
Modeling and Analysis of an Industrial
Communication Protocol in the Gamma Framework

Bence Graics∗†, István Majzik∗
∗Budapest University of Technology and Economics, Department of Measurement and Information Systems

Budapest, Hungary
†MTA-BME Lendület Cyber-physical Systems Research Group

Budapest, Hungary
Email: {graics, majzik}@mit.bme.hu

Abstract—Communication protocols are often designed on
the basis of state-based models. During protocol design, the
use of formal verification is indispensable, as concurrent be-
havior is notorious for hidden and sophisticated bugs. This
paper presents a formal verification approach to verify an
industrial communication protocol using the Gamma Statechart
Composition Framework. Gamma is a modeling toolset for the
design and analysis of reactive systems. It supports a family of
modeling languages with formal semantics for the component-
based definition of state-based behavior. It also supports formal
verification by automatically mapping the defined models to the
input formalisms of verification backends and back-annotating
the results. The verification approach is presented in the context
of the Orion industrial communication protocol. The verification
approach supports the introduction of channel models with
different message transmission characteristics and failure modes.
Different execution modes of the components are also analyzed.

I. INTRODUCTION

Communication protocols are inherently event-driven and
are frequently designed using state-based models, e.g., state-
charts [1]. Furthermore, communication protocols are often
used in safety-critical systems where correct behavior is
crucial, which makes formal modeling languages as well as
sophisticated verification and validation (V&V) techniques,
e.g., formal verification, necessary during the design process.

As communication protocols have multiple participants, the
modeling language must support composition functionalities
in addition to supporting individual component design. Also,
to make formal verification feasible, the modeling language
must have a formal semantics both at component and system
level, defining how a standalone component is executed, and
describing the execution and communication of contained
components. Such a language can be supported by a modeling
and analysis tool, which can facilitate the design and V&V of
communication protocols.

The Gamma Statechart Composition Framework is such a
tool, providing a language for composing individual statechart
components (possibly created in other tools) while supporting
verification and validation (V&V) capabilities. In this paper
we propose a formal verification approach for communication
protocols using the Gamma framework, which includes 1) the
construction of protocol participant models as well as channel
models with different failure modes, 2) the composition of pro-
tocol participant and channel models to form system models

and 3) model checking on the system models with automatic
back-annotation of the results. The process is presented in
the context of Orion, a master-slave communication protocol
under design targeted to be used in the railway industry.

II. GAMMA STATECHART COMPOSITION FRAMEWORK

The Gamma Statechart Composition Framework [2] is an
open-source, integrated modeling toolset to support the seman-
tically sound composition of heterogeneous statechart compo-
nents. The framework reuses statechart models of third-party
tools and their code generators for separate components, e.g.,
Yakindu1 and MagicDraw2, thus UML/SysML state machine
models are supported. The mapping of these external models
to the internal statechart representation of Gamma (Gamma
Statechart Language – GSL) is supported by automatic model
transformations. The framework provides the Gamma Compo-
sition Language (GCL), which supports the interconnection of
components according to different composition modes based
on precise semantics. Furthermore, Gamma provides code
generators for deriving implementation from defined models
as well as test case generators for the analysis of compo-
nent interactions. Gamma also supports system-level formal
verification and validation (V&V) functionalities by mapping
statechart and composition models into formal automata of
the UPPAAL [3] model checker. Also, the automatic back-
annotation of the verification results is supported.

GCL supports three composition modes, namely syn-
chronous, cascade and asynchronous, which fundamentally
determine the execution of the resulting composite models.
The detailed introduction of these composition modes can be
found in [4], here we include a summary of their properties.

Synchronous A synchronous model represents a coherent
unit consisting of strongly coupled but concurrent components,
which are executed in a lock-step fashion and communicate
in a synchronous manner using signals.

Cascade Cascade models are special synchronous models
whose components are executed in a sequential manner. Con-
tained components can be considered as a set of filters applied
sequentially to derive an output from an input.

1https://www.itemis.com/en/yakindu/state-machine/
2https://www.nomagic.com/products/magicdraw

Asynchronous Asynchronous models represent indepen-
dently running components. There is no guarantee on the
execution time or the execution frequency of such components,
thus, they communicate with queued (persistent) messages.

