubs in object-oriented programs [2], [3] (e.g. nodes are
objects, edges are pointers). The quality assurance of smart
cyber-physical systems (CPS) can rely upon prototypical test
contexts given in the form of graphs [4], [5], [6]. Model
generators are also beneficial for testing modeling tools [7].

Further practical application scenarios are investigated
in [8], which identifies a long-term research agenda aim-
ing to provide desirable high-level properties for auto-
mated model generators. Using the terminology of [8], an
advanced synthetic model generator should be domain-
customizable, consistent, diverse, realistic and scalable.

For domain customizability, our paper uses precise un-
derlying specification techniques to capture the domain
concepts and their relations captured in the form of a meta-
model, while consistent models can be further restricted by
design rules or well-formedness constraints (defined as OCL
constraints [9] or graph patterns [10], [11]).

There is a wide range of model generators such as
Alloy [12], [13], Formula [14], [15], USE [16], UML2CSP [17],
SDG [18], [19] and Viatra Solver [20], [21] to automatically
derive consistent models for a given domain specification.
Several generators are based on precise foundations offered
by backend logic solvers (like SAT solvers [22], [23] or SMT
solvers [24]). These tools excel at finding inconsistencies (if
they exist) by interpreting domain specifications as a logic
problem, but they can only derive small consistent models.
Moreover, they fail to derive a diverse set of models [20], [25],
which restricts their use in practical testing scenarios.

Alternatively, logic reasoning or search-based techniques
can be lifted directly on the level of graphs [18], [19], [26] for
model generation purposes. These approaches scale better
with respect to the size and diversity of the derived models,

PREPRINT 2

but they may fail to reveal inconsistencies in specifications.
Finally, the realistic nature of synthetic models can also

be important in test generation scenarios. For example,
realistic test models used for autonomous cars represent real
test environments [5], [6] while unrealistic test cases (e.g.
obscure traffic situations) are considered as false positives.
Failures caused by realistic scenarios are more severe, as
they have more chance to happen on real workload. Several
examples in testing software-intensive CPSs [5], [6], [18], [19],
[27], [28] highlight this realistic aspect. Furthermore, the
usability of automatically generated tests may be hindered
by test cases that are not realistic (i.e., strange and difficult
to comprehend for developers) [29].
Problem statement. To increase the realistic nature of mod-
els, one needs more refined control over the structure of
the auto-generated models. For example, partial snapshots
[30], [31] define model fragments that need to be extended
by the model generator, thus it defines the expected initial
structure of each models. Furthermore, type scopes [12] allow
to precisely define the required number of newly generated
elements (per type/class), thus focusing the generation pro-
cess on more relevant instance models of the target domain.

While logic solver-based model generators support var-
ious scope constraints, they have severe scalability issues
and they fail to generate complex graphs (without isolated
nodes or star structures) with more than 50-70 nodes for
complex domains [32]. The search-based approach [18], [19]
can generate a large number of simple graph models with
fine-grained type distributions, but it is unable to derive
large and connected consistent models. Finally, the graph
solver [32] can derive large and connected models, but it
only allows to cap the total size of the model, and thus it is
unable to fine-tune the models along type scopes.
Contributions. In order to improve the scalability and
usefulness of automated model generation, we propose a
novel technique that combines the advantages of partial
model refinement techniques [26] with numeric reasoning
on model scopes. In particular,

• We introduce scoped partial models as a background
theory to represent type scopes for model generations.

• We define a mapping of structural and well-formedness
constraints into numeric constraints that can be evaluated
on scoped partial models.

• We use existing numerical solvers (i.e. IP and LP
solvers) to efficiently guide the generator process.

• We extend an open source model generator [32] with
type scope support and integrate various IP and LP
solvers to provide a software prototype tool.

• We evaluate the effectiveness of the approach on nu-
merous case studies including a running example of a
complex design space exploration challenge [33] intro-
duced by researchers at NASA Jet Propulsion Lab.

The current paper builds upon but substantially extends
past research results in [8], [20], [32]. More specifically, the
introduction and handling scope constraints are novel con-
ceptual results of the current paper. In order to maintain the
favorable theoretical properties (e.g. completeness, diver-
sity) of the generic model generation framework formally
proved in [8], [20], the refinement calculus is extended here
to incorporate scopes. The prototype implementation builds
on and extends [21], [32] by integrating various numerical

solvers into the decision procedure. Finally, the experimen-
tal evaluation shows how novel results improve scalability
and the realistic nature of models wrt. existing work.
Added value. With multiplicity reasoning, graph generators
can be configured by numeric constraints to focus model
generation on the relevant fragment of models. Although a
single metric cannot ensure the realistic nature of models,
but ensuring the realistic distribution of model elements were
found to be useful in [18] as it filters out a wide range
of surely unrealistic models. As such, automatically syn-
thesized corner-cases will have higher practical relevance
(e.g. test scenarios in autonomous driving will investigate
relevant traffic situations).

With the help of numerical reasoning, graph generators
will be able to measure and efficiently control the quantity of
nodes. This significantly improves the performance of exist-
ing graph solver algorithms. Moreover, it enables a practical
iterative workflow for test generation where initially, one
can start with general scopes which are gradually refined to
grow larger consistent models.

Finally, by adhering to the refinement calculus, the gen-
erator continues to provide favorable properties such as
consistency, completeness or diversity (but the in-depth in-
vestigation of such properties is out of scope for the paper).

2 MODELS AND PARTIAL MODELS

The computational design synthesis of interferometry mis-
sion architectures has been introduced in [33] as a complex
challenge for early mission planning for space missions of
NASA where a designated architecture consists of collabo-
rating satellites (of different size and capabilities) and radio
communication between them. Each mission architecture
involves multiple spacecrafts, which imposes an especially
challenging design task. The authors of [33] suggested a
technique to automatically enumerate promising design
candidates with respect to the requirements, technical and
resource constraints, and mission objectives. Since the origi-
nal paper already used graph models and tools, we decided
to adapt this as the running example of the paper.

In this section, we first provide foundations of domain-
specific modeling languages (DSLs) and graph-based in-
stance models formalized as partial models using relational
logic enhanced with integer linear constraints.

2.1 Domain-specific modeling languages

A large set of industrial modeling tools (including e.g.,
Capella, Artop, Yakindu, Papyrus, etc.) use DSLs as con-
ceptual foundation. The specification of a DSL typically
starts from defining a metamodel (MM) and a set of well-
formedness constraints (WF). A metamodel defines the main
concepts and relations in a domain imposing the basic graph
structure of instance models. WF constraints further restrict
consistent (or valid) instance models of the language by
defining additional design rules. In this paper, we use the
Eclipse Modeling Framework (EMF) [34] metamodels and
VIATRA well-formedness constraints [10], [11] as a technical
foundation for domain modeling, which is also used in
those industrial tools above as well as in [33]. Conceptually,
the graph generation approach could be applied on other

PREPRINT 3

Comm-
Subsys GroundStation

KaComm

Spacecraft

UHFCommXComm

[0..1]
target

[1..2] subsys [1..1] station

[0..1]
payload

CommElement InterferometryMission

Cube3U SmallSatCube6U

[2..*]
spacecraft

Payload

KaComm

! SmallSat
! GroundStation

∃

subsys

at

Fig. 1. Example metamodel and WF constraint error pattern

modeling formalisms too, e.g. UML Class Diagrams for
defining the types and Object Constraint Language (OCL,
[9]) for defining constraints as in [19], [35].

Example. The metamodel for interferometry constellation
missions is shown in Fig. 1 using an EMF notation. An
InterferometryMission consists of communicating Comm-

Elements (as EClasses), which are equipped with Comm-

Subsys subsystems (i.e., antennas with different commu-
nication frequencies) through their subsys EReferences for
Ka, X, and UHF bands.

Spacecraft of different sizes, including cube satellites
Cube3U and Cube6U, as well as small satellites SmallSat,
may carry interferometry Payloads (photo sensors), and
must be able to reach the GroundStation via radio links
(to send sensor data) denoted by the target references.

As a foundation for generating consistent models first,
we need a precise formal framework to specify DSLs for
which purpose we rely on [7], [12], [14], [26], [30], [36].

Metamodels

The metamodel defines the main concepts and relations of
the target domain.

Definition 1 (Metamodel). A metamodel defines a vocab-
ulary Σ = {C1, . . . ,Cn, ε,R1, . . . ,Rm,∼} with unary
predicate symbols Ci (1 ≤ i ≤ n) defined for each EClass,
a symbol ε denoting the existence of an object, a binary
predicate symbol Rj (1 ≤ j ≤ m) for each EReference,
and a binary equivalence symbol ∼.

This formalism, in accordance with the EMF standard, han-
dles references as relations: edges do not have identities
and parallel edges of the same EReference are not allowed.
Since our current work focuses on model generation for
the structural part of graph models (i.e. nodes/objects and
edges/links), we omit the detailed handling of attributes,
which could be introduced similarly. Additionally, we in-
troduce generator-specific concepts: a unary predicate ε
denoting the existence of an object (in a normal model, each
object is existing), and a binary predicate ∼ denoting the
equivalence of objects (in a normal model, each objects are
different from each other).

A metamodel also imposes several structural constraints
on instance models to enforce syntactic consistency for
model manipulation or model persistence operations:

(1) Type Hierarchy (TH) expresses that a more specific
(child) class has every structural feature of the more
general (parent) class;

(2) Type Compliance (TC) requires that for any relation
R(o, t), its source and target objects o and t must have
compliant types;

(3) Abstract (ABS): If a class is defined as abstract, it is not
allowed to have direct instances;

(4) Multiplicity (MUL) of structural features can be lim-
ited with upper and lower bound in the form of
“lower..upper”;

(5) Inverse (INV) states that two parallel references of op-
posite direction always occur in pairs.

(6) Containment (CON): Instance models in EMF are ex-
pected to be arranged into a containment hierarchy,
which is a directed tree along relations marked in the
metamodel as containment (e.g., subsys or payload).
The containment hierarchy is particularly relevant for
serialization purposes.

Well-formedness constraints

In many industrial modeling tools, domain-specific WF
constraints are defined by error predicates captured either as
OCL invariants [9] or as graph patterns [10], [37]. A major
practical subclass of such constraints can be formalized us-
ing first-order logic with transitive closure [26], [32], which
can be efficiently evaluated by underlying query engines
like [11] to validate models, or formally analyzed by model
generators [7] to synthesize well-formed models.

Definition 2 (Syntax of graph predicate). A graph predicate
ϕ is defined over a Σ vocabulary of a metamodel and an
infinite set of (object) variables V = {v1, v2, . . .} using
the following grammar rules:

ϕ := C(v) | R(v1, v2) type and reference pred.
| v1 = v2 equivalence
| ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 logic connectives
| ∃v : ϕ | ∀v : ϕ quantified expression
| ϕ+(v1, v2) transitive closure

Assuming that error patterns ϕ1, . . . , ϕn are defined for
a domain, a model is consistent (or valid), if it does not sat-
isfy any error predicates ϕi(v1, . . . , vm), i.e. ¬∃v1, . . . , vm :
ϕi(v1, . . . , vm) = ∀v1, . . . , vm : ¬ϕi(v1, . . . , vm).

Error predicates ϕ1, . . . , ϕ8 in the satellite case study cap-
ture the following design rules of interferometry missions.

• A CommElement may only have a single transmitting
subsys (the other subsys, if present, may only receive):

ϕ1(e) := ∃c1, c2 : subsys(e, c1) ∧ subsys(e, c2) ∧ c1 6= c2

∧
(
∃t : target(c1, t)

)
∧
(
∃t : target(c2, t)

)
.

• The GroundStation can only receive and may not have
any outgoing communication links:

ϕ2(g) := ∃c, t : GroundStation(g) ∧ subsys(g, c) ∧ target(c, t).

• At least two different Spacecrafts must have the inter-
ferometry Payload configured:

ϕ3 := ∀s1, s2 : ¬
(
∃p : payload(s1, p)

)

∨ ¬
(
∃p : payload(s2, p)

)
∨ s1 = s2.

• All Spacecraft must have a communication path (tran-
sitive closure of radio links) to the GroundStation:

PREPRINT 4

link(s1, s2) := ∃c1, c2 : subsys(s1, c1) ∧ subsys(s2, c2)

∧ target(c, s2),

ϕ4(s) := Spacecraft(s)

∧
(
∀g : ¬GroundStation(g) ∨ ¬link+(s, g)

)
.

• There may be no communication loops, i.e., communi-
cation paths from a CommElement to itself:

ϕ5(e) := link
+(e, e).

• CommSubsystems can only communicate if they use
the same frequency band:

ϕ6(c1, c2) := target(c1, c2)

∧ ¬
(
KaComm(c1) ∧ KaComm(c2)

)

∧ ¬
(
XComm(c1) ∧ XComm(c2)

)

∧ ¬
(
UHFComm(c1) ∧ UHFComm(c2)

)
.

• Cube3U satellites can only cross-link (send data to
another satellite) using an UHFComm transmitter, but
can only communicate with the GroundStation using a
XComm transmitter:

ϕ7(s) := ∃c1, c2, e : Cube3U(s) ∧ subsys(s, c1)

∧ subsys(e, c2) ∧ target(c1, c2)

∧ ¬
(
UHFComm(c1) ∧ Spacecraft(e)

)

∧ ¬
(
XComm(c1) ∧ GroundStation(e)

)
.

• Only a SmallSat or the GroundStation may be config-
ured with a KaComm subsystem:

ϕ8(e) :=
(
∃s : subsys(e, s) ∧ KaComm(s)

)

∧ ¬SmallSat(e) ∧ ¬GroundStation(e).

The error predicate ϕ8 is depicted on the right side of
Fig. 1 as a graph pattern using the graphical syntax of the
GROOVE graph transformation tool [38].

Because the structural constraints on metamodels can
be formalized as WF constraints [7] using the graph pred-
icate language of [26], [32], we can evaluate both kinds
of constraints uniformly with first-order logic. However,
as structural constraints are prevalent in modeling tasks,
in the following, we will exploit their special structure,
especially that of MUL and CON constraints, to speed up
model generation by numerical reasoning, while retaining
full support for arbitrary WF constraints.

Type scopes

To guide model generation towards more relevant models
in a domain, type scopes are frequently used to specify
the number of required elements of each type (class). For
example, Alloy [12] introduces scope bounded analysis for re-
lational specifications. For larger models, prescribing lower
and upper bounds may ensure realistic distribution of types
in auto-generated test cases and benchmarks.

Type scope constraints define lower and upper bounds
for the number of instances generated for a specific class.
A lower type scope constraint Li ≤ Ci and an upper type
scope constraint Ci ≤ Ui respectively assert that there are
at least Li and at most Ui instances of the class Ci (where
Li, Ui ∈ N). We require that a generated model must satisfy
the conjunction of all scope constraints of a given type.

Test and benchmark generation tasks require models of
some finite size n, whereas for proving the inconsistency of
modeling languages, cases up to a small size n are checked
according to the small scope assumption [12]. Therefore, we
assume the existence of an upper bound n on the number

of objects in the generated models, which can be seen as a
type scope bound on a common supertype of all types.

Our formulation of type scopes extends the notation of
scopes introduced in Alloy [12], which supports only upper
(Ci ≤ Ui) and exact limits (Ci = Ei) (but not lower bounds).
Alloy also limits type scopes and type hierarchy. If a type
scope is specified for a class Ci, its supertypes cannot have a
type scope. Scopes in Alloy cannot express problems where
the sums of (upper) type scope bounds do not coincide
with the number of objects (

∑
i Ui > n), because the model

size n can only be specified as a type scope bound on
the common supertype of all types. Therefore, these upper
scope constraints and all lower scope constraints need to be
formulated as additional constraints instead.
Given the constraints 30 ≤ Spacecraft, Spacecraft ≤ 50,
and SmallSat ≤ 15 for our running example, generated
models may contain between 30 and 50 Spacecrafts. More-
over, at most 15 of these spacecrafts can be SmallSats.

2.2 Scoped partial models

In this paper, we introduce the concept of 3-valued scoped
partial models as an extension of partial models proposed
in [32]. The goal of partial models is to explicitly represent
uncertainty in models, thus a single partial model represents
a set of potential (traditional) instance models. We combine
two techniques to capture uncertainty in a partial model.
First, 3-valued logic is used to explicitly represent uncertain
structural properties of models with a third 1/2 (unspecified
or unknown) truth value (besides 1 and 0, which stand for
true and false) in accordance with [8], [26], [39]. Secondly,
quantitative information is attached to the partial model to
precisely represent the known (or required) size of the models.
Later, we use partial models as states of model generation
to represent intermediate solutions with uncertain parts
denoted with truth-value 1/2 and its size.

