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Abstract Model repositories play a central role in the
model driven development of complex software-intensive
systems by offering means to persist and manipulate models
obtained from heterogeneous languages and tools. Complex
models can be assembled by interconnecting model frag-
ments by hard links, i.e., regular references, where the target
end points to external resources using storage-specific iden-
tifiers. This approach, in certain application scenarios, may
prove to be a too rigid and error prone way of interlink-
ing models. As a flexible alternative, we propose to combine
derived features with advanced incremental model queries as
means for soft interlinking of model elements residing in dif-
ferent model resources. These soft links can be calculated on-
demand with graceful handling for temporarily unresolved
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references. In the background, the links are maintained effi-
ciently and flexibly by using incremental model query evalu-
ation. The approach is applicable to modeling environments
or even property graphs for representing query results as
first-class relations, which also allows the chaining of soft
links that is useful for modular applications. The approach
is evaluated using the Eclipse Modeling Framework (EMF)
and EMF- IncQuery in two complex industrial case studies.
The first case study is motivated by a knowledge manage-
ment project from the financial domain, involving a complex
interlinked structure of concept and business process models.
The second case study is set in the avionics domain with strict
traceability requirements enforced by certification standards
(DO-178b). It consists of multiple domain models describ-
ing the allocation scenario of software functions to hardware
components.

Keywords Soft links · Incremental model queries ·
Derived features · Traceability

1 Introduction

Modeling frameworks serve as underlying model manage-
ment infrastructure for various industrial development tools,
especially in the avionics and automotive domain. These
domains necessitate the handling of large models with poten-
tially millions of model elements. For maintainability and
scalability reasons, such models are not persisted in a sin-
gle document, but stored as an interconnected network of
model fragments where each fragment stores a certain part
of the entire system model. In other application scenarios,
models are complemented with external traceability models
to explicitly persist traceability links between requirements
models, design models, analysis models or source code,
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for instance. In both scenarios, these models are frequently
manipulated by several development or verification tools in
complex toolchains operated by different design teams.

Unfortunately, the interconnection of complex system
models imposes several technical problems due to the iden-
tification strategies of model elements in these modeling
frameworks. When serializing a model, a model element
is either identified by a unique identifier generated by the
framework, or by a relative path of containment hierarchy in
the given model fragment. These techniques are used when
interconnecting models using associations, e.g., for inter-
nal traceability purposes [66]: the target end of the asso-
ciation points to an object resided in a different fragment.
Such interconnections are also used in external traceability
scenarios [31,33,36] where inter-model links are introduced
from traceability metamodel elements to existing metamod-
els which cannot be altered.

These scenarios demonstrate various shortcomings of
modeling frameworks. First, (1) the serialization (persistent
storage) of interconnected model fragments with circular
dependencies along associations is often not supported. Fur-
thermore, without highly intelligent multi-fragment trans-
action management, (2) local changes in a model fragment
may introduce broken links unless all dependent model frag-
ments are manipulated together in working memory. Such
broken links require tool-specific resolutions—with a worst
case scenario of fixing the links manually by the designer
using text editors (and not the modeling tool). Finally, (3) all
traceability links captured by associations are explicitly per-
sisted every time even if traceability links could be derived
from existing unique identifiers.

Extending on our MODELS 2012 paper [27], we provide
an approach for the soft interconnection of models based on
derived references and incremental model queries. Derived
references are attributes and relations of the model calcu-
lated at runtime, and their values are not stored explicitly.
When using derived relations, the corresponding links only
exist after the models are loaded. Therefore, model fragments
can be (de)serialized in arbitrary order and warnings can be
issued about broken links when certain resources are unavail-
able or not loaded. In order to provide an efficient and flexible
handling of such soft links, we use fully incremental model
query evaluation as a technical foundation. As a result, it
is sufficient to identify a model element by a query evalua-
tion instead of local or global identifiers, and less amount of
information needs to be persisted for traceability purposes.

Soft interconnections can be used in query evaluation sim-
ilarly to regular links; therefore, our approach also supports
chaining of soft links. This allows the integration of addi-
tional model fragments to an existing application, which is
important in modular model-driven software development.

We selected the EMF [53] as a modeling foundation and
used the EMF- IncQuery query evaluation framework [65]

for providing soft link functionality.1 EMF is a de facto
modeling standard with wide-spread use in industrial appli-
cations, while EMF- IncQuery is an open-source Eclipse
project.2

Similar challenges, such as fragmentation of data, hetero-
geneous storage and distributed access are relevant in the field
of databases as well. In particular, materialized views [25]
defined by queries are conceptually similar to soft inter-
connections. Furthermore, federated (virtual) database sys-
tems can logically interconnect distinct shards by executing
queries transparently over the distributed table space [28].
Consequently, our approach is based on the adaptation of
virtual databases and materialized views to (graph-based)
models and model query languages.

We initially developed our approach in the context of a
industrial research project concerning business process mod-
eling. The first case study of the paper (Sect. 2.1) uses the
domains of the project. We have also successfully applied the
approach in another industrial project in developing a com-
plex, model-driven application in the avionics domain. Our
second case study (Sect. 2.2) demonstrates how soft links
were applied in this application. While the inter-model con-
nections in the case studies are listed in this section, a high-
level introduction to the concepts of soft links is provided in
Sect. 3 using derived features defined by model queries.

The definition and use of inter-model soft links is dis-
cussed in Sect. 4, while soft links are applied in the context of
external traceability scenarios in Sect. 5. The details for pro-
viding incremental computation and efficient maintenance of
soft links are intentionally deferred until Sect. 6, which pro-
poses an architecture and algorithms in the context of EMF
models. Finally, related approaches and tools are described
in Sects. 7 and 8 concludes our paper.

2 Motivation: interconnected model fragments

2.1 Modeling and managing business processes

Our first case study was conducted on a business process
modeling (BPM) scenario based on a project carried out
together with an industrial partner. While the actual meta-
models (shown in Fig. 1) are significantly simplified here
to provide better focus, they still demonstrate many prac-
tical industrial problems of interconnecting models. In
the case study, semi-automatic workflows (captured as a
process model) contain both automated and manual tasks.
Architecture-level deployment decisions are captured by a

1 Fully implemented and documented at http://incquery.net/incquery/
new/examples/query-driven-soft-links.
2 The authors affiliated with Budapest University of Technology and
Economics are also committers of the project.
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Fig. 1 The metamodels of the BPM case study

separate system architecture model comprising of jobs and
data resources referring to tasks in the business process
model. Finally, the instances of the processes managed by
operators are captured in an operation model containing a
checklist for each process with task entries assigned for each
operator.

2.1.1 Overview of BPM metamodels

Business process metamodel. Business processes (process
package) are defined by a fragment of the standard XPDL [73]
metamodel. The ProcessElement top-level class defines
id (unique identifiers) and name attributes for each ele-
ment. A Process includes Activities that are either Tasks
(atomic workflow steps) or Gateways (e.g., fork-join, deci-
sion, loops), while the control flow of the process is repre-
sented by the next and previous relations between activities.

Based on the value of the kind attribute, tasks can be service
(for automated execution through API calls), manual (where
the operator initiates some job) and user (when the task itself
is performed by an operator or other assigned personnel).

System architecture metamodel. The system architec-
ture metamodel defines a top-level ResourceElement that
defines a name for each element. This simplified architecture
includes Systems (representing larger components), Data
elements that represent application data (e.g., configuration,
input or output files) that can be read or written during the
execution of tasks in the processes and Jobs (e.g., scripts
or one-shot programs) that run on Systems. We assume that
each system must have a unique name and each job con-
tained in the same system must have different names. Oth-
erwise, names are not globally unique in this domain.

Operation metamodel. The operation metamodel is used
for representing Checklists followed by operators when per-
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forming the manual tasks in processes. The top-level Oper-
ationElement adds a name and a unique identifier for each
model element. Each Checklist is related to a Process and
includes a number of entries and a menu. The menu con-
tains MenuItems that have textual descriptions and a loca-
tion, where the operator can access it. The entries are Check-
listEntry elements, each corresponding to one task, an arbi-
trary number of jobs, and optionally to a MenuItem. Finally,
each entry can contain further information (e.g., historical
statistics or requirements) stored by a RuntimeInformation
element using a content map.

Inter-model connections. These metamodels and thus the
corresponding model instances heavily depend upon each
other (see Fig. 1). The following logical interconnections are
present in our example:

– Job can be linked to a Task to represent that the task
includes the execution of the job.

– Process is a referenced from Checklist to indicate that
the process includes the tasks that will be performed by
going through the checklist

– ChecklistEntry links to both to a process Task and a
system Job to indicate that the entry is active when the
given task is performed and it involves the execution of
the listed jobs.

– RuntimeInformation can be attached to a Job if the job
is executed as part of the entry containing the information.

