
Incremental view maintenance in graph databases:
A case study in Neo4j

Márton Elekes, Gábor Szárnyas
Budapest University of Technology and Economics

Department of Measurement and Information Systems
Budapest, Hungary

Email: {elekes, szarnyas}@mit.bme.hu

Abstract—With the increasing amount of densely connected
data sets, graph analysis has become an integral part of data
processing pipelines. Therefore, the last decade saw the emer-
gence of numerous dedicated graph analytical systems along with
specialized graph database management systems. Traditionally,
graph analytical tools targeted global fixed-point computations,
while graph databases focused on simpler transactional read
operations such as retrieving the neighbours of a node. However,
recent applications of graph processing (such as financial fraud
detection and serving personalized recommendations) often ne-
cessitate a mix of the two workload profiles. Following this trend,
the 2018 Transformation Tool Contest (an annual competition
for graph transformation tools) presented a case study that
requires participants to compute complex graph queries defined
on a continuously changing social network graph. The solutions
are assessed based on their scalability and query reevaluation
time, therefore, solutions are encouraged to incrementalize their
implementations. This paper demonstrates a solution in the
popular Neo4j graph database using several incrementalization
techniques and compares them against the reference implemen-
tation of the case study.

Fig. 1: Graph schema of the case study.

I. INTRODUCTION

We start by describing the “Social Media” case study of
the 2018 Transformation Tool Contest [5]. This case study is
defined using a familiar social network-like data model (Fig. 1)
consisting of Users and their Submissions. These submissions
form a tree where the root node is a Post and the rest of
the nodes are Comments. Users can like Comments and form
friends relations with each other. Additionally, Comments have
a direct pointer rootPost to the root Post to allow quick
lookups. Fig. 2a shows an example graph with two Posts (p1,
p2), three Comments (c1, c2, c3) and four Users (u1, . . . ,
u4). Solutions are required to compute two queries:
Q1: influential posts. Assign a score to each Post, defined
as 10 times the number of their (direct or indirect) Comments

(a) Initial graph and scores. Comment c2 has two components: c2/a
consists of User u1, while c2/b consists of Users u3 and u4. Its
total score is the sum of the component sizes, i.e. 12 + 22 = 5.

(b) Graph after performing an update that inserted six entities: (1) a
friends edge between Users u1 and u4, (2) a likes edge from
User u2 to Comment c2, (3) a Comment node c4 with (4) an
outgoing rootPost edge to Post p1, (5) an outgoing commented
edge to Comment c1, and (6) an incoming likes edge from User
u4. The changes have increased the score of Post p1 and resulted
in Comment c2 having a single component of size 4, therefore
receiving a score of 42 = 16. Comment c4 getting a score of 12 = 1.

Fig. 2: Example graphs: initial and updated versions.

plus the number of Users liking those Comments. Return the
top 3 Posts according to their score.
Q2: influential comments. Assign a score to each Comment,
based on the friendships of the Users who like that Comment.
Based on the graph formed by the User nodes and their friends
edges, for every comment we define an induced subgraph
which contains the Users who like the Comment and their
friends edges. The subgraph contains connected components,

EnumPaths EnumPaths Reachability MatComp MatComp GraphAlgo GraphAlgo MatComp
Subgraph Subgraph FixedPoint PathOp EdgeFilter GraphAlgo

(very slow) (incompatible) ●

in
iti

al
ev

al
ua

tio
n enumerate paths

materialize subgraph (edges/labels) E
reachability (shortestPath) E
reachability+dynamic labels (APOC lib.)
fixed-point calculation (APOC library)
materialize subgraph components
Graph Algorithms library

up
da

te reevaluation
n/a n/a

maintain component
dirty flag for Comments

TABLE I: Comparison of strategies for Q2 regarding the techniques (language features and libraries) used in each strategy.
Strategies in bold are described in more detail. Notation – : the technique is used by the strategy, E: incompatible strategies.
“MatComp” strategies are denoted with ◻, while “GraphAlgo” strategies are denoted with ×.

i.e. groups of users who know each other directly or via
friends. The score is defined as the sum of squared component
sizes. Finally, the top 3 Comments should be returned.
Updating the graph. After the query execution on the initial
graph the case study requires solutions to perform a number
of updates on the graph while maintaining the results of the
queries. Fig. 2 shows the initial graph and the updated graph
with the scores for Q1 and Q2.
Neo4j. Neo4j is a graph database management system using
the property graph data model. Such graphs consist of la-
belled entities, i.e. nodes and edges, which can be described
with properties encoded as key-value pairs. Neo4j uses the
Cypher query language [2] which offers both read and update
constructs [3]. While the main focus of Neo4j is to run graph
queries, it also supports graph analytical algorithms with the
recently released Graph Algorithms library [7].

