
Evaluation of Fault Tolerance Mechanisms
with Model Checking

Vince Molnár
Budapest University of Technology and Economics

Budapest, Hungary
Email: molnarv@mit.bme.hu

István Majzik
Budapest University of Technology and Economics

Budapest, Hungary
Email: majzik@mit.bme.hu

Abstract—Failure Mode and Effects Analysis (FMEA) is a
systematic technique for failure analysis. It aims to explore
the possible failure modes of individual components or subsys-
tems and determine their potential effects at the system level.
Applications of FMEA are common in case of hardware and
communication failures, but analyzing software failures (SW-
FMEA) poses a number of challenges. Failures may originate
in permanent software faults commonly called bugs, and their
effects can be very subtle and hard to predict, due to the complex
nature of programs. Therefore, an automatic method to analyze
the potential effects of different types of bugs is desirable. Such
a method could be used to automatically build an FMEA report,
or to evaluate different failure mitigation techniques based on
their effects on the outcome of faults. This paper follows the
latter direction, demonstrating the use of a model checking-
based automated SW-FMEA approach to assess error detection
mechanisms of safety-critical embedded operating systems.

Index Terms—Failure Mode and Effects Analysis, SW-FMEA,
model checking, fault tolerance, error detector

I. INTRODUCTION

Safety and in particular the risk of failure is one of the
main concerns of safety-critical systems. Certification requires
the systematic analysis of potential failures, their causes and
effects, and the assessment of risk mitigation techniques used
to reduce the chance and the severity of system-level failures.

One of the first systematic techniques for failure analysis
was Failure Mode and Effect Analysis (FMEA) [2]. FMEA
is often the first step in reliability analysis, as it collects the
potential failure modes of subsystems, their causes and their
effects on the whole system. Together with criticality analysis
(often treated as part of FMEA, sometimes emphasized by the
term FMECA), the output of FMEA serves as the basis of
other qualitative and quantitative analyses, as well as design
decisions regarding risk mitigation techniques.

FMEA is usually applied at the hardware and communi-
cation level, where it requires a qualified analyst to collect
postulated component failures and identify their effects on
other components and the system level. In case of software
(SW-FMEA), failure modes originate in different types of
programming faults, commonly referred to as bugs. Due to the
complex nature of software and the many types of potential
bugs, it is much harder to collect failure modes and deduce
their potential effects, so an automated mechanism is desired.

This paper presents a way of automated SW-FMEA with
the use of executable software models. Assuming a set of

predefined fault types (programming errors) and a specification
of safe behavior at the system level, the proposed approach
applies model checking to generate traces leading from fault
activations to states that violate the specification (system-
level failures). These traces can be used to understand and
demonstrate fault propagation through the system and also as
test sequences for the final product.

In addition to automated SW-FMEA, the proposed approach
can be used to evaluate the efficiency of fault tolerance and er-
ror detection mechanisms. Compared to the baseline of having
only the core system model, fault tolerance mechanisms should
mask as many faults as possible (reducing the number of
fault activations that can lead to a system-level failure), while
error detectors should catch the propagating error on as many
traces as possible. The evaluation of the latter mechanism
is presented on a case study, using a model of the OSEK
API specification [1], which is a commonly used interface
specification for embedded operating systems.

The paper is structured as follows. Section II introduces the
key concepts of FMEA and model checking, then a framework
for model checking-based FMEA is outlined in Section III.
Applications of the approach are discussed in Section IV,
while Section V presents a case study. Section VI provides
the concluding remarks and our directions for future work.

II. BACKGROUND

This section summarizes the main idea of FMEA and in
particular SW-FMEA, as well as model checking that is the
basis of the approach presented in Section III.

A. Failure Mode and Effects Analysis

FMEA involves 1) the enumeration of potential failure
modes of subsystems, 2) an inductive reasoning of their effects
on different levels of the whole system (called error propaga-
tion), and 3) often the deductive analysis of their root causes.
The analysis is usually based on a model or specification
of a component, as well as historical data and experience
with similar components. The result is recorded in an FMEA
spreadsheet. Failure modes are then categorized based on
criticality, representing the level of chance and the severity of
potential consequences. Criticality can prioritize failures, and
based on the discovered causes and effects, fault-tolerance or



error detection mechanisms can be designed to mask or detect
faults to ensure fail-safe operation of the system.

There are three main concepts related to error propagation.
A failure is an incorrect system function, i.e., an observable
invalid state. An error is a latent invalid state that has no
observable effects yet. Finally, a fault is the cause of a failure,
which can be either some kind of defect (physical or design)
or the failure of a related subsystem.