Many industrial tools (including the TIBCO Business Stu-
dio [62] used in our industrial project for capturing XPDL
models and the AUTOSAR standard [2]) store identifiers
of external (inter-model) elements using (a list of) simple
string (or integer) attributes. In contrast, modeling frame-
works often use references (corresponding to lazily initial-
ized inter-object pointers) to interconnect different models
(or model fragments), which are created by lazy loading upon
first use.

2.2 Hardware–software allocation in Integrated Modular
Avionics (IMA)

Our case study in IMA is based on an ongoing, cooperation
project with a major airframer. It aims at defining a model-
driven approach for the synthesis of complex, integrated Mat-
lab Simulink [38] models (implementation model) capable
of simulating the software and hardware architecture of an
airplane.

The high-level overview of the IMA application workflow
is depicted in Fig. 2.

– The input artifacts for the process are the Func-
tional Architecture Model (FAM) and the Component
Library (CL) defined in Matlab Simulink as a library and

Fig. 2 High-level overview of the IMA application workflow

a system, respectively. The goal of the FAM is to capture
the description of the different software functions that
are allocated to the IMA system under design, while the
CL defines the available hardware elements that can be
used for the definition of the HW architecture of the air-
craft. These Simulink models are imported into the IMA
design tool.

– Using these inputs during the development first the sys-
tem architect specifies the Platform Description Model
(PDM) based on the building blocks (e.g., computa-
tional unit, router, chassis, power unit, etc) defined in the
Component library (e.g., a specific vendor’s processor or
power unit, etc).

– In the next step the system architect allocates the func-
tions from the FAM to the underlying PDM. The alloca-
tion itself includes two major parts: (i) the mapping of
functions defined in the FAM to underlying execution ele-
ments within the PDM and (ii) the automated discovery
of available communication paths for the various infor-
mation links defined between the FAM elements. The
mappings and the communication paths are stored in a
Allocation Specification Model.

– Finally, when the allocation is complete and fulfils the
structural requirements, the Integrated Architecture
Model is automatically synthesised and ready to be sim-
ulated in Simulink.

In order to support the envisioned model-driven IMA
development framework, we defined the modeling architec-
ture with the following goals in mind: (i) define a simulation
tool (vendor) independent modeling layer for both the func-
tional and hardware architecture, (ii) ensure instance model
reuseability in the allocation process to support the alloca-
tion of a single FAM to multiple PDMs and (iii) provide a
complete traceability support through all the models used in
the development process.
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Fig. 3 The metamodels of the IMA case study

2.2.1 Overview of the IMA metamodels

The complete modeling architecture contains more than
140 classes and 200 references in seven metamodels. For
demonstrating how we applied soft links in this case study,
we selected an extract of the metamodels that shows how
changes in either a source or target domain model can be han-
dled without specific manipulations on references between
the domain models. This fragment in Fig. 3 highlights
traceability-specific challenges from the Comp2Simulink,
Simulink and FAM metamodels.

Functional Architecture metamodel. A Function repre-
sents a functionality provided by the aircraft that is imple-
mented either in software or hardware, while functions com-
municate with other functions through InformationLinks.
Both are subclasses of the ModelElement class that is the
superclass of all domain metamodel elements.

Simulink metamodel. All Simulink specific elements are
subclasss of the SimulinkElement class, while a Block
represents a Simulink block, whose sourceBlock refer-
ence points to its defining Simulink library element. Finally,
the SimulinkReference class is a unique identifier for a
SimulinkElement defined by a fully qualified name (FQN)
constructed from a name and qualifier.

Integration metamodel. The Comp2Simulink package
defines a platform-specific mapping layer between domain-
specific (FAM in the current case) and Simulink models.
Its SimulinkElementReference element captures which
Simulink element (slElement) is represented by a certain
domain-specific element (mElement).

Inter-model connections. Using this structure, we are able
to handle two problems that are characteristic to this domain:

– Handling (Simulink) libraries. Libraries in Simulink con-
tain re-usable blocks which can be inserted into models
similarly to regular blocks. Blocks inserted from a library
refer back to the library element, which allows changes
in library elements to be propagated to all models that
use the library. The sourceBlock soft link can flexi-
bly handle changes if an other version of the library is
loaded into the IMA tooling. For example, it is possible
to have alternative libraries for scheduler simulation or
failover/redundancy evaluation, where only the internal
structure of the library elements are different.

– Traceability between domain and implementation mod-
els. During the allocation, the traceability between the
FAM and its corresponding Simulink models has to be
consistent. In certain situations, the underlying Simulink
models must be changed without affecting its correspond-
ing FAM (e.g., by redefining the internal structure of
a function). However, when the changes are made in
Matlab and the modified Simulink model is imported
into the IMA tooling, the traceability links that connect
the Simulink elements (slElement) to their correspond-
ing FAM elements (mElement) should be automatically
repaired without changing any FAM elements.

These problems are solved using soft links defined by
queries as described in Sects. 4.4 and 5.2.
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3 Toward soft traceability links

In the paper, we propose soft links for interconnecting mod-
els by combining derived features and incremental model
queries. The term “query-driven soft links” refers to the
fact that (1) certain model interconnections only exist at
runtime and are not persisted explicitly when serializing
instance models, while (2) the interconnected model ele-
ments can be accessed and navigated along derived fea-
tures. Furthermore, (3) our query-driven technique allows
to define complex, n-ary interconnections of several model
elements, and (4) to identify model elements dynamically
based on query results (instead of static unique element iden-
tifiers).

3.1 Definition of soft links

In this section, we define a formal foundations of soft links
as computed interconnections between model fragments
through basic formalization using graphs.

An (edge-)labeled, directed graph is defined as a structure
G = (N , E, L , src, trg, label) where N is the set of nodes,
E is the set of edges and L is the set of labels. The functions
src, trg : E → N map the edges to their source and target
nodes, respectively. Finally, the function label : E → L
maps the edges to their labels. We denote the values of these
functions for a given edge e by e.src, e.trg, e.lbl.

Note that type information of nodes can be represented by
labels on self-loop edges. For the sake of simplicity, we refer
to the name of such labels as the type of the element but we
do not define here a precise type mapping.

The graph representation can be mapped to specific mod-
eling frameworks, such as industrial tools MetaEdit+ [63],
EMF, Groove [46] or RDF/triple stores [44] and research
tools Clafer [3], MetaDepth [35] or VPM [68].

Next, a model repository MR is a graph that satisfies the
following:

– R ⊆ N is a set of resource nodes, representing model
fragments. Resource nodes are identified by res labels.

– For each node n ∈ N\R, there is exactly one edge e ∈ E ,
where e.src = n and e.trg ∈ R. We refer to e.trg as the
owner of n and denote it by n.own.

– T ⊆ E is a set of edges called trace links that contains
all edges l with different owners of its source and target
nodes (i.e., l.src.own �= l.trg.own).

Example 1 Figure 4 illustrates a model repository consisting
of three resource nodes Proc, Sys and Op (representing a
process, a system architecture and an operation model from
the BPM case study in Sect. 2.1) with trace links represented
with dashed arrows. For example, the nodes owned by Proc

Fig. 4 Example model repository with trace links

are p, t1, t2, the source of edge c is p and its target is t1, while
the trace link l p connects a node owned by Op to a node
owned by Proc. Note that we denote labels representing
types on Fig. 4 by the type name added after the name, e.g.,
p:Process for node p representing a process.

A query is a tuple q = (
−→
P , b) where

−→
P is a set of named

parameters and b is the body that describes what structural
constraints have to be satisfied. A match m : q �→ MR of
a query over a model repository MR is a set of parameter
assignments that satisfy the query constraints, where each
assignment maps a parameter to its value, e.g., parameter
pi to node ni in MR denoted by m.pi := ni . We denote
a given match by listing the assigned values in the order
of the parameters, e.g., {n1, n2, . . . nk} for a query with k
parameters. Finally, the set of matches of query q over a
model repository is denoted by Mq = {m|m : q �→ MR}.
Example 2 A sample query may select “each node p1 with
two outgoing edges where all incoming edges are trace links”
and the single parameter is p1, then the matches of the query
in Fig. 4 are {p}, {cl} and {s}.

Note that we intentionally do not specify how the body
of a query is described and how matches of a query are
found in the model repository. Possible approaches include
graph patterns [22] (as used later in the current paper) or
OCL expressions [60]. Our motivation with this generality
is to emphasize that soft links can be adopted using model-
ing frameworks and query techniques different from those
exemplified in this paper.

Let qsl = (
−→
P , b) be a model query with two parameters−→

P = {Src, Trg}. We can regard the matches of qsl as edges
between two nodes in the model repository and these edges
are calculated based on the existing nodes and edges.

A soft link is an edge l which exists in a model repository
if and only if a model query qsl has a match with parameter
assignments {l.src, l.trg}. If edge l is computed by the query
qsl , the type of the edge is also sl.
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Example 3 In the model repository in Fig. 4, we can define
the query qinfo as “node p1 of type Job with incoming edge
from a node of type ChecklistEntry that also has outgoing
edge to node p2 of type RuntimeInformation”. The query
has a match { j, i} and the trace link li can be created as a soft
link typed info.