II. APPROACH

Q1 Batch. Q1 can be expressed with the Cypher query in
Listing 1. The Cypher language uses node labels (e.g. Post,
Comment, User), edge types (e.g. ROOT POST, LIKES),
node and edges properties to express graph patterns. The
query matches every node with label Post, then all its com-
ments via the rootPost edges, then the Users via the likes
edges. OPTIONAL MATCH denotes an optional pattern, where
variables are filled with NULL values if there is no match.
RETURN can be also used to group and aggregate. The results
are grouped by the id and timestamp properties of the Posts,
aggregated, then the top 3 scores are returned. The aggregation
counts the likes using the number of Users (a User can
like more Comments), and counts the number of Comments
(DISTINCT is used to remove duplicate Comments).

1 MATCH (p:Post)
2 OPTIONAL MATCH (p)<-[:ROOT_POST]-(c:Comment)
3 OPTIONAL MATCH (c)<-[:LIKES]-(u:User)
4 RETURN p.id AS id,
5 10*count(DISTINCT c)+count(u) AS score,
6 p.timestamp AS timestamp
7 ORDER BY score DESC, timestamp DESC LIMIT 3

Listing 1: Q1 Batch.

Q1 Incremental. To incrementally evaluate Q1, we initially
compute the score for each Post as previously and store it in

score property (Listing 2). Based on this property the current
top 3 scores can be computed using Listing 3. The score
property is indexed to improve lookup times.

For every batch of updates Alg. 1 is executed to insert new
elements and update the score property, then Listing 3 is used
to get the top 3.

1 MATCH (p:Post)
2 OPTIONAL MATCH (p)<-[:ROOT_POST]-(c:Comment)
3 OPTIONAL MATCH (c)<-[:LIKES]-(u:User)
4 WITH p, 10*count(DISTINCT c)+count(u) AS score
5 SET p.score = score

Listing 2: Q1 Incremental – initial evaluation.

1 MATCH (p:Post)
2 WHERE p.score >= 0 // query hint to use index
3 RETURN p.id AS id, p.score AS score,
4 p.timestamp AS timestamp
5 ORDER BY score DESC, timestamp DESC LIMIT 3

Listing 3: Q1 Incremental – get top 3 results.

Algorithm 1 Maintaining scores for Q1
1: procedure UPDATEQ1(updates)
2: for all update ∈ updates do
3: ADDNEWELEMENT(update) ▷ insert into the graph
4: if update isPost then
5: update.score← 0 ▷ init score for new Post
6: else if update is ⟨Comment,Post⟩ then ▷ new Comment node
7: ⟨ , rp⟩← update ▷ get the root Post
8: rp.score← rp.score + 10 ▷ update score
9: else if update is ⟨User,Comment⟩ then ▷ new likes edge

10: ⟨ , c⟩← update ▷ get Comment vertex of new edge
11: rp ← ROOTPOST(c) ▷ navigate via rootPost
12: rp.score← rp.score + 1 ▷ update score
13: end if
14: end for
15: end procedure

Q2 Strategies. Table I compares the different strategies used
for Q2 to find connected components in a subgraph and handle
updates. Fig. 3 shows a comparison of their runtime during
the initial evaluation and after the updates. The EnumPaths
strategy finds the connected components by enumerating all
paths of friends edges between Users who like a comment

and filtering to ensure that every User on the path also likes
the Comment. The complexity of this operation is intractable,
therefore this strategy is not feasible on larger graphs. To
only enumerate valid paths in the subgraph, the edges of the
subgraph can be materialized for each subgraph, i.e. for each
Comment (stored as an edge property). The combination of
these techniques (EnumPaths Subgraph) also exhibits poor
scalability (later measurements show that it reaches the time
limit after graph size 8). This limitation could be resolved
by using a Cypher reachability query, but unfortunately such
queries cannot perform filtering on properties (which is nec-
essary to ensure we only enumerate valid paths).

To use reachability queries and avoid the costly enumeration
of paths, MatComp FixedPoint strategy uses Neo4j’s APOC
library1. It materializes subgraph components by converting
◯

likes
ÐÐ→◯User Comment edges to ◯

component
ÐÐÐÐÐ→◯Comment Component and

◯
user
ÐÐ→◯Component User edges where the Component node con-

nects every User who knows each other directly or via friends.
The conversion is executed for each component one by one
using the fixed-point query execution mechanism of APOC.
This strategy has the best performance, which is caused by
the use of reachability function and incremental maintenance
after updates. Component materialization can be expressed
with pure Cypher queries using path operations (MatComp
PathOp , which also has limited scalability due to the use of
path enumeration.

