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Abstract

Back-end analysis tools aiming to carry out model-
based verification and validation of dynamic behav-
ioral models frequently produce sequences of simula-
tion steps (called execution traces) as their output. In
order to support back-annotation of such traces, we
need to store and replay them within a modeling envi-
ronment (outside the analysis tool). In the paper, we
present a technique for replaying recorded execution
traces of dynamic modeling languages. Our approach
complements static and dynamic metamodels by in-
troducing a generic execution trace metamodel which
is used to replay completed executions of a simula-
tion directly over the dynamic model. Furthermore,
we present a technique to drive a simulation accord-
ing to execution trace models. Our approach will be
exemplified by the modeling language and trace infor-
mation of the SAL model checker and BPEL business
processes.

Keywords: execution traces, simulation, dynamic
modeling languages

1 Introduction

Model-driven analysis aims at revealing conceptual
flaws early in the design process. In the typi-
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cal approach, high-level design models (UML [31],
BPEL [28], SysML [30], etc.) are automatically
transformed into mathematical models (e.g. Petri
nets [36], transition systems [49], process alge-
bras [21]) to carry out system analysis by formal
methods. The results of the analysis are then back-
annotated to the original source model to highlight
flaws directly in the design models.

In case of dynamic modeling languages (e.g. stat-
echarts, workflows, live sequence charts [26]), the
back-end formal analysis tools frequently carry out
simulation or model checking to ensure the functional
correctness of the design using analysis models like
Petri nets, process algebras or labeled transition sys-
tems. As a result, back-end analysis tools produce
an execution trace of the system as a designated or
counter example.

However, in order to support the back-annotation
of a complex counter example generated by an anal-
ysis tool, the corresponding execution trace needs
to be replayed within a modeling environment (like
Eclipse). Unfortunately, each back-end analysis tool
uses a different, tool-specific textual trace representa-
tion, which requires a significant development effort
for trace integration.

In the paper, we provide a generic replay mecha-
nism for execution traces in dynamic modeling lan-
guages with a specific focus on those traces created
by model checkers and simulation tools. We assume
that a dynamic modeling language is defined by a
combination of static, dynamic and (execution) trace
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metamodels while the availability of precise opera-
tional semantics is not required. This metamodeling
approach was first introduced in the book presenting
the results of the Sensoria project [16]. In the cur-
rent paper, we extend upon the concept of a generic
execution trace metamodel [19] and define high-level
and elementary operations to support the replay of
such traces within a general purpose modeling envi-
ronment (i.e. outside the original analysis tool).

Our techniques will be first exemplified on the lan-
guage and execution traces of the SAL model checker
[5] then we show how the same technique can be ap-
plied to replaying execution of BPEL business pro-
cesses (first demonstrated as a tool [20]).

The paper is structured as follows. First, related
work is discussed in Sec. 2 and we give a conceptual
overview of our approach in Sec. 3. Sec. 4 provides a
brief introduction to the language of the SAL model
checker and to static, dynamic and execution traces
metamodels. Sec. 5 discusses how an execution trace
model can be replayed to update the dynamic model.
Sec. 6 illustrates the approach on BPEL processes,
while Sec. 7 lists limitations. Finally, Sec. 8 concludes
our paper.

2 Related Work

Traces have been extensively researched in previous
years as a means to represent and store information
regarding (i) the dynamic behavior of a system or (ii)
correspondences between models. To separate the
models of these significantly different concerns, we
refer to execution traces in the first case and trace-
ability connections in the second case. Note that the
current paper focuses execution traces and their re-
playing, therefore related work regarding traceabil-
ity is not detailed. Approaches regarding traceability
models [11, 39, 48] generally define static traceability
models which record the correspondence between var-
ious model structures and suggest techniques, meth-
ods and tools for generating, managing or processing
such models.

Problem-specific execution traces Execution
traces are used in many cases, for understanding dis-

tributed systems [27], recovering behavior [17] and
improving performance [33]. Dynamic traces were de-
fined for individual languages such as UML sequence
diagrams [44], UML Activity Diagrams [38], Con-
current Object-Oriented Petri Nets [32]. These ap-
proaches are usually developed for a single language
or system and offer detailed representation and gen-
eration capabilities. Since they are highly specialized
for a given domain, it would be difficult to apply them
to a different domain. In the current paper, we define
a generic, domain-independent representation for ex-
ecution traces and a replaying framework for traces
stored in this representation.