From a formal perspective, the first partial modeling
technique implements predicate abstraction [26], [40] on graph
models, while the second technique provides counter abstrac-
tion [41], [42] on the nodes of the graph model.

Definition 3 (3-valued partial model). A 3-valued scoped
partial model is a tuple P = 〈OP , IP ,SP 〉, where OP is
a finite set of individuals in the model (i.e., the objects),

IP (S) : O
α(S)
P → {0, 1, 1/2} provides a 3-values interpre-

tation for all structural predicate symbols S ∈ Σ (where
α(S) is the arity of the predicate symbol S), and the
object scopes SP define numerical constraints over OP .

Structural predicates

First, let us discuss the interpretation of structural predicate
symbols (IP) of partial models.

• Node (class) predicates: IP gives a 3-valued interpre-
tation of each class symbol Ci in Σ: IP (Ci) : OP →
{1, 0, 1/2} that gives if it is true, false, or unspecified if
an object is an instance of a class Ci.

• Edge (reference) predicates: IP gives a 3-valued
interpretation to each reference symbol Rj in Σ:
IP (Rj) : OP ×OP → {1, 0, 1/2}, that gives if it is true,
false, or unspecified if there is a reference Rj between
two objects.

PREPRINT 5

TABLE 1
Explanation for existence and self-equivalence predicates

ε(x) x ∼ x Description Symbol Regularity criteria

1 1 concrete object [1..1] SP � x̂ = 1
1/2 1 uncertain, concrete [0..1] SP � x̂ ≤ 1
1 1/2 multi-object [1..∗] SP � x̂ ≥ 1

1/2 1/2 uncertain, multi [0..∗] unrestricted

• Existence predicate: IP gives 3-valued interpreta-
tion IP (ε) : OP → {1, 1/2} to the ε and predicates.
IP (ε)(x) = 1 and 1/2 means certain or possible exis-
tence of object x.

• Equivalence predicate: IP also gives 3-valued interpre-
tation IP (∼) : OP×OP → {1, 0, 1/2} to the ∼ predicate.
IP (∼)(x, y) = 1, 0, and 1/2 mean that it is true, false, or
unknown whether x and y are equal.

In the context of model generation, we restrict the possi-
ble combination of those predicates to exclude inconsistent
and irrelevant constructs that are not productive as interme-
diate states of model generation.

Definition 4 (Structural Regularity). A partial model is
structurally regular if it satisfies the following criteria:

• Object merges are impossible, i.e., distinct objects x 6≡ y
(x, y ∈ OP) are surely not equal: IP (∼)(x, y) = 0.

• There are no unmerged equivalent objects: if x, y ∈ OP

and IP (∼)(x, y) = 1, then x ≡ y.
• There are no nonexistent objects, i.e., an object x ∈ OP

cannot be surely nonexistent: IP (ε)(x) 6= 0.

Table 1 summarizes the possible cases of uncertain exis-
tence and self-equivalence.

Fig. 2 shows three partial models. Truth values of class
predicates are denoted by labels on nodes (missing labels
correspond to 0 values). Reference predicates with 1 and
1/2 values are denotes as solid and dashed arrows, re-
spectively. Nodes with Dashed borders correspond to 1/2

values of the existence ε predicate. Uncertain equivalences are
shown with dashed ∼ loops, but to reduce clutter, certain
self-equivalences are not depicted. Thus, multi-objects have
dashed borders and dashed ∼ loops and concrete objects
are shown with solid borders.

In P0 (on the left side of Fig. 2), the multi-object new3U

(with uncertain existence and self-equivalence) is certainly
of type Cube3U, but not of type CommSubsys.

Object scopes

Next, let us discuss the numerical constraints in a partial
model (SP in P = 〈OP , IP ,SP 〉). SP defines a system
of linear inequalities over variables VP = {x̂ | x ∈ OP }
associated with the nodes OP of the partial model P .

Definition 5 (Assignment, Solution, Entailment). An assign-
ment k maps each variable x̂ ∈ VP to a non-negative
integer k : VP → N. If an assignment k satisfies the
system of linear inequalities of SP , then it is called a
solution of SP (written as k � SP). We write S1 � S2

for the entailment of linear constraints, i.e., when every
solution k � S1 also satisfies k � S2.

The values of these variables represent the number of
concrete nodes that a single abstract node represents. If

k : VP → N is a solution, then partial model P may rep-
resent a concrete instance model M where each x ∈ OP

stands for exactly k(x̂) objects.

Partial models P0 and P1 illustrated in Fig. 2 define two
systems of linear inequalities (SP0

and SP1
respectively)

over the same three variables: n̂ew 3U, n̂ewX and ̂newUHF.
In SP0

, the linear equation n̂ew 3U + n̂ewX + ̂newUHF =
10 ensures that P0 represent instance models with exactly
10 objects. A potential variable assignment k : n̂ew 3U 7→
4, n̂ewX 7→ 3, ̂newUHF 7→ 3 is a possible solution of both
SP0

and SP1
, and represent models with 4 3U, 3 X and 3

UHF objects. As SP1
contains more constraints than SP0

,
SP1

� SP0
is holds trivially. However, SP0

� SP1
is not true

as k′ : n̂ew 3U 7→ 10, n̂ewX 7→ 0, ̂newUHF 7→ 0 is a solution
for SP0

but not for SP1
.

The regularity criteria of scoped partial models ensures
consistency of IP and the object scopes SP .

Definition 6 (Numerical regularity). A partial model P is
numerically regular, if SP is satisfiable, and for each
object x ∈ OP :

IP (∼)(x, x) = 1 ⇒ SP � [x̂ ≤ 1]
IP (ε)(x) = 1 ⇒ SP � [x̂ ≥ 1]

Therefore SP carries at least as precise numerical informa-
tion about the (multi-)objects as IP . Table 1 summarizes the
possible combinations of existence, equivalence and scopes.

A partial model is regular if it is both structurally and
numerically regular. In the following, all partial models will
be assumed to be regular.

2.3 Refinement and concretization of PMs

We carry out model generation along a sequence of refine-
ment steps that derive new partial models by increasing
their size but gradually reducing the level of uncertainty in
each model while continuously checking (an approximated
version of) well-formedness and scope constraints. Thus
we introduce the formal concept of refinement for scoped
partial models which simultaneously refines both the 3-
valued logic structure and the system of linear inequalities.

First, during refinement, unknown 1/2 values are refined
to either 0 or 1, according to the refinement ordering relation.

Definition 7 (Logic value refinement). A truth value Y is a
refinement of X (formally X < Y), where either X = 1/2

as it is refined into Y = 1 or 0, or X = Y remains
unchanged: X < Y := (X = 1/2) ∨ (X = Y).

Logic refinement is defined between the logic structures
associated with partial model, where some 1/2 values in
the interpretation IP of a partial model P is refined into
either 1 or 0 values. Informally, during refinement between
structurally regular partial models, (i) objects with 1/2 values
for ∼ may be split into multiple objects, (ii) objects with
1/2 values for ε may disappear, (iii) and class or reference
predicates with 1/2 values are refined to 1 or 0.

Definition 8 (Logic structure refinement). Given an abstrac-
tion function abs : OQ → OP , a logic interpretation
IQ of a partial model Q refines a logic interpretation
IP of P (denoted by IP <abs IQ) if for each n-ary

PREPRINT 6

new3U

CommElement= 1
Satellite=1
Cube3U=1

newX

CommSubsys= 1
XComm=1

newUHF

CommSubsys= 1
UHFComm= 1

~

subsys

~
target

subsys

target

~
target

target

P0, P1

<
new3U

CommElement= 1
Satellite=1
Cube3U=1

newX

CommSubsys= 1
XComm=1

newUHF

CommSubsys= 1
UHFComm= 1

x2

CommSubsys= 1
UHFComm= 1

x1

CommElement= 1
Satellite=1
Cube3U=1

~

subsys

~
target

subsys

target
~
target

target

target

su
bs

ys

subsys

su
bs

ys

P2

<
x3

CommElement= 1
Satellite=1
Cube3U=1

newX

CommSubsys= 1
XComm=1

newUHF

CommSubsys= 1
UHFComm= 1

x2

CommSubsys= 1
UHFComm= 1

x1

CommElement= 1
Satellite=1
Cube3U=1subsys

~
target

subsys

target
~
target

target

target

su
bs

ys

subsys

su
bs

ys

P3

SP0
: n̂ew 3U+n̂ewX+n̂ewUHF = 10 (#n)

SP1
: n̂ew 3U+n̂ewX+n̂ewUHF = 10

5 ≤ n̂ewX+n̂ewUHF (sp1)
n̂ew 3U ≤ n̂ewX+n̂ewUHF (sp2)
n̂ewX+n̂ewUHF ≤ 2n̂ew 3U (sp3)

4 ≤ n̂ew 3U ≤ 4, 0 ≤ n̂ewX ≤ 6,
0 ≤ n̂ewUHF ≤ 6

}
(sa)

SP2
: n̂ew 3U+n̂ewX+n̂ewUHF = 8

4 ≤ n̂ewX+n̂ewUHF

n̂ew 3U ≤ n̂ewX+n̂ewUHF

n̂ewX+n̂ewUHF ≤ 2n̂ew 3U + 1
3 ≤ n̂ew 3U ≤ 3, 0 ≤ n̂ewX ≤ 5
0 ≤ n̂ewUHF ≤ 5, x̂1 = 1, x̂2 = 1

SP3
: n̂ewX+n̂ewUHF = 7

4 ≤ n̂ewX+n̂ewUHF

n̂ewX+n̂ewUHF ≤ 3
0 ≤ n̂ewX ≤ 5, 0 ≤ n̂ewUHF ≤ 5

x̂1 = 1, x̂2 = 1, x̂3 = 1

Scope propagation (5)
and analysis (6)

Decision (4): Add x1 and x2

and connect x1 to x2

Decision (4): Replace multi new3U with concrete x3

Object scope analysis (6): detect inconsistency

7 ≤ 3 is UNSAT → backtrack

Fig. 2. Scoped partial models and their refinements. Linear equation systems were simplified by carrying out substitutions for conciseness.

predicate symbol S ∈ Σ (type, reference, equivalence
and existence) and for each o1, . . . , on ∈ OQ:

IP (S)(abs(o1), . . . , abs(on)) <abs IQ(S)(o1, . . . , on).

Moreover, existing objects cannot be removed:

∀p ∈ OP : ε(p) ⇒ (∃q ∈ OQ : abs(q) = p).

During refinement, the linear inequality systems are also
refined with respect to the entailment relation. Informally,
during the refinement of SP into SQ, it (i) may split some of
variables into the sum of multiple variables (e.g., all occur-
rences of a variable x̂ in SP are replaced with x̂1 + x̂2 + x̂3

in SQ), and (ii) it may induce stricter constraint over the
variables (e.g., x̂ ≤ 3 is refined to 1 ≤ x̂ ≤ 2).

Definition 9 (Linear inequality system refinement). Given
an abstraction function abs : OQ → OP , a linear linear
inequality system SQ of partial model Q is a refinement
of SP of P (denoted by SP <abs SQ) if SQ � Sabs

P , where
Sabs

P denotes the system of linear inequalities obtained
from SP by replacing every occurrence of each variable
x̂ ∈ OP with

∑
{ŷ | abs(y) = x}.

In this paper, we define the refinement of 3-valued
scoped partial models using 3-valued scoped partial models
using simultaneous logic structure refinement and linear
inequality refinement. Conceptually, each model generation
step will carry out such a refinement thus making the model
larger but less uncertain.

Definition 10 (Partial model refinement). A 3-valued par-
tial model Q = 〈OQ, IQ,SQ〉 refines a partial model
P = 〈OP , IP ,SP 〉 (denoted as P < Q) if there is an
abstraction function abs : OQ → OP where

IP <abs IQ and SP <abs SQ.

If a 3-valued partial model M only contains 1 and 0

values, then M represents a traditional (concrete) instance
model. In an instance model, SM � x̂ = 1 for all x ∈ OM due
to numerical regularity, i.e., each object is concrete.

Fig. 2 depicts three refinements P0 < P1, P1 < P2, and
P2 < P3. P0 and P1 have the same object set (OP0

= OP1
)

and graph structure. Therefore, the abstraction function
abs1 : OP1

→ OP0
is the identity function. Compared to

SP0
, SP1

contains an additional linear equation. Every
solution of SP0

is also a solution of SP1
, which ensures

P0 < P1.
The abstraction function abs2 : OP2

→ OP1
maps

new 3U, newX, newUHF to the objects in P1 with the same
identifiers, while abs2(x1) = new 3U and abs2(x2) =
newUHF. The objects x1 and x2 were split from new 3U

and newUHF, respectively. To obtain SP2
, we replaced each

occurrence of n̂ew3U and n̂ewUFH with n̂ew3U + x̂1 and
n̂ewUFH + x̂2. Furthermore, the constant 1 replaces occur-
rences of x̂1 and x̂2, because x̂1 = x̂2 = 1 (x1 and x2 are
concrete objects). As there are no new linear equations, SP2

is otherwise equivalent to SP2
.

In P2 < P3, x3 replaces the multi-object new 3U with x3,
i.e., abs3(x3) = new 3U, while all other objects of P3 are
mapped to the object with the same name in P2.

Refinement is transitive, i.e., if P1 < P2 and P2 < P3

with the abstraction functions abs1 : OP2
→ OP1

and
abs2 : OP3

→ OP2
, then P1 < P3 with the abstraction

function abs1 ◦ abs2. Hence after a chain of refinements
P0 < P1 < · · · < M , we may obtain a concrete model M .
Such a refinement chain will be constructed during model
generation.

2.4 Predicate evaluation over partial models

While constraints expressed in first-order graph logic with
transitive closure can be easily evaluated over concrete
graph models (with true or false outcome), the evaluation
of graph predicates over partial models naturally has a 3-
valued semantics.

Definition 11 (Semantics of graph predicates). The se-
mantics of a graph predicate ϕ(v1, . . . , vn) over a par-
tial model P with variable binding Z is denoted with
[[ϕ(v1, . . . , vn)]]

P
Z , and defined as follows:

[[C(v)]]PZ :=IP (C)(Z(v))

[[R(v1, v2)]]
P
Z :=IP (R)(Z(v1), Z(v2))

[[ε(v)]]PZ :=IP (ε)(Z(v))

[[v1 = v2]]
P
Z :=IP (∼)(Z(v1), Z(v2))

[[¬ϕ]]PZ := 1 − [[ϕ]]PZ

PREPRINT 7

[[ϕ1 ∧ ϕ2]]
P
Z :=min ([[ϕ1]]

P
Z , [[ϕ2]]

P
Z)

[[ϕ1 ∨ ϕ2]]
P
Z :=max ([[ϕ1]]

P
Z , [[ϕ2]]

P
Z)

[[∃v : ϕ]]PZ :=min {[[ε(v) ∧ ϕ]]PZ,v 7→o | o ∈ OP }

[[∀v : ϕ]]PZ :=max{[[¬ε(v) ∨ ϕ]]PZ,v 7→o | o ∈ OP }

[[ϕ+(v1, v2)]]
P
Z :=max{[[∃m1, . . . ,mn :

R(v1,m1) ∧ . . . ∧R(mn, v2)]]
P
Z | n ∈ N}

Note that graph predicates can be approximately evaluated di-
rectly on partial models by predicate rewriting [26] without
materializing all potential concrete models.

When an error predicate ϕ evaluates to true along vari-
able binding Z , i.e. [[ϕ]]PZ = 1 then this binding Z is called
a match of ϕ in P . If an error predicate ϕ has a match in P ,
then this violation is already a proof of inconsistency.

Definition 12 (Structural (in)consistency of a partial model).
Given a partial model P and a set of error predicates
ϕ1, . . . , ϕk, a partial model P is structurally inconsistent
if there exists ϕi and a binding Z where ϕi has a match in
P , i.e. [[ϕi]]

P
Z = 1. A partial model is structurally consistent

if [[ϕi]]
P
Z = 0 for all ϕi and Z .

Due to the incompleteness, a partial model can po-
tentially be neither structurally consistent, nor structurally
inconsistent during partial model refinement. However, our
model generation approach can avoid inconsistent partial
solutions during model generation by approximation of pred-
icates, so the consistency can be checked before a concrete
instance model is obtained.

