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Abstract—Stochastic aspects of complex systems require more
and more involved analysis approaches. Answering reachability
and related analysis questions can often be reduced to steady-
state, transient, reward or sensitivity value analysis of stochastic
models. In this paper we introduce a configurable stochastic
analysis framework which supports the user to combine explicit,
symbolic and numerical algorithms to efficiently compute the
measures of stochastic models. Beyond the well-known algorithms
from the field, we also developed an experimental version of an
Induced Dimensionality Reduction Stabilized numerical solver to
compute steady-state probabilities of Markovian models. As far
as we know, this is the first attempt to exploit this algorithm in
stochastic analysis. We have conducted experiments on different
combinations of the algorithms on various models to assess their
advantages and disadvantages in the analysis. This information
can be used by the user to choose the combination of algorithms
being efficient solving the analysis problem.

I. INTRODUCTION

UNCERTAINTY of complex, asynchronous or hybrid sys-
tems can be captured by stochastic models. Stochastic

Petri nets provide a proper means to describe and analyse the
stochastic behavior of Markovian processes. Various analysis
questions regarding reachability can be reduced to the steady-
state or transient behavior of the models. Additionally, the
computation of more complex measures such as rewards and
expected values gives us qualitative information about the
reachable states. Unfortunately, stochastic analysis of complex
systems not only needs efficient methods for computing the
large number of possible states, but storing the representation
of the stochastic behaviors and computing the measures with
numerical methods yields additional challenges. Moreover,
the characteristics of the stochastic models such as stiffness
highly influence the efficiency of the algorithms: no single best
algorithm is known that can efficiently evaluate performance
measures for a diverse set of models.

In this paper we consider a four-step stochastic analysis
approach: (1) state space exploration constructs and stores
the discrete behavior of the model in symbolic and explicit
data structures. (2) The descriptor generation step builds the
necessary representation of the stochastic behavior in various
matrix-based representations. (3) Numerical solver algorithms

compute transient and steady-state probabilities and (4) reward
calculations provide the performance measures of interest.

We propose a configurable stochastic analysis framework to
compute the various measures of complex stochastic models.
A large set of state space exploration, matrix representation
and numerical algorithms are available in the framework. The
user can choose arbitrary combination of the algorithms to
solve the analysis problems. In order to assess the advantages
of the various algorithms, we composed a set of benchmark
models and problems to measure and evaluate the algorithms.
We hope that the users of the framework benefit from these
measurement as it can provide information about the character-
istics of the various algorithms. Beside the traditional numeri-
cal algorithms we implemented a new Induced Dimensionality
Reduction Stabilized numerical solver [1] and we extended it
to handle the specialities of Markovian models. We hope that
we did the first steps towards an adaptive framework which
will be able to solve stochastic analysis problems efficiently
by choosing the proper combination of algorithms.

Our framework, which is integrated with PetriDotNet 1.5
tool, is available at our homepage1.

The rest of the paper is structured as follows. Section II
overviews the background needed to understand configurable
stochastic analysis which is introduced in Section III. Sec-
tion IV summarizes the algorithms of the framework and Sec-
tion V introduces the modified version of the IDR(s)STAB(`)
numerical solver. Measurements are presented in Section VI
and the last section concludes our work.

II. BACKGROUND

A. Continuous-time Markov Chains

Continuous-time Markov Chains (CTMCs) are mathemati-
cal tools for describing the behavior of systems in continuous
time. The stochastic behavior of the system in the future is
assumed to only depend on its current state.

A time-homogeneous continuous-time Markov chain is a
stochastic process X(t) ∈ S, t > 0, where S is a set of states.

1https://inf.mit.bme.hu/en/petridotnet/stochasticanalysis
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In this work we will restrict our attention to finite state cases
where n = |S| <∞.

The state probabilities at time τ may be collected into
a row vector π ∈ Rn by introducing a bijection ι : S →
{0, 1, . . . , n − 1} to number the states. The time evolution
of X(t) from an initial state probability distribution π0 is
described by the initial value problem

π(t)[ι(s)] = Pr(X(t) = s),
∂π

∂t
= πQ, π(0) = π0, (1)

where Q ∈ Rn×n is the infinitesimal generator matrix of X(t).
The matrix Q describes the stochastic behavior of the sys-

tem. Off-diagonal entries q[x, y] are the rates of exponentially
distributed transition firing times from the state ι−1(x) to
ι−1(y), while diagonal entries are selected such that rows of
Q sum to zero, i.e. Q1T = 0T.

B. Analysis Tasks

Continuous-time Markov chains may be employed in the
estimation of performance measures of models by defining
rewards that associate reward rates with the states of a
CTMC. The reward rate random variable R(t) can describe
performance measures defined at a single point of time, such
as resource utilization or probability of failure, while the
accumulated reward random variable Y (t) may correspond to
performance measures associated with intervals of time, such
as total downtime. Formally, f : S → R and

R(t) = f(X(t)), Y (t) =

∫ t

0

R(τ) dτ .

The instantaneous and accumulated rewards R and Y may
be of interest at some fixed time t for transient analysis or
stationary reward rates R(∞) = limt→∞R(t) may be sought.