Recording and visualizing execution traces
M3Actions [41] is a framework to develop execution
semantics for MOF metamodels. It consists of a
graphical editor for defining the structure and behav-
ior of models, a generic interpreter and debugger for
executing them and a trace recorder for storing exe-
cutions. The framework focuses on support for mod-
eling operational semantics and the recorded traces
are low-level.

Traviando [23] is a tool package for analyzing and
visualizing traces exported from a number of sup-
ported tools (e.g Möbius). It supports model check-
ing (using LTL properties) on imported traces and is
able to display traces as Message Sequence charts or
a tree-type visualization for investigating state infor-
mation. Contrary to our method, this tool represent
traces as simple sequences (as opposed to our hier-
archical approach) and does not contain any replay
capabilities.

Harel [26] represent traces for state-based mod-
els and reactive systems as scenarios which include
atomic model changes similarly to delta steps in the
generic trace metamodel described in the current pa-
per. It also supports generation, analysis, visualiza-
tion and interaction through the live sequence chart
formalism. The approach focuses on reactive systems
and their execution traces, while in the current pa-
per we focus on dynamic modeling languages and an
alternative approach to generic replaying of traces.

A recent approach [2] builds on the Metaviz trace
visualization framework to provide model-based def-
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inition on creating high-level views from complex ex-
ecution traces created during validation. The main
motivation for the approach is to improve the prac-
tical usage of model validation tools.

It is common in these approaches that they focus
on recording and visualizing runtime information of
programs or dynamic models into execution traces,
while in the current paper we use existing trace mod-
els to replay the dynamic behavior of models. Fur-
thermore, traces recorded by these methods could
be mapped into our generic trace metamodel thus
adding trace replaying to their capabilities.

Metamodels for execution traces Alawneh [3]
introduces metamodels for execution traces (as a
standalone domain) to record runtime information
of program executions. They propose to build the
metamodel on KDM [29] and identify several trace
types on the programming language level. Similarly
to this approach, we argue for a metamodel for ex-
ecution traces to represent the dynamic behavior of
modeling languages.

The objective of [38] is to define a Tool-
Independent Performance Model for mapping de-
sign and architectural models to performance mod-
els (used for design-time analysis of system perfor-
mance). The introduced workbench is designed to
include simulation and analysis capabilities and to
derive execution sequences (scenarios) from UML ac-
tivity diagrams for driving the simulation. This
approach also shows that it is important to intro-
duce a generic method that is usable for a partic-
ular task (e.g. performance analysis) with different
domains. We describe a similar technique using a
generic trace replaying framework for dynamic mod-
eling languages.

The main contribution of our approach in com-
parison to existing work is that the proposed exe-
cution trace models are independent from the un-
derlying simulation tool. Therefore, the execution of
the analysis or simulation that creates traces can be
completely separated from processing and evaluating
these traces. Furthermore, persisted execution traces
can be replayed in a modeling environment without

using (external) simulators and model checkers.

3 Execution Traces in DMLs

Our overall goal is to provide a generic framework
for replaying an execution trace, generated by a back-
end analysis tool, within a general modeling frame-
work (e.g. EMF [45] or Viatra2 [47]). The re-
play mechanism is generic enough to be reusable and
easily adaptable for various discrete event-based dy-
namic modeling languages (DML) used in analysis
tools. The trace replaying framework would also sig-
nificantly reduce the cost of back-annotation for dif-
ferent pairs of source and target languages as demon-
strated in our previous papers [16,19].

Metamodels for dynamic languages In our
framework, we assume the existence of various meta-
models in the context of a DML, which are exempli-
fied in Fig. 1.

Figure 1: Metamodels for dynamic languages [19]

First, a static metamodel MMstat defines the
static structure of a language including possible types
of model elements, their main attributes and relations
with other model elements. An instance of this meta-
model is called the static model (Mstat).

Next, a dynamic metamodel MMdyn uses and
extends the static metamodel MMstat for storing in-
formation related to the dynamic behavior (e.g. cur-
rent state, value, configuration) of a structural ele-
ment. The dynamic model (Mdyn) is an instance
of MMdyn.

This way, a trace metamodel (MM trc) is defined
for the language to represent simulation executions of
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Mdyn. MM trc uses MMdyn for recording how the
dynamic model changed and MMstat for describing
which static element is concerned. A trace model
(M trc) is an instance of MM trc, e.g. the sequence of
execution steps.

Operational semantics for dynamic models
The simulation of a DML is performed in accordance
to the operational semantics of the language, de-
fined by simulation rules. In our framework we as-
sume that simulation rules are defined as intra-model
transformations (see also [9, 13,34]).