2.4.1 Approximation of logic predicates

In [8], [32], we defined over- and under-approximations of
predicates over partial models to drive the model generation
process along meaningful refinements. If an error predicate
ϕ is surely satisfied in a partial model P ([[ϕ]]PZ = 1, under-
approximation of errors), then no concrete instance model M
obtained from P by a refinement P < M can be structurally
consistent [8]. Thus, partial model P can be safely dropped
from the set of candidate intermediate solutions without
discarding any valid instance models, and model generation
needs to continue along a different refinement chain.

Theorem 1 (Forward refinement of predicates [8]).
Let ϕ(v1, . . . , vk) be a logic expression, P and Q partial
models, where P < Q through abs : OQ → OP , and
Z : {v1, . . . , vk} → OQ a variable binding.

• If [[ϕ]]P
abs◦Z = 1, then [[ϕ]]QZ = 1.

• If [[ϕ]]P
abs◦Z = 0, then [[ϕ]]QZ = 0.

One can establish a dual over-approximation property for
the validity of Q, which ensures that no valid model will
marked as invalid (and vice versa):

Theorem 2 (Backward refinement of predicates [8]).
Let ϕ(v1, . . . , vk) be a logic expression, P and Q partial
models, where P < Q through abs : OQ → OP , and
Z : {v1, . . . , vk} → OQ a variable binding.

• If [[ϕ]]QZ = 1, then [[ϕ]]P
abs◦Z ≥ 1/2.

• If [[ϕ]]QZ = 0, then [[ϕ]]P
abs◦Z ≤ 1/2.

2.4.2 Approximation of scope constraints

In scoped partial models, analogous properties hold for the
constraints imposed on multi-objects by object scopes SP .

For that purpose, we introduce the notation #
1/2

v [[ϕ]]PZ to
capture the number of concrete objects and multi-objects
that may satisfy ϕ. Moreover, #1

v[[ϕ]]
P
Z represents the number

of those that must satisfy ϕ. In a concrete model, these two
formulas coincide, and they are equal to the number of
concrete objects that satisfy ϕ.

Definition 13 (Number of matching objects). Given a
logic formula ϕ(u1, . . . , uk, v) and variable binding
Z : {u1, . . . , uk} → OP (which only excludes v),

#
1/2

v [[ϕ]]PZ :=
∑

{x̂i | xi ∈ OP , [[ϕ]]
P
Z,v 7→xi

≥ 1/2}

denotes the sum of scope variables x̂i associated with
objects xi that may satisfy ϕ. Analogously,

#1
v[[ϕ]]

P
Z :=

∑
{x̂ | x ∈ OP , [[ϕ]]

P
Z,v 7→x = 1}

is the sum of scope variables associated with objects that
surely satisfy ϕ.

For example, if {x1, . . . , xm} = {xi ∈ OP | [[ϕ]]PZ,v 7→xi
≥

1/2} are the objects that possibly satisfy ϕ, then the linear
inequality L ≤ x̂1 + · · · + x̂m ≤ U can be written as L ≤

#
1/2

v [[ϕ]]PZ ≤ U .

In P2 in Fig. 2, #
1/2

s [[∃c : subsys(s, c)]]P2 = n̂ew 3U+x̂1 is the
linear expression for the number of objects that may have
an outgoing subsys reference. #1

s[[∃c : subsys(s, c)]]P2 =
x̂1 is the number of objects that surely have an outgoing
subsys reference. (The empty variable binding Z = ∅ was
omitted from the notation for conciseness.)

Now we can evaluate type scope bounds on partial
models checking linear inequalities on the objects scopes in
a partial model P .

Definition 14 (Scope (in)consistency of a partial model).
Given a partial model P and a set of type scope bounds
{Li ≤ Ci ≤ Ui | i = 1, . . . ,m}, P is scope inconsistent if
there exists a type scope bound Li ≤ Ci ≤ Ui such that

SP � #
1/2

v [[Ci(v)]]
P < Li or SP � #1

v[[Ci(v)]]
P > Ui. P

is scope consistent if SP � #1
v[[Ci(v)]]

P ≥ Li and SP �

#
1/2

v [[Ci(v)]]
P ≤ Ui for all i = 1, . . . ,m.

A partial model can potentially by neither scope con-
sistent, nor scope inconsistent during partial model refine-

ment. On a concrete model M , SM � #
1/2

v [[Ci(v)]]
P and

SM � #1
v[[Ci(v)]]

P coincide, and correspond the to the num-
ber of objects of type Ci. Hence scope consistent concrete
models indeed satisfy all type scope bounds.

Now we can over- and under-approximate scope con-
straints on partial models and maintain scope consistency
during model generation as follows:

Theorem 3 (Forward refinement of scopes). Let ϕ be a logic
expression, and P and Q partial models where P < Q
through the abstraction function abs : OQ → OP , and
L,U ∈ Z. Then the following implications hold:

SP �#
1/2

v [[ϕ]]P
abs◦Z < L =⇒ SQ �#

1/2

v [[ϕ]]QZ < L, (i)

SP � #1
v[[ϕ]]

P
abs◦Z > U =⇒ SQ � #1

v[[ϕ]]
Q
Z > U , (ii)

PREPRINT 8

i.e., (i) when objects that may satisfy ϕ violate a lower
bound L in P , they also violate it in any refined partial
model Q, and (ii) objects that must satisfy ϕ similarly
carry forward the violation of the upper bound U .

Therefore, if a partial model P is scope inconsistent, it
can be safely dropped from the set of potential intermediate
solutions, as all of its refinements remain scope inconsistent.

Dually, if Q is scope consistent P < Q, then P cannot be
scope inconsistent. This statement, formalized below, is the
over-approximation of validity for scope constraints.

Theorem 4 (Backward refinement of scopes). Let ϕ be a
logic expression, and P and Q partial models where
P < Q along the abstraction function abs : OQ → OP ,
and L,U ∈ Z. Then the following implications hold:

SQ � #1
v[[ϕ]]

Q
Z ≥ L =⇒ SP 2#

1/2

v [[ϕ]]P
abs◦Z < L,

SQ �#
1/2

v [[ϕ]]QZ ≤ U =⇒ SP 2 #1
v[[ϕ]]

P
abs◦Z > U .

The forward and backward refinement properties en-
able the generation of structurally and scope consistent
models along partial model refinements, where WF and
scope constraints are approximately checked. Theorems 1–
4, as discussed in Section 3.6, ensure the correctness and
completeness of the process.

3 MODEL GENERATION WITH SCOPE REASONING

In this section we exploit numerical information present in
object scopes of PMs to efficiently generate large instance
models that satisfy type scope bounds, as well as structural
and WF constraints. We combine techniques from advanced
graph query processing, SAT solving and integer programming to
tackle the scalability problems of existing graph generation
approaches.

As the core conceptual contribution of the current paper,
we combine the evaluation of relational constraints and
numerical reasoning with object scopes by propagating in-
formation between 3-valued logic interpretation and objects
scopes of the partial model. The intuition behind this idea
is that while constraints expressed as object scopes are not
as expressive as those captured in relational logic, dedicated
numerical solvers allow earlier detection of constraint vio-
lations by considering the global effects of all constraints on
the number of objects in the generated instance models at
the same time. Therefore, the evaluation of the original WF
constraints on the partial models and the scope analysis are
complementary to each other.

As a summary, object scopes will allow early detection
of partial models that cannot be completed to an instance
model due to the inappropriate number (e.g., too few or
too many) of objects, while WF constraint evaluation will
enforce more complex structural validation rules.

3.1 Model generation process

We propose a model generation process (shown in Fig. 3)
based on partial models with object scopes that can exploit
the numeric information present in scoped partial models.
The generation starts from an initial partial model, which is
gradually refined until it obtains a concrete model satisfying
the generation objectives defined by the number of required

objects and the WF constraints. Thus, the generator explores
the state space formed by partial models that are reach-
able by refinement, which ensures that isomorphic states
are explored only once. Our generator has the following
components:

• The initial partial model (1) is the starting point of
the generation, which express type scope constraints
as object scopes. It is either set to the most general
(maximally underspecified) partial model or to a partial
snapshot model provided by an engineer which is to
be extended by the generator. The other inputs of the
generator are the type scope bounds (2) and the structural
and WF constraints (3) to be satisfied by the generated
models.

• Refinement operators include decision rules, unit propa-
gation rules and scope propagator rules to obtain new
PMs from already discovered ones.
– Decisions add new information to the PM and unit

propagations enforce the necessary consequences of
decisions by evaluating structural and WF con-
straints using the 3-valued interpretation. For de-
cisions and unit propagations, we reuse the set of
operators (4) defined by the GraphSolver (GS) [32]
(which were proved to be sound and complete).

– Scope propagators (5) restrict object scopes according
to type scope bounds, structural, and WF constraints.
This gives an opportunity for numerical reasoning
with the new object scope information.

• Object scope analysis (6) performs numerical reasoning
using state-of-the-art integer programming (IP) and
linear programming (LP) techniques on object scopes.
The results of numerical reasoning are fed back to the
partial model and the best-first search strategy.

• 3-valued logic semantics (7) are exploited to over- and
under-approximate WF constraint violations. PMs that
cannot be repaired by refinement (i.e., which surely
violate a constraint) are discarded by backtracking.
– The constraint evaluation component uses an efficient,

incremental graph query engine [11], [43] to ensure the
scalability of this step.1

– Unsatisfiable objects scopes, which are caused by
type scope or WF constraint violations that cannot be
repaired by refinement, are discarded by backtracking
according to Theorems 1–4. Detecting these violations
as early as possible is crucial for reducing the tra-
versed state space.

• Isomorphic PMs reached by different refinements are
detected by state coding (8) based on graph shapes [47],
which ensures that isomorphic states are explored only
once.

• Heuristic best-first search (9) combined with backjump-
ing and random restarts preferentially investigates PMs
that can be quickly refined into valid concrete models.
Object scope analysis allows selecting such PMs more
accurately than existing approaches that only rely on

1. The incremental graph query engine requires in-place updates
to the partial model, which is (technologically) limited to be single-
threaded. Nevertheless, it is possible to parallelize incremental query
evaluation [44], [45], as well as to maintain several partial models for
parallel state space exploration [46]. Integrating these improvements to
the solver is in the scope of future work.

PREPRINT 9

Model generator

(9) State space exploration

(4) Decisions and

unit propagations

(5) Scope

propagations

(6) Object scope analysis (7) Constraint

evaluator

(8) State

coderType hierarchy IP LP

(1) Initial partial model

with object scopes

(2) Type scope bounds

(3) Domain specification

(Metamodel + WF)

(10) Generated model

current
PM

refined 3-valued
interpretation

refined
scopes

back-
track?

heuristic
value

refined existence
and equivalence

back-
track? valid?

isomorphic
state?

Fig. 3. Block diagram of the model generator. Blocks interacting with object scopes are shaded for emphasis.

3-valued interpretation.
• When a structurally (Definition 12) and scope consis-

tent (Definition 14) concrete model (10) is found, it
is recorded as output. The generation is either termi-
nated, or (if additional models are desired) the search
is resumed after backtracking (as if the found solution
was invalid). For the collected outputs, the solution
management features of GraphSolver, which can ensure
the diversity of the models [20], can be leveraged.

Next, we discuss the key novel components of our gen-
erator in more details.

3.2 Initial scoped PM

Model generation starts from an initial partial model Pinit ,
which is a common abstraction of all possible concrete
instance models of the metamodel. In Pinit ,

• there is an object new i for each non-abstract class Ci,
i.e., OPinit

= {new i | Ci ∈ Σ};
• for each Ci, new i is multi, i.e., IPinit

(ε)(new i) = 1/2 and
IPinit

(∼)(new i,new i) = 1/2; and
• IPinit

(Ci)(new i) = 1 (new i is an instance of Ci).
Other class Cj and reference Rk predicates are set to 1 or
0 wherever required by type hierarchy and conformance
constraints. Otherwise they are set to 1/2.

The object scopes SPinit
in the initial PM introduce a

variable n̂ew i for each class Ci, which allows expressing
type scope bounds directly.

If model generation extends an initial partial snapshot, it
can also be incorporated into Pinit . For each given object
xi, SPinit

contains the equality x̂i = 1 to mark xi as a
concrete object with exactly one instance. Interpretation of
type and reference predicates between given objects are
set in accordance with the initial partial snapshot, while
reference predicates leading between new objects are 1/2.

The partial model P0 in Fig. 2 is a fragment of the initial
partial model Pinit for generating instances of the satellite
metamodel in Fig. 1. The multi-objects new 3U, newX, and
newUHF correspond to the classes Cube3U, XComm, and
UHFComm. In SP0

= {n̂ew 3U + n̂ew 3U + n̂ew 3U = 10},
the linear equation (marked as #n in Fig. 2) encodes that
models with exactly 10 objects shall be generated.

3.3 Scope propagation

Scope propagation refines the partial model P =
〈OP , IP ,SP 〉 into a new partial model P < Q =
〈OP , IP ,SP ∪ S〉, where S is a set of linear inequalities
deduced from P , type scope bounds, as well as structural

and WF constraints. Because the inequalities are necessary
consequences of the constraints, every consistent concrete
model P < M , satisfies them. Therefore each consistent
instance model M is also a refinement of Q.

Table 2 summarizes the rules used to deduce linear
inequalities implied by type scope bounds and structural
metamodel constraints from the partial model. In the table,
the relation ≤ refers to the usual implication order 0 ≤ 1/2 ≤ 1

of truth values (and not the refinement order <).

Fig. 2, the linear equations (sp1-sp3) in SP1
were obtained

from P0 and the type scope bound 5 ≤ CommSubsys by
scope propagation. The lower type scope bound CommSub-

sys implies (sp1). By applying the containment hierarchy,
lower and upper bound rules to the containment (CON)
reference subsys [1..2] according to the multiplicity (MUL)
bounds defined in Fig. 1, yielding the linear equations (sp2)
and (sp3)

Other WF constraints which have numerical consequences
can also be translated to object scopes by adding object
scope constraints corresponding to lower and upper bounds
of the number of objects allowed by the constraint.

Consider the error predicate ϕ8(e) :=
(
∃s : subsys(e, s) ∧

KaComm(s)
)
∧¬SmallSat(e)∧¬GroundStation(e). Because

subsys is a containment (CON) reference, ϕ8 enforces that
each KaComm instance be contained in a SmallSat or a
GroundStation. Due to the upper multiplicity (MUL) bound
of 2, for each SmallSat or GroundStation, there may be no
more than 2 KaComm instances. We obtain the following
scope propagation rule as the linearization of ϕ8:

#1
u[[KaComm(u)]]P ≤

2 ·#
1/2

v [[SmallSat(v) ∨ GroundStation(v)]]P .

In our current implementation, the user needs to man-
ually provide linear inequality versions of well-formedness
constraints to exploit them during object scope propagation.
A higher level of automatization seems feasible (similarly as
in [48]) and is in the scope of future work.

3.4 Object scope analysis

Object scope analysis is responsible for numerical reasoning
with object scope constraints, which guides model genera-
tion and refines the interpretation IP . The refined relations
may allow applying further unit and scope propagation
operators, which in turn are opportunities for further scope
analysis. The analysis requires efficient maintenance and
solution of linear constraints.

PREPRINT 10

TABLE 2
Scope propagation rules for type scope bounds and structural constraints

Constraint / class diagram Description Linear inequality

Li ≤ Ci

Lower type scope bound. There must be at least Li instances of Ci in
the concrete model. Hence objects that may be Ci (IP (Ci)(x) ≥ 1/2) must
represent at least Li concrete objects.

Li ≤ #
1/2

v [[Ci(v)]]
P

Ci ≤ Ui

Upper type scope bound. There may be at most Ui instances of Ci in
the concrete model. Hence object that must be Ci (IP (Ci)(x) = 1) may
represent at most Ui concrete objects.

#1
v [[Ci(v)]]

P ≤ Ui

A B
[_..k] ref

[m.._] refinv

Upper bound with inverse lower bound. Each A may be connected to at
most k B instances by the reference ref, and each B must be connected to
at least m A instances by the inverse refinv. Hence there can be at most k
B instances for each possible m A instancess.

m ·#1
u[[B(u)]]

P ≤ k ·#
1/2

v [[A(v)]]P

A B
[m.._] ref Lower bound. Each A instance must be connected to at least m B

instances by the reference ref. Hence for each existing A instance, potential
targets of ref must represent at least m concrete objects.

m ≤ #
1/2

v [[ref(u, v)]]Pu 7→x

for all x ∈ OP , [[ε(u) ∧ A(u)]]Pu 7→x = 1

B

[_..k1] ref1

An

A1

…

[_..kn] refn

Containment hierarchy, upper bound. Let A1, . . . ,An be the possible
containers of B. For every i = 1, . . . , n, instances of the class Ai can
contain at most ki instances of B (infinite upper bounds ki = ∗ are
replaced by a suitably large finite constant K). Hence for each possible
instance of each Ai, there may be no more than ki instances of B.

