
Requirements towards a formal
specification language for PLCs

Dániel Darvas∗†, István Majzik∗ and Enrique Blanco Viñuela†
∗Budapest University of Technology and Economics, Department of Measurement and Information Systems

Budapest, Hungary, Email: {darvas,majzik}@mit.bme.hu
†European Organization for Nuclear Research (CERN), Engineering Department

Geneva, Switzerland, Email: {ddarvas,eblanco}@cern.ch

Abstract—One of the main obstacles of using formal ver-
ification for complex PLC (Programmable Logic Controller)
programs is the lack of formal requirements. There are no widely
used specification methods that could serve as input for formal
verification; also that could help the developers to capture the
behaviour and handle the complexity of these programs.

The goal of this research is to bring formal specification
closer to the PLC domain in order to help the development,
verification and maintenance. This paper aims to briefly overview
the particularities of the PLC domain and the state of the art
in formal specification. Then it collects the requirements towards
a PLC-specific formal specification language based on general
works, comparative case studies and own experiences at CERN.
Also, it draws up a sketch of a possible specification method that
follows the collected requirements.

I. INTRODUCTION AND BACKGROUND

Programmable Logic Controllers (PLCs) are robust in-
dustrial computers providing standard solutions for control
systems. For this discussion, these computers can be treated
simply as computers with limited resources and a large number
of low-level inputs and outputs. Physical inputs and outputs
are represented as input and output variables in the programs.
The execution of the user program is mainly cyclic: in each
scan cycle (1) the input values are sampled and stored in the
memory, then (2) the user program is executed, next (3) the
computed output values are written to the physical outputs.
The values of the input variables and physical outputs are
both stable in the memory during the computation phase.
The user program can also store states, thus the outputs are
depending both on the current and previous input values. The
programming languages are defined in the corresponding IEC
61131-3 standard [1].

A. Motivation

The motivation of this work is coming from CERN (Euro-
pean Organization for Nuclear Research) where most research
facilities, like the Large Hadron Collider (LHC) rely on a mul-
titude of PLCs. To cope with the complexity and to reduce the
maintenance needs, most of the PLC programs at CERN are
developed using the UNICOS framework [2]. This framework
provides a design methodology, code generation tools and a
library of base objects. These base objects are not further
decomposed in the implementation, but their complexity is
still high. Therefore the (re-)use of these base objects needs
a precise specification. Besides the usage, as all the systems
at CERN are depending on these objects, their modification

is a critical task that requires high level of understanding of
the underlying logic to avoid the negative collateral effects.
These reasons imply a vital need for a suitable specification
method that is neither available yet at CERN, nor in the PLC
community in general. Previous work aiming to apply formal
verification to these base objects [3] also emphasized the need
for a good, formal specification method. Currently the main
obstacle to use model checking on these PLC programs is the
lack of precise, formal requirements to be checked, not the
lack of available efficient verification tools.

The rest of the paper is structured as follows. Sect. II
overviews the main requirements towards the specification
language to be proposed taken into account the peculiarities of
the PLC domain and based on the literature overview. Sect. III
discusses already existing specification methods related to
this work. Sect. IV sketches up the concepts of a new PLC
specification language. Finally, Sect. V summarizes the paper.

II. PLC SPECIFICATION LANGUAGE REQUIREMENTS

The goal of this research is to overcome the previously
mentioned issues by proposing a suitable PLC specification
language. First the domain-specific requirements are summa-
rized, then previous work is discussed to gather requirements
towards a good, useful formal specification language.

A. Domain-specific requirements

The motivation of this work is a real insufficiency in the
PLC domain, therefore it is indispensable to address the exist-
ing problems and particularities. Many specification language-
related requirements can be extracted from the previously
developed programs and by discussing the problems with the
developers. The main domain-specific needs and challenges are
summarized below based on the experience gained at CERN.

a) Events: Although the execution of PLC programs is
cyclic and not event-triggered, the concept of events still exists
(in a latent way). In fact, many Boolean inputs represent events
or external actions aiming to modify the internal state of the
controller. Events should be treated as “first-class citizens” in
the specification.