The expected values ER(t) and EY (t) are calculated as

ER(t) =
∑
s∈S

π(t)[ι(s)]f(s), EY (t) =
∑
s∈S

L(t)[ι(s)]f(s), (2)

where π(t) is the probability vector of X(t) at time t ≤ ∞
and L(t) =

∫ t
0
π(τ) dτ is the accumulated probability vector.

Probability vectors π(t) and accumulated vectors L(t) at
time t can be obtained by solving the initial value problem (1).
The stationary solution π = π(∞) of (1), if exists, satisfies
the linear equation system

πQ = 0, π1T = 1. (3)

Therefore, reward calculation requires both differential equa-
tion solvers for transient solutions of (1) and linear equation
solvers for steady-state solutions of (3).

Another type of analysis concerns the time to reach a state
partition D ⊂ S, often called time-to-first-failure (on the basis
of its usage in dependability analysis)

TFF = inf{t ≥ 0 : X(t) ∈ D}.

The mean, denoted by MTFF = E[TFF], can be calculated as

−πUQ−1
UU1

T = −γ1T, γQUU = πU . (4)

The vector πU and the matrix QUU are the initial distribution
vector π and the generator matrix Q with their entries corre-
sponding to states in D removed, which are the parameters of
the phase-type distribution of TFF.

Often the behavior of the system depends on some param-
eters θ ∈ Rm. The sensitivity analysis of the aforementioned
measures to changes in the parameters may reveal performance
or reliability bottlenecks and help designers in achieving
desired performance measures and robustness values. For-
mally, the gradients ∇θ ER, ∇θ EY or ∇θ MTFF are the
solutions of the equations arising after taking derivatives of
both sides of (1), (3) and (4), respectively [2]. Sensitivities of
the performance measures to the individual parameters θ[i] are
the components of the gradient vectors.

As it can be seen above, common analysis tasks arising in
the performance and reliability analysis of stochastic models
can be reduced to the solution of linear equation systems and
linear initial value problems. In stochastic model checking,
where the desired system behaviors are expressed in stochastic
temporal logics [3], [4], these analytic steps are called as
subrouties to evaluate propositions. In the synthesis and opti-
mization of stochastic models [5], analysis tasks are executed
as part of the fitness functions.

C. Higher Level Formalisms

While reward processes based on continuous-time Markov
chains allow the study of dependability or reliability, the ex-
plicit specification of stochastic processes and rewards is often
cumbersome. More expressive formalisms include queueing
networks, stochastic process algebras such as PEPA [6], [7],
stochastic automata networks [8], Stochastic Activity Net-
works [9] and stochastic Petri nets.

Stochastic Petri Nets (SPN) extend Petri nets by assign-
ing exponentially distributed random firing delays to transi-
tions [10]. After the delay associated with an enabled transition
is elapsed the transition fires atomically and transitions delays
are reset.

D. General Workflow

The tasks performed by stochastic analysis tools that operate
on higher level formalisms can be often structured as follows:

1) State Space Exploration: The reachable state space S
of the higher level model, such as a stochastic automata
network or stochastic Petri net is explored to enumerate the
possible behaviors of the model. If the model is hierarchically
partitioned, this step includes the exploration of the local
state spaces of the components as well as the possible global
combinations of states.

2) Descriptor Generation: The infinitesimal generator ma-
trix Q of the Markov chain X(t) defined over S is built.
If the analyzed formalism is a Markov chain, Q is readily
given. Otherwise, this matrix contains the transition rates
between reachable states, which are obtained by evaluating
rate expressions given in the model.

3) Numerical Solution: Numerical algorithms are executred
to obtain steady-state solutions π, transient solutions π(t),
L(t) or MTFF measures from the matrix Q.
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4) Reward Calculations: The studied performance mea-
sures are calculated from the output of the previous step. This
includes calculation of steady-state and transient rewards and
sensitivities of the rewards. Additional algebraic manipulation,
for example the calculation of the ratio of an instantaneous and
accumulated reward, may be provided to the modeller.

E. Challenges

The implementation of the stochastic analysis workflow
poses several challenges. Handling of large models is difficult
due to the phenomenon of “state space explosion”. As the size
of the model grows, including the number of components, the
number of reachable states can grow exponentially.

Methods such as the saturation algorithm [11] were devel-
oped to efficiently explore and represent large state spaces.
However, in stochastic analysis, the generator matrix Q and
several vectors of real numbers with lengths equal to the state
space size must be stored in addition to the state space. This
necessitates the use of further decomposition techniques for
data storage.

The convergence of the numerical methods depends on the
structure of the model and the applied matrix decomposition.
In addition, the storage requirements of the algorithms may
constrain the methods that can be employed. As various
numerical algorithms for stochastic analysis tasks are known
with different characteristics, it is important to allow the
modeller to select the algorithm suitable for the properties of
the model, as well as the decomposition method and hardware
environment. The measurements of Section VI try to provide
insights for the user when and how to use the available large
set of algorithms efficiently.

III. CONFIGURABLE STOCHASTIC ANALYSIS FRAMEWORK

A. High Level Architecture

The configurable analysis framework has a multi-layered
architecture in which the layers correspond to the tasks aris-
ing during stochastic analysis: state space exploration of the
model and storing the possible states, stochastic descriptor
generation, numerical solution of the equations and reward
calculation. This design, shown in Fig. 1, facilitates the clean
separation of concerns throughout the workflow requiring data
compatibility only between the adjacent layers.