#1
u[[B(u)]]

P ≤

n∑

i=1

ki ·#
1/2

v [[Ai(v)]]
P

B

[m1.._] ref1

An

A1

…

[mn.._] refn

Containment hierarchy, lower bound. Let A1, . . . ,An be the possible
containers of B. For every i = 1, . . . , n, each instance of the class Ai must
contain at least mi instances of B. Hence for each instance of each Ai,
there must be at least mi possible instances of B.

n∑

i=1

mi ·#
1
u[[Ai(u)]]

P ≤ #
1/2

v [[B(v)]]P

Linear constraint maintenance. As the size of the partial
model P grows, the number of variables and constraints in
SP may also grow. Two techniques reduce the size of SP

to improve analysis. Firstly, concrete objects always stand
for a single object (SP � x = 1 if x is concrete). Instead
of explicitly storing coefficients of a variable x for each
concrete object and linear constraint, occurrences of x are
replaced with the constant 1. Thus, the number of variables
equals to the number of multi-objects, which usually does
not grow during model generation.

Secondly, redundant linear inequalities are eliminated
to prevent the number of scope constraints from growing
indefinitely, exploiting the following two properties: (i) In
our decision and scope propagation rules [32], no new
multi-objects are added to the partial model. (ii) In our object
scope analysis rules, the coefficients of multi-object variables
only depend on the meta-model. This results in many pairs
of constraints of the form L1 ≤ α1x̂1+ · · ·+αnx̂n ≤ U1 and
Ł2 ≤ α1x̂1 + · · · + αnx̂n ≤ U2, which can be replaced by
max{L1, L2} ≤ α1x̂1 + · · ·+ αnx̂n ≤ min{U1, U2}.

Numerical reasoning. Numerical reasoning carried out by
object scope analysis (i) discovers refinements of the exis-
tence ε and equivalence ∼ relations implied by the object
scopes, (ii) initiates backtracking on unsatisfiable object
scopes, and (iii) calculates a heuristic for guiding the search
based on the number of objects required to finish the model.

Scopes are analyzed to find lower and upper bounds of
object scope variables x associated with each object x ∈ Ox.
If the lower bound is positive (SP � x̂ ≥ 1), x represents
at least one object and cannot be removed from P . We set
IP (ε)(x) = 1 to record this fact. If the upper bound is 1
(SP � x̂ ≤ 1), x represents at most one object, implying
IP (∼)(x, x) = 1. Lastly, an upper bound of 0 (SP � x̂ ≤ 0)
means x can be removed from P .

If a contradiction is detected when obtaining variable

bounds, there is no instance model represented by the
scoped PM P . The generator discards P and backtracks.

Otherwise, the sum of lower bounds is used as a
heuristic in best-first search to approximate the number of
decisions still required to obtain a valid instance model.
This heuristic prefers the creation of smaller models when
possible. However, due to the randomized state-space ex-
ploration, it does not guarantee models of minimum size.

In Fig. 2, the linear equations (sa), which represent fea-
sible lower and upper bounds of the object scopes, were
obtained by scope analysis of SP1

\ {(sa)}.
Scope analysis of P3 detects an inconsistency (high-

lighted in red in Fig. 2) caused by the unsatisfiable object
scopes SP3

. No refinement of P3 is a valid instance model.
Therefore P3 can be safely discarded by backtracking.

3.5 Scope analysis methods

We propose three methods for the reasoning, which are
shown in Table 3. The Type hierarchy based analysis can only
handle linear equations derived from type scope bounds.
It is a quick preliminary step that can detect some contra-
dictions early without invoking an external solver. Analysis
with Integer Programming (IP) and Linear Programming (LP)
solvers is considerably more precise, and handles any linear
equations. However, the invocation of the external solver
may be costly, especially in the case of IP, which is NP-
complete. In Section 4, we compare the effectiveness of these
approaches.

Type hierarchy based scope analysis analyses linear equa-
tions coming from type scope bounds, which are always of
the form Li ≤ x̂1 + · · · + x̂k ≤ Ui (Table 2). Exploiting
that all variables in SP are nonnegative, the inequalities
Li ≤ x̂1+ · · ·+ x̂k ≤ Ui and Lj ≤ x̂1+ · · ·+ x̂k+ · · ·+ x̂m ≤
Uj , which are formed when Ci is a subtype of Cj , can be

PREPRINT 11

TABLE 3
Scope analysis methods

Type scope Structural Other WF

Type hierarchy • ◦ ◦
IP solver • • •
LP solver • • •

Legend: ◦ = not supported, • = supported

replaced with Lj ≤ x̂1 + · · · + x̂k ≤ min{Ui, Uj} and
max{Li, Lj} ≤ x̂1 + · · ·+ x̂k + · · ·+ x̂m ≤ Uj . This process
is performed for each pair of compatible inequalities until
no more bounds can be tightened. Contradiction is detected
when the lower bound of some inequality becomes larger
than the upper bound.
Integer programming solvers are used for scope analysis by
translating the object scope constraints into an IP problem
and repeatedly solving for lower and upper bounds of
variables. Formally, for all object x ∈ OP , the problems

xmin = min x̂, xmax = max x̂,
s.t. SP , s.t. SP ,

∀y ∈ OP : ŷ ∈ N, ∀y ∈ OP : ŷ ∈ N

are solved and the inequality xmin ≤ x̂ ≤ xmax is added to
SP . Results of solver calls are cached to reduce invocations.
Linear programming. By replacing the set of natural num-
bers N with the nonnegative reals R≥0, the LP relaxation of
the problem is obtained. In contrast with IP, LP can be solved
in polynomial time. However, the obtained bounds for
scope variables may not be as accurate, and opportunities
for backtracking or refinement of the ε and ∼ predicates
may be detected later. In order to detect these opportunities
as early as possible, we rely on the fact that the number
of object represented by a multi-object is always an integer.
When the relaxation produces an inexact solution with non-
integer xmin or xmax , the solution is rounded to assert the
constraint ⌈xmin⌉ ≤ x̂ ≤ ⌊xmax ⌋.

3.6 Correctness and completeness

As the main benefit of 3-valued PMs, a multi-object may
represent multiple separate, unequal concrete objects in an
instance model. As such, even sets of very large instance
models can be abstracted by a small PM, which enables the
model generator to use a concise representation of their state
as a scoped partial model.

Based on Section 2.4, logic constraints can be approxi-
mately evaluated over intermediate solutions. Forward- and
backward approximation theorems Theorems 1 and 3 ensure
that if a partial model violates a WF or scope constraint, all
refinements of that intermediate solution will also surely
violate it, thus it can be safely discarded. WF and scope con-
straints are also directly evaluated on all finished (concrete)
models, thus ensuring the correctness of the approach, i.e.
all generated models are instances of the metamodel, and
satisfy all WF and scope constraints.

Additionally, according to Theorems 2 and 4, if there is
a valid concretization of an intermediate model, the partial
model will not be discarded due to WF and scope constraint
violations. In a bounded scope, all valid partial models will

be considered [8]. Therefore, the approach is complete within
a bounded scope (i.e., when models up to a finite size are
sought) and it will explore all valid solutions.

While multiplicity reasoning can greatly increase the
performance the model generator, the descriptive power of
ordinary PMs is limited to linear constraints. This limits the
multiplicity reasoning on simple scopes, but ensures that the
numerical problems can be efficiently solved in each step of
model generation.

4 EXPERIMENTAL EVALUATION

We carried out an experimental evaluation of generating
consistent instance models with multiplicity reasoning pro-
vided by object scopes to address the following research
questions:
RQ1 How effective are the different scope analysis tech-

niques for model generation in terms of execution time?
RQ2 How does our approach scale in execution time on

satisfiable problems. . .
RQ2.1 . . . in the presence of type scope bounds?
RQ2.2 . . . with unbounded type scopes?

RQ3 How does our approach scale in execution time on
unsatisfiable problems?

RQ4 To what extent can type scope bounds help in gener-
ating models with realistic type distributions?

4.1 Domains

Due to the absence of systematically constructed perfor-
mance benchmarks for the evaluation model generation for
DSLs, we evaluated our approach in the context of 3 dif-
ferent domains (and the corresponding DSLs) that include
complex structural and WF constraints. The first domain
served as the running example in this paper (Fig. 1):

• SAT is the design space exploration challenge intro-
duced by researchers at NASA Jet Propulsion Lab [33].
As a specific characteristic of this case study, structural
constraints specify the number of CommSubsystems
and Payloads that can be fitted to a number of Space-

craft, while WF constraints encode additional design
rules concerning the satellite communication network.

Two additional case studies exemplify test generation sce-
narios for industrial modeling tools:

• SCT: Yakindu is an industrial modeling environment
for statecharts [49]. This scenario represents generating
tests for a concrete modeling tool (Yakindu Statecharts).
The WF constraints of the language help avoiding com-
mon semantic errors (e.g., the lack of an Entry object
signifying state). As a specific characteristic of this case
study, most constraints can participate in object scope
propagation (after linearization) to determine the possi-
ble numbers of objects (e.g., the Entry and its outgoing
Transition instance that denotes the initial state).

• MET: Ecore is the meta-modeling language of EMF [34].
This scenario represents test generation for a modeling
framework (e.g., code generation and persistency). As a
specific characteristic, while this case study uses a large
number of classes in a complex inheritance hierarchy
along with WF constraints, only few of them can be
translated into linear inequalities for scope propaga-
tion.

PREPRINT 12

In addition to their practical relevance, the these two lan-
guages have been used as case studies by multiple model
generation papers [32], [36], [50], [51], [52], [53].

4.2 Scope analysis methods

Setup. This experiment aims at determining which scope analysis
method should test engineers use for scalable model generation.
We generated models containing up to 100 objects in the
SAT domain.

The original GraphSolver (GS/O) served as a baseline
(with type scopes translated to WF constraints). We eval-
uated the Type Hierarchy (GS/S/TH) scope analysis method,
which relies on no external solver, in addition to the Integer
Programming (GS/S/IP) and Linear Programming (GS/S/LP)
methods. We selected external solvers widely used in indus-
try and research from the COIN-OR suite: COIN-OR Branch
and Cut v2.9.9 for GS/S/IP and COIN-OR Linear Programming
Solver v1.16.10 for GS/S/LP2.

As there were no manually created models available for
SAT, type scope bounds derived from engineering expecta-
tion. When specifying the type scope bounds, we ensured
that they were satisfiable, i.e., a valid model exists with the
specified number of objects. Unsatisfiable scope bounds are
quickly detected by the IP/LP sovers, but cause other ap-
proaches to explore a very large number of partial models.

A timeout of 5 minutes was set for each model gener-
ation with increasing model sizes. Runs for a given model
size were repeated 30 times to account for variance caused
by the random exploration and backjumping employed in
the generator, as well as the runtime environment.

We also accounted for warm-up effects and memory
handling of the Java 11 virtual machine (JVM). Mitigating
warm-up effects for benchmarks of small programs (exe-
cution time < 2 s) may need a large number of runs [55].
However, since our macrobenchmarks for the scalability
evaluation GS and A had much longer execution times (up
to 300 s), 10 extra runs before the actual measurements and
explicit garbage collector calls between runs were sufficient
for the stabilization of performance.

All measurements were executed on a high-performance
server (2 × AMD EPYC 7551 32-core, 64-thread 2 GHz CPU,
512 GiB RAM) with a hard memory limit of 32 GiB, 16 GiB
of which were assigned to the JVM heap to account for
additional memory usage by IP and LP solvers. While
the model generator is single threaded, parallel garbage
collection of the JVM could take advantage of the 8 CPU
cores (16 hardware threads) assigned to a measurement.
Results. The median running times of the approaches for
different model sizes are shown in Fig. 10.

GS/O frequently ran out of the 300 s limit when gen-
erating models larger than 30 objects. Timeouts were less
frequent in the case of 20 and 40 objects, which caused
the median execution time of all runs (including timed
out ones) to be discontinuous. This phenomenon can be
partially explained by the interaction of type scope bounds

2. We also experimented with the νZ [54] v4.8.5 optimizing SMT
solver. With Real variables (used as an LP solver) it produced results
similar to CBC and CLP, albeit it performed object scope analysis
slightly slower. With Integer variables (used as an IP solver), it produced
out-of-memory errors. Results were omitted for space considerations.

and structural multiplicity constraints in SAT, which are
somewhat easier to satisfy for these model sizes. GS/S/TH
only reached the time limit for 80 and 90 objects. The
median execution times for GS/S/IP and GS/S/LP were
much smaller, not exceeding 65 s to generate models with
100 objects. This makes them the only approaches that were
able to produce models of this size.

For all approaches, most of the execution time was spent
in the decision and scope propagation, state coding, and
exploration steps. The overhead of scope analysis remained
below 3.1 s even for the largest generated models, which is
negligible compared to other phases of model generation.

For models with 90 elements, TH scope analysis reduced
number of states (partial models) explored during success-
ful model generation from 41 000 (GS/O) to 36 000. IP and
LP further reduced this to around 4000 states, indicating the
effectiveness of scope analysis in discarding partial models
with no valid concretization. While IP and LP reduced the
state space virtually identically, linear programming (LP)
was slightly faster: The overall runtime of the external solver
was 1.7 s when generating 100-object models compared to
the 3.1 s of IP.

RA1 Object scope analysis can significantly reduce both
the execution time and the state space of model genera-
tion. Linear programming can provide the largest reduc-
tions with only a minor overhead of external solver calls.

4.3 Scalability of model generation

Setup. This experiment aims at determining whether our model
generation runs in practical time for test case generation with
type scopes. We generated models with increasing size in
the SAT, SCT, and MET domains. For answering RQ2.1, we
used scope bounds (+S) based on engineering expectations
for SAT, and bounds based on real type distributions for
SCT and MET (see the elaboration of RQ4). For answering
RQ2.2, type scope bounds were omitted (−S) by definition.

The hardware environment and measurement protocol
was identical to that of RQ1. We compared the scalability of
the following model generators:

• A: Alloy Analyzer [12] v4.2 is a popular model finder
based of SAT solving (we used the default Sat4J back-
ground solver). We translated the model generation
problem into an Alloy model by known mappings [13].
We benchmarked both the Sat4J (A/S4J) and MiniSat
(A/MS) background solvers.

• GS/O: To generate models with type scope bounds us-
ing the original GraphSolver, the bounds were translated
into WF constraints.

• GS/S: Following the findings of RQ1, our graph gener-
ator used LP for object scope analysis.

Results. Figs. 4 and 5 show the execution times of the gener-
ators. The random exploration and backjumping heuristics
caused large variance in the execution time, including fre-
quent (but nondeterministic) timeouts of GS/O for larger
models. To enable the in-depth analysis of these effects, the
figures show boxplots of successful execution times for a
given model size. Thus, the medians for GS/O are lower
than those in Fig. 10, which were computed across all
(successful or unsuccessful) runs. A red line chart shows

PREPRINT 13

●●●

●●●
●

●●●●●●●

●●

●●●●
●●●

●●●

●●●

●

●●● ●

●

● ●●● ●●●●
●●●

●

●
●

●●
●●●

●

●

●

●
● ●

●
●

●

●

●

●

●●●●
●

●●●● ●
●●

●

●● ●

●
●

●●●
●

●●

●

●

●●

●

●

●

● ●●●● ●● ● ●●● ●●● ●● ●●●
●●

● ●●●
● ● ●

●
●

25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100

50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200

25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100

0
1
0
0

2
0
0

3
0
0

0
1
0
0

2
0
0

3
0
0

0
1
0
0

2
0
0

3
0
0

0
2
5

5
0

7
5

1
0
0

0
2
5

5
0

7
5

1
0
0

0
2
5

5
0

7
5

1
0
0

Model size (#Objects)

R
u
n
ti
m

e
 (

s
) T

im
e
o
u
t (%

)

S+S | A/S4J S+S | A/MS S+S | GS/O S+S | GS/S

S+S | A/S4J S+S | A/MS S+S | GS/O S+S | GS/S

M+S | A/S4J M+S | A/MS M+S | GS/O M+S | GS/S

Fig. 4. Model generation with type scope bounds

●●●●

●

●●

●●●●●

●●

●●●●

● ●
●

● ●

●● ● ●●●

●●●

●● ●

● ●
●●

●

●

●●●● ●●●● ●●
●
● ●

●
●

●
● ●

● ● ●

●

●

●

●●● ●●●
●●

●
●
●

● ●●●

500 2000 500 2000 500 20001250 500 1250 2000

100 300 500 100 300 500 100 300 500 100 300 500

25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100

0
1
0
0

2
0
0

3
0
0

0
1
0
0

2
0
0

3
0
0

0
1
0
0

2
0
0

3
0
0

0
2
5

5
0

7
5

1
0
0

0
2
5

5
0

7
5

1
0
0

0
2
5

5
0

7
5

1
0
0

Model size (#Objects)

R
u
n
ti
m

e
 (

s
) T

im
e
o
u
t (%

)

12501250

S−S | A/S4J S−S | A/MS S−S | GS/O S−S | GS/S

S−S | A/S4J S−S | A/MS S−S | GS/O S−S | GS/S

M−S | A/S4J M−S | A/MS M−S | GS/O M−S | GS/S

Fig. 5. Model generation without type scope bounds

the percentage of unsuccessful (timed out) executions out of
the 30 runs for a given model size.