b) Event semantics: It is also important to adopt a
semantics that is appropriate for the PLC domain. Due to
the cyclic behaviour, we cannot have the assumption usual
in event-triggered systems that all previous events are fully
handled before a new event is triggered. As in a PLC multiple



events can happen simultaneously, the priority of events has
to be defined. If multiple contradictory events happen, the one
with the highest priority should suppress the events with lower
priorities, but several independent events can trigger in the
same cycle.

c) Clean core logic: PLC programs work directly with
physical input and output signals, therefore a significant part
of the programs has to perform input and output handling.
While this task is unavoidable, decoupling the I/O-handling
helps to focus on the core logic. As the PLCs have limited
resources, the developers try to minimize the number of
variables, but this approach is not needed to be followed in
the specification. In the specification, it is important to use
“concepts” rather than expressions, i.e. it is better to define
internal variables (variables for specification purposes only)
defined by expressions on the input variables, and to use these
internal variables in the definition of the logic.

d) Hierarchical, modular structure: To support reuse
and the abstract design of specification, the method should
provide a hierarchical, modular structure. Hierarchy and mod-
ularity helps to “divide and conquer”, to have a simple
logic in the leaf modules (i.e. modules that are not further
decomposed), and to avoid duplicated specification of same
submodules.

e) Multiple formalisms: The leaf modules of the hi-
erarchical structure should be specified by a specification
language adapted to the behaviour of the current module, thus
multiple module definition formalisms are needed. Among
others, control-oriented, data-processing-oriented, as well as
timing-related behaviours shall be considered. State machines
and logic circuits are widely used in the development and
specification of PLC program modules, but these can only
be considered as “explanatory doodling”, not as precise spec-
ification, as their formal semantics are not defined. New,
formal languages should be proposed that are adapted to the
specialities of the domain and based on the existing knowledge
and practice of the developer community.

f) Limited expressivity: Rich languages can provide
rich features, but also more space for problems and they can
require longer training period. The expressivity of a PLC
specification language should be restricted. In some cases,
some of the restrictions can be explicitly relaxed, but then the
verification of these parts should be carried out with special
attention.

g) Time-dependent behaviour: As PLCs can have time-
dependent behaviour, the proposed formalism should support
timed models. This behaviour is generally captured by timers
in PLCs. Three kinds of timers are defined in the corresponding
standard [1]: TP (signal pulsing), TON (on delay), TOFF (off
delay). Each has a different semi-formal semantics. These
standardised timers should be part of the language as mod-
ules, because they are widely used and well-known by the
automation engineers.

B. Requirements from the Literature

Besides the experience from practice, previous work in
the literature can point to necessary requirements and best
practices of developing a new, domain-specific specification
language. In this part some general work are summarized.

In the first place, a (formal) specification method should
satisfy obvious general requirements, e.g. it has to be correct,
unambiguous, consistent, verifiable [4].

In 2000, van Lamsweerde published a survey [5] on
existing formal specification methods and a roadmap for the
future. The conclusion of the paper is that “formal specification
techniques suffer a number of weaknesses”. Such weaknesses
are e.g. the (1) limited scope (i.e. the specification can only
capture a part of the system), (2) poor separation of concerns
(i.e. the intended properties, the environmental assumptions
and the properties of the application domain overlap), (3) too
low-level ontologies, (4) high cost, and (5) poor tool support.
The author states that future formal specification methods
should be lightweight (i.e. not requiring deep formal methods
expertise), at least partially domain-specific, structured, multi-
paradigm and multiformat (i.e. integrating multiple languages
and letting the specifier use the best for the current needs,
thus for each subsystem the most appropriate language shall
be chosen, or different languages might be necessary for
specifying functional and extra-functional requirements).

Knight et al. approached the question “Why formal meth-
ods are not used widely?” more practically. In [6] they de-
signed an evaluation framework to assess formal specification
methods. Furthermore, they selected three specification lan-
guages (Z, PVS, Statecharts) and applied them for a subsystem
of a nuclear reactor. Then, the specifications were assessed by
developers not expert in formal methods and by nuclear engi-
neers. After a short training period, the general idea and the
main advantages of formal specification were welcomed and
understood. From the point of view of the nuclear engineers,
Z and PVS were too complex, but Statecharts were claimed
to be effective for communication and easy to learn, although
difficult to search and navigate. The authors emphasize that
often overseen features are also recommended to help the
industrial usage. These comprise the support for documen-
tation and readability, e.g. by including free-text annotations
connected to the elements of the specification.