III. MODELING OF THE COMMUNICATION PROTOCOL

This section introduces the modeling process of our pro-
posed verification approach in the context of Orion.

A. Protocol Participants

Orion is a master-slave communication protocol, where the
establishment of a connection between two participants is
always initiated by a master and the connection request is
either accepted or rejected by a slave. Both the master and the
slave participants were designed on the basis of statecharts
in MagicDraw and have the same events (commands and
messages) that can be classified into two groups:

• Connect and Disconnect events come from the environ-
ment and can be used as external commands to initiate
a connection or break down an established connection.
Invalid event is also an external event indicating an
invalid status in the environment of the system.

• Events of the Orion protocol are transmitted between
protocol participants and can be used to establish (Orion-
ConnReq, OrionConnResp and OrionConnConf) or break
down a connection (OrionDisconnCause), send data in
established connections (OrionAppData) or keep estab-
lished connection alive in the absence of transmittable
data (OrionKeepAlive).

The initial state of the master statechart (depicted in Fig. 1)
is Closed. Upon receiving a Connect event or after a specified
timeout (TReconn: 5 seconds in the example), it goes to
state Connecting while sending an OrionConnReq event to the
slave. If it receives an OrionConnResp event within a specified
time interval, it goes to state Connected while sending an
OrionConnConf event to the slave. If in state Connecting it
receives any other events, or does not receive any events in a
specified time interval (TConn: 5 sec), it goes back to state
Closed and sends an OrionDisconn event when necessary, that
is, if the received event was not OrionDisconnCause. In state
Connected, application specific data, or in the absence of data
for a specified time interval (TKeepAlive: 4 sec) an Orion-
KeepAlive event are sent (child state KeepAliveSendTimeout).
Also in state Connected, data as well as OrionKeepAlive
events are received (child state KeepAliveReceiveTimeout).
However, if any other event is received or no events are
received in a specified time interval (TInactive: 5 sec), the
master goes back to state Closed and sends an OrionDisconn
event if necessary.

The slave statechart (see Fig. 2) is similar to the master.
The models can be automatically transformed to the GSL

using the model transformers of Gamma, in which they
can be validated based on statechart-related well-formedness
rules [5]. According to the validators of Gamma, the presented
statechart models are well-formed.

Fig. 1. The statechart model describing the behavior of the master component.

Fig. 2. The statechart model describing the behavior of the slave component.

B. Channel Models

Several failure modes of event transmission between proto-
col participants can be considered [6]. In this work we focus
on loss of events and delay of events failure modes, as

• the duplication of events can be filtered using sequence
numbering, this failure does not reach the protocol level,

• the reordering of events can be detected using sequence
numbering, on protocol level this failure is mapped to the
loss of these events, and

• the alteration of event content can be detected using
integrity checking, on protocol level this failure is also
mapped to the loss of these events.

Therefore, by focusing on loss of events and delay of events,
we cover all relevant failure modes of [6].

In this work we defined five atomic channel models in
Yakindu: one ideal channel, three models describing loss of
events failure modes (bursty message losing channel, arbitrary
message losing channel and timed message losing channel)
and one model related to delay of events failure mode (delay
channel). The following paragraphs present these models using
graphical statechart representations. Note that these represen-
tations are simplified versions of the real models and include
behavior only for a single event (OrionConnReq), however,
additional events in the real models are handled analogously.

Fig. 3 depicts the ideal channel model. When it receives a
certain event on its input, it forwards the event to its output,
events are not lost or delayed.

Fig. 4 depicts the bursty message losing channel model,
which models a channel that can lose a given amount
(LOST MESSAGE MAX) of subsequent incoming events. It
has two states, Operating (initial state) and MessageLosing. If

Fig. 3. The statechart model of the ideal channel.

the model receives a certain event in state Operating it either
forwards the event to its output, or (if there has been no failure
before) goes to state MessageLosing without forwarding the
event. In state MessageLosing, the specified amount of events
are absorbed before going back to state Operating. Note the
nondeterministic nature of this model: the loss of subsequent
events can start on any incoming event.

Fig. 4. The statechart model of the bursty message losing channel.

Fig. 5 depicts the arbitrary message losing channel model.
It overapproximates the behavior of the bursty message losing
channel model, as it supports the loss of events regardless of
their order, that is, a given amount of events can be lost but
these losses can occur any time, the lost events do not have
to be necessarily subsequent.