A encountered out of memory errors as the SAT prob-
lems grew too large with the increase of the desired number
of objects in the models. In contrast, GS/O and GS/S were
only limited by the execution timeout as limit (and hence
the number of partial models the could explore) thanks to
the concise representation of the space state by PMs.

It is clear that type scope bounds make the model gen-
eration tasks more challenging. For SAT, GS/O was unable
to generate any model of 100 objects. With scope bounds,
timeouts started to appear from 30 objects, while without
bounds, models with up to 70 elements were generated
without timing out. GS/S could generate models with 100

objects within 108 sec. However, GS/S with scope bounds
exhibited some random slowdowns, where generation took
an exceedingly long time or reached the time limit. These
slowdowns, which were not experienced during model gen-
eration without scope bounds, could possibly be mitigated
by refining the backjumping and restarting strategies.

The interaction of type scope bounds with structural and
WF constraints in SCT made generation of models with
realistic type distributions difficult. GS/O failed to generate
any model of 40 objects or larger, while GS/S could generate
models with 200 objects within 95 sec.

The removal of type scopes bounds greatly simplifies
the task. Both GS/O and GS/S could produce models with
up to 500 objects. In this domain, type scope analysis in
GS/S yielded a median overhead of 16 s (on a total runtime
of 149 s) without reducing the state space (and thus the
execution time) of the generator compared to GS/O for
models with 500 objects.

As MET does not contain any structural multiplicity
constraints or WF constraints that affect the number of
possible objects in the model, GS/S could only analyze the
type scope bounds themselves. This reduced the median
runtime of successful model generation by 18 s and the
fraction of timed out runs by 36%. Like SCT, the removal of
type scope bounds in MET made the problem easier. GS/O
and GS/S could generate models with up to 2000 elements
with similar performance (with a median scope analysis
overhead of 21 s for models of 2000 objects). A failed to
produce a model even for the smallest size (200 objects) in
this scenario.

As a stress test, we also determined the maximum size
of a model that GS/S can generate within the time limit of
5 minutes. With type scope bounds, these were 155 objects
for SAT, 436 for SCT, and 121 for MET. Without satisfying
the type scope bounds, much larger models are possible: 157
objects for SAT, 649 for SCT, and 2631 for MET.

RA2.1 For model generation problems with type scope
bounds, object scope analysis improves the scalability
model generation. The effect is most visible with up to
7-fold reduction in execution times when the type scope
bounds interact with structural multiplicity constraints
and WF constraints.
RA2.2 In model generation problems without type scope
bounds, object scope analysis improves the scalability of
model generation in domains with complex structural
multiplicity constraints. When no such constraints are
present, where is no performance improvement, but the
overhead incurred by the analysis remains small.

4.4 Behavior on unsatisfiable problems

Setup. The purpose of this experiment is to assess the performance
degradation occurring in our approach in case of unsatisfiable
problems. Due to the lack of existing benchmark sets of
unsatisfiable model generation problems, we introduces two
modifications to the domains from RQ2.

Firstly, we extended each domain with a negated
WF constraint, obtaining model generation problems with
unsatisfiable WF constraints (+ WF). For example, in
SAT+ WF, we added the error pattern ϕ′

4(s) := ¬ϕ4(s),

PREPRINT 14

which specifies that no Spacecraft may have a commu-
nication path to the GroundStation. Combined with the
original ϕ4 that forces such communication paths for all
Spacecraft, the set of WF constraints {ϕ1, . . . , ϕ4, . . . ϕ8, ϕ

′
4}

have no consistent model. Error patterns for SCT+ WF and
MET+ WF were defined analogously.

Secondly, we also studied the effect of unsatisfiable type
scope constraints (+ S), i.e., type scope constraints that corre-
spond to no well-formed models. We changed the required
number of objects such that multiplicity (MUL) and con-
tainment (CON) constraints cannot be satisfied due to type
scope bounds, e.g., in SAT+ S, we required at least 30%
of the objects be Satellites but only 25% be CommSubsys

instances, despite a Satellite having to contain at least one
CommSubsys. We omitted MET from this benchmark, as it
does not have any MUL constraints on CON relations.

Although we selected the type fractions to make type
scope bounds unsatisfiable, rounding the fractions to whole
numbers (quantization errors) of objects may cause the
problems to be nevertheless satisfiable for very small in-
stances. Thus, we had to account for these small satisfiable
instances in our analysis.

Results. Fig. 6 shows the execution times of the generators
on + WF problems up to 15 objects.

Even though GS/S are primarily aimed at model genera-
tion, and thus had to explore a large portion of possible par-
tial models before concluding unsatisfiability, they remained
competitive in SAT+ WF and SCT+ WF in problems with
up to 9 and 11 objects, respectively. Because SAT is unsat-
isfiable for less than 10 objects (even without + WF), GS/S
could terminate without exploring the state space for the
first 5 cases. In SCT+ WF, although GS/S could not outright
avoid state space exploration, it explored 16 times less states
than GS/O thanks to scope analysis. A, which is much better
suited for problems with unsatisfiable constraints, managed
to prove unsatisfiability within 4 s for all model sizes in
SAT+ WF and SCT+ WF.

MET+ WF was more difficult for all approaches: while
A could prove unsatisfiability with up to 11 objects (running
out of memory at 12 objects), GS/O and GS/S did not
terminate within the time limit even for 5 objects, exploring
19 000 states before timeout.

Figs. 7 and 8 show the execution times of the approaches
on + S problems. For small + S problems with up to
n = 15 objects, both A and GS/S terminated successfully
within 5 s except in the cases of n = 12 and 13 in SAT+ S

for GS/S. Due to the rounding of the type scope fractions
into whole number bounds, these cases did not result in im-
mediate unsatisfiable systems of linear equations. Therefore,
GS/S had to explore 4982 and 5413 states, respectively, be-
fore concluding unsatisfiability. There also was a rounding
effect that made SCT+ S satisfiable for n = 8. The model
was found by GS/S after exploring 16 states. GS/O ran
out of time after 10 objects, because it had to exhaustively
enumerate partial models.

For larger problems with up to 100 objects for SAT+ WF

and up to 200 objects for SCT+ WF in Fig. 8, the execution
time of GS/S remained constant below 5 s. In contrast, the
execution times of A increased cubically with n.

●● ●●● ●●● ●●●● ●●● ●●● ●

●●● ●● ●●●●●● ● ● ●●● ●● ●

●●●●● ●●
●●●●

●● ● ●●● ●●●●● ●●● ●● ●●●● ●● ● ●●●● ●●

●●● ● ●● ●●●●● ● ●● ●

●● ●●●●● ●●●●● ●●● ●●●●
●●●●●●●

●

●

●
●●

●

●●●

5 10 15 5 10 15 5 10 15 5 10 15

5 10 15 5 10 15 5 10 15 5 10 15

5 10 15 5 10 15 5 10 15 5 10 15

0
1
0
0

2
0
0

3
0
0

0
1
0
0

2
0
0

3
0
0

0
1
0
0

2
0
0

3
0
0

0
2
5

5
0

7
5

1
0
0

0
2
5

5
0

7
5

1
0
0

0
2
5

5
0

7
5

1
0
0

Model size (#Objects)

R
u
n
ti
m

e
 (

s
) T

im
e
o
u
t (%

)
S+↯WF | A/S4J S+↯WF | A/MS S+↯WF | GS/O S+↯WF | GS/S

S+↯WF | A/S4J S+↯WF | A/MS S+↯WF | GS/O S+↯WF | GS/S

M+↯WF | A/S4J M+↯WF | A/MS M+↯WF | GS/O M+↯WF | GS/S

The minimum model size in the domain, even without the added

unsatisfiable +↯WF well-formedness constraints, is 10.

S

Fig. 6. Model generation with unsatisfiable well-formedness constraints
with problem sizes up to 15 objects

● ●● ●● ● ● ●● ●●●

●●●● ●● ● ●●●●●● ●● ●

● ●●● ●●●●● ●● ●●● ●● ● ●●● ●●

●●● ● ● ●●●● ●●●●●● ●● ●

● ●●●

● ●●●● ● ●●

●

●●
●

● ● ● ● ● ●●● ●●

5 10 15 5 10 15 5 10 15 5 10 15

5 10 15 5 10 15 5 10 15 5 10 15

0
1
0
0

2
0
0

3
0
0

0
1
0
0

2
0
0

3
0
0

0
2
5

5
0

7
5

1
0
0

0
2
5

5
0

7
5

1
0
0

Model size (#Objects)

R
u
n
ti
m

e
 (

s
) T
im

e
o
u
t (%

)

S+↯S | A/S4J S+↯S | A/MS S+↯S | GS/O S+↯S | GS/S

S+↯S | A/S4J S+↯S | A/MS S+↯S | GS/O S+↯S | GS/S

GS/S required state space exploration in the

 domain for models of size 12 and 13
The model generation problem in the

 domain was satisfiable for size 8S S

Fig. 7. Model generation with unsatisfiable type scope bounds with
problem sizes up to 15 objects

●

●● ●●● ●●

●
●
●

●●●●

●●

● ●

●

●●● ●●●

● ● ●●● ● ● ●● ● ● ●●●●

50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200

25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100

0
1
0
0

2
0
0

3
0
0

0
1
0
0

2
0
0

3
0
0

0
2
5

5
0

7
5

1
0
0

0
2
5

5
0

7
5

1
0
0

Model size (#Objects)

R
u
n
ti
m

e
 (

s
) T

im
e
o
u
t (%

)

S+↯S | A/S4J S+↯S | A/MS S+↯S | GS/O S+↯S | GS/S

S+↯S | A/S4J S+↯S | A/MS S+↯S | GS/O S+↯S | GS/S

Fig. 8. Model generation with unsatisfiable type scope bounds with
problem sizes up to 100 and 200 objects

PREPRINT 15

SCT

●
● ●●● ●

●

●●●
●●● ●● ●● ●● ●● ●●● ●●

●●●●●●●

●

●●●● ●●●●●

●● ●●●●●●●● ●● ●● ● ●●●●●●●●●●●●●●●●
●●●●●●●

●

●●●● ● ● ●●● ●●● ●● ●● ●● ●● ● ●● ●● ●●● ●●● ●● ●● ●●●

Transition

Statechart

State

Region

FinalState

Exit

Entry

Choice

0.00 0.25 0.50 0.75 1.00

Human

GS/O

GS/S

MET

●●●●●●

●● ●

●
●● ●●● ●●● ● ●● ● ●● ●

●●
●●● ●● ●●●●● ●● ● ● ●●●●●

●●● ●●●●● ●● ● ● ●●● ●● ●●● ●●●●

●●● ●● ●●● ●● ●

●
●● ●● ●● ●●●● ●●●

●
●● ●●●●●

●●
●● ●●●● ●●● ●●● ●● ● ●● ●●● ●●● ●●●●●

●
● ●

●●●● ●

ETypeParameter

EString...Entry

EReference

EParameter

EPackage

EOperation

EGenericType

EEnumLiteral

EEnum

EDataType

EClass

EAttribute

EAnnotation

0.00 0.25 0.50 0.75 1.00

Fig. 9. Fractions of objects of given types in SCT and MET

RA3 For model generation problems with unsatisfiable
well-formedness constraints, object scope analysis can
improve the scalability of search space exploration for
model generators. However, SAT solvers are better suited
to tackle such problems. For model generation prob-
lems with unsatisfiable type scope bounds, object scope
analysis can eliminate the need for exploring the state
space, and the time taken for proving unsatisfiability is
independent from the (potential) size of the state space.

4.5 Type distributions of models

Setup. This experiment aims at comparing test generation ap-
proaches (without and with type scope bounds) where the test en-
gineer desires to avoid unrealistic test models. To address RQ4,
we calculated the distribution of the fractions of objects of
given types (i.e. the number of objects of a type in the model
divided by the model size) of human (manually created)
models, and compared them to the type distributions of au-
tomatically generated models. The use of type distributions
as means of realistic nature of models was motivated by
[18], [19]. As human models were only available for SCT

and MET, we excluded SAT from this comparison.
• Human: We gathered 304 SCT models with sizes be-

tween 90 and 110 objects that were submitted as part
of a homework assignment [56], where students solved
similar (but not identical) modeling challenges. For
MET, we collected 153 manually created class diagrams
(those generated from XML schema were excluded)
with sizes between 50 and 200 from open source
projects hosted on GitHub3.

3. We queried the GitHub (https://github.com) API for the 1000 most
recent Ecore models as of July 31st, 2019 and filtered for model size and
the lack of XML schema.

• GS/O: For both domains, we generated 30 models of
100 objects (without any type scope bounds) with the
original GraphSolver [32] tool.

• GS/S: We generated models with realistic type distribu-
tions with our graph solver enhanced with type scope
support. To determine the lower and upper bounds for

each type, we computed the lower Q
(1)
i and upper Q

(3)
i

quartiles of the object fractions in the Human models
for each non-abstract class Ci. Then for the generation
of models with n = 100 objects, we added the type

scope bounds
⌊
Q

(1)
i n

⌋
≤ Ci ≤

⌈
Q

(3)
i n

⌉
.

Results. The distribution of type fractions is shown in
Fig. 9. In SCT, GS/O generated a large number of Exit and
FinalState objects compared to the Human while it almost
entirely omitted Choice, Entry, and Region. The average dis-
crepancy between the type distribution of Human models in
GS/O models is 25 objects per model (25%) that would need
a different type to match the Human distribution.

In MET, GS/O overused the EAnnotation, EGenericType,
EStringToStringMapEntry, and ETypeParameter classes at
the expense of EAttribute, EClass, and EReference objects.
The average discrepancy was 83 objects per model (with
100 objects). Models generated by GS/S had identical type
distributions, which for EAttribute and EClass coincided
with the upper type scope bound.

Therefore, GS/O failed to generate models matching the
type distributions of Human models. In contrast, GS/S can
be parameterized to satisfy type distribution requirements,
e.g., probabilistic types and histograms [19]. Furthermore, to
capture more complex correlation between distributions of
different types, users can inspect generated models and
easily (albeit manually) refine type scope bounds to exclude
results that are not realistic, using an iterative process based
on previously generated undesired models.

All models generated by GS/O and GS/S were con-
nected (i.e. no islands or forest of nodes) and they were
structurally different from each other, which is guaranteed
by the underlying state space exploration strategy [32].

RA4 Models generated without type scopes bounds
greatly differ in type distribution compared to human
(manually created) models. The use of type scope bounds
allows generating nontrivial, connected graph models
with designated type distributions.

While type distributions were found to be a useful
metric to characterize the realistic nature of models [8], [18],
further investigations are necessitated along various metrics
to claim that the auto-generated models are truly realistic.

We also confirmed that the internal diversity [20] of
the synthesized models is not impacted negatively by the
proposed approach. The relevance of this metric in mutation
testing is shown in [20].

4.6 Limitations and threats to validity

Limitations. Our approach shares some of its strengths
and limitations with GraphSolver [32]. Namely, it operates
over connected sparse graphs with edges and relations, i.e.,
without edge identities or parallel edges (which is suitable
to represent standard EMF models).