A possible reason why Statecharts [7] are often welcomed
by the non-computer engineers can be the fact that it was not
developed in a purely academic environment, but in strong
collaboration with avionics engineers, taking their habits and
knowledge into account [8].

A good example for Statechart-based languages is the
RSML formalism. It was designed to help the specification
process of the TCAS II avionics system. In [9] the authors
discuss some lessons learned, like simplicity and readability
are “extremely important” [9]. Based on the experience from
RSML, a new language (SpecTRM-RL) was created, but both
seem not to be used widely. Also, the provided solutions do
not fit to the PLC domain and using only a Statechart-like
formalism does not provide a convenient method for specifying
PLC programs, e.g. behaviour of modules with many numeric
state variables are difficult to be captured.

A recent work on the topic collects requirements towards
a model-based requirements engineering tool for embedded
systems [10]. In their survey the highest ranked requirements
were the support for various different representations, docu-
ment generation, expression of non-functional requirements,
and for maintaining traceability links; not formal verification



or automated code generation.

The literature overview briefly summarized above pointed
out that a good specification should be lightweight [5], [6].
This also implies the need for domain-specificity. The speci-
fication should be adapted to the concrete (sub)system being
specified, therefore a “portfolio of languages” is needed, of
which the most appropriate can be chosen for each submodule
[5]. Similarly, the functional and extra-functional properties
need different languages.

III. EXISTING, RELATED SPECIFICATION METHODS

The motivation for a new specification language is coming
from CERN, but we believe that the problem is more general.
There is no widely-accepted, formal or semi-formal specifi-
cation method for PLC programs. The IEC 60848 standard
[11] defines a specification language based on finite state
machines called Grafcet. This language can be seen as a
safe Petri net extended with guards and variable assignments.
Although in some cases Grafcet can capture the behaviour
of some submodules, it is not applicable generally. Also, the
semantics of the language is complex and sometimes not
intuitive, furthermore it is confusing that a standardised PLC
implementation language, the SFC uses similar syntax with
different semantics [12].

Other work also targeted the formal specification of PLC
programs. In [13] the authors describe a specification method
called ST-LTL based on LTL (Linear Temporal Logic). In
fact, this is a formal language that can be easily checked on
the implementation. On the other hand, the formalism is far
from the automation engineer’s general knowledge, also it can
be difficult to scale with the growing size and complexity,
furthermore it is not obvious to see if the specification is
inconsistent or incomplete.

The formal specification methods are not widespread in
the PLC domain yet, but many formalisms are widely used
in computer engineering, e.g. the B Method, the VDM-SL,
the Z notation, or temporal logics. An obvious solution would
be to use one of them. However, it is not really a suitable
solution, as these methods are typically (1) too difficult to be
used for engineers not trained specially in formal verification,
and (2) the usage is even more difficult in the case of PLC
programs, as the methods are not adapted specifically to the
PLC semantics, even the general properties of the PLCs (e.g.
cyclic execution) have to be explicitly defined, therefore it is
difficult to address the domain-specific requirements discussed
in Section II-A.

A good example for formal specification from the industry
is the SCADE Suite by Esterel Technologies/ANSYS. It pro-
vides a model-based environment to support the development
of critical embedded software, including an automated code
generator compliant to various industrial standards. However,
even if its cyclic computation model is close to the PLC
computation model, this toolset does not provide solutions
specifically for IEC 61131-compliant PLCs.

The B, Grafcet, SCADE, Spec-TRM, ST-LTL, VDM-SL,
and Z methods are compared in the Table I based on some
of the main requirements discussed in Section II-A and II-B.
As can be seen, none of the tools/methods provide a solution

TABLE I. COMPARISON OF AVAILABLE SPECIFICATION METHODS

B
/

Z

G
ra

fc
et

SC
A

D
E

Sp
ec

-T
R

M

ST
-L

T
L

V
D

M
-S

L

Precise meaning + + + + + +
Lightweight – + + + – –
Specific for the PLC domain – + – – + –
Support for documentation – – + + – –1

G
en

er
al

re
q.