GraphAlgo strategies (×) use functions provided by the
Neo4j Graph Algorithms library2 [7] to find connected com-
ponents in a subgraph conveniently. The library loads the sub-
graph into an in-memory projected subgraph before running
the computations. The initial runtimes of these solutions are
worse than the runtime of MatComp FixedPoint. This can be
attributed to the load phase, which is run for every subgraph,
i.e. for every Comment.

Strategies can differ in the way they handle the updates: they
can fully reevaluate the queries or incrementally maintain the
results depending on the update. Repeated reevaluations take
a significant amount of time, which causes the execution to
time out. EnumPaths Subgraph strategy uses Comment-
level incrementalization with dirty flags, but using path enu-
merations limits its scalability. The incremental evaluation of
materialized components (◻) is implemented by merging the
components and maintaining their sizes and the scores. These
updates have the best performance. (The MatComp strategies
with worse initial runtime reaches the time limit.)
Q2 Batch. Listing 4 shows the GraphAlgo solution
for Q2 using Neo4j Graph Algorithms library. The
algo.unionFind.stream function is used to find con-
nected components of the subgraph given by the node labels
and edge types or Cypher queries. For each Comment, the
first Cypher query in Lines 3–7 select Users who like the
Comment, the second query selects all friend edges as pairs

1https://neo4j.com/labs/apoc/
2https://neo4j.com/docs/graph-algorithms/

1 MATCH (c:Comment)
2 CALL algo.unionFind.stream(
3 'MATCH (c:Comment)<-[:LIKES]-(u:User)
4 WHERE id(c)=' + id(c) + '
5 RETURN id(u) as id',
6 'MATCH (u1:User)-[:FRIEND]->(u2:User)
7 RETURN id(u1) as source, id(u2) as target',
8 {graph: 'cypher'})
9 YIELD setId

10 WITH c, setId, count(setId) AS cSize
11 WITH c, cSize * cSize AS cSize_2
12 RETURN c.id AS id, sum(cSize_2) AS score, c.

timestamp
13 ORDER BY score DESC, c.timestamp DESC LIMIT 3
14 UNION ALL
15 MATCH (c:Comment)
16 WHERE NOT (c)<-[:LIKES]-(:User)
17 RETURN c.id AS id, 0 AS score, c.timestamp
18 ORDER BY c.timestamp DESC LIMIT 3

Listing 4: Q2 batch using the Neo4j Graph Algorithms library.

●
●

●
●

●
●

●

●

Initial Update

Q
2

1 2 4 8 16 32 64 128 256 512 1024 1 2 4 8 16 32 64 128 256 512 1024

0.1

1

10

100

1000

Graph size

E
xe

cu
tio

n
tim

e
[s

]

Technique

●

Enumerate paths on subgraph

Graph Algorithms + edge filter (batch)

Graph Algorithms library (batch)

Materialize components by fixed−point calculation

Materialize components by Graph Algorithms library

Materialize components by path operations

Fig. 3: Performance comparison of Q2 strategies. The symbols
denoting techniques correspond to those shown in Table I.

of Users. The function returns the ID of the component
containing the User node. Lines 10–14 calculate the squared
sum of the component sizes and selects the top 3 scores. The
function is invoked only for Comments with likes. The top 3
Comments without likes are enumerated by Lines 16–20.
Q2 Incremental. The incremental solution in this section
(MatComp FixedPoint) materializes the components of the
subgraph using fixed-point query execution of APOC library.
To achieve this, the solution materializes subgraph edges as
dynamically named labels (Listing 5) and finds reachable
nodes using the APOC library (Listing 6). The incremental
evaluation is performed by merging the components and
maintaining their sizes and the scores (Listing 7).

III. EVALUATION

To evaluate the performance and scalability of our solution,
we have used the benchmark framework of the case study [5].
This executes the queries on graphs of increasing sizes as
shown in Table II, then adds new elements to the graph, and
maintains the result using the queries. (Similar queries can be
formulated for element removal.) As a performance baseline,

https://neo4j.com/labs/apoc/
https://neo4j.com/docs/graph-algorithms/

1 MATCH (c)<-[:LIKES]-(u:User)
2 WITH c, collect(u) AS users
3 CALL apoc.create.addLabels(users, ['Likes_' + c.id])

YIELD node
4 RETURN count(*)

Listing 5: Q2 – materializing subgraph by dynamic labelling
of users liking the comment.

1 CALL apoc.periodic.commit("
2 MATCH (c:Comment)<-[:LIKES]-(u1:User)
3 WITH c, min(u1) AS u1
4 CREATE (c)-[:COMPONENT]->(comp:Component)
5 WITH c, u1, comp
6 CALL apoc.path.subgraphNodes(u1,
7 labelFilter: 'Likes_' + c.id,
8 relationshipFilter: 'FRIEND'}) YIELD node AS u2
9 CREATE (comp)-[:USER]->(u2)

10 WITH c, comp, u2
11 MATCH (c)<-[l:LIKES]-(u2)
12 DELETE l
13 WITH c, comp, count(*) AS componentSize
14 SET comp.size = componentSize
15 RETURN count(*)")

Listing 6: Q2 – grouping components by selecting a single
user (u1) per comment and their reachable friends (u2) in the
subgraph, then replacing LIKES edges with a Component node
and COMPONENT and USER edges until reaching a fixed
point where all LIKES edges are replaced.