Figure 2: Simulation and replaying

The execution of a rule r in the transformation
MT sym : (Mstat,Mdyn)

r→ Mdyn
′ modifies Mdyn

by also taking into account Mstat and results in a
new Mdyn

′ as illustrated in Fig. 2. During a simu-
lation execution, the changes of the dynamic model
are recorded as a sequence of execution steps as part
of the derived trace model M trc. Furthermore, the
complex manipulation steps in M trc are in direct cor-
respondence to the transformation rules fired during
the simulation execution.

Replaying execution traces of dynamic lan-
guages In our proposed framework, the execution
traces of analysis models are persisted in a modeling
environment using the output generated by back-end
simulator or model checker tools (see Fig. 3). The
model M trc can be used to replay the execution of a
specific simulation execution.

The execution of step sr in the trace replaying
transformation MT rep : (Mdyn,M trc)

sr→ Mdyn
′

modifies the Mdyn, after which the model state

(Mdyn’) will be the same as after the execution of
a simulation rule r.The persisted traces can be re-
played in the modeling environment using generic
replaying operations through a trace manipulation
interface. However, the main advantage of provid-
ing trace replay functionality appears when analysis
traces are back-annotated into a source (design or en-
gineering) model where a simulator may not be avail-
able. The back-annotated trace can also be replayed
by the same generic replay framework.

Figure 3: Replaying framework for dynamic modeling
languages

In the current paper we exclusively focus on replay-
ing simulation traces persisted as trace models, while
the back-annotation of execution traces is discussed
in our other papers [18,19].

4 Definition of Dynamic Mod-
eling Languages

We provide a brief introduction to the language of
the SAL model checker, which serves as the running
example of the paper (Sec. 4.1). Then we discuss how
dynamic SAL models can be integrated in a modeling
framework using dynamic metamodeling [14] tech-
niques (Sec. 4.2). Finally, we specify an execution
trace metamodel (Sec. 4.3).

4.1 The SAL language

Symbolic Analysis Laboratory (SAL) [5] is a frame-
work for combining different tools to calculate prop-
erties of concurrent systems and it includes a simu-
lator and advanced tools for symbolic and bounded
model checking. These tools are used on input models
captured as a transition system using a language also
called SAL. Models written in the SAL language con-
sist of three parts: the variable type definitions, the
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module specifications and the requirements. Fig. 4
shows a simplified MMstat and MMdyn for SAL on
the left and an example SAL system (in the textual
syntax) on the right.

The SAL structure (Static Metamodel) The
variable types can be finite types (e.g. boolean, tu-
ple), infinite types (e.g. numbers) or subtypes. For
the current paper, we will restrict our examples to tu-
ples where the type declaration defines a finite num-
ber of possible values (see lines 2-3). The specifica-
tion of a SAL module consists of state variable decla-
rations(see lines 5-6), variable initializations and the
transitions part. The state of the system model is de-
fined by the current value of the variables, while the
evolution of the system is specified by transitions.

For variable initialization, SAL uses definitions,
which are of the form x = expression or x ∈ set
(nondeterministic choice). The x′ form refers to the
new value of variable x in a transition. The initializa-
tion of variables (see line 8) is given as a combination
of definitions [5]. Transitions are guarded commands
defined in the form g → S where g is a boolean guard
(see line 10) and S is a list of definitions (assignments,
see line 11).

The SAL Dynamic Metamodel A guarded com-
mand is enabled if the boolean guard evaluates to true
based on the actual state of the system. The executed
command is chosen from the set of enabled commands
nondeterministically. The execution consists of ap-
plying the definitions in S by setting the new value of
the referenced variables. In the metamodel we define
Command State elements which store the dynamic
state of the command. A Command State can be
disabled (when the guard condition is false), enabled
(when the guard condition is true), or executed (to
denote that the command has just fired). The Vari-
able State element records the current values of the
corresponding variable.

4.2 Dynamic metamodeling for be-
havioral models

Dynamic metamodeling (DMM) [14] aims at spec-
ifying the dynamic behavior of executable model-
ing languages by combining metamodeling with rule
based formalisms to capture operational semantics.
In DMM, the dynamic (behavioral) semantics of the
language is defined by transformation rules that mod-
ify the instances of the dynamic metamodel. These
operational rules are frequently formalized by graph
transformation (GT) techniques [12].

In GT, graph patterns [46, p. 218] represent condi-
tions that have to be fulfilled by a part of the model,
this part is called a match. GT rules are specified by a
precondition (or left-hand side - LHS) pattern deter-
mining the applicability of the rule and a postcondi-
tion (or right-hand side - RHS) pattern that specifies
the result model declaratively. In the paper, we use
the transformation language of Viatra2 [46] which
essentially follows the single-pushout approach with
injective matches.