Available tool support + + + – – +
II-A a) Events –1 +2 + +2 – –1

II-A b) Event priorities, suppressions – – – – – –
II-A c) Clean core logic – – +2 – – –
II-A d) Hierarchical, modular structure + +2 + + +2 –
II-A e) Multi-formalism – – + – – –D

SL
re

q.

II-A g) Time-handling – + + +2 +2 –1

1 Not supported in the original formalism, but supported in one of its extensions.
2 With restrictions.

that is adapted to the PLC domain, satisfies most of the
domain-specific and the general requirements at the same
time. Therefore we think that none of these methods could
be integrated to a PLC development process with low cost.

IV. MAIN CONCEPTS OF THE PROPOSED SOLUTION

Based on the requirements and experiences discussed be-
fore, a first version of a specification language suitable for PLC
programs is defined here. Only a short sketch of the method is
provided, not an extensive description. The starting point of the
proposed solution is the Statechart formalism, as it is intuitive
and generally close to the (automation) engineers. However, it
has to be extended and altered, for the following reasons.

1) The Statechart formalism is not a complete specifica-
tion method, it just captures the behaviour of a part
of the system. It was intended to be embedded in a
broader framework [8].

2) The common semantics definitions do not fit entirely
to the PLC properties. For example, the “events”
are represented by input variables and the program
execution is cyclic, therefore it cannot be assumed
that only one event will be processed at a time, as it
is assumed for example in the semantics of the UML
(Unified Modeling Language) State Machines.

3) Not every stateful behaviour can be captured effi-
ciently by state machines, e.g. modules with integer
or floating-point state variables. This is common in
process control programs, thus a Statechart-based for-
malism should be accompanied by other languages.

A. Structure (High-level Syntax)

The base element of the proposed solution is the module.
A module is either a composite module that is refined by
submodules, a leaf module capturing the behaviour of a part
of the system, or an alternative module that helps to choose
between multiple implementations (e.g. timed or non-timed
implementation) based on some parameters.

In every module it is possible to define internal variables
based on the input variables and outputs based on the current
state of the module. In leaf modules events can also be defined.
This decoupling of I/O-handling and computation helps to keep
the core logic as small as possible. The scope of the internal



«abstract»
Module

«abstract»
LeafModule

CompositeModule

submodules
0..*

AltModule
– condition :
BooleanExpression

1 onTrue
1 onFalse

StatemachineModule IoConnectionModule «abstract»
TimerModule

Fig. 1. Metamodel of the module structure

variables is by default restricted to the defining module and
its descendants, but this restriction can be explicitly relaxed.
The core logic of the leaf modules can be defined using one
of the three defined formalisms, adapted to the logic it is
implementing. The first possibility is to use a well-defined,
restricted statechart describing the logic that allows to use
hierarchical states (without regions), transitions (with guards
or external triggers but without variable assignments, actions
and internal events), and history nodes.

If it is not efficient or not possible to use statecharts,
because for example the module is using integer state vari-
ables, an input-output connection module can be used. The
representation contains all input variables that can be used
in the computation and all output variables that have to be
assigned by the given module. The logic description consists
of defining different stateless computation blocks and the
directed connections between the variables and block inputs
and outputs. In this way the assignment rule of each output
variables can be given graphically. Furthermore, it is easy to
enforce that each output variable should be assigned exactly
once in each cycle. The module structure explained above is
summarized by its metamodel in Fig. 1.

It is necessary to give multiple possible syntax not only
for describing the core logic, but also for describing the
input and output definitions. In simple cases, ordinary Boolean
expressions can be used. In more complex cases, the AND/OR-
tables (like the ones defined in [9]) are more efficient and less
error-prone.

In the proposed solution, every element can be annotated
by the user to make easier the understanding for example by
providing important explanations. The annotations can also
help to use the specification (or an artefact generated from the
specification) as documentation for maintenance and reuse.