Several algorithms were implemented for each sub-task
with the possibility of further customization thus providing a
comprehensive set of tools for the modeller to handle a wide
range of stochastic models with different characteristics.

B. Configurable Workflow

Our framework provides 2 algorithms for state space ex-
ploration, 3 state space storage schemes, 3 generator matrix
representations, 7 linear equation solvers for steady state
analysis and 2 linear differential equation solvers for transient
analysis. The main (and computationally most intensive) task
of the workflow is the calculation of the appropriate probability
vector π(t) based on the generator matrix Q in order to
evaluate the required performance measures ER(t) and EY (t).

State Space Exploration

Explicit Saturation

State Space Storage

Explicit MDD / EDD

Matrix Storage

Dense Sparse Kronecker

Solution Algorithms

7 Linear Equation Solvers 2 Transient Solvers

Engineering Measure Calculation

Reward Sensitivity MTFF

Fig. 1. Configurable stochastic analysis architecture.

Various algorithms were implemented in our framework to
assemble Q from both explicit and symbolic state space repre-
sentations using several storage techniques. Our compositional
vector-matrix library provides means to easily assemble com-
plex matrix structures while maintaining a unified interface
towards the various numerical solvers operating on Q. This
results in an almost complete (and transparent) compatibility
between the analysis layers further facilitating the integration
of new algorithms, such as the one presented in Section V,
into the framework. This transparency makes it possible to
select the best suited state space exploration technique for the
model while independently selecting the best suited numerical
solver for the generator matrix.

As multiple generator matrix representations are available
in the framework, numerical solution algorithms must handle a
variety of input formats. However, linear algerba libraries often
support only specific matrix formats. Instead of integrating
solvers from multiple libraries to cover all the matrix repre-
sentations we implemented generic solvers from scratch. This
allows the use of a single code base for numerical algorithms,
as well as transparent mixing of storage schemes.

As no single best algorithm is known that can efficiently
evaluate performance measures for models with various char-
acteristics, more than 100 combinations of the implemented
algorithms provide the variety and the flexibility to find the
most efficient configuration for the problem at hand. Our mea-
surements help the user to choose the configuration promising
the best performance.

IV. ALGORITHMS

A. State Space Exploration and Storage

Explicit state space exploration of high level models con-
struct a state space graph by storing individual states of
the models. For Petri nets, it is implemented by repeatedly
applying the transition firing rule until no transition can be
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fired that leads to a new state. While arbitrarily complex
transition logic can be executed, the usefulness of explicit
exploration is limited due to the large memory requirements
of the state space graph.

Symbolic methods, such as the saturation algorithm can
handle states spaces with up to 10200 states if the models
are partitioned into components. Multivalued Decision Di-
agrams (MDD) provide compact storage for the reachable
states of the model. Moreover, we implemented the mapping
ι : S → N between the model states and state indices with
Edge-valued Decision Diagrams (EDD) to facilitate vector and
matrix indexing during CTMC analysis.

B. Matrix Construction and Storage

1) Dense and Sparse Matrices: Given a CTMC with a
finite state space of size n, storage of the infinitesimal gen-
erator Q as a two-dimensional dense matrix requires O(n2)
memory. Because the memory requirements of dense storage
quickly become impractical, we implemented sparse matrices
in the Compressed Column Storage (CCS) format [12, Sec-
tion 4.3.1], reducing memory requirements to be proportional
to the transitions in the system.

Our framework can construct generator matrices based on
both explicit and symbolic representation of the state space.

2) Block Kronecker Decomposition: Memory requirements
can be further reduced using the Kronecker product operation
to construct larger matrices from smaller ones, which can be
stored as sparse matrices [13].

The Kronecker product of the matrices A ∈ Rn1×m1 and
B ∈ Rn2×m2 is the matrix A⊗B = C ∈ Rn1n2×m1m2 , where

c[i1n1 + i2, j1m1 + j2] = a[i1, j1]b[i2, j2].

Block Kronecker decomposition represents the off-diagonal
part QO of the infinitesimal generator matrix Q as a block
matrix QO ∈ R(n0+n1+···+nk−1)×(n0+n1+···+nk−1), that is,
QO[x, y] ∈ Rnx×ny . Hence the state space S of the CTMC
is partitioned into macro states S = S0 t S1 t · · · t Sk−1

such that |Sx| = nx. The whole generator matrix can be
expressed as Q = QO + QD, where the diagonal part is
QD = diag{−QO1T}.

The individual blocks are sums of Kronecker products

QO[x, y] =
∑
t∈T

J−1⊗
j=0

Q
(j)
t [x, y],

where the index t ranges over the possible transitions in the
high level model. The matrix Q(j)

t [x, y] ∈ Rn
(j)
x ×n

(j)
y describes

the effects of the transition t on the jth component of the high
level model that causes the state of the CTMC to shift from
the xth macro state to the yth. Notice that the macro states
must be selected to ensure nx = n

(0)
x n

(1)
x · · ·n(J−1)

x .
Macro states and the block Kronecker generator matrix can

be constructed from the explicit representation of the state
space [13]. However, the explicit decomposition algorithm re-
quires storing the potential state space, which is the Cartesian
product of local state spaces of the components. Therefore,
the size of the models that can be decomposed is limited.