The applicability of each GT rule is first checked
by graph pattern matching techniques. Then a rule
is applied for a selected match (if any exists), which
updates the underlying Mdyn to result in a new (dy-
namic) state. This selection can be nondeterministic
or user-driven. Simulation rules can be fired as long
as an enabled rule is found. This form of simulation
is widely used in graph transformation tools (such as
Agg [43], AToM3 [8], Vmts [24] or Viatra2 [15]).

Simulation rule example The dynamic meta-
modeling is illustrated by describing the semantics for
transition systems of SAL using graph transformation
rules. The execution of a command can be defined in
a transformation rule using the transformation lan-
guage of the Viatra2 framework (left part of Fig. 5)
based on the semantics of the SAL system when firing
a guarded command. The right part shows a graph
transformation rule for applying an assignment defi-
nition.

First, one command Cmd is chosen non-
deterministically from the enabled commands
(where pattern matching returns a match). Then,
all the assignments Asnt of Cmd are enumerated
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Figure 4: Example transition system

rule executeCommand () =
seq{
choose Cmd with

find EnabledCommand(Cmd)
do forall Asnt with
find CmdsAsnt(Cmd ,Asnt)
do call applyAsnt(Asnt);

}

Figure 5: SAL system model and command execution transformation rule

(as defined by all matches of CmdsAsnt pattern)
by modifying the current value relation of variables
to the state defined by Asnt. The applyAsnt

transformation rule (right part of Fig. 5) is applied
on a match of the LHS pattern and changes the
target of the current relation of the corresponding
Variable, as defined by the RHS pattern.

4.3 Execution Trace Models

An execution trace model captures the changes be-
tween two subsequent states of Mdyn. This way, the
execution trace metamodel (see left part of Fig. 6)
complements the existing MMstat and MMdyn as
well.

Trace is the root element of the execution trace
model which contains the (top-level) steps of the
recorded execution. The last relation specifies the
last step that was executed in the simulation (i.e. the
last change that occurred). The first relation defines
the beginning of the trace (wrt. a specific execution).

Step is an abstract representation of one or more
dynamic model changes which occur within the same

Figure 6: Execution trace metamodel and instance
model

atomic transaction. The sequence of changes hap-
pening after each other defines an ordering between
the steps represented by the next relation (where the
source step precedes the target in the trace).

Traces created by various back-end analysis tools
are frequently organized into a step hierarchy. As
a consequence, we distinguish between Compound-
Steps, which represent complex model manipulations
and contain further steps (as represented by substep
aggregation) and SimpleSteps representing elemen-
tary changes (i.e. the dynamic state before and af-
ter the modification denoted by the old value and
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new value relations, respectively) specific to a cer-
tain model element in Mdyn (called the scope of the
step) as recorded by the model checker or simulator
in an execution trace. This representation is simi-
lar to change operations used in change-driven model
transformations [6, 35].

Dynamic model elements The relations existing
between the execution trace metamodel and the dy-
namic execution model have two kind of targets. Ei-
ther they are elements of the dynamic model, or val-
ues which may be either model elements or attributes
(e.g. string, integer, boolean, double, float).

Trace model example A concrete trace model
instance is shown in the right part of Fig. 6. The
selA fired compound step contains the atomic step
thread work which has variable TVS as a scope, and
process and work as old and new values.

The trace metamodel in Fig. 6 was derived based
on our investigation of the following analysis tools:
GROOVE [37], SPIN [22], UPPAAL [4], INA [42],
SAL [40], Möbius [10], and LTSA [25]. Each tool has
either simulation or verification capabilities that pro-
vide execution traces. We also examined the BPEL
Designer [1] as a design tool and explored other lan-
guages (e.g. UML statecharts).

4.3.1 Trace model level of detail

In the generic trace replaying framework, trace mod-
els store each atomic model manipulation in order to
include all required information to replay the execu-
tion trace without the original analysis tool or simu-
lator. Thus, it is possible to replay traces of dynamic
modeling languages where precise operational seman-
tics are not available. For example, the execution
trace models of such languages can be generated by
model transformations using traces created by formal
analysis or simulation of an other language [19].