Fig. 5. The statechart model of the arbitrary message losing channel.

Fig. 6 depicts the timed message losing channel model,
which loses messages that are received in a specified time
interval. It has two states, Operating (initial state) and Mes-
sageLosing. In state Operating, incoming events are forwarded
to the output. After a certain time (S sec), if the model has not
failed before, it goes to state MessageLosing, where incoming
events are absorbed. It goes back to state Operating after a
specified time (E sec) and remains there.

Fig. 6. The statechart model of the timed message losing channel.

Fig. 7 depicts the delay channel model, which delays the
transmission of events with a given time. In this model each
event type is handled in an orthogonal region. A region has
two states, Idle (initial state) where there is no event in the

channel, and Forwarding where the transmission of events
of a certain type is delayed. If an event is received in state
Idle, the model goes to state Forwarding where additional
incoming events are queued (variable messageCount). After
a specified time (T sec), the delayed event is forwarded. If
there is no additional queued event, the model goes to state
Idle, otherwise, it goes back to state Forwarding.

Fig. 7. The statechart model of the delay channel.

C. System Models

We analyzed the behavior of the Orion protocol considering
different channel failure modes and different execution modes
of the participants. Therefore, for each channel model we
defined cascade, synchronous and asynchronous composite
Gamma models, which differ only in the execution mode, the
components and their connections are the same. In this work
we focused on the time-driven behavior and the events of the
Orion protocol in the master and slave components and did not
consider the external events and commands that may directly
close the connection.

Fig. 8 describes the GCL model the variations of which were
used with different channel models and execution modes. It
consists of a master component, a slave component, and two
channel components that connect the output and input ports
of the protocol participants. The concrete models differ only
in the first keyword that can be either sync, cascade or async.
All in all, fifteen composite system models were defined, five
(as there are five channel models) for each composition mode.
In the asynchronous composite models message queues with
capacity 2 were used.

� �
[sync | cascade | async] Or ionSys tem [] {

/ / D e c l a r a t i o n o f components
component m a s t e r : Or ionMas t e r
component m2S : Channel
component s l a v e : O r i o n S l a v e
component s2M : Channel
/ / C o n n e c t i n g component p o r t s v i a c h a n n e l s
channel [m a s t e r . SendOrion] −o)− [m2S . I n p u t]
channel [m2S . Outpu t] −o)− [s l a v e . R e c e i v e O r i o n]
channel [s l a v e . SendOrion] −o)− [s2M . I n p u t]
channel [s2M . Outpu t] −o)− [m a s t e r . R e c e i v e O r i o n]

}� �
Fig. 8. The GCL model of protocol participants and channel models.

IV. ANALYSIS OF THE COMMUNICATION PROTOCOL

We analyzed liveness properties of the system models
introduced in Section III-C, that is, the reachability of system
states using different channel models and execution modes.
The analyzed properties (formalized in CTL) are the following.

P1 The system can reach a state in which both the
master and the slave are in state Connected : EF
master.Connected && slave.Connected.

P2 The system must eventually reach a state in which both
the master and the slave are in state Connected : AF
master.Connected && slave.Connected.

P1 means the models do not contain fundamental faults. P2,
as a robustness property means the protocol is always able to
recover despite the specified failure mode of the channel.

According to the verification executed in Gamma, P1 holds
in the case of every system model introduced in Section III-C.
The analysis results for P2 are shown in the following sections.

A. Synchronous Composition Mode

As the protocol has real-time timeouts, the fulfillment of the
property depends on the execution frequency (indicated by f)
of the system components in the case of each channel model.

In the case of the ideal channel model, f has to be higher
than 4/TConn for the property to hold due to the lock-
step execution mode of the components: event transmission
between the master and the slave is delayed as events are
transmitted through separate channel components (the value
in the nominator refers to the number of components in the
composite model). The timeout in state Connecting (both for
the master and the slave) is TConn sec. Therefore, event
OrionConnResp in response to OrionConnReq in the case
of the master, and event OrionConnConf in response to
OrionConnReq in the case of the slave have to be received
in lesser time to enable the reaching of state Connected.

The property holds in cases of both the bursty
and arbitrary message losing channel models for all
LOST MESSAGE MAX values between 1 and 9, if f is
higher than 4/TConn.