We developed an approach to perform block Kronecker
decomposition based on an idea of Buchholz [14] that works
with the symbolic MDD representation of the state space only.
Hence block Kronecker generator matrices can be used in our
framework even for larger models without storing the state
space or the potential state space explicitly.

The SHUFFLE algorithm [15], which we implemented in
our framework, allows efficient evaluation of vector-matrix
products where the matrix is stored as a Kronecker product.
Recent developments include the SPLIT [16] algorithm, which
allows parallel implementation while retaining the benefi-
cial properties of the SHUFFLE algorithm. Implementation of
SPLIT and the development of heuristics for its acceleration
are in the scope of our ongoing work.

If symbolic state space storage, symbolic macro state com-
position and block Kronecker generator matrix is used, the
main memory bottleneck in the stochastic analysis workflow
becomes the storage of the intermediate and solution vectors
instead of the state space and the generator matrix. Thus,
models with up to 106–108 states can be handled, depending
on the intermediate storage used by the numerical algorithms.

C. Linear Equation Solvers

1) Direct Solution: LU decomposition is a direct method
for solving linear equations with forward and backward substi-
tution, i.e. iteration is not required to reach a given precision.

To solve the equation xA = xLU = b, the decomposition
computes the lower triangular matrix L and upper triangular
matrix U such that A = LU . Forward substitution is applied
to find z in zU = b, then x is computed by back substitution
from xL = b. We used Crout’s LU decomposition [17,
Section 2.3.1], which ensures that the diagonal of the U matrix
is uniformly 1.

The case when b = 0 and Q is not of full rank, which arises
in the steady-state analysis of CTMCs (3), can be handled
during back substitution.

2) Iterative Algorithms: Iterative methods express the so-
lution of the linear equation xA = b as a recurrence
xk = f(xk−1), where x0 is an initial guess vector. The
process is assumed to have converged if subsequent iterates are
sufficiently close, i.e. the stopping criterion at the kth iteration
becomes

‖xk − xk−1‖ ≤ τ (5)

for some prescribed tolerance τ . In our implementation, we
selected the L1-norm

‖xk − xk−1‖ =
∑
i

∣∣xk[i]− xk−1[i]
∣∣

as the vector norm used for detecting convergence.
Power iteration [18, Section 10.3.1] is one of the simplest

iterative methods for Markovian analysis. Its iteration function
has the form

xk = f(xk−1) = xk−1 + α−1(xk−1A− b), (6)

where α ≥ maxi|a[i, i]|. In steady-state analysis, where A
is the infinitesimal generator Q of a CTMC and b = 0, the
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recursion (6) can be interpreted as taking time steps of length
1/α according to (1) until steady-state is reached.

Convergence of power iteration is usually slow, but guaran-
teed for CTCMs if a steady-state solution exists.

Jacobi iteration [18, Section 10.3.2–3] applies the recursion

xk[i] =
1

a[i, i]

(
b[i]−

i−1∑
j=0

xk−1[j]−
n−1∑
j=i+1

xk−1[j]

)
, (7)

while Gauss–Seidel iteration uses

xk[i] =
1

a[i, i]

(
b[i]−

i−1∑
j=0

xk[j]−
n−1∑
j=i+1

xk−1[j]

)
. (8)

Gauss–Seidel iteration cannot easily be parallelized, because
calculation of successive elements x[0], x[1], . . . depends on
all of the prior elements. However, in contrast with Jacobi
iteration, no memory is required in addition to the vectors
x, b and the matrix A, which makes the algorithm suitable
for very large vectors and memory-constrained situations. In
addition, convergence is often significantly faster.

3) Group Iterative Algorithms: Group Jacobi and group
Gauss–Seidel iterations [18, Section 10.4] are block versions
of (7) and (8).

A block structure is supposed for x,b ∈ Rn0+n1+···+nk−1

and the matrix A ∈ R(n0+n1+···+nk−1)×(n0+n1+···+nk−1), thus
x[i],x[b] ∈ Rni and A[i, j] ∈ Rni×nj . Therefore (7) and (8)
can be replaced by

xk[i]A[i, i] = b[i]−
i−1∑
j=0

xk−1[j]−
n−1∑
j=i+1

xk−1[j], (9)

xk[i]A[i, i] = b[i]−
i−1∑
j=0

xk[j]−
n−1∑
j=i+1

xk−1[j], (10)

respectively. The inner linear equations (9) and (10) may be
solved by any algorithm, for example, LU decomposition or
iterative methods. The choice of the inner algorithm may
significantly affect performance and convergence behavior.

4) Krylov Subspace Methods: Projectional methods com-
prise another class of linear equation solvers. The approximate
solution xk satisfies the Petrov–Galerkin conditions xk ∈ Kk,
rk = b−xkA ⊥ Lk [19, Section 5.1.1], where Kk and Lk are
two subspaces of Rn and rk is residual in the kth iteration.
Krylov subspace methods correspond to

Kk = Kk(A, r0) = span{r0, r0A, r0A
2, . . . , r0A

k−1},

where Kk(A, r0) is the kth Krylov subspace of A and the
initial residual is r0 = b− x0A.