Note that an execution trace could be replayed
without storing atomic modifications if the executed
simulation rule is identifiable and its internal behav-
ior is completely determined by the the input param-
eters. However, there are languages that do not meet

this criteria. For example, the simulation rule may in-
clude random choices and variable value assignments
depending on the exact environment of the tool (e.g.
current time). In such cases it is insufficient to store
only the executed rule and the parameters to generate
a replayable trace and each atomic model manipula-
tion should be recorded instead. However, as in the
case of SAL, the stored trace model can contain the
information about the executed rules in addition to
the atomic model manipulations (e.g. the transition
firing steps).

4.3.2 Extendible trace metamodel

The presented generic trace metamodel is able to
store execution traces of discrete event dynamic mod-
eling languages, where the simulation primarily alters
parts of the dynamic model. However, some lan-
guages include (a) additional model manipulations
during simulation, for example model elements may
be created or deleted during the execution or (b) tim-
ing characteristics which should be taken into consid-
eration during replay (e.g. for animation).

In order to support such languages additional ex-
tensions can be easily incorporated into the generic
replay framework by (1) specializing the types of the
metamodel (e.g. Step, SimpleStep or CompoundStep),
(2) defining the necessary attributes and relations for
such specialized types and finally, (3) providing spe-
cific handlers for these step types to be used by the
framework during replaying.

Actually, for supporting element creation and dele-
tion, change operations [35] can be used as spe-
cial SimpleSteps and change commands [6] as special
CompoundSteps. For supporting timing, it is possi-
ble to add timing related attributes to the Step type
both for representing the exact time of the model ma-
nipulation (i.e. a timestamp) and the duration of the
simulation rule.

5 Replaying Execution Trace
Models

Execution trace models record scenarios generated
by an execution of an external simulator or model
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checker (e.g. SAL) in a form which is independent of
the back-end analysis tool and compatible with an
underlying modeling framework.

Now we define an approach for replaying persisted
execution traces directly over the dynamic model,
without relying on simulation rules (e.g. Fig. 5). Ex-
isting simulators of dynamic languages use dedicated,
tool-specific support for replaying traces and they
are implemented as closed technology. Furthermore,
many dynamic design languages completely lack sim-
ulator support.

Therefore, we decided to make two general as-
sumptions on supported dynamic modeling languages
when specifying our replaying approach. Trace re-
playing has to be feasible for languages that (1) have
no operational semantics (simulation rules) specified
or (2) the existing simulation tools cannot be modified
to support replaying.

In this general case, replaying the trace requires
the processing of the subsequent step in the execu-
tion trace model, and a direct update of the underly-
ing dynamic model accordingly. We propose a simple
interface providing an informal description on basic
operations to drive the replay of execution trace mod-
els within the modeling framework (Sec. 5.1). Next,
we precisely specify these operations using graph pat-
terns and transformation rules (Sec. 5.2). Then, we
illustrate the application of our approach on SAL
traces (Sec. 5.3). Finally, we give a short description
of the implemented replaying tool (Sec. 5.4).

5.1 Overview of trace replaying inter-
face

We informally describe the main tasks carried out
by (1) complex interface operations for traces, which
are assembled from (2) elementary trace manipula-
tion operations. Operations of the trace manipula-
tion interface are then specified by graph patterns
and GT rules over the generic execution trace model.

Interface for trace replaying

The trace replay interface contains four high-level
trace manipulation operations, which are directly
available from the graphical user interface to navigate

in an execution trace model, and keep the dynamic
model synchronized with the actual position in the
trace.

Step forward This operation finds the last exe-
cuted step in the trace and if there exists a next
step then it is processed and every modification
represented by substeps is carried out on the dy-
namic execution model.

Step backward One of the advantages of the exe-
cution trace model is the ability to navigate in
either direction along the execution. This op-
eration can be used to revert the modifications
on the dynamic model by retrieving the last exe-
cuted step and the processing its substeps (using
the old values).

Jump to start This operation can be used to roll
back the execution to the beginning of the trace.
It can be implemented by (1) collecting the ini-
tial values from dynamic model or (2) storing the
initial state in the first step.

Jump to end This operation can be used to reach
the last step of the trace without stepping
through them all. It is advantageous when a
recorded simulation execution is continued from
a state persisted earlier in a trace.

These functions provide the most useful functionality
required for a user to replay and simulate the execu-
tion stored in the execution trace model. Further-
more, they also enable automated animation by call-
ing the interface repeatedly using short time inter-
vals between calls. In fact, these operations resemble
the debugging interface of the Eclipse framework (e.g.
Step Over, Step Into, Step Return) in that it is pos-
sible to navigate in the replaying without additional
instrumentation.