In order to apply the concept of soft links on exist-
ing metamodeling and model query evaluation approaches,
we selected the EMF for representing the model repository
and EMF- IncQuery for specifying and evaluating model
queries. However, other modeling ecosystems and query
evaluation techniques can also be used for the definition and
application of such interconnections.

3.2 Model repository in Eclipse Modeling Framework
(EMF)

The EMF is a Java framework and code generation facility
for building tools and other applications based on a struc-
tured model. EMF provides a metamodel (Ecore) for describ-
ing structured models. Using these structured models, EMF
provides tools and runtime support to produce a set of Java
classes representing the model in Java Virtual Machine.

The model repository concept in the EMF is represented
by a resource set, which contains a set of resources that are
model fragments persisted in separate locations. Each EMF
resource is a resource node in the model repository.

The nodes owned by resources are EObjects (typed model
elements) or datatype values (numbers, character strings,
boolean values etc.), while edges are associations between
nodes called settings. The labels that represent the types
are specified by Ecore models, which contain EClass labels
applicable on EObjects, EDataType labels for datatypes and
EStructuralFeature (feature) labels for settings. In addition,
EStructuralFeatures are distinguished as EReference for set-
tings between EObjects and EAttribute for settings with EOb-
ject source nodes and datatype value target nodes.

Derived features in EMF models represent computed
information which can be calculated from other model ele-
ments. Essentially, we distinguish between derived
attributes, which represent settings to datatype values and
derived references, which represent “virtual” interconnec-
tions between EObjects (represented graphically by the
derived stereotype in Figs. 1, 3).

In this paper, we show how incremental model queries
can be combined with derived features to achieve true soft
traceability links for models. Derived features for soft links
will be defined by using a declarative, high-level graph-based
query language (Sect. 4) and evaluated with fully incremental
pattern matching [5] (Sect. 6.1) as offered by the advanced
model query framework EMF- IncQuery [65] or available
for OCL expressions [12].

Fig. 5 Soft link life cycle

Incremental evaluation of model queries over EMF mod-
els depends on the change notification mechanism that is
provided by EMF for regular (non-derived) features. Appli-
cations (e.g., the query evaluation engine) can observe EOb-
jects and receive notifications any time the value of a fea-
ture is modified. Since such notifications are required to pro-
vide efficient incremental evaluation, soft links represented
by derived features also send change notifications when their
value is modified.

3.3 Life cycle of soft links

Figure 5 shows the overview of the life cycle of soft links
illustrating how a modification on the model repository
(1) leads to changes in trace links. When the model repository
is modified, it notifies the model query evaluation about
the change (2) and if the change affects the matches of the
query, then the added or removed match is sent to the soft
link computation (3).

Finally, the edge representing the soft link is added to
or removed from the model repository (4). In Sect. 6.2, we
describe in detail how incremental query evaluation is used
to provide this life cycle for interconnected models.

3.4 Advantages of soft traceability links

Our soft interconnection technique driven by incremental
query evaluation offers the following advantages, which are
also aligned with the research roadmap for achieving scala-
bility in model driven engineering [34]:

– Handling circular trace links. Circular trace links bet-
ween model fragments can be handled easily with soft
links. For instance, in the BPM case study, the models
system and operation (see Fig. 4) are mutually con-
nected to each other along the trace links jobs and info.
This circularity prevents serialization using regular meth-
ods where repeated traversal of the same resource is not
allowed. As soft links are not serialized, this problem no
longer occurs.

– Graceful management of broken links. When models are
manipulated by multiple, independent tools, inter-model
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links can be easily broken, which result in runtime prob-
lems when the corresponding node is attempted to be
accessed along a broken link. Soft links provide graceful
behavior in case of broken links by issuing warnings in
case of unresolved elements. Such warnings are issued
based on the incremental computation as well, and broken
links are corrected automatically if the model containing
the target node is loaded later.

– Improved persistence. Whenever a model interconnec-
tion can be calculated by a query, it does not have to be
explicitly persisted into traceability models. As a result,
the execution time of persistence operations for complex
interconnected models can be reduced.

– Support for soft link chaining. Soft links can be defined
using existing soft links when integrating additional
model fragments. Such chaining can be useful for mod-
ular model-driven software development.

– High performance. Due to the incremental query eval-
uation [7], trace links can be reevaluated very effi-
ciently even in case of complex definitions (e.g., tran-
sitive closures [9]). As a result, the maintenance of soft
links can be efficient with low memory overhead even
for large models with complex traceability structures
(Sect. 6.6).

4 Specification of interconnections with model queries

In order to support the definition of soft interconnections
between models, a graph pattern-based model query lan-
guage [8] is used as the specification language. Therefore,
a brief introduction to this query language is provided first
(Sect. 4.1), followed by a detailed description on how this
general purpose query language is adapted to specify soft
interconnections for the case studies (Sects. 4.2, 4.3). Finally,
we illustrate their use on handling libraries of Simulink
blocks in Sect. 4.4.

4.1 Model queries by graph patterns: an overview

Graph patterns [67] are an expressive formalism used
for various purposes in model-driven development, such
as defining declarative model transformation rules, captur-
ing general purpose model queries including model vali-
dation constraints, or defining the behavioral semantics of
dynamic domain-specific languages. A graph pattern (GP)
represents conditions (or constraints) that have to be ful-
filled by a part of the model. A basic graph pattern con-
sists of structural constraints prescribing the existence of
nodes and edges of a given type, as well as expressions to
define attribute constraints. A negative application condi-
tion (NAC) defines cases when the original pattern is not
valid (even if all other constraints are met), in the form

Fig. 6 Model query to define EntryJobCorrespondence in graphical
and textual syntax

of a negative sub-pattern. A match of a graph pattern is a
set of model elements that have the exact same configura-
tion as the pattern, satisfying all positive, but no negative
constraints.

4.2 Soft links by derived features and model queries

4.2.1 Sample soft link

First, we demonstrate on an example how the graph pattern
EntryJobCorrespondence(cle,j) (Fig. 6) can be used to
express the soft links captured by the inter-model connection
jobs (connecting ChecklistEntry and Job in Fig. 1), that is,
to identify those jobs that correspond to a task execution as
part of the checklist entry.

This model query formulated as a graph pattern has two
parameters: cle and j , denoting the source and the target
end of the soft link. The query defines the designated set of
jobs by checking the names of the given job element j and
the system s it runs on (n J and nS, respectively) and the
path stored in the entry. Model queries for the other soft
links defined in the BPM cse study are defined similarly in
Listings 1 and 2.

1 // Job.tasks link

2 pattern JobTaskCorrespondence(j,t){

3 Task.id(t,tId);

4 Job.taskIds(j,tId);}

5 // Data.readingTasks link

6 pattern DataTaskReadCorrespondence (d,t) {

7 Task.id(t,tId);

8 Data.readingTaskIds(d,tId);}

9 // Data.writingTasks link

10 pattern DataTaskWriteCorrespondence(d,t) {

11 Task.id(t,tId);

12 Data.writingTaskIds(d,tId);}

Listing 1 Resource-Process mapping

The query language also supports the following language
constructs:
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1 // Job.info link

2 pattern JobInfoCorrespondence(j,i) {

3 ChecklistEntry.info(cle ,i);

4 RuntimeInformation.id(i,iId);

5 find EntryJobCorrespondence(cle , j);}

6 // ChecklistEntry.task link

7 pattern EntryTaskCorrespondence(cle , t) {

8 Task.id(t, tId);

9 ChecklistEntry.taskId(cle ,tId);}

10 // Checklist.process link

11 pattern ListProcessCorrespondence (cl ,pr){

12 Process.id(pr ,prId);

13 Checklist.processId(cl ,prId );}

Listing 2 Checklist entry mapping

– check(path == nS + ’/’ + nJ) checks that the model ele-
ment bound to variable path is equal to the concatenated
value of nS and n J .

– Using the find keyword, graph patterns can be composed
by reusing other graph patterns. Therefore, if a soft link
is defined as a model query by a graph pattern, this def-
inition can be reused in other queries, and thus, in other
soft links.

Soft links can be defined as model queries using this highly
expressive graph pattern-based language [8]. Graph patterns
with embedded NACs provide expression power equal to
first-order logic [45], while advanced features (e.g., transitive
closure [9], match counting and evaluation of expressions)
further increase the usability of the language.3 The queries
are used as specifications for the soft links in the following
way:

1. Each query should have exactly two parameters Each
match of the query represents a soft link in the model.
The type of the soft link is specified by the query of the
match; therefore, only the source and target nodes are
needed as parameters.

2. Value of first parameter: source node The value assigned
for the first parameter (e.g., cle in Fig. 6) is the source
node of the link.

3. Value of second parameter: target node The value
assigned for the second parameter (e.g., j in Fig. 6) is
the target node of the link.