Bi-Conjugate Gradient Stabilized (BiCGSTAB) [19, Sec-
tion 7.4.2] [20] is a Krylov subspace method where [21]

Lk = Kk(AT, r̃0) · (Ωk(A)T)−1, (11)
Ωk(A) = Ωk−1(A) · (I − ωkA). (12)

The initial shadow residual r̃0 must satisfy r0r̃
T
0 6= 0 and

must not be an eigenvector of QT. Usually, r̃0 = r0, which is
the convention we use in our implementation.

The property (11) allows efficient implementation of the
recursive update of the solution vector. BiCGSTAB is a “short

recurrence”, i.e. the number of allocated intermediate vectors
does not depend on the number of iterations taken.

We selected BiCGSTAB as the first Krylov subspace solver
integrated into our framework because of its good convergence
behavior and low memory requirements. BiCGSTAB only
requires the storage of 7 vectors, which makes it suitable even
for large state spaces with large state vectors.

D. Transient solvers

1) Uniformization: The uniformization or randomization
method solves the initial value problem (1) by computing

π(t) =

∞∑
k=0

π0P
ke−αt

(αt)k

k!
, (13)

where P = α−1Q+ I , α ≥ maxi
∣∣a[i, i]

∣∣ and e−αt (αt)k

k! is the
value of the Poisson probability function with rate αt at k.

The accumulated probability vector L(t) can be computed
by integrating both sides of (13) [22] yielding

L(t) =
1

α

∞∑
k=0

π0P
k

(
1−

k∑
l=0

e−αt
(αt)l

l!

)
. (14)

Both (13) and (14) can be realized as finite sums by left and
right cutoff of the summation indices. The Poisson weights and
the cutoff points are determined with Burak’s algorithm [23].

Steady-state detection is performed to stop iteration if the
iterate π0P

k reaches the steady-state vector π. Hence the
number of matrix multiplications can be reduced by early exit.

2) Implicit Integration: A weakness of the uniformization
algorithm is the poor tolerance of stiff Markov chains. The
CTMC is called stiff if |λmin| � |λmax|, where λmin and
λmax are the nonzero eigenvalues of the infinitesimal generator
matrix Q of minimum and maximum absolute value [24]. In
other words, stiff Markov chains have behaviors on drastically
different timescales. For example, there could be clients that
are served frequently while failures happen infrequently.

Stiffness leads to very large values of the uniformization rate
α, thus a large right cutoff kright is required for computing the
transient solution with sufficient accuracy. Moreover, the slow
stabilization results in taking many iterations before steady-
state is detected.

In our configurable analysis framework, we implemented
TR-BDF2 [25], which is an L-stable differential equation
solver suitable for stiff Markov chains [24]. TR-BDF2 com-
bines the trapezoid rule and the second-order backward dif-
ference rule into an implicit integration scheme, i.e. it calls a
linear equation solver specified by the user as a subroutine.

V. IDR(s)STAB(`) NUMERICAL SOLVER

Induced Dimensionality Reduction Stabilized [1] is a
Krylov subspace solver that generalizes BiCGSTAB and IDR
techniques to provide faster convergence while maintaining the
short recurrence property.

As the algorithm was developed recently, high performance
implementations of IDR(s)STAB(`) are not widely available.
To our best knowledge, IDR(s)STAB(`) was not investigated
for use in CTMC analysis despite its promising results solving
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differential equations arising from finite element problems.
Therefore, we are currently focusing research and develop-
ment effort into integrating IDR(s)STAB(`) into our stochastic
analysis framework. Special attention is paid to its behavior
on steady-state equations with infinitesimal generator matrices
and other linear systems arising from CTMC analysis.

A. Description

IDR(s)STAB(`) iteration combines two generalizations of
BiCGSTAB. The first idea comes from IDR(s) [26], a Krylov
subspace solver based on Sonneveld subspaces. The residual
rk is constrained to the subspace

rk ∈ Gk = {v · Ωk(A) : v ⊥ Kk(A, R̃0)},

where Kk(A, R̃0) is the kth row Krylov subspace of A with
respect to R̃0 ∈ Rs×n,

Kk(A, R̃0) = span
{
r̃0[i], r̃0[i]A, . . . , r̃0[i]Ak−1

: i = 0, 1, . . . , s− 1

}
and r̃0[i] is the ith row of R̃0. Higher values of s, i.e. higher
dimensional initial “shadow” spaces, may accelerate conver-
gence, at the cost of allocating additional intermediate vectors.

The second generalization, which is called BiCGSTAB(`)
[27], replaces the stabilizer polynomial Ωk from (12) with

Ωk(A) = Ωk−1(A) ·
(
I −

∑`
j=1 γ[j − 1]Aj

)
, (15)

i.e. degree of the stabilizer polynomial Ω is increased by `
instead of 1 in every iteration according to ~γ ∈ R`.

The higher-order stabilization improves convergence behav-
ior with unsymmetric matrices that have complex spectrum.
However, the number of intermediate vectors, thus the amount
of required memory, also grows.

A single dimensional initial shadow space (s = 1) and first-
order stabilization (` = 1) make IDR(s)STAB(`) identical to
BiCGSTAB. Moreover, ` = 1 results in behavior equivalent
to IDR(s), while s = 1 results in behavior equivalent to
BiCGSTAB(`). These correspondences make IDR(s)STAB(`)
a promising candidate for configurable stochastic analysis,
as different settings of (s, `) bring the power of multiple
algorithms to the modellers’ disposal.