PREPRINT 16

GS/O GS/S/TH GS/S/IP GS/S/LP

10 20 30 40 50 60 70 80 90100 10 20 30 40 50 60 70 80 90100 10 20 30 40 50 60 70 80 90100 10 20 30 40 50 60 70 80 90100

0

20

40

60

0

20

40

60

0

100

200

300

0

100

200

300

Model size (#Objects)

R
u
n
ti
m

e
 (

s
)

State coding

Exploration

Decision and

unit propagation

Scope analysis

Initialization

Fig. 10. Comparison of scope analysis methods on the SAT domain

The expressive power of the graph predicates captur-
ing WF constraints is equivalent to first-order logic with
transitive closure over binary predicates. While type scope
bounds and object scopes do not bring additional expres-
siveness, so they can be transformed back into WF con-
straints, they considerably improve scalability in various
domains. Object scopes consisting of linear inequalities can
exactly encode type scopes bounds (including the bound on
the overall model size), and they can also encode weakened
versions of structural MUL and CON constraints (including
the XOR between different containment relations of objects),
guiding state space exploration in challenges that often
arise from class diagrams. However, for model generation
tasks without such constraints, it may not be possible to
(even manually) encode useful linear inequalities, and the
introduced object scope analysis may pose a slight overhead
over the baseline generator.

The sound and complete set of decision rules allow
formal reasoning within the bounded scope defined by type
scope bounds. However, unlike many SAT and SMT solvers,
there is currently no support for an unsatisfiable core (a
minimal contradictory set of formulas) that would highlight
the contradiction between WF constraints or type scopes.

The work presented in this paper only considers classes
and references, but not attributes. While the three-valued
logic framework can support basic attributes, placing and
maintaining scope bounds for attribute values would re-
quire additional abstractions, such as [40].

In unsatisfiable problems, proving unsatisfiability with a
model generator may require exponential time to exhaus-
tively traverse the search space if the search cannot be
aborted early with scope analysis. Thus such problems may
be more amenable to SAT solving instead.

The generation of models with realistic type distribu-
tions assumes the availability of real models to determine
type histograms. For ensuring realistic properties other than
type distributions, additional heuristics may be needed.

Internal validity. Our scalability experiments incorporated
a warm-up phase prior to actual measurements and garbage
collector calls between actual measurements to reduce vari-
ance of execution times due to the JVM (but not due to the
inherent behavior of the model generators). To further miti-
gate disturbances from the environment, each measurement
was pinned to a single memory controller and the associated
CPU cores on our server. We used default configurations
for the external IP and LP solvers, as well as A. Domain-
specific fine-tunings may reduce the execution times of these
programs, but in most cases they were already negligible.

As noted in Section 2.1, A only supports limited type
scopes. The +S problems cannot be formalized in A without
the use of the # operator, even if lower bound constraints
are omitted. However, as A performance was similar on
both +S and −S problems, our encoding of the bounds
likely did not introduce scalability bottlenecks.

For determining realistic type distributions of the in-
dustrial modeling languages, we considered manually con-
structed and automatically generated models of similar size
to minimize discrepancies caused by different scales. For
SAT, the distribution were prescribed manually. The behav-
ior of the model generators did not change drastically upon
changing the prescribed distribution, as long as the arising
type scope bounds remained satisfiable.
External validity. Our measurements cover 3 domains (1
from a design space exploration challenge published by
NASA researchers, 2 from industrial modeling languages)
both with and without realistic type scope bounds. All domains
had complex structural and WF constraints that interacted in
various ways with the type scope bounds. Consequently,
our experimental scalability results of our graph generator
are likely generalizable to other domains of similar size.

As the performance of object scope analysis based on
IP and LP depends on the selected external solver, we
integrated the νZ optimizing SMT solver in addition to the
well-known solvers from the COIN-OR project. In case of
LP problems, performance was comparable to CLP, while
for IP problems, CBC proved to be significantly better.
Therefore, the reported scalability of IP and LP object scope
propagation likely matches what is achievable with state-of-
the-art external solvers.

5 RELATED WORK

Logic Solver Approaches. Several approaches map a model
generation problem into a logic problem, which is solved by
underlying SAT/SMT-solvers. Complete frameworks with
standalone specification languages include Formula [14]
(using the Z3 SMT-solver [24]), Alloy [12] (using SAT-solvers
like Sat4j [22]) and Clafer [57] (using reasoners like Alloy).

There are several approaches aiming to validate stan-
dardized engineering models enriched with OCL con-
straints [58] by relying upon different back-end logic-based
approaches such as constraint logic programming [36], [59],
[60], SAT-based model finders (like Alloy) [7], [16], [35],
[50], [51], [61], [62], [63], CSP solvers [64], first-order logic
[65], constructive query containment [66] or higher-order
logic [67]. Partial snapshots and WF constraints can be

PREPRINT 17

uniformly represented as constraints [7]. Growing models
are supported in [50], [68] for a limited set of constraints.

Scalability of all these approaches are limited to small
models / counter-examples. Furthermore, these approaches
are either a priori bounded (where the search space needs
to be restricted explicitly) or they have decidability issues.
As our approach is independent from the actual mapping
of constraints to logic formulae, it could potentially be inte-
grated with most of the above techniques by complementing
or replacing the back-end solvers.

Uncertain Models. Partial models are similar to un-
certain models, which offer a rich specification language
[30], [69] amenable to analysis. They a more user-friendly
language compared to 3-valued interpretations, but without
handling additional WF constraints. Potential concrete mod-
els compliant with an uncertain model can be synthesized
by the Alloy Analyzer [31], or refined by graph transfor-
mation rules [70]. Each concrete model is derived in a single
step, thus their approach is not iterative like ours. Scalability
analysis is omitted from these papers, but refinement of
uncertain models is always decidable.

Approaches like [71] analyze possible matches and ex-
ecutions of model transformation rules on partial models
by using a SAT solver (MathSAT4) or by automated graph
approximation (referred to as “lifting”), or by graph query
engines with [26]. As a key difference, our approach car-
ries out model refinement while simultaneously evaluating
graph query evaluation.

Iterative Approaches. Iterative approaches generate
models by multiple solver calls. In [50] models are generated
in by calling Alloy in multiple steps, where each step ex-
tends the instance model by a few elements. This approach
scaled up to 50 object in 45 s for generating valid Yakindu
Statecharts. An iterative approach is proposed specifically for
allocation problems in [72] based on Formula. An iterative,
counter-example guided synthesis is proposed for higher-
order logic formulae in [73], but the size of models is fixed
and smaller than 50 objects.

Symbolic Model Generation Techniques. Certain tech-
niques use abstract (or symbolic) graphs for analysis pur-
poses. A tableau-based reasoning method is proposed for
graph properties [74], [75], [76], which automatically refines
solutions based on well-formedness constraints, and han-
dles the state space in the form of a resolution tree. As a key
difference, our approach refines possible solutions in the
form of partial models, while [74], [75] resolves the graph
constraints to a concrete solution. Therefore our approach is
able to exploit efficient graph query engines to evaluate par-
tial solutions, while those techniques are demonstrated on
small (< 10 objects) graphs or with no scalability evaluation.

Different approaches use abstract interpretation [77], or
predicate abstraction [39], [40], [78] for partial modeling.
In those approaches, concretization is used to materialize
(typically small) counter-examples for designated safety
properties in a graph transformation system. However, their
focus is to support model checking of abstract graph trans-
formation systems, which can evaluate complex trajectories,
but do not scale in the size of the models.

Additionally, counter abstractions by Petri graphs were
used in the verification of graph transformation systems [79]
and as heuristic functions for rule-based design-space explo-

ration [80]. The Augur framework [41], [42], [81] uses similar
counter abstraction on graph properties for in graph trans-
formation systems, which can be analyzed as a transition
system. As a key difference, a graph transformation rule
can both increase or decrease amounts in abstract graphs,
while in our approach the constraints are respecting the
refinement relation, thus we can utilize IP and LP solvers
instead of model checkers.

Smart bound selection for the number of objects was
used in the satisfiability checking of OCL formulas in [82].

Numerical Abstractions. Verification of programs con-
taining numerical (integer or real) variables by abstract
interpretation relies of numerical abstract domains [83], [84],
including polyhedra defined by systems of linear equa-
tions [85], [86], as a key component to over- and under-
approximate the sets of possible program states. Numerical
abstract domains are combined with graph abstractions in
two main ways to verify heap and pointer based programs.

Firstly, numerical abstract domains may summarize ob-
ject attributes (field) in value analysis of heap programs [40],
[87], [88]. Summarized dimensions [78] were introduced to
succinctly represent attributes of a potentially unbounded
set of objects via multi-objects. This approach can be seen
as complementary to ours, as it enables attribute handling
in three-valued partial models, and allows checking for
refinements by abstract subsumption [89].

Secondly, numerical abstract domains can aid reasoning
about the number of objects in a graph (usually a program
heap) by structural counter abstraction [90]. This approach
is closely related to ours, but its use is limited to program
verification. In contrast, we explicitly incorporate uncertain
types and references by three-valued partial modeling to
enable model generation.

Model-based quantifier instantiation approach [91] in
SMT solvers for finite model finding also relies on counter
abstractions. It can be seen as a dual to scoped model gener-
ation: it aims to merge terms to satisfy finiteness constrains
instead of splitting multi-objects to add new objects.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a new 3-valued scoped par-
tial modeling formalism which allows to explicitly repre-
sent multiplicity constraints on the size of partial models
with a linear inequality system. Those constraints cover
the requested size of the completed model for each class
(type) and the additional constraints imposed by the meta-
model (e.g., reference multiplicities) and well-formedness
constraints. The resultant multiplicity constraint can be ef-
ficiently solved by an underlying IP or LP solver to get a
more precise view on the number of objects in a potential
concretization of the partial model, or to detect infeasible
numerical requirements on it. Based on the advanced nu-
merical reasoning on partial models, we extend the graph
solver algorithm of [21], [32] with scoped partial models and
numerical reasoning using IP or LP solvers, which greatly
improves the performance of the solver (and outperforms
related solvers like [13]). Additionally, the proposed tech-
nique enables the efficient use of type scopes, which allows
the generation of more realistic or useful models.

PREPRINT 18

As future work, we plan to extend the model generator
with numerical optimization with respect to a user-defined
cost function (or goal function), thus allowing the genera-
tion of graph models with optimal properties (like smallest
models or cheapest models with respect to a cost-function).

REFERENCES

[1] RTCA, Inc., “DO-330 sofware tool qualification considerations,”
2011. [Online]. Available: https://standards.globalspec.com/std/
1461615/rtca-do-330

[2] A. Milicevic, S. Misailovic, D. Marinov, and S. Khurshid, “Korat:
A tool for generating structurally complex test inputs,” in ICSE,
2007, pp. 771–774.

[3] S. Khurshid and D. Marinov, “TestEra: Specification-based testing
of Java programs using SAT,” Autom. Softw. Eng., vol. 11, no. 4, pp.
403–434, 2004.

[4] Z. Micskei, Z. Szatmári, J. Oláh, and I. Majzik, “A concept for
testing robustness and safety of the context-aware behaviour
of autonomous systems,” in KES-AMSTA, ser. LNCS, vol. 7327.
Springer, 2012, pp. 504–513.

[5] R. Ben Abdessalem, S. Nejati, L. C. Briand, and T. Stifter, “Testing
vision-based control systems using learnable evolutionary algo-
rithms,” in ICSE, 2018, pp. 1016–1026.

[6] M. Z. Iqbal, A. Arcuri, and L. Briand, “Environment modeling
and simulation for automated testing of soft real-time embedded
software,” Softw. Syst. Model., vol. 14, no. 1, pp. 483–524, 2015.

[7] O. Semeráth, Á. Barta, Á. Horváth, Z. Szatmári, and D. Varró, “For-
mal validation of domain-specific languages with derived features
and well-formedness constraints,” Softw. Syst. Model, vol. 16, no. 2,
pp. 357–392, 2017.

[8] D. Varró, O. Semeráth, G. Szárnyas, and Á. Horváth, “Towards the
automated generation of consistent, diverse, scalable and realistic
graph models,” in Graph Transformation, Specifications, and Nets – In
Memory of Hartmut Ehrig, 2018, pp. 285–312.

[9] The Object Management Group, “Object Constraint Language,
v2.4,” 2014. [Online]. Available: https://www.omg.org/spec/
OCL/2.4

[10] D. Varró and A. Balogh, “The model transformation language of
the VIATRA2 framework,” Sci. Comput. Program., vol. 68, no. 3, pp.
214–234, 2007.

[11] Z. Ujhelyi, G. Bergmann, Á. Hegedüs, Á. Horváth, B. Izsó, I. Ráth,
Z. Szatmári, and D. Varró, “EMF-IncQuery: An integrated de-
velopment environment for live model queries,” Sci. Comput.
Program., vol. 98, pp. 80–99, 2015.

[12] D. Jackson, “Alloy: a lightweight object modelling notation,” ACM
Tran. Softw. Eng. Methodol., vol. 11, no. 2, pp. 256–290, 2002.

[13] E. Torlak and D. Jackson, “Kodkod: A relational model finder,” in
TACAS. Springer, 2007, pp. 632–647.

[14] E. K. Jackson, T. Levendovszky, and D. Balasubramanian, “Rea-
soning about metamodeling with formal specifications and auto-
matic proofs,” in MODELS. Springer, 2011, pp. 653–667.

[15] E. K. Jackson and J. Sztipanovits, “Towards a formal foundation
for domain specific modeling languages,” in EMSOFT. ACM,
2006, pp. 53–62.

[16] M. Kuhlmann, L. Hamann, and M. Gogolla, “Extensive validation
of OCL models by integrating SAT solving into USE,” in TOOLS,
ser. LNCS, vol. 6705, 2011, pp. 290–306.

[17] J. Cabot, R. Clarisó, and D. Riera, “On the verification of UM-
L/OCL class diagrams using constraint programming,” J. Syst.
Softw., vol. 93, pp. 1–23, 2014.

[18] G. Soltana, M. Sabetzadeh, and L. C. Briand, “Practical model-
driven data generation for system testing,” CoRR, 2019. [Online].
Available: http://arxiv.org/abs/1902.00397

[19] G. Soltana, M. Sabetzadeh, and L. C. Briand, “Synthetic data
generation for statistical testing,” in ASE, 2017, pp. 872–882.

[20] O. Semeráth, R. Farkas, G. Bergmann, and D. Varró, “Diversity of
graph models and graph generators in mutation testing,” Int. J.
Softw. Tools Technol. Transf., 2019.

[21] O. Semeráth, A. A. Babikian, S. Pilarski, and D. Varró, “VIATRA
Solver: A framework for the automated generation of consistent
domain-specific models,” in ICSE Demo. IEEE, 2019, pp. 43–46.

[22] D. Le Berre and A. Parrain, “The Sat4j library, release 2.2,” J.
Satisfiability Boolean Model. Comput., vol. 7, pp. 59–64, 2010.

[23] N. Eén and N. Sörensson, “An extensible SAT-solver,” in ICTAST.
Springer, 2003, pp. 502–518.

[24] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
TACAS. Springer, 2008, pp. 337–340.

[25] E. K. Jackson, S. Gabor, and J. Sztipanovits, “Diversely enumerat-
ing system-level architectures,” Tech. Rep. MSR-TR-2013-56, 2013.

[26] O. Semeráth and D. Varró, “Graph constraint evaluation over
partial models by constraint rewriting,” in ICMT, 2017, pp. 138–
154.

[27] M. Al-Refai, W. Cazzola, and S. Ghosh, “A fuzzy logic based
approach for model-based regression test selection,” in MODELS.
IEEE, 2017, pp. 55–62.

[28] S. Edunov, D. Logothetis, C. Wang, A. Ching, and M. Kabiljo,
“Generating synthetic social graphs with darwini,” in ICDCS.
IEEE, 2018, pp. 567–577.

[29] D. Honfi and Z. Micskei, “Classifying generated white-box tests:
an exploratory study,” Softw. Qual. J., vol. 27, pp. 1339–1380, 2019.

[30] M. Famelis, R. Salay, and M. Chechik, “Partial models: Towards
modeling and reasoning with uncertainty,” in ICSE. IEEE, 2012,
pp. 573–583.

[31] R. Salay, M. Famelis, and M. Chechik, “Language independent
refinement using partial modeling,” in FASE, ser. LNCS, J. de Lara
and A. Zisman, Eds. Springer, 2012, vol. 7212, pp. 224–239.

[32] O. Semeráth, A. S. Nagy, and D. Varró, “A graph solver for the
automated generation of consistent domain-specific models,” in
ICSE. ACM, 2018 2018.

[33] S. J. I. Herzig, S. Mandutianu, H. Kim, S. Hernandez, and T. Imken,
“Model-transformation-based computational design synthesis for
mission architecture optimization,” in IEEE Aerospace Conf. IEEE,
2017.