4.3 Complex soft links in the IMA case study

Two of the soft links in the IMA case study use the
SimulinkReference objects for identifying the target of the
interconnection. In order to compare two reference objects,
we introduce a helper pattern referenceEqual (see Listing
3) that will match the references sourceRef and targetRef
if the name and qualifier of both elements are equal.

3 For comparison of the query language with other formalisms, see
[6,8].

1 pattern referenceQualifier(sr , qual) {

2 SimulinkReference.qualifier(sr ,qual);

3 }

4 // name and qualifier of a SimulinkReference

5 pattern simulinkReference(sr, name , qual) {

6 SimulinkReference.name(sr ,name);

7 find referenceQualifier(sr ,qual);

8 }

9 // name and qualifier same for two references

10 pattern referenceEqual(sourceRef , targetRef) {

11 find simulinkReference(sourceRef , name , qual);

12 find simulinkReference(targetRef , name , qual);

13 } or {

14 // no qualifier

15 SimulinkReference.name(sourceRef ,name);

16 SimulinkReference.name(targetRef ,name);

17 neg find referenceQualifier(sourceRef , _squal );

18 neg find referenceQualifier(targetRef , _tqual );

19 }

Listing 3 Pattern for comparing Simulink references

The pattern referenceEqual that compares Simulink ref-
erences includes two additional language constructs for spec-
ifying alternative pattern bodies and negative application
conditions. The pattern has two alternative bodies (using the
or keyword) to match (1) references with the same name and
qualifier and (2) references that only have names and no qual-
ifier. The neg find construct specifies that a qualifier cannot
be found for the reference.

Listing 4 contains the definitions of the soft links for the
IMA case study. The sourceBlock pattern describes that the
reference stored in the sourceBlockRef feature of block (the
source of the soft link) is equal to the reference of sourceBl
(the target of the soft link) according to the referenceEqual
pattern. Similarly, the slElement pattern specifies that the
reference stored in elementRef is equal to the reference
of elem. Finally, the mElement pattern is similar to the
definitions in the BPM case study and uses simple attribute
value equality to identify the target element.
1 // Block.sourceBlock link

2 pattern sourceBlock(block , sourceBl) {

3 Block.sourceBlockRef(block ,blRef );

4 Block.simulinkRef(sourceBl ,srcRef );

5 find referenceEqual(blRef ,srcRef );

6 }

7 // SimulinkElementReference.slElement link

8 pattern slElement(seRef , elem) {

9 SimulinkElementReference.elementRef(seRef , ser);

10 SimulinkElement.simulinkRef(elem , er);

11 find referenceEqual(ser , er);

12 }

13 // SimulinkElementReference.mElement

14 pattern mElement(seRef , comp) {

15 SimulinkElementReference.mElementId(seRef , meId);

16 ModelElement.id(comp , meId);

17 }

Listing 4 Soft links in the IMA case study

4.4 Handling libraries in the IMA case study

Using soft links to define and maintain the references to the
defining Simulink library elements allows flexibility to han-
dle changes if an other version of the library is loaded into the
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Fig. 7 Alternative libraries for a Simulink model

IMA tooling without the need to do any manual readjustment
on the elements of the Simulink instance model.

Figure 7 shows when a Simulink model is loaded to the
IMA tooling; however, we would like to use two different
libraries based on the simulation goals the Simulink model
will be used (e.g., simulation of scheduling algorithm or eval-
uation of failover or redundancy).

This approach also allows model editing without loading
all referenced libraries, while soft links are not broken in the
sense that whenever a library will be loaded the references
will be automatically repaired.

Additionally, it is possible to add validation for the soft
links and thus issue a warning for the user indicating that a
given soft link should be set but its target was not found. This
is very useful as the user can concentrate on those references
that are broken due to the changes made either to the model
or the library.

1 @Constraint(severity = "warning", location = Block ,

2 message = "Source block with reference $blRef$

3 not found for block $block$"

4 )

5 pattern sourceBlockNotFound (block , blRef) {

6 Block.sourceBlockRef(block , blRef );

7 neg find hasSourceBlock(block , _srcBl );

8 }

9 pattern hasSourceBlock(block , srcBl) {

10 Block.sourceBlock(block , srcBl );

11 }

Listing 5 Validation of sourceBlock soft link

Listing 5 defines a validation rule with a warning level
severity and a specific message that is parametrized with
the block and blRef parameters of its defining query. The
sourceBlockNotFound query matches on those blocks that
has no referred library element through the sourceBlock soft
link. This is defined using a negative application condition
on the hasSourceBlock pattern.

5 Applications in external traceability

The approach outlined in Sect. 3.3 is capable of maintaining
trace links and thus provide the basic functionality needed
for the features defined in the two case studies introduced in
Sect. 2. In this section, we elaborate on the use of external n-
ary traceability interconnections in the BPM case study and
discuss the advantages of using soft interconnections in the
integration model of the IMA case study.

In general, soft links may offer several advantages when
applied in an external traceability context. Figure 8 illus-
trates a typical architecture applied to the BPM case study
(see Sect. 2.1), where interconnections between three dis-
tinct models (belonging to the process, system and operation
domains, respectively) are augmented with explicit (external)
traceability models (T ).

In such a scenario, traceability models T typically con-
form to a custom metamodel that may describe simple binary
(source-target) relationships with the help of association
classes that use explicit unidirectional references to point
to elements of the host models. In more complex cases, T
may also include ternary (or hyper-) edges that interrelate
multiple elements (e.g., three element types from all three
domains, as in Fig. 8).

5.1 External traceability-specific challenges

While this commonly used approach has an obvious advan-
tage over internal traceability/correspondence links, namely
that the external models do not require the modification of
the host metamodels, it also involves a number of frequently
encountered problems as mentioned in Sect. 3:

– Fragility. Inter-model hard links are fragile, they may
break when a host model is manipulated without also
loading the traceability model. Additionally, when using
file-based model fragments, traceability links may even
break during external operations (e.g., when the files are
moved within the workspace [47]).

– Identification of target elements. To work around the
fragility issue, traceability models may use IDs or fully
qualified naming schemes (as presented in our previous
examples) to store cross-references, even for external
traceability models. However, such key attributes need
to be present in the host models, while they also necessi-
tate an auxiliary mechanism to enforce consistency rules
(such as uniqueness) within the host domains. If these
prerequisites are not met, then additional, auxiliary tech-
niques have to be used to add identifier maintenance capa-
bilities to host domains, as used, e.g., by EMFStore [55]
and CDO [57].

– Persistence scalability issues. In complex system mod-
eling scenarios, the amount of edges can grow to be
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Fig. 8 External traceability
modeling scenario

the dominant factor in storing the entire model reposi-
tory, in terms of both in-memory and serialized persis-
tence overhead [7]. Hence, the performance of all model
management-related operations (e.g., serialization) may
be severely negatively affected as the size of the model
resources grow, especially when taking fragility into con-
sideration (i.e., that traceability models with hard links
need to be loaded and manipulated together with host
model fragments).

5.2 Traceability management with bidirectional soft links

The traceability architecture (components with black outline
in Fig. 8) can be augmented or even replaced with model-
integrated soft links (symbolized by red outlined empty ovals)
and traceability queries that can be accessed through the
query evaluation framework (oval with dashed fill). Both
techniques share incremental, on-the-fly evaluation as their
background (which will be detailed in Sect. 6.1).

From the traceability perspective, the most important
advantages of soft links are that they are (logically) bidirec-
tional references that are maintained upon model changes.
The bidirectionality is supported as the both parameters of
soft link queries can be used for input or output. Thus, assum-
ing that host metamodels are allowed to be extended, such
traceability links can be added without regard for circular
serialization dependencies. Therefore, it is entirely up to the
language designer to specify where such traceability links
are going to reside, making trace link navigation from host
model elements feasible as well. The queries used for bidi-
rectional references do not have to be bijective, as each match
of the query will result in one trace link and a node can be
the source or target of multiple links.

Additionally, as soft links provide graceful behavior for
broken traceability references, erroneous trace records may
be marked with warning markers, instead of throwing excep-
tions or runtime errors. These markers can then be cor-
rected by, e.g., a user-aided, on-demand resolution process,
which may be further supported by helper queries that locate
the most likely target host model element (especially when
non-ID keys are used to identify model elements, such as

EntryJobCorrespondence in Fig. 6. In this case, a helper
query may enumerate those elements whose local names are
similar).

It is possible to fine-tune traceability links in a straight-
forward way. The designer can choose which references are
stored explicitly and which ones are going to be calculated
on-demand, when the models are loaded into memory, since
the results of query evaluation can be both processed man-
ually or represented by derived features. This gives the tool
developer precise control over performance vs. compliance
considerations (i.e., when certain traceability information is
required to be stored persistently).

Finally, soft links behave exactly like normal links (send
notifications), easing the integration with user interface com-
ponents or on-the-fly validators.