B. Execution (Informal Semantics)

The execution of each module consists of 4 phases. It is
started by (1) computing the defined input expressions and
the (2) enabled events. Next, the (3) logic of the module is
executed. The execution of each module is finished by (4)
computing the values of the defined output variables.

The execution of the logic depends on the applied formal-
ism in the case of leaf modules. For composite modules, this
means the sequential execution of the submodules, in a pre-
defined order. The execution of an alternative module consists
of executing the module corresponding to the evaluated con-
dition value. In a statechart module, the execution means the
exhaustive firing of all enabled transitions that are not triggered

by any event. Then at most one event is selected that is enabled
and not suppressed by any higher priority event, and at most
one transition fires that is triggered to this selected event. After
that all enabled non-triggered transition fires. The execution of
an input-output connection module is the iterative evaluation
of all defined signals starting from the input variables and the
previous values of output variables, until the new values can
be assigned to the outputs.

V. SUMMARY AND FUTURE WORK

This paper described a first step towards a new formal
specification language for complex PLC programs. The goal
of this research is to provide a specification method tailored
to the PLC domain. This paper sketched up the main concepts
of a potential specification language based on (1) the general
requirements towards formal specification methods, (2) the
specialities of the PLC domain, and (3) the experienced
challenges and difficulties.

Future work includes the design and description of formal
syntax and semantics of the language. This should be followed
by providing tool support to construct the specification, to
verify its consistency and to check the conformance of PLC
programs in regard to the specified behaviour. After an ex-
perimental phase and collecting feedback from its users the
specification method is intended to be introduced in the PLC
development workflow of CERN.

REFERENCES

[1] IEC 61131-3:2013 Programmable controllers – Part 3: Programming
languages, IEC Std., 2013.

[2] E. Blanco Viñuela et al., “UNICOS evolution: CPC version 6,” in Proc.
of the 12th Int’l Conf. on Accelerator & Large Experimental Physics
Control Systems, 2011, pp. 786–789.

[3] B. Fernández Adiego, D. Darvas, J.-C. Tournier, E. Blanco Viñuela, and
V. M. González Suárez, “Bringing automated model checking to PLC
program development – A CERN case study,” in Proc. of the 12th Int’l
Workshop on Discrete Event Systems. IFAC, 2014, pp. 394–399.

[4] IEEE Std 830-1998 Standard, IEEE Computer Society Std., 1998.
[5] A. van Lamsweerde, “Formal specification: A roadmap,” in Proc. of

the Conf. on The Future of Software Engineering. ACM, 2000, pp.
147–159.

[6] J. C. Knight, C. L. DeJong, M. S. Gibble, and L. G. Nakano, “Why are
formal methods not used more widely?” in 4th NASA Langley Formal
Methods Workshop, 1997, pp. 1–12.

[7] D. Harel, “Statecharts: a visual formalism for complex systems,”
Science of Computer Programming, vol. 8, no. 3, pp. 231–274, 1987.

[8] D. Harel, “Statecharts in the making: A personal account,” in Proc. of
the Third ACM SIGPLAN Conf. on History of Programming Languages.
ACM, 2007, pp. 5–1–5–43.

[9] M. Heimdahl, N. Leveson, and J. Reese, “Experiences from specify-
ing the TCAS II requirements using RSML,” in Proc. of the 17th
AIAA/IEEE/SAE Digital Avionics Systems Conf., vol. 1, 1998, pp.
C43/1–C43/8.

[10] S. Teufl, M. Khalil, and D. Mou, “Requirements for a model-based
requirements engineering tool for embedded systems: Systematic liter-
ature review and survey,” fortiss GmbH, White Paper, 2013.

[11] IEC 60848:2013 – GRAFCET specification language for sequential
function charts, International Electrotechnical Commission Std., 2013.

[12] J. Provost, J.-M. Roussel, and J.-M. Faure, “A formal semantics for
Grafcet specifications,” in IEEE Conf. on Automation Science and
Engineering, 2011, pp. 488–494.

[13] O. Ljungkrantz, K. Åkesson, M. Fabian, and C. Yuan, “A formal
specification language for PLC-based control logic,” in Proc. of the
8th IEEE Int’l Conf. on Industrial Informatics, 2010, pp. 1067–1072.