Elementary trace manipulation operations

In order to provide these high-level user interface op-
erations, elementary operations (listed in Table 1)
are also defined to manipulate and traverse execution
trace models. To increase generality, these operations
are defined directly over the generic trace metamodel.
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firstStepInTrace(Step, Trace) Find the first step of the trace to start replaying the execution.
lastStepInTrace(Step, Trace) Find the last executed step of the trace to resume replaying.
nextStepInTrace(Step, Trace) Traverse the trace horizontally to find the next step from the last

position.
previousStepInTrace (Step, Trace) Traverse the trace horizontally to find the previous step from the

last position.
unfoldStep(Step, LSS, Substep) Traverse the trace vertically to find the substep following LSS in a

given step.
getDynamicInfo(Step,Element,Value,Relation) Return the corresponding dynamic model element, value and rela-

tion for a given simple step.
executeStep(Step) Modify the dynamic model using the content of the Step in the

trace model.

Table 1: Elementary trace manipulation operations

5.2 Specification of trace handling

Traces persisted with the generic trace metamodel
can be replayed without defining a completely new
transformation for every specific language. In this
section we show how the low-level operations and
high-level functions of the trace manipulation inter-
face can be specified by graph patterns and GT rules
in Viatra2.

Horizontal traversal of a trace We define graph
patterns for traversing the trace on a given hierarchy
level. Fig. 7a shows the pattern nextStepInTrace for
finding the next step S2 following the last executed
step S1 in the trace T.

(a) Next step pattern (b) Unfold step pattern

Figure 7: Horizontal and vertical traversal

Vertical traversal of a trace The substeps of
a step are processed in order when traversing the
trace vertically. Fig. 7b shows the graph pattern that
searches for substeps in a higher-level Step. When
looking for the first substep, a negative application
condition pattern is used to ensure that the selected

substep SS has no preceding step BSS. Otherwise,
the second pattern is used to find the next substep
from a given step LastSS.

Step forward Listing 1 shows the generic imple-
mentation of the forward stepping function defined
as abstract state machines [7] in the Viatra2 trans-
formation language. First, the Step following the last
executed step of the trace is found. Then the last re-
lation is updated to record forward stepping in the
trace. Next the substeps of Step are processed in
order and executed.

rule stepForward(Trace) = seq{
// horizontal traversing
choose Step with

find nextStepInTrace(Step ,Trace) do seq{
call setLastRelation(Step ,Trace);
// vertical traversing
iterate choose Substep with

find unfoldStep(Step ,LastSubstep ,Substep)
do seq{

// execute step
call executeStep(Substep );
update LastSubstep = Substep ;}

}
}

Listing 1: Forward stepping

Executing steps The simple steps refer to a
model element and a value corresponding to the el-
ement. Fig. 8 shows the graph pattern defined for
retrieving this information from the persisted Step.
When executing a step (Listing 2), the action de-
pends on the type of the Step. Compound steps are
unfolded and their substeps are executed in order.
Simple steps are executed by first retrieving the scope
Sc and value V elements from the Step and the re-
lation between them from the model (CRel). Then
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the target of the relation is replaced with the value
persisted in the step. Note that if the executed step
should be handled by a domain-specific extension (see
Sec. 4.3.2) then the appropriate handler StepType-
Handler is called first.

Figure 8: Fynamic information pattern

rule executeStep(in Step) = seq{
// for domain -specific steps
choose Type with StepType(Step ,Type) do
call StepTypeHandler(Type ,Step);

if(find CompoundStep(Step) seq{
// execute substeps
iterate choose Substep with

find unfoldStep(Step ,LastSubstep ,Substep)
do seq{

call executeStep(SubStep );
update LastSubstep = Substep ;}}

else if(find SimpleStep(Step))
// find Scope , Value and relation
choose Scope ,Value ,VR with

find getDynamicInfo(Step ,Scope ,Value ,VR) do
if(find Element(Value))

setRelationTo(VR,Value);
}

Listing 2: Execute step rule

5.3 Execution trace replaying exam-
ple

We use our example SAL transition system (see
Fig. 4) to illustrate the replaying of a persisted ex-
ecution trace (see Fig. 6) with the defined generic
operations.

The top part of Fig. 9 demonstrates how the exe-
cution trace model is used for stepping forward (imi-
tating the execution of a guarded command) and how
a simple step is executed by modifying the dynamic
model (bottom part).

When stepping forward in the trace, the framework
selects the next compound step finish executes

to execute, since the last processed compound step

Figure 9: Step forward and Execute step graph trans-
formation rules

in the trace was selectA executes (represented by
the last relation) that has a next relation target-
ing finish executes. During the application of rule
StepForward, the substeps of the step are executed
and the last relation is set to step finish executes.