[34] Eclipse Modeling Framework, The Eclipse Project, 2017, http://
www.eclipse.org/emf.

[35] S. M. A. Shah, K. Anastasakis, and B. Bordbar, “From UML to
Alloy and back again,” in MoDeVVa. ACM, 2009.

[36] J. Cabot, R. Clarisó, and D. Riera, “UMLtoCSP: a tool for the formal
verification of UML/OCL models using constraint programming,”
in ASE. ACM, 2007, pp. 547–548.

[37] U. Nickel, J. Niere, and A. Zündorf, “The FUJABA environment,”
in ICSE, 2000, pp. 742–745.

[38] A. Rensink, I. Boneva, H. Kastenberg, and T. S. en, “User manual
for the GROOVE tool set,” 2012. [Online]. Available: https:
//groove.ewi.utwente.nl/wp-content/uploads/usermanual1.pdf

[39] T. W. Reps, M. Sagiv, and R. Wilhelm, “Static program analysis via
3-valued logic,” in CAV, 2004, pp. 15–30.

[40] P. Ferrara, R. Fuchs, and U. Juhasz, “TVAL+: TVLA and value
analyses together,” in SEFM, ser. LNCS, vol. 7504. Springer, 2012,
pp. 63–77.

[41] P. Baldan, A. Corradini, and B. König, “A static analysis technique
for graph transformation systems,” in CONCUR, ser. LNCS, vol.
2154. Springer, 2001, pp. 381–295.

[42] B. König and V. Kozioura, “Augur 2 – a new version of a tool for
the analysis of graph transformation systems,” Electr. Notes Theor.
Comput. Sci., vol. 211, pp. 201–210, 2008, gT-VMT 2006.

[43] D. Varró, G. Bergmann, Á. Hegedüs, Á. Horváth, I. Ráth, and
Z. Ujhelyi, “Road to a reactive and incremental model transfor-
mation platform: three generations of the VIATRA framework,”
Softw. Syst. Model., vol. 15, no. 3, pp. 609–629, 2016.

[44] G. Szárnyas, B. Izsó, D. Harmath, G. Bergmann, and D. Varró,
“IncQuery-D: A distributed incremental model query framework
in the cloud,” in MODELS, ser. LNCS, vol. 8767. Springer, 2014,
pp. 653–669.

[45] A. Benelallam, A. Gómez, M. Tisi, and J. Cabot, “Distributed
model-to-model transformation with ATL on MapReduce,” in
SLE. ACM, 2015, pp. 37–48.

[46] H. Abdeen, D. Varró, H. Saharoui, A. S. Nagy, Á. Hegedüs, and
Á. Horváth, “Multi-objective optimization in rule-based design-
space exploration,” in ASE. ACM, 2014, pp. 289–300.

[47] A. Rensink, “Isomorphism checking in GROOVE,” ser. LNCS, vol.
4549. Springer, 2006.

[48] F. Yu, T. Bultan, and E. Peterson, “Automated size analysis for
OCL,” in ESEC / FSE. ACM, 2007, p. 331–340.

[49] Yakindu Statechart Tools, Yakindu, http://statecharts.org/.
[50] O. Semeráth, A. Vörös, and D. Varró, “Iterative and Incremental

Model Generation by Logic Solvers,” in FASE, 2016, pp. 87–103.
[51] F. Büttner, M. Egea, J. Cabot, and M. Gogolla, “Verification of ATL

transformations using transformation models and model finders,”
in ICFEM. Springer, 2012, pp. 198–213.

PREPRINT 19

[52] H. Wu, “An SMT-based approach for generating coverage ori-
ented metamodel instances,” Int. J. Inf. Syst. Model. Design, vol. 7,
no. 3, 2016.

[53] B. Alkhazi, C. Abid, M. Kessentini, D. Leroy, and M. Wimmer,
“Multi-criteria test cases selection for model transformations,”
Autom. Softw. Eng., 2020.

[54] N. Bjørner, A.-D. Phan, and L. Fleckenstein, “νZ – an optimizing
SMT solver,” in TACAS, ser. LNCS, vol. 9035. Springer, 2015, pp.
194–199.

[55] E. Barrett, C. F. Bolz-Tereick, R. Killick, S. Mount, and L. Tratt, “Vir-
tual machine warmup blows hot and cold,” Proc. ACM Program.
Lang., vol. 1, no. OOPSLA, 2012, article No.: 52.

[56] System Modeling, Budapest Univ. of Technology and Economics,
https://portal.vik.bme.hu/kepzes/targyak/VIMIAA00/en/.

[57] K. Bak, Z. Diskin, M. Antkiewicz, K. Czarnecki, and A. Wasowski,
“Clafer: unifying class and feature modeling,” Softw. Syst. Model.,
pp. 1–35, 2013.

[58] M. Gogolla, J. Bohling, and M. Richters, “Validating UML and
OCL models in USE by automatic snapshot generation,” Softw.
Syst. Model., vol. 4, pp. 386–398, 2005.

[59] J. Cabot, R. Clariso, and D. Riera, “Verification of UML/OCL class
diagrams using constraint programming,” in ICSTW, 2008, pp. 73–
80.

[60] F. Büttner and J. Cabot, “Lightweight string reasoning for OCL,”
in ECMFA, ser. LNCS, vol. 7349. Springer, 2012, pp. 244–258.

[61] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray, “On challenges
of model transformation from UML to Alloy,” Softw. Syst. Model.,
vol. 9, no. 1, pp. 69–86, 2010.

[62] M. Soeken, R. Wille, M. Kuhlmann, M. Gogolla, and R. Drechsler,
“Verifying UML/OCL models using boolean satisfiability,” in
DATE. IEEE, 2010, pp. 1341–1344.

[63] B. Meng, A. Reynolds, C. Tinelli, and C. Barrett, “Relational con-
straint solving in SMT,” in CADE, ser. LNCS, vol. 10395. Springer,
2017, pp. 148–165.

[64] C. A. González, F. Büttner, R. Clarisó, and J. Cabot, “EMFtoCSP: a
tool for the lightweight verification of EMF models,” in FormSERA,
2012, pp. 44–50.

[65] B. Beckert, U. Keller, and P. H. Schmitt, “Translating the Object
Constraint Language into First-order Predicate Logic,” in Proc.
VERIFY, Workshop at FLoC, 2002.

[66] A. Queralt, A. Artale, D. Calvanese, and E. Teniente, “OCL-Lite:
Finite reasoning on UML/OCL conceptual schemas,” Data Knowl.
Eng., vol. 73, pp. 1–22, 2012.

[67] H. Grönniger, J. O. Ringert, and B. Rumpe, “System model-based
definition of modeling language semantics,” in FORTE, ser. LNCS,
vol. 5522. Springer, 2009, pp. 152–166.

[68] E. K. Jackson and J. Sztipanovits, “Constructive techniques for
meta-and model-level reasoning,” in MODELS. Springer, 2007,
pp. 405–419.

[69] R. Salay and M. Chechik, “A generalized formal framework for
partial modeling,” in FASE, ser. LNCS. Springer Berlin Heidel-
berg, 2015, vol. 9033, pp. 133–148.

[70] R. Salay, M. Chechik, M. Famelis, and J. Gorzny, “A methodology
for verifying refinements of partial models,” Journal of Object
Technology, vol. 14, no. 3, pp. 3:1–31, 2015.

[71] M. Famelis, R. Salay, A. Di Sandro, and M. Chechik, “Transforma-
tion of models containing uncertainty,” in International Conference
on Model Driven Engineering Languages and Systems. Springer, 2013,
pp. 673–689.

[72] E. Kang, E. Jackson, and W. Schulte, “An approach for effec-
tive design space exploration,” in Monterey Workshop, ser. LNCS.
Springer, 2010, vol. 6662, pp. 33–54.

[73] A. Milicevic, J. P. Near, E. Kang, and D. Jackson, “Alloy*:
A general-purpose higher-order relational constraint solver,” in
ICSE, 2015, pp. 609–619.

[74] S. Schneider, L. Lambers, and F. Orejas, “Symbolic model gen-
eration for graph properties,” in FASE, ser. LNCS, vol. 10202.
Springer, 2017, pp. 226–243.

[75] K.-H. Pennemann, “Resolution-like theorem proving for high-
level conditions,” in ICGT, ser. LNCS, vol. 5214. Springer, 2008,
pp. 289–304.

[76] A. S. Al-Sibahi, A. S. Dimovski, and A. Wasowski, “Symbolic
execution of high-level transformations,” in SLE. Springer, 2016,
pp. 207–220.

[77] A. Rensink and D. Distefano, “Abstract graph transformation,”
Electr. Notes Theor. Comput. Sci., vol. 157, no. 1, pp. 39–59, 2006.

[78] D. Gopan, F. DiMaio, N. Dor, T. Reps, and M. Sagiv, “Numeric
domains with summarized dimensions,” in TACAS, ser. LNCS,
vol. 2988. Springer, 2004, pp. 512–529.

[79] D. Varró, S. Varró-Gyapay, H. Ehrig, U. Prange, and G. Taentzer,
“Termination analysis of model transformations by Petri nets,” in
ICGT, ser. LNCS, vol. 4178. Springer, 2006, pp. 260–274.

[80] Á. Hegedüs, Á. Horváth, and D. Varró, “A model-driven frame-
work for guided design space exploration,” Autom. Softw. Eng.,
vol. 22, no. 3, pp. 399–436, 2015.

[81] B. König and V. Kozioura, “Counterexample-guided abstraction
refinement for the analysis of graph transformation systems,” in
TACAS, ser. LNCS, vol. 3920. Springer, 2006, pp. 197–211.

[82] R. Clarisó, C. A. González, and J. Cabot, “Smart bound selection
for the verification of UML/OCL class diagrams,” IEEE Trans.
Softw. Eng., vol. 45, no. 4, pp. 412–426, 2019.

[83] A. Miné, “Weakly relational numerical abstract domains,” Ph.D.
dissertation, 2004. [Online]. Available: https://www-apr.lip6.fr/
∼mine/these/these-color.pdf

[84] G. Singh, M. Püschel, and M. Vechev, “A practical construction for
decomposing numerical abstract domains,” Proc. ACM Program.
Lang., vol. 2, no. POPL, 2018, article no. 2.

[85] P. Cousot and N. Halbwachs, “Automatic discovery of linear
restraints among variables of a program,” in POPL. ACM, 1978,
pp. 84–96.

[86] R. Bagnara, P. M. Hill, and E. Zaffanella, “The Parma Polyhedra
Library: Toward a complete set of numerical abstractions for the
analysis and verification of hardware and software systems,” Sci.
Comput. Program., vol. 72, no. 1–2, pp. 3–21, 2008.

[87] S. Magill, J. Berdine, E. Clarke, and B. Cook, “Arithmetic strength-
ening for shape analysis,” in SAS, ser. LNCS, vol. 4634. Springer,
2007, pp. 419–436.

[88] B. McCloskey, T. Reps, and M. Sagiv, “Statically inferring complex
heap, array, and numeric invariants,” in SAS, ser. LNCS, vol. 6337.
Springer, 2010, pp. 71–99.

[89] S. Anand, C. S. Păsăreanu, and W. Visser, “Symbolic execution
with abstraction,” Int. J. Softw. Tools Technol. Transf., vol. 11, no. 1,
pp. 53–67, 2009.

[90] K. Bansal, E. Koskinen, T. Wies, and D. Zufferey, “Structural
counter abstraction,” in TACAS 2013, ser. LNCS, vol. 7795.
Springer, 2013, pp. 62–77.

[91] A. Reynolds, C. Tinelli, A. Doel, and S. Kristić, “Finite model
finding in SMT,” in CAV, ser. LNCS, vol. 8044. Springer, 2013,
pp. 640–655.

Kristóf Marussy is a PhD student at the De-
partment of Measurement and Information Sys-
tems at Budapest University of Technology and
Economics. He is also a research assistant at
the MTA Lendület Cyber-Physical Systems Re-
search Group. His research interest include the
modeling and analysis of extra-functional prop-
erties of cyber-physical systems, and the syn-
thesis of reliable architectures. He participated
in research visits at the University of L’Aquila and
McGill University.

Oszkár Semeráth is a research fellow at Bu-
dapest University of Technology and Economics
and MTA Lendület Cyber-Physical Systems Re-
search Group. His research focuses on modeling
tools, logic solvers and graph generation, he is
the main developer of the VIATRA Solver graph
generator framework. His results were published
in a book chapter, 3 journal papers with im-
pact factor, in 12 conference papers, and won
IEEE/ACM best paper award at the MODELS
2013 conference.

PREPRINT 20

Dániel Varró is a full professor of software en-
gineering at McGill University and at Budapest
University of Technology and Economics. He
is also a research chair of the MTA Lendület
Cyber-Physical Systems Research Group. He is
a co-author of more than 150 scientific papers
with seven Distinguished Paper Awards, and
two Most Influential Paper Awards. He regularly
serves on the program committee of various in-
ternational conferences in the field and serves
on the editorial board of the Software and Sys-

tems Modeling journal (Springer) and Journal of Object Technology.
He was a program committee co-chair of FASE 2013, ICMT 2014 and
SLE 2016 conferences. He delivered a keynote talk at the IEEE CSMR
2012 and the SOFSEM 2016 conferences and at various international
workshops and at the DSM-TP international summer school. He is a co-
founder of the VIATRA model query and transformation framework, and
IncQuery Labs Ltd., a technology-intensive Hungarian company.

PREPRINT i

A PROOFS OF THEOREMS 3 AND 4

A.1 Proof of Theorem 3

First we will prove the statement

SP � #
1/2

v [[ϕ]]P
abs◦Z < L =⇒ SQ � #

1/2

v [[ϕ]]QZ < L.

Consider the sets

A = {x ∈ OQ | [[ϕ]]P
abs◦Z,v 7→abs(x) ≥ 1/2},

B = {x ∈ OQ | [[ϕ]]QZ,v 7→x ≥ 1/2},

C = {x ∈ OQ | [[ϕ]]P
abs◦Z,v 7→abs(x) ≥ 1/2, [[ϕ]]QZ,v 7→x = 0}.

The set A contains the objects x ∈ OQ that refine an
y = abs(x) ∈ OP for which ϕ was possibly true in P .
The elements of B may satisfy ϕ in Q, while elements of
C may have satisfies ϕ in P , but no longer satisfy it in Q.
By Theorem 2 [[ϕ]]Qv 7→x ≥ 1/2 implies [[ϕ]]Pv 7→abs(x) ≥

1/2. Thus
B ⊆ A and A = B ∪ C .

We replace the occurrences of each variable ŷ ∈ VP with∑
{x̂ | abs(x) = y} in SP � #

1/2

v [[ϕ]]P
abs◦Z < L to obtain

Sabs

P �
∑

{x̂ | x ∈ A} =
∑

{x̂ | x ∈ B}+
∑

{x̂ | x ∈ C} < L.

We have Sabs

P �
∑

{x̂ | x ∈ C} ≥ 0, because each
variable x̂ must take a nonnegative value in any solution
of Sabs

P . Moreover, because SP <abs SQ, we have SQ � Sabs

P

according to Definition 9. Therefore,

SQ � Sabs

P �
∑

{x̂ | x ∈ A} <
∑

{x̂ | x ∈ B} < L.

Noting that #
1/2

v [[ϕ]]QZ =
∑

{x̂ | x ∈ B}, we complete the

proof of the first part by simplifying to SQ � #
1/2

v [[ϕ]]QZ < L.

In order to tackle

SP � #1
v[[ϕ]]

P
abs◦Z > U =⇒ SQ � #1

v[[ϕ]]
Q
Z > U ,

we consider the sets

A′ = {x ∈ OQ | [[ϕ]]QZ,v 7→x = 1},

B′ = {x ∈ OQ | [[ϕ]]P
abs◦Z,v 7→abs(x) = 1},

C ′ = {x ∈ OQ | [[ϕ]]P
abs◦Z,v 7→abs(x) ≤ 1/2, [[ϕ]]QZ,v 7→x = 1}.

Elements of A′ surely satisfy ϕ. Elements of B′ are
refinements of objects in P that surely satisfied ϕ, while
elements of C ′ only surely satisfy it in Q, but not in P . By

Theorem 1, [[ϕ]]P
abs◦Z,v 7→abs(x) = 1 implies [[ϕ]]QZ,v 7→x = 1.

Thus B′ ⊆ A′ and A′ = B′ ∪ C ′.

After substituting the variables in SP � #1
v[[ϕ]]

P
abs◦Z > U

as before, we obtain Sabs

P �
∑

{x̂ | x ∈ B′} > U .