5.2.1 External traceability between domain and
implementation models in the IMA case study

Handling traceability references between domain and imple-
mentation model elements using soft links yields the same
advantages as in the case of libraries. In addition, tools can
be easily programmed to read and access individual model
fragments completely separately. This is especially impor-
tant where critical IP can be found in the different domain
and implementation models, and only the required fragments
are allowed to be disclosed to the different third-party tool
providers.

Soft links can be checked with a validation query (see
Fig. 9), similarly to the approach for Simulink library ref-
erences (see in Sect. 4.4). However, due to the fact that
a separate model element represents the traceability refer-
ence (SimulinkElementReference), two separate valida-
tion rules have to be defined in order to be able to differen-
tiate when the domain model is not loaded (mElement) or
the implementation model element is missing (slElement).

Finally, the separation of domain models from platform-
specific implementation models also makes it possible to
have a single component model correspond to different plat-
form representations. For example, it is possible to create
a single component library model that represents blocks in
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Fig. 9 Alternative implementations for domain model

a Simulink model or components defined in a different plat-
form (e.g., SysML [61] or AADL [49]). Depending on which
platform representation is loaded at a given moment, differ-
ent target models can be generated from the same PDM that
uses the library.

5.3 Using traceability queries for n-ary links

If host metamodels cannot be modified, or hyperedges (mul-
tilinks, connecting three or more element types) are desired
for traceability modeling, the architecture of Fig. 8 can be
augmented with generic queries. In this case, a Checklis-
tEntry is connected to Tasks and, consecutively, to Data
elements to represent the traceability information between
data elements that are read by a given check list element. Such
a ternary relationship may be implemented by the Ternary
pattern (shown in Listing 6).

1 // data read by checklist entry

2 pattern Ternary(cle ,t,d){

3 find ChecklistEntryTaskCorrespondence(cle ,t);

4 find DataTaskReadCorrespondence (d,t);

5 }

Listing 6 Ternary link traceability query

The matches of the Ternary pattern in a model can be
accessed using query evaluation. The parameter assignments
can be read from the match, and the object or attribute values
can be manipulated naturally to modify or process the model
(see Sect. 9.4 for an example). It is also possible to observe
the match set of the pattern and react to new or removed
matches.

Note that the traceability relation between a Simulink-
ElementReference and its corresponding Simulink and
Functional Architecture model elements is also representable
as a ternary hyper-edge.

Fig. 10 The incremental query evaluation architecture

5.3.1 Summary

Soft links and traceability queries can be used to overcome
the challenges presented by traceability-specific applications
by complementing external traceability models and support-
ing incrementally maintained bidirectional links between
interconnected elements.

6 Details of soft link computation

In this section, we outline how soft links can be managed
using the incremental query evaluation features of the EMF-
IncQuery framework. We propose an algorithm for map-
ping changes of query results to notifications. Our approach
can be integrated to notification based applications (like
EMF) in a transparent way by mapping model changes to
the values of derived features using incremental evaluation.

6.1 Incremental evaluation of queries: an overview

The key to efficient evaluation and change notification for soft
links is the incremental graph pattern matching infrastructure
(first introduced in [48]) that uses the internal architecture
shown in Fig. 10.

The input for the incremental graph pattern matching
process is the EMF instance model and its Notification
API where callback functions can be registered to instance
model elements that receive notification objects (e.g., ADD,
REMOVE, SET etc.) when an elementary manipulation oper-
ation is carried out.

Based on a query specification, the framework constructs
a Rete rule network [48] that processes the contents of
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Fig. 11 Overview of the
integration architecture, adopted
from [43]

the instance model to produce the query result at its out-
put node. Query results are then post-processed by auto-
generated query components to provide a type-safe access
layer for easy integration into applications. This Rete network
remains in operation as long as the query is needed: it con-
tinues to receive elementary change notifications and prop-
agates them to produce query result deltas through its delta
monitor facility, which are used to incrementally update the
query result. These deltas can also be processed externally,
which is a key feature for the integration of derived features
(Sect. 6.2).

By this approach, the query results (i.e., the match sets of
graph patterns) are continuously maintained as an in-memory
cache and can be instantaneously retrieved. Even though this
imposes a slight performance overhead on model manipu-
lation, and a memory cost proportional to the cache size
(approx. the size of match sets), the query evaluation frame-
work can evaluate very complex queries over large instance
models very efficiently. These special performance charac-
teristics, reported in [65], allow query-based derived features
to be evaluated instantly after model modifications in most
cases, regardless of the size of the instance model.

6.2 Derived features driven by queries

To support soft links captured as derived features, the outputs
of the engine need to be integrated into the EMF model access
layer at two points: (1) query results are provided in the get-
ter functions of derived features, and (2) query result deltas
are processed to generate EMF Notification objects that are
passed through the standard EMF API so that application
code can process them transparently. The overall architec-
ture of our approach is shown in Fig. 11.

The application accesses both the model and the query
results through the standard EMF model access layer—
hence, no modification of application source code is neces-
sary. In the background, as a novel feature, soft link handlers
are attached to the EMF model objects that integrate the gen-
erated query components (pattern matchers). This approach

follows the official EMF guidelines of implementing derived
features and requires less programming effort to integrate
than ad hoc Java code, or OCL expression evaluators.

When an EMF application intends to read a soft link (B1
on Fig. 11), the current value is provided by the correspond-
ing handler (B2) by retrieving the value from the cache of the
related query. When the application modifies the EMF model
(A1), this change is propagated to the generated query com-
ponents along notifications (A2), which may update the delta
monitors of the handlers (A3). These updates are processed
by the handler and turned into derived feature changes, which
can trigger further changes in the result sets of other derived
features (A4).

6.2.1 Illustrative example

Figure 12 illustrates a detailed elaboration of soft link han-
dlers, which process elementary model manipulation notifi-
cations to update and generate notifications for derived fea-
tures. The figure corresponds to a case where the user assigns
a new Job to a ChecklistEntry through the Editor which is
essentially a cle.getJobPaths().add(jobPath) method call
on the Model. During the add method, the ChecklistEn-
try EObject sends an ADD notification to the Notification
Manager, which will notify the Query Engine about the
model modification. The Query Engine updates the match
sets of each query and registers the match events in the Delta-
monitor. Once the update of the Rete network is finished,
it invokes the callback method of each IncqueryFeature-
Handler. Each handler has a Deltamonitor from which it
retrieves the new and lost match events since the last callback
to process them. During the processing, the handler may send
new notifications (e.g., the value set of the info soft link of job
is updated) that is propagated to listeners. Any time the soft
link value is retrieved from the model (e.g., job.getInfo()),
it accesses the handler for the current value of the derived
feature, which is returned instantly.
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Fig. 12 Elaboration of the execution

6.2.2 Role of incrementality

Soft links could be built on top of a batch query evaluation
technology, but there are three essential roles of incremental-
ity for making soft links feasible: (1) the query engine notifies
the soft link handler when the results of the query changed, so
that updates can be performed, (2) it specifies which soft link
changed; therefore, it is not necessary to evaluate all queries
upon each change and (3) it provides information on how the
results changed (appeared and disappeared matches), there-
fore iteration on all query results can be avoided.

6.3 From changes of match sets to notifications

We now explain the notification processing and propaga-
tion procedure in algorithmic detail (extending our previous
paper [43]). For the sake of simplicity, we introduce an aux-
iliary discriminator variable K ind whose value represents
two distinct cases:

– single and many correspond to derived references of
target multiplicity 1 and *, respectively (e.g., the soft
links task and jobs of ChecklistEntry);

– More complex kinds of derived feature with an arbitrary,
deterministic iteration algorithm can also be handled by
the approach. For example, summing up the values of a
numeric attribute in the list of matched objects.

The main part of our soft link handler algorithm is an
event loop that is called by the query engine each time the
underlying Rete network is updated as a result of some model
manipulation (see Algorithm 1).

The algorithm is initialized with the following input vari-
ables (line 2): (1) the EObject Source whose soft link is han-

Algorithm 1 Main event loop
1: let S← Source, F ← Feature, DM ← DeltaMonitor,
2: let k ← K ind � Input variables
3: let (k = single)?iV ← null : iV ← ∅ � Internal value init
4: let pU ← null, N ← ∅ � Global variables
5: function eventloop
6: let pU ← null
7: � First processing found events
8: let M F E ← DM.matchFound Events
9: let f ound ← processFoundMatches(M F E)

10: let RF E ← DM.matchFound Events \ f ound
11: let DM.matchFound Events ← RF E � Removing events
12: � Then processing lost events
13: let M L E ← DM.matchLost Events
14: let lost ← processLostMatches(M L E)

15: let RL E ← DM.matchLostevents \ lost
16: let DM.matchLostevents ← RL E � Removing events
17: � If stored value not yet used, handle partial match event
18: if partialU pdate �= null then
19: let N ← N ∪ noti f ication(SET, null, pU )

20: let iV ← pU � Updating value
21: end if
22: while N �= ∅ do � Notification sending loop
23: let n← N [0]
24: let N ← N \ n
25: S.eNoti f y(n) � Sending notification through source
26: end while
27: end function

dled; (2) the derived Feature; (3) the DeltaMonitor for the
query matcher; and (4) the previously mentioned discrimi-
nator value K ind. Each handler stores an internal value for
the feature, initialized in line 3 depending on K ind. Finally,
the handler uses two global variables: pU for storing partial
events and the set N of unsent notifications.