B. Implementation

The pseudocode of IDR(s)STAB(`) is shown in Fig. 2. Our
modifications, described in detail in the next subsection, are
shaded with darker background.

We follow the notation of [1]: (X,Y, . . . ,W ) and
(X;Y ; . . . ;W ) denote the matrices obtained by writing
X,Y, . . . ,W side by side and below each other, respectively.
We write W [a:b, :] to refer to the a–bth rows of W and W [a, :]
to refer to the ath row of A. The algorithm works with the ma-
trices R̃0, C,D,U0, U1, . . . , U`+1, V0, V1, . . . , V`+1 ∈ Rs×n
and the vectors x, c, r0, r1, . . . , r`−1,u0,u1, . . . ,u` ∈ Rn. In
addition, smaller vectors ~α, ~β,~γ, ~µ store linear combination
coefficients and the matrix σ ∈ Rs×s is used in projections.
Following the recommendation of [28], we initialize the rows
of R̃0 to an orthonormalized set of random vectors.

1: Select the initial guess x and the “shadow” residuals R̃0

2: r0 ← b− xA, R← (r0)
. Create initial U = (U0, U1) = (U0, U0A)

3: for q = 0, 1, . . . , s− 1 do
4: if q = 0 then c← −x else c← u0

5: if q = 0 then u0 ← r0 else u0 ← u1

6: ~µ← u0 U0[0:q − 1, :]T, u← (u0,u0A)− ~µU [0:q − 1, :]
7: C[q, :]←

(
c− ~µC[0:q − 1, :]

)
/‖u0‖2

8: u← u/‖u0‖2, U [q, :]← u
9: end for

10: while ‖r0‖ > tol do
11: for j = 1, 2, . . . , ` do . An IDR step
12: σ ← UT

j R̃0, ~α← (R̃0r
T
j−1)σ

−1, x← ~αU0

13: r← r− ~α (U1, . . . , Uj), r← (r, rj−1A)
14: for q = 0, 1, . . . , s− 1 do
15: if q = 0 then c← −x else c← vq−1

16: if q = 0 then u← r else u← (u1, . . . ,uj+1)
17: ~β ← (R̃0u

T
j )σ

−1, u← u− ~βU , u← (u,ujA)

18: c← c− ~βC

19: ~µ← ujVj [0:q − 1, :]T, u← u− ~µV [0:q − 1, :]
20: c← c− ~µD[0:q − 1, 0] , t← ‖uj‖2
21: if t < ε and b = 0 then return c

22: D[q, :]← c/t , u← u/t, V [q, :]← u
23: end for
24: C ← D , U ← V
25: end for

. The polynomial step
26: ~γ ← arg min~γ

∥∥r0 − ~γ [r1, . . . , r`]
∥∥

2
27: x← ~γ [r0, . . . , r`−1], x← ~γ [r1, . . . , r`]

28: C ← C −
∑`
j=1 γ[j − 1]Uj−1

29: U ← (U0 −
∑`
j=1 γ[j − 1]Uj , U1 −

∑`
j=1 γ[j − 1]Uj+1)

30: end while
31: return x

Fig. 2. The modified IDR(s)STAB(`) algorithm. The objects Uj , Vj , rj−1

and uj are related to U = (U0, U1, . . . , Uj), V = (V0, V1, . . . , Vj+1),
r = (r0, r1, . . . , rj−1) and u = (u0,u1, . . . ,uj), respectively. Note that
the sizes of U , r and u change during the IDR step. Our modifications for
stochastic analysis are shown shaded.

The algorithm repeats IDR steps and polynomial steps until
convergence. The IDR step fills the matrix V with intermediate
vectors. The polynomial step selects the coefficient vector ~γ
of the stabilizer polynomial Ωk in (15).

The IDR step performs sequences of projections called
repetition steps in a loop with j = 1, 2, . . . , `. An example for
j = 2 and s = 3 is shown in Fig. 3. The applied projections
are of the form

Πi = I −Aj−iR̃T
0 σ
−1Ui, σ = R̃0U

T
j (16)

for i = 0, 1, . . . , j.
First the residuals are updated by ri = r−i Πi, where r−i

refers to the initial value of the residual at the beginning of
the repetition step. Then the projections Vi−1[0, :] = riΠi and
Vi−1[q, :] = Vi[q−1, :]Πi fill V with new vectors such that the
rows of Vi form the basis of Krylov subspace Ks(AΠi, riΠi).
In the jth repetition step, rj is set to rj−1A and Vj+1 is set to
VjA such that the relationships ri+1 = riA and Vi+1 = V1A
hold throughout the iteration.

For a more detailed description of IDR(s)STAB(`), we refer
to [1] and our technical report [29].
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D[0, :] D[1, :] D[2, :]
Π−1

↗ ↓A
Π−1

↗ ↓A
Π−1

↗ ↓A
x− → x V0[0, :] V0[1, :] V0[2, :]

↓
Π0

↗ ↓A
Π0

↗ ↓A
Π0

↗ ↓A
r−0

Π1

→ r0 V1[0, :] V1[1, :] V1[2, :]
↓A

Π1

↗ ↓A
Π1

↗ ↓A
Π1

↗ ↓A
r−1

Π2

→ r1 V2[0, :] V2[1, :] V2[2, :]
↓A

Π2

↗ ↓A
Π2

↗ ↓A
Π2

↗ ↓A
r2 V3[0, :] V3[1, :] V3[2, :]

Fig. 3. Repetition step for IDR(s)STAB(`) extended for stochastic analysis
with j = 2 and s = 3. Quantities with a superscript − refer to the original
values of the vectors before the repetition step.