The execution of the SimpleStep thread work is
performed by finding the current value of the cor-
responding variable state TVS, and updating it in
the dynamic model. The new value for TVS is se-
lected by navigating through the new relation of step
thread work.

5.4 Implementation

The metamodels for the SAL language, as well as
the trace generator and replay transformations are
implemented in the Viatra2 model transformation
framework, which also supports the development and
execution of simulation rules. Viatra2 uses textual
languages for defining both metamodels and trans-
formations, thus their complexity can be illustrated
with the number of lines for each definition. The
static metamodel of SAL is over 1000 lines of code
(LOC) and includes over 100 elements each with sev-
eral relations, while both the SAL dynamic meta-
model and the generic trace metamodel are under 100
LOC defining around 20 elements and relations. The
SAL trace generator transformation the processes a
text-based trace is around 1000 LOC with 38 patterns
and 11 complex rules, while the replay transformation
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is a few hundred LOC with around 20 patterns and
10 rules.

We also developed a tool for importing counter-
examples of the SAL model checker to trace models
in the Viatra2 framework. Furthermore, we used
the proposed approach for replaying execution traces
of Petri Nets as well.

The trace metamodel is designed to allow the im-
plementation of a trace replaying transformation that
requires only neighboring steps at a given time (due
to persisting both old and new values of a model el-
ement). Therefore, replaying is independent of the
size of traces (which can be well over 100 steps).

6 Replaying BPEL business
process execution

The trace replay framework is mainly a generic
tool for replaying execution traces that were origi-
nally recorded from analysis tools or simulation (see
Sec. 5). However, it is also possible to replay traces
for high-level design languages that lack formal se-
mantics or simulation tools. In this section we de-
scribe how generic replaying was used for business
processes defined in the Business Process Execution
Language (BPEL) [28].

6.1 Execution traces for BPEL

In order to support the replaying of BPEL process
executions with the proposed generic framework, we
first have to define the dynamic metamodel for BPEL
and show that the generic trace metamodel defined
in Sec. 4.3 is capable of representing the execution
traces of BPEL.

The complete static metamodel of BPEL contains
a high number of types for different activities, events
and information representation. For the purposes of
the paper only a small fragment is relevant (illus-
trated in Fig. 10). Elements of the static metamodel
are all specialized from ExtensibleElements with Pro-
cess representing the business process itself contain-
ing an Activity. Activity types, among others, in-
clude Sequence and Receive. The process also con-

tains Variables which are accessed and manipulated
by activities.

In order to model process instances in execution
we define additional dynamic information for BPEL
elements. Activity State is associated with an activ-
ity and has a current dynamic state. This state can
be either startable, runs and executed for all activi-
ties, but further refinement is possible with additional
states for complex structures (such as scopes). Simi-
larly, Variable State is associated with a variable with
a current state that can be uninitialized, correct and
faulty.

Figure 10: BPEL metamodel and example execution
trace

A small BPEL execution trace model is shown in
the right side of Fig. 10, where the the first compound
step is the start of the process (prcess starts) and
the second step is the execution of a receive activ-
ity (receive runs). This step also includes a sub-
step for setting the state of the input variable, from
uninitialized to correct, representing the storing of
the received message. Since the BPEL trace can be
modeled using the generic execution trace metamodel
(discussed in Sec. 4.3), the traces can be replayed in
the proposed framework without any additional de-
velopment effort.

Mapping non-sequential BPEL activities The
structural activities defined in the BPEL language
often represent non-sequential execution where the
control flow of different process instances can dif-
fer based on the particular execution. For example,
a conditional decision may have multiple branches
where the actually executed branch is selected based
on the current value of the process variables. Simi-
larly, a looping activity (e.g. the updateDesired? cy-
cle in Fig. 12) can be executed more than once. How-
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ever, during the execution of the BPEL process, the
steps corresponding the execution of these structures
will be sequential in the stored trace. Consider the
updateDesired? cycle in the example, every time
the cycleCore activity becomes executed, the con-
dition is checked whether to make it startable again
or change updateDesired? to executed. Finally, in
case of parallel execution in a flow activity, the exe-
cution of the contained activities (e.g. the Balances

and Security sequences) may overlap, but they can
be represented as a sequence of simple steps as well.
Details on how to handle overlapping and other mis-
matches between the granularity of BPEL and SAL
traces can be found in our SEFM paper [19]. Thus,
non-sequential execution is also mapped into sequen-
tial steps in the execution trace, where each step will
have at most one corresponding next step. When
such activities are present in the process during trace
replaying, their activity state is set in the same way
as done with sequential activities.