The event loop starts from line 5, it first resets the partial
event store, then processes matches found since the last exe-
cution of the loop (line 9). These events are supplied by the
delta monitor of the query and removed after processing is
finished. Similarly, the matches lost since the last execution
are also processed (line 14) and removed after.

When a soft link with single kind is used and only a
match-found event occurs without a match-lost event, an
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additional processing step is required to handle the partial
event (line 19). This occurs when the query did not lose
any matches since the last event loop, but a new match is
found. This translates to a notification representing the set-
ting of the feature value from null to pU (line 20). Finally,
if there are any unsent notifications (line 22), the first noti-
fication n in the list N is sent through the Source EOb-
ject. In order to stabilize the notification loop, the notifica-
tion sending is separated from the calculation of the soft
link value. Thus, new notifications caused by n are sim-
ply added to the list N , which will be depleted after all,
if causal circularity between the definitions of soft links is
avoided. Such circularity occurs if soft links are chained and
a circle in the chain does not allow a steady state after a
change.

Algorithm 2 Processing match-found events
1: function processFoundMatches(events)
2: let P ← ∅
3: for all e ∈ events do
4: if e.source = S then
5: � Extracting feature target from event
6: let target ← e.target
7: if k = single then
8: � Storing value for later processing
9: let pU ← target
10: else if k = many then
11: let N ← N ∪ noti f ication(ADD, null, target)
12: let iV ← iV ∪ target � Updating value
13: end if
14: end if
15: let P ← P ∪ e
16: end for
17: return P
18: end function

New matches. The handling of match-found events is
detailed in Algorithm 2. The processFoundMatches func-
tion iterates through the match-found events (line 3) and
extracts the target object from the event (line 6), if the source
EObject of the event equals Source. Depending on the K ind
of the soft link, a notification is created and the internal value
is updated (line 11 for many). For single features, the tar-
get object is stored for later usage (line 9). Finally, the list of
processed events is returned.

Lost matches. The handling of match-lost events is similar
to the processing of match-found events, see Algorithm 3.
The processLostMatches function iterates through the
match-lost events (line 3) and extracts the target object from
the event (line 6), if the source EObject of the event equals
Source. Depending on the K ind of the soft link, a notifi-
cation is created and the internal value is updated (line 13
for many). For single kind features, the stored value of
pU is used for creating the notification (line 8). Finally, the
list of processed events is returned at the end of the func-
tion.

Algorithm 3 Processing match-lost events
1: function processLostMatches(events)
2: let P ← ∅
3: for all e ∈ events do
4: if e.source = S then
5: � Extracting feature target from event
6: let target ← e.target
7: if k = single then � Using stored value
8: let n← noti f ication(SET, target, pU )

9: let N ← N ∪ n
10: let iV ← target � Updating value
11: let pU ← null � Resetting stored value
12: else if k = many then
13: let n← noti f ication(RE M OV E, target, null)
14: let N ← N ∪ n
15: let iV ← iV \ target � Updating value
16: end if
17: end if
18: let P ← P ∪ e
19: end for
20: return P
21: end function

Fig. 13 Comparison of trace link variants (OD on-demand computa-
tion, IQ incremental queries, 1 Can be supported by additional, manual
programming)

6.4 Comparison of trace link variants

We distinguished between three variants of trace links that
are possible between model fragments. Hard links are regular
edges that are created manually and stored persistently, on-
demand (OD) soft links are computed when required, while
soft links driven by incrementally evaluated model queries
(IQ) are updated automatically. Figure 13 summarizes the
differences between the three variants of trace links.

Each link variant allows regular read access to the target
of the link; however, only a hard link allows direct manipula-
tion as well. In the case of soft links, direct manipulation can
be added by additional, manual programming. Furthermore,
supporting proper change notifications with on-demand com-
putation also needs manual programming for each type (as te
computation uses different query), although it is very impor-
tant for many applications. A major difference between the
three variants is dealing with an inconsistent state, where a
hard link may cause errors during loading from persistent
storage if the target of the link does not exist. An on-demand
soft link will not be able to compute its value or even cause
errors on read, when the application requests the target of the
link. While incrementally updated soft link can offer grace-
ful degradation with warnings instead of runtime errors and
exceptions in cases when the target of the link is not available
(for example the resource is not in the resource set). Finally
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Fig. 14 Validation message of missing source block

as only hard links are persisted, using soft links can lead to
smaller model sizes and reduced load time.

6.5 Soft links in EMF

In traditional EMF-based tools, references between separate
model fragments (called resources in EMF terminology) are
materialized in the in-memory object model as proxies. Such
proxies contain URIs that are resolved either when a resource
is loaded or when the proxied reference is traversed (by call-
ing its getter function). If the proxy resolution fails (e.g.,
because of a broken link due to changed file paths), an excep-
tion is thrown and the proxied reference remains in a (read
only) error state until it can be successfully resolved. As the
resolution is not supported by any built-in automatism, it is up
to the tool developer to programmatically trigger proxy reso-
lution (e.g., by calling EcoreUtils.resolve()) when-
ever applicable (e.g., when a new resource that may contain
unresolved proxy endpoints is loaded by the user).

In addition to the functionality issues, multifile model
management with EMF proxies also has a performance
impact, as proxy resolution is a costly operation. Thus,
depending on the nature and cardinality of cross-resource
references, the order in which such resources are loaded can
have a significant influence on the total time needed for load-
ing models into memory (since resolution is performed in an
eager fashion by default).

In contrast, soft links are resolved automatically at the
earliest possibility, regardless of the triggering event (e.g.,
whether a resource has been loaded or the model manip-
ulated). Additionally, the resolution of all soft links in a
resource is performed in a single traversal, as all soft link
endpoints are already indexed by EMF- IncQuery. Finally,
soft links that cannot be resolved are marked with validation
error messages (see Fig. 14) and are editable so that they can
be fixed easily. The fixing of broken soft links may also be

Fig. 15 Model sizes used in the performance evaluation

aided by advanced features such as quick fixes (backed by a
heuristics-based search [26]). The message on Fig. 14 is cre-
ated by the validator described in Listing 5 and warns that the
source block LibBl was not found, although it is referenced
by InstanceBL. While technologically feasible, we opted
not to integrate soft links to EMF as custom proxies since
many modeling tools are not prepared to handle proxy reso-
lution notifications as well as standard ADD/REMOVE/SET
notifications for EReferences.

6.6 Performance evaluation

Navigating on edges in a graph is one of the most used prim-
itives in building model-driven applications. Therefore, the
performance of soft links (both on-demand or incrementally
evaluated) is important as they must behave transparently as
regular edges for applications.

We present runtime measurements4 on two scenarios
described for the IMA case study with two different model
sets:

– The first scenario is loading a library for a Simulink
model as discussed in Sect. 4.4. Before loading the model
fragment of the library, the source block references of
blocks in the initial Simulink model are not created. After
loading the library, the source blocks are found and the
soft links are created.

– The second scenario is loading a Simulink model as an
implementation model for a domain model as described
in Sect. 5.2. Before loading the model fragment of the
Simulink model, the traceability soft links from the ini-
tial domain are not created. After loading the Simulink
implementation model, the links are created automati-
cally.

The number of nodes and edges in the used models are
listed in Fig. 15. In the Sparse case, the number of nodes
and edges are approximately equal in the models, while in
the Dense set the number of edges is 1.5–2 times higher
than the number of nodes.

4 For detailed performance evaluation of EMF- IncQuery as a query
evaluation framework see [65].
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Fig. 16 Total number of matches in the scenarios

Figure 16 lists the number of matches relevant to soft
links after loading both models used in the scenario, this
also includes the matches of the helper queries.

The model sizes and number of matches are com-
puted using the metrics countNodes, countEdges and
countMatches as defined in [29]. Based on our previous
experience, these metrics are relevant for scenarios including
query initialization and incremental evaluation.

6.6.1 Evaluation environment and method

We measured the following steps for both cases and both
model sets:

1. Load primary model: The primary model (Simulink or
Domain) is loaded into EMF without query evaluation.

2. First soft link access: The value of the soft link is
requested from the model, causing the initialization of
the queries and building the Rete network.

3. Load secondary model: The secondary model (Library
or Simulink) is loaded into EMF. The values of soft links
are updated incrementally by the query engine during
the loading process as the model is constructed in the
memory.

4. 10k soft link accesses: The value of the same soft link
is requested again. The request is executed 10,000 times
since one request only takes nanoseconds that cannot be
reliably measured.