Again, we have Sabs

P �
∑

{x̂ | x ∈ C ′} ≥ 0, as well as
SQ � Sabs

P . Therefore,

SQ � Sabs

P � U <
∑

{x̂ | x ∈ B′} ≤
∑

{x̂ | x ∈ B′}+
∑

{x̂ | x ∈ C ′} =
∑

{x̂ | x ∈ A′}.

Noting that #1
v[[ϕ]]

Q
Z =

∑
{x̂ | x ∈ A′}, we simplify the

expression above to get SQ � #1
v[[ϕ]]

Q
Z > U . �

A.2 Proof of Theorem 4

Before proceeding to prove the theorem, we establish the
following lemma:

Lemma 5. Let ϕ(v) be an unary logic predicate, and P be a

partial model. Then SP � #1
v[[ϕ]]

P
abs◦Z ≤ #

1/2

v [[ϕ]]PZ .

Proof. Consider the sets

A = {x ∈ OQ | [[ϕ]]QZ,v 7→x ≥ 1/2},

B = {x ∈ OQ | [[ϕ]]QZ,v 7→x = 1},

C = {x ∈ OQ | [[ϕ]]QZ,v 7→x = 1/2},

where A = B ∪ C . Then SP �
∑

{x̂ | x ∈ C} ≥ 0 and

SP � #1
v[[ϕ]]

P
Z =

∑
{x̂ | x ∈ B} ≤

∑
{x̂ | x ∈ B}+

∑
{x̂ | x ∈ C} =

∑
{x̂ | x ∈ A} = #

1/2

v [[ϕ]]PZ .

Now we can prove

SQ � #1
v[[ϕ]]

Q
Z ≥ L =⇒ SP 2 #

1/2

v [[ϕ]]P
abs◦Z < L

by contradiction. Let us assume that SP � #
1/2

v [[ϕ]]P
abs◦Z < L.

By Theorem 3, we also have SQ � #
1/2

v [[ϕ]]QZ < L. Hence

SQ � #1
v[[ϕ]]

Q
Z ≤ #

1/2

v [[ϕ]]QZ < L

by Lemma 5. We simultaneously have

SQ � L ≤ #1
v[[ϕ]]

Q
Z < L,

which is a contradiction. SQ cannot be satisfiable.
The case of

SQ � #
1/2

v [[ϕ]]QZ ≤ U =⇒ SP 2 #1
v[[ϕ]]

P
abs◦Z > U

is analogous. After assuming SP � #1
v[[ϕ]]

P
abs◦Z > U , we get

the contradiction

SQ � U ≥ #
1/2

v [[ϕ]]QZ ≥ #1
v[[ϕ]]

Q
Z > U

by applying Theorem 3 and Lemma 5. �

B MEAN EXECUTION TIMES OF MODEL GENERA-

TORS

Tables 4–7 show the mean execution times of model gen-
erators from RQ3 and RQ4. Only the m executions within
time and memory limits (i.e., successfully terminating) are
counted out of the 30 runs performed. The mean execu-
tion time t of the fastest approach is highlighted in bold.
The • symbol shows statistically significant differences in
mean execution times of the baseline A/S4J, A/MS, GS/O
approaches from our proposed GS/S according to a two-
tailed t-test at significance level p < 0.05. The ◦ symbol
shows differences that are not statistically significant, and ?
denotes cases where there were too few successful runs for
significance testing.

In Table 4 (RQ3.1), GS/S significantly outperforms all
baseline approaches in all domains for large model sizes
(n ≥ 20 for SAT, n ≥ 80 for SCT, n ≥ 30 for MET).

For model generation problems without type scope con-
straints in Table 5 (RQ3.2), GS/S outperformed the baseline
approaches in SAT. In SCT, the difference between GS/O
and GS/S was not statistically significant for large model

PREPRINT ii

TABLE 4
Mean execution times of model generator runs finished within the time

limit with scope constraints (+S)

A/S4J A/MS GS/O GS/S

n t/s m t/s m t/s m t/s m

SAT 10 0.82 • 30 0.51 • 30 16.48 • 30 3.13 30

20 49.08 • 30 10.68 ◦ 30 15.46 ◦ 30 7.73 30

30 169.49 • 2 70.30 • 30 66.34 • 18 9.42 30

40 – 0 263.68 • 4 48.05 • 18 6.82 30

50 – 0 – 0 42.82 • 14 15.08 30

60 – 0 – 0 83.94 • 17 13.17 30

70 – 0 – 0 137.58 • 10 30.45 30

80 – 0 – 0 218.69 • 13 30.77 29

90 – 0 – 0 269.55 • 3 34.78 30

100 – 0 – 0 – 0 61.68 30

SCT 20 0.24 • 30 0.22 • 30 120.43 • 15 1.59 30

40 2.07 • 30 1.66 • 30 – 0 3.03 30

60 8.29 ◦ 30 5.91 • 30 – 0 7.46 30

80 26.16 • 30 16.64 • 30 – 0 7.89 30

100 43.56 • 30 34.38 • 30 – 0 16.68 30

120 125.35 • 30 63.59 • 30 – 0 13.36 30

140 195.25 • 30 120.54 • 30 – 0 18.71 30

160 299.08 ? 1 193.96 • 30 – 0 25.99 30

180 – 0 277.94 • 17 – 0 27.61 30

200 – 0 – 0 – 0 48.62 30

MET 10 0.15 • 30 0.14 • 30 6.10 ◦ 30 4.02 30

20 1.93 • 30 1.57 • 30 5.97 • 27 4.42 30

30 10.90 • 30 8.37 • 30 8.74 • 29 5.92 29

40 34.40 • 30 27.90 • 30 20.42 • 29 10.79 29

50 96.23 • 30 76.16 • 30 42.01 • 29 26.68 29

60 239.80 ◦ 2 148.63 • 30 35.38 • 30 20.17 28

70 – 0 284.31 • 3 71.50 • 29 46.94 29

80 – 0 – 0 131.19 • 30 91.88 29

90 – 0 – 0 209.29 • 21 155.42 29

100 – 0 – 0 230.81 ◦ 6 229.92 17

n = mode size (number of objects)
t/s = execution time (seconds)
m = number of successful runs within 300 s time limit
• = statistically significant (p < 0.05) difference from GS/S
◦ = difference not deemed statistically significant
? = too few successful runs to test significance

sizes (n > 350). In MET, the overhead of GS/S in problems
with no numerical constraints was apparent, as it was
outperformed by GS/O.

For problems unsatisfiable due to well-formedness con-
straints in Table 6 (RQ4), GS/S significantly outperformed
GS/O, but was significantly outperformed by both A/S4J
and A/MS. This highlights that, while scope analysis may
allow state-space exploration based model generators to
remain competitive for proving unsatisfiability for smaller
problems, SAT-solvers are much better suited for this task.

For problems unsatisfiable due to scope constraints in
Table 7, the execution time of GS/S remained constant over
various target model sizes (except for n = 12 and 13
for SAT and n = 8 for SCT due to rounding artifacts).
Scope analysis could quickly reject the inconsistent scope
constraints without exploring the state space of the model
generation task. Thus, GS/S could significantly outperform
all baseline approaches.

TABLE 5
Mean execution times of model generator runs finished within the time

limit without scope constraints (−S)

A/S4J A/MS GS/O GS/S

n t/s m t/s m t/s m t/s m

SAT 10 0.57 • 30 0.49 • 30 25.43 • 30 3.33 30

20 26.80 • 30 12.41 • 30 4.26 ◦ 30 3.90 30

30 198.28 • 12 133.57 • 30 10.16 • 30 4.48 30

40 – 0 224.25 ? 1 19.40 • 30 5.52 30

50 – 0 – 0 46.03 • 30 7.81 30

60 – 0 – 0 77.95 • 30 11.25 30

70 – 0 – 0 156.80 • 30 13.49 30

80 – 0 – 0 240.75 • 23 24.38 30

90 – 0 – 0 – 0 27.38 30

100 – 0 – 0 – 0 48.10 30

SCT 50 4.36 • 30 3.00 • 30 2.81 • 30 3.56 30

100 34.12 • 30 30.21 • 30 5.68 • 30 8.27 30

150 159.60 • 30 128.70 • 30 11.78 • 30 16.06 30

200 – 0 – 0 20.42 • 30 25.43 30

250 – 0 – 0 36.36 ◦ 30 41.03 30

300 – 0 – 0 46.33 • 30 60.73 30

350 – 0 – 0 69.97 ◦ 30 76.54 30

400 – 0 – 0 94.14 ◦ 29 98.91 30

450 – 0 – 0 119.28 ◦ 29 127.17 29

500 – 0 – 0 153.39 ◦ 30 167.28 30

MET 200 – 0 – 0 7.26 • 30 10.70 30

400 – 0 – 0 14.74 • 30 20.54 30

600 – 0 – 0 24.79 • 30 33.91 30

800 – 0 – 0 37.98 • 30 48.81 30

1000 – 0 – 0 54.48 • 30 68.97 30

1200 – 0 – 0 82.49 • 30 99.04 30

1400 – 0 – 0 99.07 • 30 116.92 30

1600 – 0 – 0 116.38 • 30 164.20 29

1800 – 0 – 0 149.26 • 28 177.83 28

2000 – 0 – 0 168.51 • 25 209.96 24

n = mode size (number of objects)
t/s = execution time (seconds)
m = number of successful runs within 300 s time limit
• = statistically significant (p < 0.05) difference from GS/S
◦ = difference not deemed statistically significant

C DIVERSITY MEASUREMENT

Setup. To evaluate the structural diversity of the generated
models, we used a neighbourhood-based [77] internal diver-
sity metric [20] which correlates with mutation score in mu-
tation testing scenarios. In summary, this metric calculates
the proportion of different local neighborhoods of nodes
included in a graph model.

We used a neighborhood range = 3, which classifies two
objects to be identical, if they cannot be distinguished with
at most 3 navigations (hops). To measure structural diver-
sity, the values of data objects are not taken into account.
We measured the diversity of 10–10 models for all three case
studies (SAT, SCT and MET) with 50 objects with all solvers.
For domain SCT+S the original solver GS/O was not able
to generate models, so we left it blank.

Analysis of Results: The distribution of internal diver-
sity is illustrated in Fig. 1. For each domain, each solver
approach produced similar internal diversity, where the

PREPRINT iii

TABLE 6
Mean execution times of model generator runs finished within the time

limit when proving unsatisfiability due to contradictory
well-formedness constraints (+ WF)

A/S4J A/MS GS/O GS/S

n t/s m t/s m t/s m t/s m

SAT 5 0.06 • 30 0.06 • 30 2.65 • 30 2.49 30

6 0.09 • 30 0.09 • 30 3.00 • 30 2.48 30

7 0.15 • 30 0.15 • 30 6.17 • 30 2.49 30

8 0.24 • 30 0.23 • 30 19.81 • 30 2.47 30

9 0.37 • 30 0.37 • 30 87.83 • 30 2.47 30

10 0.58 • 30 0.54 • 30 – 0 39.08 30

11 0.86 • 30 0.79 • 30 – 0 147.85 30

12 1.27 30 1.12 30 – 0 – 0

13 1.76 30 1.57 30 – 0 – 0

14 2.42 30 2.10 30 – 0 – 0

15 3.38 30 2.83 30 – 0 – 0

SCT 5 0.02 • 30 0.02 • 30 2.85 • 30 1.32 30

6 0.03 • 30 0.02 • 30 11.01 • 30 1.50 30

7 0.03 • 30 0.03 • 30 60.31 • 30 2.55 30

8 0.04 • 30 0.04 • 30 – 0 7.03 30

9 0.05 • 30 0.05 • 30 – 0 106.88 30

10 0.07 30 0.07 30 – 0 – 0

11 0.09 30 0.09 30 – 0 – 0

12 0.11 30 0.11 30 – 0 – 0

13 0.15 30 0.14 30 – 0 – 0

14 0.18 30 0.18 30 – 0 – 0

15 0.22 30 0.22 30 – 0 – 0

MET 5 0.04 30 0.03 30 – 0 – 0

6 0.06 30 0.05 30 – 0 – 0

7 0.25 30 0.10 30 – 0 – 0

8 0.88 30 0.41 30 – 0 – 0

9 6.97 30 4.70 30 – 0 – 0

10 49.93 30 39.29 30 – 0 – 0

11 – 0 274.72 26 – 0 – 0

n = mode size (number of objects)
t/s = execution time (seconds)
m = number of successful runs within 300 s time limit
• = statistically significant (p < 0.05) difference from GS/S
◦ = difference not deemed statistically significant

= the minimum model size in the SAT domain, even
without the added unsatisfiable + WF well-formedness
constraints, is 10

0%

20%

40%

60%

80%

100%

Fig. 1. Internal Diversity distributions

TABLE 7
Mean execution times of model generator runs finished within the time

limit when proving unsatisfiability due to contradictory
scope constraints (+ S)

A/S4J A/MS GS/O GS/S

n t/s m t/s m t/s m t/s m

SAT 5 0.06 • 30 0.05 • 30 2.55 • 30 2.39 30

6 0.09 • 30 0.09 • 30 2.93 • 30 2.36 30

7 0.14 • 30 0.14 • 30 4.87 • 30 2.38 30

8 0.22 • 30 0.22 • 30 10.27 • 30 2.38 30

9 0.36 • 30 0.35 • 30 24.59 • 30 2.37 30

10 0.55 • 30 0.54 • 30 55.51 • 30 2.36 30

11 0.95 • 30 0.77 • 30 – 0 2.38 30

12 1.83 • 30 1.17 • 30 – 0 52.25 30

13 2.58 • 30 1.73 • 30 – 0 56.36 30

14 3.92 • 30 2.24 • 30 – 0 2.37 30

15 4.51 • 30 3.11 • 30 – 0 2.37 30

20 19.90 • 30 10.45 • 30 – 0 2.43 30

30 241.28 • 13 77.92 • 30 – 0 2.42 30

40 – 0 – 0 – 0 2.44 30

50 – 0 – 0 – 0 2.41 30

60 – 0 – 0 – 0 2.41 30

70 – 0 – 0 – 0 2.42 30

80 – 0 – 0 – 0 2.44 30

90 – 0 – 0 – 0 2.42 30

100 – 0 – 0 – 0 2.44 30

SCT 5 0.02 • 30 0.02 • 30 1.72 • 30 1.17 30

6 0.02 • 30 0.02 • 30 2.99 • 30 1.16 30

7 0.03 • 30 0.02 • 30 9.50 • 30 1.16 30

8 0.04 • 30 0.03 • 30 2.56 • 30 1.33 30

9 0.04 • 30 0.03 • 30 119.90 • 30 1.14 30

10 0.05 • 30 0.04 • 30 – 0 1.15 30

11 0.06 • 30 0.05 • 30 – 0 1.15 30

12 0.08 • 30 0.06 • 30 – 0 1.16 30

13 0.09 • 30 0.07 • 30 – 0 1.15 30

14 0.09 • 30 0.08 • 30 – 0 1.15 30

15 0.13 • 30 0.10 • 30 – 0 1.14 30

20 0.28 • 30 0.22 • 30 – 0 1.18 30

40 2.40 • 30 1.62 • 30 – 0 1.19 30

60 7.65 • 30 5.60 • 30 – 0 1.18 30

80 22.28 • 30 15.52 • 30 – 0 1.18 30

100 47.26 • 30 32.18 • 30 – 0 1.18 30

120 83.39 • 30 57.16 • 30 – 0 1.18 30

140 143.72 • 30 106.49 • 30 – 0 1.18 30

160 250.45 • 30 164.96 • 30 – 0 1.18 30

180 – 0 246.11 • 30 – 0 1.17 30

200 – 0 – 0 – 0 1.18 30

n = mode size (number of objects)
t/s = execution time (seconds)
m = number of successful runs within 300 s time limit
• = statistically significant (p < 0.05) difference from GS/S
◦ = difference not deemed statistically significant

= GS/S required state space exploration in the SAT do-
main for models of size 12 and 13

= the model generation problem in the SCT domain was
satisfiable for size 8

PREPRINT iv

internal diversity of models generated with the GS/S ap-
proach was slightly better.

Our approach provides similarly high structural diversity
as the original solver, with or without scope constraints.

Based on the findings from [20], these results indicate
that the models generated with scope constraints (+S) can
serve as at least as good test cases for systems engineering
tools as those generated without the scope constraints (−S).
Moreover, results on the +S models may be easier to
interpret, because they use elements that more commonly
occur in practice.