C. Observations and Proposed Modifications

Unfortunately, our initial experiments with IDR(s)STAB(`)
in Markovian steady-state analysis did not lead to success
when one of the parameters s or ` were set to values strictly
larger than 1. The only case that managed to decrease the
norm of the residual reliably, s = ` = 1, is equivalent to
BiCGSTAB, but less numerically stable.

We have identified the following numerical problems in the
original version of the algorithm that lead to breakdown:

1) Collapse of the Vj Spaces: Recall that the rows of
Vj are basis vectors of the Krylov subspace Ks(AΠj , rjΠj).
A numerical breakdown may occur if this space is not of
dimension s, i.e. uj is a zero vector. This happens when the
matrix A is not of full rank and results in a division by zero
in line 22 of Fig. 2. The breakdown is especially problematic
in CTMC steady state analysis, because the generator matrix
Q ∈ Rn×n is of rank at most n− 1.

It can be seen [29] that if uj = 0, then ui = 0 for all
0 < i < j. Thus, we added another vector c and matrices C
and D to the algorithm, which serve as a −1th row of U and
V , respectively. This results in the extended projections shown
in Fig. 3, where Π−1 = I −Aj−iR̃T

0 σ
−1D.

If a homogeneous linear equation πQ = 0 is solved with
a rank deficient Q, the vector c is a nonzero solution when
the orthonormalization of Vj breaks down. Hence it can be
normalized to obtain a probability distribution π = c/c1T.

2) Singular Projection Matrix: The matrix σ may become
singular such that the projections (16) cannot be computed. If
a singular σ is detected, the algorithm must stop. In addition,
if the determinant of σ is extremely small, but nonzero,
numerical errors may accumulate rapidly that cause divergence
of the norm ‖x‖ of the solution vector.

Despite our attempts, we did not manage to modify
IDR(s)STAB(`) to handle singular or nearly singular σ. More
careful choice of the stabilizing polynomial Ωk may be a
possible remedy. Choosing ~γ though means other than the
minimization of the residual norm ‖r0‖2 may result in better
converge behavior [30], [31].

VI. MEASUREMENTS

A. Benchmark Setup

We developed our configurable stochastic analysis frame-
work as a module of the PETRIDOTNET modeling tool. Thus,

stochastic Petri nets were selected as the input high-level
formalism for the analysis.

1) Models: We used the following three models in the
benchmarks with manual model partitioning.
• SharedResource is a scalable synthetic model represent-

ing processors executing jobs while using global re-
sources in a mutually exclusive way.

• The kanban SPN from [11] describes a manufacturing
process with a scalable number of resources.

• VclCloud is a cloud performability model [32] repre-
senting a cloud architecture with physical and virtual
machines serving incoming jobs using warm and cold
spare resources in case of increasing load. We modified
some aspects of the model since our library currently
doesn’t support the GSPN formalism.

We also used Petri nets available from the website of the
Model Checking Contest (MCC) [33]. From scalable families
of models nets of various sizes were obtained, while colored
Petri nets were unfolded. Only deadlock-free models were
used to ensure that the steady-state distribution is well-defined.

For each Petri net from the MCC and the SharedResource
family, the SPNs were generated to study the effect of transi-
tion rates on the analysis. In the Sym version all transition
rates are equal. In the Asym version transition rates were
randomly selected from the interval [0.1, 2.5], while in the
Vasym version the rate interval is [0.001, 250]. Transition rates
in the kanban and VclCloud family were predefined because
they were already SPNs.

The models and the PetriDotNet 1.5 tool are available at
our homepage2.

2) Algorithms: Symbolic state space exploration and stor-
age were used during the benchmarks due to the extreme
memory requirements of explicit processing. For Kronecker
matrices, multiplication was performed with SHUFFLE.

Both steady-state and transient analysis workflows were
executed to obtain probability distribution vectors. BiCGSTAB
and Gauss–Seidel iteration with both sparse and block Kro-
necker matrices were used for steady-state analysis, as well
as Group Gauss–Seidel iteration on block matrices with
BiCGSTAB and Jacobi iteration as the inner solver. In addition,
transient analysis was performed by uniformization.

The execution time was constrained to 1 hour in all cases.

B. Effects of Algorithm Selection

The collected benchmark results regarding the steady-state
linear equation solvers are presented in Table I. The data in
the cell is the number of fastest or least memory cases/number
of solved cases form.

BiCGSTAB appears to be a remarkably robust solver for
examined problems. In the Sym and Asym variations of models,
BiCGSTAB was the fastest algorithm in all cases where it
converged successfully, except for a few instances of the
RwMutex family, where Gauss–Seidel iteration was the fastest.
Moreover, in the Vasym variation BiCGSTAB was the fastest in
all cases. However, other algorithms required less memory for

2https://inf.mit.bme.hu/en/petridotnet/stochasticanalysis
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Fig. 4. Effects of changing transition rates in steady-state analysis.