Additionally, we also measured baseline performance,
where the Load primary model and Load secondary
model phases are executed sequentially. This corresponds
to loading the models into EMF without any soft link access,
and thus, no query initialization or evaluation is performed.
Therefore, these results are used to measure the overhead of
our approach.

The results of these measurements are shown in Fig. 17
for each scenario, case and model set.5

The memory overhead of incremental evaluation is around
1 MB for the sparse cases and 4 MB for the dense cases. This

5 All measurements were carried out on a PC with Intel Core i5-2410M
2.3 GHz processor, Windows 8, Java 1.6 64 bit with 512 MB heap space
(DDR3 memory), wall-time measurement with nanotime precision. The
measurements are taken after a warm-up phase in order to eliminate
other factors such as class loading, JIT compiler, disk access. The final
values are taken as the average of at least 10 measurements.

includes the memory overhead of the Rete network of EMF-
IncQuery and the soft link handlers.

6.6.2 Evaluation of results

We made the following observations based on the measure-
ment results:6

– No overhead on value requests. The incremental query
evaluation ensures that once the value of the soft link is
computed, it can be requested without additional over-
head. In our results, the 10,000 requests took 0.1–0.2 ms
while even basic on-demand computations could take as
long for each request. Therefore, applications developed
over models containing soft links will have an acceptable
performance.

– Fast initialization and incremental update. The com-
putation of soft links upon first request, including the
initialization of match sets (First soft link access),
and later incremental computation after model changes
(Load secondary model) is fast. The query initializa-
tion and model traversal took between 35 and 90 $ more
than simply loading the primary model. The overhead of
the query evaluation depends on the size of the change,
not the complete model, while the overhead of soft link
computation depends only on the size of appearing and
disappearing matches (called match set deltas).
Specifically, the differences in the Load secondary
model values in the two cases (up to 36 % in our measure-
ments) are the overhead of incremental query evaluation
for processing the contents of the secondary model. Fur-
thermore, in regular model-driven applications, where
typically the number of value requests outweigh the num-
ber of (small) model modifications, both the initialization
and the incremental update overheads are compensated
by the instant value requests (i.e., case soft link accesses).

Summary. The combined use of incremental pattern
matching and notification processing allows query-driven
soft links (and derived features) to behave exactly as regular
features of EMF instance models. This behavior ensures that
user interfaces, model validators etc. can safely depend on
soft interconnections built on soft links, without on-demand
querying.7

6 The numerical results of the measurements are included in Fig. 18 in
the Appendix.
7 Details on integration with existing EMF-based technologies are dis-
cussed in Sect. 9.
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Fig. 17 Performance
evaluation results

7 Related work

In this section, we first give an overview of existing
approaches and tools that deal with interconnection between
models, then we briefly describe other model query tech-
niques for EMF. Finally, we list approaches that rely on
derived features and therefore may take advantage of our
incremental evaluation techniques.

7.1 Previous results

This paper is based on our MODELS 2012 paper [27],
extended with modeling framework independent founda-
tions. Furthermore, we elaborate on an additional industrial
case study from the avionics domain. In a previous paper [43],
we offer an algorithm for incremental evaluation of derived
features and present technical details on the integration of
existing native implementations. The current paper provides
details on applying incremental queries for soft interconnec-
tions by using computed references and advanced traceability
use cases.

7.2 Traceability modeling

Traceability in software modeling scenarios has been the
topic of many papers (e.g., [13,18,19,42,71]). Recently,
[37] emphasized the use of weaving models as a special
kind of correspondence models to semi-automatically derive
model transformation rules for model synchronization. The
authors present a metamodel-based method that exploits
metamodel data to automatically produce weaving models
in the AMW System. The weaving models are then derived
into model integration transformations. In the current paper,

we use traceability concepts in the classical sense, i.e., they
are used to link logically corresponding representations of
identical concepts expressed in different languages and/or
abstraction levels. However, a crucial difference of the cur-
rent paper to these previous works is that we do not use
explicit (internal or external) traceability models, but rely on
traceability (correspondence) information derived by model
queries and represented as soft links. In addition, our soft
links are dynamic in the sense that incremental, on-the-
fly query evaluation automatically ensures that traceability
links are always consistent with the current state of mod-
els.

7.3 Interconnecting EMF models

In [32], correspondences between models are handled by
matching rules defined in the Epsilon Comparison Language,
where the application conditions (called guards) use queries
similarly to our approach. Additionally, Epsilon also man-
ages model integrity between EMF models using the novel
Concordance framework [47]. It is able to handle intermodel
links when models are moved/renamed and helps in correct-
ing invalid models caused by metamodel changes. Anwar [1]
introduces a rule-driven approach for creating merged views
of multiple separate UML models and relies on a correspon-
dence metamodel and OCL expressions to support model
merging and composition. VirtualEMF [14] allows the com-
position of multiple EMF models into a virtual model based
on a composition metamodel and provides both a model vir-
tualization API and a linking API to manage these models.
The approach is also able to add virtual links based on com-
position rules. In [74], an ATL-based method is presented for
automatically synchronizing source and target models of a
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given transformation, based on the definition of the transfor-
mation.

Compared to them, the main distinctive features of our
approach is (1) the fully incremental evaluation of queries
for model interconnections and (2) flexible support for query-
based, computed soft links. In the future, we plan to inves-
tigate how to combine the advantages of our approach with
the benefits of existing solutions.

7.4 Model query approaches

OCL [60] is a standardized navigation-based query language,
applicable over a range of modeling formalisms. Taking
advantage of the expressive features and wide-spread adop-
tion of OCL, the project Eclipse OCL [20] through its Essen-
tial OCL language provides a powerful query interface that
evaluates OCL expressions over EMF models. Additionally,
it also supports the definition of invariants, operations and
derived features to enrich the Ecore metamodel using either
the Complete OCL [72] or the OCLinEcore [21] languages.
Balsters [4] presents an approach for defining database views
in UML models as derived classes using OCL. The derived
classes in this case are the result set of queries, which is
similar to the match sets provided by EMF- IncQuery.

There are several technologies for providing declarative
model queries over EMF, e.g., EMF Model Query 2 [54]
and EMF Search [56]. EMF Model Query 2 provides query
primitives for selecting model elements, but the expres-
sive power of its language is limited compared to EMF-
IncQuery. However, it can evaluate queries over indexes
without loading the model used for creating the index.
EMF Search is a framework for executing simple textual
searches over EMF resources using a controllable scope.
More advanced search capabilities have to be provided by
metamodel-specific means, while the query engine of EMF-
IncQuery is metamodel independent. Other graph pattern-
based techniques like [10,23] have been successfully applied
in an EMF context, but these focus on graph transforma-
tions related challenges, while EMF- IncQuery provides a
unique query development, integration and efficient evalu-
ation framework. To sum up, none of the above mentioned
query technologies support incremental evaluation of queries
and thus cannot be effectively used for inter-model soft links.

Cabot and Teniente [12] present an algorithm for incre-
mental runtime validation of OCL constraints and uses
promising optimizations; however, it works only on boolean
constraints. An interesting model validator over UML mod-
els [24] incrementally re-evaluates constraint instances
whenever they are affected, but relies on environments that
support the recording of read-only access to the model, unlike
EMF. Additionally, general purpose model querying is not
viable.

Outside the Eclipse ecosystem, the Resource Description
Framework (RDF [44]) is developed to support the descrip-
tion of instances of the semantic web, assuming sparse,
ever-growing and incomplete data. Semantic models are
built up from triple statements, which can be queried using
the SPARQL [70] graph pattern language with tools like
Sesame [52] or Virtuoso [41]. In addition, SPIN [69], the
standard SPARQL Inferencing Notation combines concepts
from object oriented languages, query languages, and rule-
based systems to describe object behavior on the web of data.
One of the basic ideas of SPIN is to link class definitions with
SPARQL queries to capture constraints and rules that formal-
ize the expected behavior of those classes. Unfortunately,
while some advanced semantic tools such as TopBraid [64]
have some preliminary support for the incremental execu-
tion of simple SPIN rules (e.g., for the calculation of derived
attribute values), comprehensive incremental execution of
arbitrarily complex queries (as in our approach) is not sup-
ported.

To sum up, several approaches provide possible alterna-
tives to implement model queries; thus, they can potentially
be used for providing soft links. However, many of them lack
incremental evaluation support or require significantly more
integration effort to enable their use for soft links.

7.5 Application of derived features

The PROGRES language [51] allows the rule-based pro-
gramming of graph rewriting systems and uses derived
attributes for encoding dynamic semantics. ConceptBase.cc
[30] is a database (DB) system for metamodeling and method
engineering and defines active rules that react to events and
can update the DB or call external routines, the latter could
be applied in models as derived features representing data
stored in the ConceptBase.cc DB. Neither tool has adopted
EMF up to our best knowledge.