During error propagation, an activated fault can cause an
error, which will turn into a failure once it becomes observable
(e.g., by crossing an interface). FMEAs are usually performed
on many levels during the design of a system, so a failure of
a component is often a fault in another one. FMEA usually
assumes that only a single failure mode exists at a time.

Software FMEA: When performing FMEA on software
components, failure modes are usually caused by programming
(or configuration) errors. The challenge of analyzing them is
twofold. First, it is very hard to come up with a realistic set
of programming faults (called a fault model). The source of
bugs is almost always a human, and the most typical faults
highly depend on the programming language and the domain
as well. Constructing a realistic fault model is therefore even
harder in case only a design model is available. Secondly, the
effects of a bug is hard to track as it evolves in a complex
system.

This paper focuses on the challenge of analyzing the effects
of programming faults. The problem of designing proper fault
models is not discussed here, we refer to the fact that it is also
an important challenge in the field of mutation-based testing.
For an extensive overview of mutation-based testing and fault
models, the reader should refer to [7].

Most of the previous approaches to SW-FMEA build on
software testing (e.g., [8]), injecting faults directly into the
program code and running a set of tests to see any pos-
sible global effects. Model-based SW-FMEA has also been
proposed recently [4] based on executable software models,
model-level fault injection and simulations. Another approach,
similar to the one presented in this paper, uses model checking
to detect the violation of the system-level specification in case
active faults are present [5]. The common features of these
approaches include a predefined set of faults injected into the
code or model, a description of system-level failures/hazards,
and some sort of execution (either testing, simulation or model
checking) to generate traces connecting the first two.

Our approach presented in Section III improves existing
model checking-based SW-FMEA by optimizing fault activa-
tions and using monitors instead of a formal specification.

B. Model Checking

Model checking is an automated formal verification tech-
nique used to verify whether a system satisfies a requirement
or not. This is done by systematically (and typically exhaus-
tively) analyzing the states and/or possible behaviors of the
system model (i.e., the state space). If the specification is
violated, model checkers prove it with a counterexample.

Fig. 1: Overview of the presented approach.

In this work, the tool SPIN was used as a model checker [6].
SPIN is an explicit model checker (using an explicitly stored
graph representation of the state space) capable of reachability
analysis (is there a reachable “bad” state?) and linear temporal
model checking (describing complex temporal behavior). Its
strengths include its maturity, the rich set of configuration
opportunities and the expressiveness of its input model, given
in PROMELA (PROcess MEta LAnguage).

III. MODEL CHECKING-BASED SOFTWARE FMEA
The approach presented in this paper focuses on the “Effect

Analysis” part of FMEA. Assuming a set of possible faults
(failure modes) in the software and a characterization of
system-level failures, it examines an executable model of the
system to generate traces leading to system-level failures.

The process (shown in Figure 1) starts with fault injection,
when the input model is transformed into an analysis model
containing faults that can be turned on or off. It is assumed
that there is an oracle model that allows the detection of
system level failures (see Section III-2 for details), so the
model checker can analyze the model to check if any fault
can cause a system-level hazard. The output is a set of traces
that lead from every dangerous fault activation to reachable
system-level failures.

1) Fault Injection: The method requires a fault model
in terms of the modeling language. Here, a fault model is
assumed to be a set of alterations (mutations) that can be
applied on the model. The actual alteration is performed by
adding a trigger variable to activate or deactivate the fault, i.e.,
with the trigger variable set to false, the model should behave
correctly, while a value of true should cause an erroneous state
when the affected part is executed. Note that trigger variables
become part of the system as auxiliary state variables.

Using the trigger variables, a number of different fault
types can be modeled. First, a fault can be permanent (only
nondeterministic false → true transitions) or transient (non-
deterministic true → false transitions are also present).
Although in case of software bugs, the faults are usually
permanent, it is sometimes useful to have transient faults to
simulate the effects of hardware faults as well. Second, it is
sometimes desired to restrict the number of faults in the system
to at most one, or in some cases at most two.

By injecting the fault activation mechanism into the model,
a model checker is free to choose which fault to activate by
setting the trigger variables as long as it meets the restrictions.

2) Failure Detection: The traditional approach in model
checking is to provide a formal specification of the system.
Automated FMEA can then check if the specification still
holds in the presence of faults (as described in [5]).



Fig. 2: Shape of the state space with eager and lazy evaluation.