1 WITH $friendEdge AS friendEdge
2 MATCH (cp1:Component)-[:USER]->(u1:User)
3 -[friendEdge]->(u2:User)<-[:USER]-(cp2:Component)
4 <-[:COMPONENT]-(c:Comment)-[:COMPONENT]->(cp1)
5 WITH c, cp1, cp2,
6 cp1.size AS cp1Size, cp2.size AS cp2Size,
7 cp1.size + cp2.size AS newCompSize
8 CALL apoc.refactor.mergeNodes([cp1, cp2],
9 {mergeRels: true}) YIELD node AS newComp

10 SET newComp.size = newCompSize,
11 c.score = c.score - cp1Size*cp1Size
12 - cp2Size*cp2Size + newCompSize*newCompSize

Listing 7: Q2 – for every FRIEND edge inserted where the two
users belonged to separate components, merge the components
and maintain the size and scores accordingly. (A similar query
exists for new LIKES edges.)

we used the reference implementation of the case study,
written in the .NET Modeling Framework [4] (NMF Batch)
and its incremental version (NMF Incremental). We executed
the benchmark on a cloud machine with a 24-core Intel®

Xeon® Platinum 8167M CPU with Hyper Threading at 2.00
GHz, 320 GB RAM, and HDD storage. The execution times
are shown in Fig. 4. The results show that the batch variant
does not scale, as it takes more than 20 minutes for graph
size 8. However, the incremental Neo4j variant is able to scale
for all graph sizes. Neither of them is competitive against
the incremental NMF solution which achieves sub-second
reevaluation times for both queries.

IV. CONCLUSION AND FUTURE WORK

This paper presented a Neo4j-based solution for the “Social
Media” case study of the 2018 Transformation Tool Contest.
We discussed a number of techniques that allow incremental

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

● ●
●

● ● ● ● ● ●

● ●

Q1 Q2

Load and initial evaluation
U

pdate and reevaluation

1 2 4 8 16 32 64 128 256 5121024 1 2 4 8 16 32 64 128 256 5121024

0.1

1

10

100

1000

0.1

1

10

100

1000

Graph size

E
xe

cu
tio

n
tim

e
[s

]

Tool ● ●Neo4j Batch Neo4j Incremental NMF Batch NMF Incremental

Fig. 4: Execution times of the queries with respect to the graph
sizes in the “load and initial evaluation”, and the “update and
reevaluation” phases. Both the x axis (graph size) and the y
axis (execution time) are logarithmic.

1 2 4 8 16 32 64 128 256 512 1024

#nodes 1274 2071 4350 7530 15k 30k 58k 115k 225k 443k 859k
#edges 2533 4207 9118 18k 35k 71k 143k 287k 568k 1.1M 2.3M

TABLE II: Graph sizes w.r.t. to the scale factor.

evaluation during updates. Initial results show that incremen-
talization techniques provide significant performance benefits
and allow the solution to scale for graph sizes orders of
magnitude larger than batch solutions. In the future, we plan
to perform a detailed performance evaluation of our solution
against other query and transformation tools, including tradi-
tional relational databases (such as PostgreSQL), EMF-based
model query engines (such as VIATRA [8]), and differential
dataflow engines [6]. Our Neo4j solution is also subject to
further optimizations such as using an incremental connected
components algorithm [1].

REFERENCES

[1] D. Ediger et al. Tracking structure of streaming social networks. In
IPDPS, pages 1691–1699. IEEE, 2011.

[2] N. Francis et al. Cypher: An evolving query language for property graphs.
In SIGMOD, pages 1433–1445. ACM, 2018.

[3] A. Green et al. Updating graph databases with Cypher. PVLDB, 2019.
[4] G. Hinkel. NMF: A multi-platform modeling framework. In ICMT, 2018.
[5] G. Hinkel. The TTC 2018 Social Media case. In TTC at STAF, 2018.
[6] F. McSherry et al. Differential dataflow. In CIDR, 2013.
[7] M. Needham and A. E. Hodler. Graph Algorithms: Practical Examples

in Apache Spark and Neo4j. O’Reilly Media, 2019.
[8] D. Varró et al. Road to a reactive and incremental model transformation

platform: three generations of the VIATRA framework. Softw. Syst.
Model., 2016.

	Introduction
	Approach
	Evaluation
	Conclusion and Future Work
	References