In [16] Diskin describes a formal framework for model
synchronization that uses derived references for propagating
changes between corresponding models. A recent work by
Diskin et al. [17] proposes a theoretical background for model
composition based on queries using Kleisli Categories, in
their approach, derived features are used for representing
features merged from different metamodels. The conceptual
basis is similar to our approach in using query-based derived
features; however, it offers algebraic specification, while our
approach might serve as an implementation for this generic
theoretical framework.

The MOF 2.0 tool in [50] allows the definition of derived
features using OCL. It handles derived attributes and opera-
tions as custom code provided by the user and redirects calls
using reflection. The FUJABA [40] tool suite also supports
derived edges by path expressions. Both tools work in a non-
incremental way.
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JastEMF [11] is a semantics-integrated metamodeling
approach for EMF. It uses derived features as side effect
free operations (i.e., queries) and refers to them as the static
semantics of the model. Therefore, our query-based approach
could be integrated with JastEMF without any problems.

8 Conclusion

Interconnections between model fragments of complex EMF
models are usually represented as regular associations and
persisted using storage-specific URIs. This approach proves
to be rigid and error prone in many application scenarios.

We proposed to use derived features as a flexible alter-
native to provide soft interlinking between model fragments
and demonstrated an approach for incremental evaluation
of soft links with the use of model queries on two indus-
trial case studies. Our approach supports circular dependency
between models, graceful handling for unresolved links and
is implemented using EMF- IncQuery, which provides effi-
cient evaluation capabilities for incremental model queries.
Further advantages of the approach are the straightforward
integration capabilities to existing domains and applications
and the fine-tunability for external traceability use cases and
bidirectional and n-ary soft links. The approach also supports
composition of models containing soft links, since these links
appear as regular edges in the graph and queries can be spec-
ified to match on such edges.

Finally, the concept of representing query results as first-
class edges in graph-based models (thus supporting soft link
chaining) and the algorithm for inserting and removing such
edges is applicable to modeling environments and query tech-
niques other than EMF and EMF- IncQuery.

As a primary direction for future work, we plan to integrate
traceability queries into the EMF model layer by construct-
ing derived classes whose instances behave like EObjects but
their life cycles are managed by an underlying incremental
query. Such constructs could be used to create n-ary trace-
ability models that are automatically kept in-sync, retaining
the graceful handling of soft links. Our initial results are pub-
lished in [15].

Acknowledgments We would like to thank the anonymous reviewers
for their valuable comments.

9 Appendix 1: Integration of soft links with EMF-based
tools

9.1 Integration with Ecore

In the prototype implementation of our proposal, we inte-
grated our approach to the EMF tooling by a code gen-

erator that supports the automatic derivation of integration
code for our components (EMF- IncQuery soft link fea-
ture handlers). The input of code generation is a genera-
tor model (referencing the EMF genmodel for the domain)
that crosslinks derived features with EMF- IncQuery query
specifications (stored as EMF models thanks to the Xtext-
based tooling [59]).

1 /**

2 * Handler for query -based feature

3 */

4 private IncQueryFeatureHandler sourceBlockHandler;

5
6 /**

7 * @query -based getter created by EMF -IncQuery

8 * for query -based feature sourceBlock

9 */

10 public Block basicGetSourceBlock () {

11 if (sourceBlockHandler == null) // on -demand init

12 sourceBlockHandler = IncQueryFeatureHelper

13 .getIncQueryFeatureHandler (

14 // source EObject and feature from metamodel

15 this , SimulinkPackage .getBlock_SourceBlock(),

16 "simulink.sourceBlock", // query FQN

17 IncQueryFeatureKind .SINGLE_REFERENCE // kind

18 );

19 return (Block) sourceBlockHandler

20 .getSingleReferenceValue(this);

21 }

Listing 7 Generated code for integrating soft links

The generated integration code (Listing 7) consists of (a)
the instantiation of derived feature handlers (in the construc-
tor of EObjects), which ensures that their lifecycle is tied to
the hosts, to enable their garbage collection together with the
instance model itself; (b) getter implementations that dele-
gate calls to the appropriate function of the feature handler
object, and wrap the result in unmodifiable ELists to ensure
that any attempt to write to derived features will result in a
runtime exception.

9.2 Integration with legacy derived features

In practice, a complete refactoring of an EMF-based tool
to exclusively use EMF- IncQuery-based derived features
might not be realistic, as derived features have been exten-
sively implemented using Java code or OCL-based
approaches such as OCLinEcore [21] supported by Eclipse
OCL [20]. As these implementations provide only getter
functionality and do not provide change notifications, we
implemented an additional derived feature adapter [43] as
a lightweight add-on component for EMF model plugins,8

which can be used to augment existing derived feature imple-
mentations (regardless of whether Java or OCL is used).

The basic concept motivated by a suggestion in the Eclipse
FAQ9 is analogous to the previous discussion. The language

8 For usage details , see http://incquery.net/incquery/new/examples/
derivedfeatures.
9 http://wiki.eclipse.org/EMF/Recipes#Recipe:_Derived_Attribute_
Notifier.
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Fig. 18 Performance measurement results

engineer can add a few lines of Java code to the generated
EMF model plugin: these derived feature adapters attach
listeners (through the EMF Notification API) to the (explic-
itly specified) features a derived feature depends on, and
receive notifications when model changes are registered.
These notification objects are then processed and converted
into new notification objects for the derived feature, propa-
gating through the manager to application code.

This approach has additional key advantages: (1) noti-
fication support can be added – with a small implementa-
tion effort – to “legacy” derived features, without having to
re-write them in EMF- IncQuery; (2) queries specified in
EMF- IncQuery (whether for derived features, or on-the-
fly validation purposes, or within model transformations)
can reference derived features seamlessly. However, perfor-
mance implications need to be taken into consideration if the
original getter (Java code or OCL expression) involves com-
plex logic, or if the derived feature computation has many
dependencies but they change only rarely – in those cases,
rewriting the Java code or OCL expression into EMF- Inc-
Query may be a better option.

9.3 Integration with Xcore

Xcore [39] is a textual syntax extension to Ecore, based on
Eclipse Xtext. Xcore provides textual constructs for all (sta-
tic) Ecore concepts such as EClasses, EAttributes and ERef-
erences, and it also can be used to define the dynamic aspects
of the modeling language using EOperations and derived fea-
tures that contain imperative code segments written in Xbase
expression language.

As both the pattern specification language of EMF- Inc-
Query and Xcore are based on Xtext, they can be integrated
in a straightforward way. Listing 8 illustrates an extended
Xcore syntax that includes some new language elements so
that query-based soft links can be seamlessly integrated into
the language definition.

1 import -incqueries simulink.eiq;

2
3 class Block {

4 contains SimulinkReference elementRef;

5

6 incquery -derived Block sourceBlock

7 spec simulink.sourceBlock;

8 }

Listing 8 Xcore integration code

In this case, the definition of the EClass Block imports
the query definitions of Listing 4, which is indicated by
the import-incqueries keyword, and a new query-
based soft link sourceBlock is defined using theincquery-
derived keyword, by specifying a reference to the
simulink.sourceBlock pattern definition of Listing 4.
These concepts can be applied to derived scalar attributes
(conforming to EDatatypes) in a straightforward way.

9.4 Processing n-ary traceability queries

In Sect. 5.2, we introduced the query Ternary that represents
a traceability hyper-edge between data elements that are read
by the task of a given check list element (see Listing 6).
Such a query can be used in an application for processing
such hyper-edges. This approach shares the functional ben-
efits of soft links, with the one exception that it is not inte-
grated into the EMF model layer and as such, it is not API-
transparent to EMF-based tools. Instead, the query results can
be accessed through an additional API provided by EMF-
IncQuery (illustrated in Listing 9 using Xtend [58]).

1 // initialize matcher on resource set

2 val engine = IncQueryEngine ::on(resourceSet)

3 val matcher = TernaryMatcher ::on(engine)

4 int matchNum = matcher.countMatches(cle , null , null)

5 println("Found " + matchNum + " matches " +

6 " for entry " + cle.name)

7 // iterate on all existing matches

8 matcher.forEachMatch(cle , null , null)[ match |

9 println("Entry reads data " + match.data.name +

10 " through task " + match.task.name)]

11 // observe match changes

12 val obs = IQObservables :: observeMatchesAsSet (matcher)

13 obs.addSetChangeListener[

14 // called when the match set changes

15 diff.additions.forEach[ addition |

16 val match = addition as TernaryMatch

17 println("New ternary edge: " + match.entry.name +

18 " reads data " + match.data.name +

19 " through task " + match.task.name)]

20 // similarly for diff.removals

21 ]

Listing 9 Ternary link processing code
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Here, the results of the Ternary pattern are processed
using a generated TernaryMatch data transfer class (which
is the class of match) and the MatchProcessor visitor inter-
face (that has a single process method inlined in the forE-
achMatch method). The EMF- IncQuery API also exposes
match update facility (Sect. 6.1) that allows to track the
changes in the result of such a query. The second part of List-
ing 9 shows that a change listener is registered and added (or
removed) matches can be handled.
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