TABLE I
SUMMARY OF STEADY-STATE ALGORITHM BENCHMARKS.

BiCGSTAB Gauss–Seidel Group G–S

Best Sparse BK Sparse BK BiCG. Jacobi

Ti
m

e Sym 21/29 3/18 5/14 0/7 0/10 0/14
Asym 26/30 1/21 3/13 0/9 0/16 0/18
Vasym 22/23 1/16 0/7 0/4 0/13 0/14

M
em

. Sym 18/29 1/18 6/14 1/7 0/10 3/14
Asym 19/30 0/21 3/13 2/9 0/16 6/18
Vasym 16/23 2/16 3/7 1/4 0/13 1/14

many models. The high number of BiCGSTAB wins in terms
of memory usage are due to the constrained execution time
which prevented other algorithms from finishing. Therefore,
further measurements are to be conducted with extended time
limits to study more memory efficient algorithms with slower
convergence properties.

Fig. 4 shows the numerical sensitivity of the linear equation
solvers to the modification of transition rates. Failed executions
are shown at the maximum time limit. In most cases, either the
run time of the algorithms is unaffected by the Sym and Vasym
variations, or solution fails to converge in time on Vasym.

The same analysis is repeated for uniformization in Fig. 5.
It is apparent that uniformization is strongly affected by the
stiffness of model, as expected from (13).

C. Effects of Model Partitioning

Symbolic state space exploration of Petri nets requires
partitioning the model into groups of places i.e. components.
The behavior of symbolic processing heavily depends on the
selected partitions [11].

Block Kronecker decomposition also constructs the local
transition matrices Q(j)

t from a partitioned model. Unfortu-
nately, the optimal partitioning for symbolic algorithms and
Kronecker decomposition is usually different. While saturation
based symbolic state space exploration can often benefit from
small groups of places, for example every-1 partitioning,
i.e. every place is a separate partition, this decomposition can
lead to a very large number of small matrices that fails to
provide the desired reduction of matrix storage requirements.
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Fig. 5. Effects of changing transition rates in transient analysis.
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Fig. 6. Execution times of the symbolic part of the analysis.

We manually partitioned the models SharedResource,
SharedResource and kanban. For the models of MCC, we used
a compromise of automatic every-4 partitioning.

Automatic partitioning lead to long saturation times even
for models of relatively modest size, as it can be seen in
Fig. 6. Exceptions were the models FMS, RwMutex and
SimpleLoadBal, where every-4 partitions coincide with the
structure of the model.

Figs. 7 and 8 show the running time and memory tradeoffs
associated with sparse and block Kronecker generator matrices
for BiCGSTAB iteration. The behavior with other algorithms,
including transient solution with uniformization, are simi-
lar. While manual partitioning was able to achieve memory
savings without significantly compromising execution times,
automatic partitioning resulted in larger block Kronecker gen-
erators than the original sparse matrix representations.

D. Convergence Behavior of IDR(s)STAB(`)

The convergence behavior of our modified IDR(s)STAB(`)
implementation on various scaled versions of the Shared-
Resource model is shown in Fig. 9. In total 10 000 test runs
were aggregated to study different settings of s and `.
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Fig. 7. Execution times of the BiCGSTAB linear equation solver.
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Fig. 8. Memory requirements of the BiCGSTAB linear equation solver.

Four possible outcomes were identified: “Convergence”,
where the algorithm finished within 200 iterations; “Break-
down”, where a numerical breakdown occurred; “Divergence”,
where the residual norm increased until overflow and “No
result” with no convergence until iteration 200.

The setting s = 1, ` = 1, which emulates BiCGSTAB,
mostly converged for small models. Before the breakdowns
the residual norm was approximately 6·10−7. This is probably
the limit to the accuracy of the IDR(s)STAB(`) formulation
of BiCGSTAB, as the original BiCGSTAB algorithm utilizes
a more stable residual update strategy.

The setting s = ` = 2 results in timeout due to oscillation,
whereas with higher values, such as s = ` = 8, divergence
usually happens rapidly. This shows that IDR(s)STAB(`) is
hardly able to handle problems arising in Markovian steady-
state analysis even with our modifications.

VII. CONCLUSIONS AND FUTURE WORK

Complex and hybrid systems have many aspects from which
we studied the stochastic analysis problem in this paper. We
have developed various symbolic and explicit algorithms for
state space exploration. Steady-state and transient numerical

solvers work on the different descriptor representations. Cal-
culation of various measures answers the analysis questions. In
order to evaluate the different configurations of the algorithms,
we have conducted experiments to assess their strengths and
weaknesses. In addition to the well-known solvers used in
Markovian analysis, we have developed an experimental al-
gorithm of an Induced Dimensionality Reduction Stabilized
numerical solver. Some of our algorithmic improvements
turned out to help the solver, however much work is left to be
done to be able to fully utilize this new algorithm in Markovian
stochastic analysis. In the future we plan to further extend
our configurable stochastic analysis framework with new al-
gorithms. We plan to provide heuristics for selecting the proper
configuration of algorithms for the analysis problems. The
long term goal is to develop an adaptive framework supporting
stochastic analysis of models with various characteristics.
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