6.2 Graphical interface for replaying

We have created a graphical user interface in
Eclipse to support the replaying of BPEL execu-
tion traces [20]. Fig. 11 shows the BPEL Anima-
tion Controller view, where execution traces can be
opened (Load Trace), the textual file is processed,
and the Viatra2 framework initializes the trace
models. When the framework is ready, the naviga-
tion buttons can be used to animate the process ex-
ecution. Apart from step-by-step navigation (Step
back/forward), the tool also includes continuous an-
imation mode (Animate!/Stop), quick return to the
initial state (Reset) and animation speed-up (Fast
stepping) for easier handling of long traces. Finally,
the underlying model space can be saved for further
use (Save Modelspace).

Figure 11: Animation controller

6.3 Visualization of dynamic state of
BPEL processes

The generic replay framework works inside the model
space of the Viatra2 framework. Since this repre-
sentation makes it difficult to interpret BPEL traces,
we also developed (see [20]) an intuitive graphical rep-
resentation of execution trace replaying with a mod-
ified Eclipse BPEL Designer [1].

Fig. 12 shows the customized BPEL Designer at
a given state during the trace replaying of an exam-
ple BPEL process. The activities and variables of
the process are colored depending on their current
dynamic state. Thus the dynamic behavior of the
BPEL process can be observed visually in the origi-
nal design perspective used for developing BPEL pro-
cesses. For the activities, light blue means startable
state (e.g. addSecurityToRating), light green ac-
tive (e.g. addBalanceToRating), dark green finished
(e.g. Creation). For variables, yellow is uninitial-
ized state (e.g. updateDesired), green is correct (e.g.
loginData) and red is faulty.

6.4 Implementation

The execution trace of BPEL processes is created by
mapping the counter-examples (traces) of the SAL
model checking framework back to the context of
BPEL [16]. This back-annotation transformation is
part of a verification tool developed for BPEL pro-
cesses using the SAL back-end tool1.

The BPEL process executions can be replayed in-
teractively using the Eclipse BPEL Designer, where
the dynamic state of activities and variables are set
using a service that is called by the replaying frame-
work to export state changes for a given step and the
exported state is processed by the Animation Con-
troller.

1See https://viatra.inf.mit.bme.hu/publications/

exectraces
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Figure 12: Animation of an execution trace

7 Limitations of the trace re-
playing approach

Limitations of the approach The generic trace
metamodel and replaying framework has many ap-
plication possibilities, however certain limitations
should be noted regarding its applicability to new
DSMLs or tools.

• First, the dynamic metamodel of the DSML
should represent state changes through relation
or attribute manipulations in the model.

• Furthermore, integrating a new DSML (and its
simulator) still requires some development effort
even if the replaying is generic and the dynamic

metamodel is suitable. This integration task
mainly consists of creating an importer for the
trace format for the given tool.

• Finally, since the trace replaying does not use the
original tool that produced the original trace,
the replayed execution will only represent the
original at the level of detail stored in the trace.

Limitations of replaying BPEL executions
The replaying of BPEL processes uses the generic
trace replay framework, therefore it is limited by the
factors described above. Additional limitations in-
clude:

• The traces are derived from SAL counter-
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examples generated through verification which
only represents BPEL execution on a coarse level
(i.e. simple activity states and non-interpreted
variable values).

• Similarly, the trace generation options are lim-
ited as the SAL tool is not a simulator but a
verification tool that produces counter-examples
based on requirements.

8 Conclusion

In the paper, we investigated how execution traces
retrieved by model checkers or simulation tools can
be integrated and replayed in modeling frameworks.
We proposed a generic execution trace metamodel
which complements traditional static and dynamic
metamodels. Furthermore, we also discussed auto-
mated means to replay traces by updating the un-
derlying dynamic model. As a result, the generation
and evaluation of traces can be completely separated
and traces can be navigated without the use of exter-
nal analysis tools.

Our generic execution trace model was actually de-
fined based on our investigation of traces retrieved by
various formal analysis tools (using different model-
ing formalisms such as Petri nets, transition systems
or process algebras). Finally, we have illustrated by
making use of a BPEL process that the replay frame-
work can support high-level design languages as well.

Currently, as an ongoing work, we are investigat-
ing how trace generation transformations can be de-
rived from simulator specifications. Furthermore, we
plan to combine the generic trace replaying approach
with design space exploration to support languages
with non-deterministic simulation rules and limited
execution trace generation capabilities.
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