In this work, we suggest an alternative that is closer to
a safety engineer’s viewpoint. Instead of specifying a failure
(or the correct behavior), it is sometimes easier to model a
component to detect and signal requirement violations. Such
a model can be idealistic (e.g., it may observe every detail of
the system or have infinite memory), since its only role is to
provide a definition for system-level failures, it does not have
to be implemented in the real system. Due to these properties,
we will call this idealistic component an oracle. Depending on
the goals and the domain, an oracle can be a reference model
or a more permissive abstract contract.

3) Failure traces: From the extended model and the oracle,
the model checker will be able to generate a set of traces
leading to system-level failures. From each trace, we can
extract the values of the trigger variables (i.e., which faults
were activated) and the location of the system-level failure
detected by the oracle. If the oracle can classify the failure,
this information can also be retrieved.

4) Efficiency and Lazy Evaluation: Model checking is
highly sensitive to the size and potential values of the state
vector. Unfortunately, adding a set of nondeterministic boolean
variables (here the trigger variables) increases the number of
potential states exponentially. Moreover, if permanent faults
are modeled in such a way that the initial activation is
random, the number of initial states immediately blows up
exponentially.

In order to avoid the combinatoric explosion, we suggest a
“lazy” strategy to evaluate fault activations. Let the trigger
variables have ternary values, with the third value being
undefined, also being the initial value. By injecting additional
logic to access the value of trigger variables, it is possible to
defer the valuation and have identical states for multiple fault
configurations up to an actual fault activation. This effect is
illustrated in Figure 2.

IV. EVALUATION OF FAULT TOLERANCE MECHANISMS
AND ERROR DETECTORS

Section III outlined a general approach to model checking-
based automated SW-FMEA. In this section, we present two
novel applications of the method to evaluate fault tolerance
mechanisms and error detectors. The goal is to measure the
efficiency of these mechanisms by analyzing what type of
faults they can mask or detect, respectively.

For an “absolute” measure, one can use an idealistic oracle
(like we suggested in Section III-2) as a baseline and “upper
bound” on the efficiency of realistic approaches. In case of
error detectors, it is also possible to compute the relative

efficiency of two solutions, i.e., how much “better” or “worse”
is one of them compared to the other.

The measurement setting is the following. In case of error
detectors, we first run a check with the oracle (or the first
detector) to get the total number of traces leading to observable
failures (denoted T as total), then we measure the same num-
ber (denoted D as detected) with the evaluated (or second). In
case of fault tolerance mechanisms, both steps use the oracle,
with the mechanism coupled with the system in the second
step. Efficiency is then defined as follows.

• In case of error detectors, the efficiency is E = D/T .
• In case of fault tolerance mechanisms, the efficiency is

E = (T −D)/T .
Efficiency can also be defined in case of fault types (or

failure modes), giving a more detailed picture about the
evaluated technique. By obtaining a number describing the
efficiency of different approaches, we hope to help design
decisions concerning what error detectors and fault tolerance
mechanisms to use (possibly in some combination).

V. OSEK API – A CASE STUDY

To demonstrate the merits of the proposed approach, we
used the model of the OSEK API [1], a common interface
definition for safety-critical embedded operating systems. In
a related project1, an OSEK-compliant real-time operating
system targeting the automotive industry had to be certified
according to ISO 26262 [3]. The developers of the OS wanted
to add fault tolerance and monitoring techniques addressing
potential programming errors, both from the side of the OS and
client applications. To aid design decisions, we have developed
the presented approach to evaluate different solutions still in
the modeling phase. For the analysis, we used a model of
the OSEK API and a set of test programs (both correct and
incorrect) taken from [9] and a set of error detectors with
assertions providing the “error signals”.

The OSEK API provides a set of interface functions with
their syntaxes and also the semantics of the implemented OS
primitives. The API defines primitives for task handling and
scheduling; resource, interrupt and event handling; semaphores
and messaging; as well as times and alarms. For the case study,
we used a model describing the Task API, the Resource API
and the Event API.

We have modeled two types of error detectors: as the ide-
alistic oracle, a (fault-free) Reference Model that is compared
to the state of the OSEK model after each interface call
(according to the Master-Checker pattern); as well as a simple
Priority Checker that observes only the priorities of scheduled
tasks. The Priority Checker can detect if the scheduler violates
the priorities, for example by preempting a task to run another
one with lower priority.

A. Implementation of Automated SW-FMEA

We have implemented the approach described in Section III
based on the model checker SPIN. Fault injection was per-

1This work has been partially supported by the CECRIS project, FP7–Marie
Curie (IAPP) number 324334.