In the case of the timed message losing channel model, the
property was checked for the following S and E values: 4 and
9, 4 and 14, 4 and 19, 9 and 14, 9 and 19, 14 and 19 (so that
multiples of parameters TReconn and TConn in the master
and slave models fall into these intervals). If f is higher than
4/TConn, the property holds.

In the case of the delay message losing channel model, f,
the T parameter of the channel and the TConn parameter in
the master and slave have to satisfy the following constraint:
2/f + T < TConn/2. If this constraint is not satisfied, an
execution of the components can exist where the master and
slave get desynchronized due to the late arrival of messages
and the Connected states are never reached at the same time.

B. Cascade Composition Mode

The cascade composition mode defines a sequential exe-
cution semantics. Similarly to the synchronous composition
mode, the fulfillment of the analyzed property depends on
the execution frequency of components. The property can
be fulfilled in the case of every channel model, and in this
composition mode the execution frequencies can be lower.

In the case of the ideal channel, bursty-, arbitrary- and
timed message losing channel models, f has to be higher than

1/TConn for the property to hold, as components are executed
in the following order: master, m2S, slave, s2M. Therefore,
events from the master to the slave and from the slave to the
master can be transmitted in a single execution cycle.

In the case of the delay message losing channel model, f,
the T and the TConn parameters have to satisfy the following
constraint: 1/f + T < TConn/2.

C. Asynchronous Composition Mode
In the case of the asynchronous composition mode, there is

no guarantee on the execution frequency of the components
of the composite model. Therefore, in the case of any channel
model, it is possible to delay the execution of either the master
or slave component in state Connecting until the timeout
is reached (TConn sec). Thus, the property does not hold
regardless of the defined channel models. To examine this
problem, we introduced constraints on the execution frequency
of the components in the formal models. We observed that if
the execution frequencies of the components are in the order
f(master) < f(m2S) < f(slave) < f(s2M), and are higher
than 4/TConn in the cases of the first four channel models,
or the 2/f + T < TConn/2 constraint holds in the case of the
delay channel model, the property holds.

V. CONCLUSION

We proposed a verification approach for communication
protocols using Gamma in the context of Orion, an industrial
master-slave communication protocol. We defined multiple
channel models describing loss of events and delay of events
failure modes. Using model checking, we verified whether the
system 1) might eventually and 2) must eventually reach a state
in which both the master and slave are in state Connected.

In the future we plan to investigate the composition of chan-
nel models in a single GCL component where the operating
channel model is selected by a selector component. This way,
both the model construction and the analysis phases could be
simplified as the number of resulting system models would
decrease to three. We also aim to introduce full support for
execution frequency constraints in asynchronous components.

Acknowledgment Supported by the European Union, co-financed by the
European Social Fund (EFOP-3.6.2-16-2017-00013) and the ÚNKP-19-3 New
National Excellence Program of the Ministry for Innovation and Technology.

REFERENCES

[1] D. Harel, “Statecharts: A visual formalism for complex systems,” Sci.
Comput. Program., vol. 8, no. 3, pp. 231–274, Jun. 1987.

[2] V. Molnár, B. Graics, A. Vörös, I. Majzik, and D. Varró, “The Gamma
Statechart Composition Framework,” in 40th International Conference on
Software Engineering (ICSE 2018). Gothenburg, Sweden: ACM, 2018.

[3] G. Behrmann, A. David, K. G. Larsen, J. Håkansson, P. Pettersson, W. Yi,
and M. Hendriks, “Uppaal 4.0,” 2006.

[4] B. Graics and V. Molnár, “Mix-and-match composition in the Gamma
Framework,” in 25th Minisymposium, Department of Measurement and
Information Systems, Budapest, Hungary, January 2018.

[5] B. Graics, “Documentation of the Gamma Statechart Composition
Framework,” Budapest Univ. of Technology and Economics, Dept. of
Measurement and Information Systems, Tech. Rep., 2016. [Online].
Available: https://inf.mit.bme.hu/en/gamma/

[6] S. Procter and P. Feiler, “The AADL error library: An operationalized
taxonomy of system errors,” Ada Lett., vol. 39, no. 1, p. 6370, Jan.
2020. [Online]. Available: https://doi.org/10.1145/3379106.3379113