Fig. 3: Efficiency of the Priority Checker compared to the Reference Model

formed by an auxiliary program that parsed the PROMELA
model of the OSEK API and altered the code. We used a very
simple fault model: each instruction in the model could be
removed when activated by a trigger variable. We assumed a
single, permanent fault that activates in the initial state.

SPIN was configured to perform a bounded depth-first
search optimized for safety checking and enumerating every
violating trace. The tool looked for assertion violations (errors
detected by the evaluated error detectors) and invalid end states
(i.e. deadlocks). Once the model checking finished, the path
was replayed to obtain the last (violating) state, containing
the values of the trigger variables and the location of the error
signal. This information was aggregated for all traces, resulting
in the number of violating traces for each different fault-type.

B. Results

Running the analysis with the two detectors showed the
relative efficiency of the Priority Checker compared to the
more “heavyweight” Reference Model. The diagram in Fig-
ure 3 illustrates the efficiency for each fault type (alteration in
the API model) separately, also grouping them based on the
related API. Although the fault model is artificial, the diagram
highlights that the Priority Checker can barely detect faults in
the resource handling or task termination primitives, but it
is comparable to the Reference Model for most of the faults
related to rescheduling (starting tasks and handling events).

In a real world example, analysis of the characteristics of
different detectors could help in understanding their efficiency
(or coverage) better. In this study, the Reference Model can
also be regarded as an idealistic oracle, while something like
the Priority Checker can be implemented for an acceptable
cost. By knowing the costs of a solution and its characteristics,
it should be easier for engineers to find a cost-optimal solution
with the highest possible benefits.

VI. CONCLUSION AND FUTURE WORK

This paper presented a method for automated SW-FMEA
based on model checking, along with a novel idea for applying
such approaches in the evaluation of fault-tolerance mecha-
nisms and error detectors.

The main idea of the model checking-based method is to
1) use model-level fault injection (or model mutations) with

trigger variables to augment the system model with switchable
faults, then 2) use formal specification or an oracle model to
characterize system-level failures so that 3) the model checker
can generate traces leading from a fault activation to a failure.

Evaluation of fault-tolerance mechanisms and error detec-
tors is based on the notion of (relative) efficiency that describes
the number of masked/revealed errors compared to an oracle or
another technique (respectively). We hope that this additional
piece of information can aid safety-engineers in early design
decisions.

The main contribution of this paper is the outline of a
general idea. In order to make it applicable, there are a number
of further concerns to be considered. First, the fault model
for executable software models has a great impact on the
validity of the results, so a fine-tuned and validated fault
model is necessary. We plan to use completed projects with
code-level fault injection to statistically compare the effects of
model-level and code-level faults. Secondly, a specific model
checking algorithm could inherently optimize the structure of
the state space without lazy evaluation injected into the model
(see Section III-4). Thirdly, the case study presented here is
only in a preliminary phase – modeling other aspects of the
OSEK API and additional error detectors or fault-tolerance
mechanisms will be necessary to extract meaningful results.

REFERENCES

[1] Road vehicles – open interface for embedded automotive applications.
ISO 17356, 2005.

[2] Potential failure mode and effects analysis in design (design FMEA),
potential failure mode and effects analysis in manufacturing and assembly
processes (process FMEA). SAE J 1739, 2009.

[3] Road vehicles – functional safety. ISO 26262, 2011.
[4] V. Bonfiglio, L. Montecchi, F. Rossi, P. Lollini, A. Pataricza, and

A. Bondavalli. Executable models to support automated software FMEA.
In Proc. High Assurance Systems Engineering, pages 189–196. IEEE,
2015.

[5] L. Grunske, K. Winter, N. Yatapanage, S. Zafar, and P. A. Lindsay.
Experience with fault injection experiments for FMEA. Software:
Practice and Experience, 41(11):1233–1258, 2011.

[6] G. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley Professional, 2003.

[7] Yue Jia and M. Harman. An analysis and survey of the development of
mutation testing. 37(5):649–678, 2011.

[8] Chris Price and Neal Snooke. An automated software FMEA. In Proc.
International System Safety Regional Conference (ISSRC), 2008.

[9] H. Zhang, T. Aoki, and Y. Chiba. A SPIN-based approach for checking
OSEK/VDX applications. In Formal Techniques for Safety-Critical
Systems, volume 476 of CCIS, pages 239–255. Springer, 2015.


