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Abstract
Model-based systems engineering of critical cyber-physical
systems necessitates effective collaboration between differ-
ent collaborators, teams, stakeholders. Engineering artifacts
stored in model repositories are concurrently developed in ei-
ther offline (checkout-modify-commit) or online (GoogleDoc-
style) scenario where the confidentiality and integrity of
design artifacts need to be protected by access control poli-
cies. Unfortunately, traditional approaches for managing
concurrent code development do not naturally extend to
collaborative modeling which implies novel challenges.
My research focuses on developing (i) a general secure

collaboration scheme that guarantees that high-level access
control policies are respected during collaboration and it
can be integrated into existing version control systems (e.g.
SVN) to support offline scenario; (ii) automated merging and
fine-grained locking to enhance the efficiency of conflict
resolution and prevention upon concurrent modification of
the models; (iii) derivation and incremental maintenance
of view models to provide specific focus of the designers
by abstracting from unnecessary details of the underlying
system model.
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1 Problem and Motivation
The adoption of model driven engineering (MDE) by sys-
tem integrators (like airframers or car manufacturers) has
been steadily increasing in the recent years [40], since it
enables to detect design flaws early and generate various
artifacts (source code, documentation, configuration tables,
etc.) automatically from high-quality system models.

The use of models also strengthens collaboration between
distributed teams of different stakeholders (system integra-
tors, software engineers of component providers/suppliers,
hardware engineers, certification authorities, etc.) via model
repositories, which significantly enhances productivity and
reduces time to market. An emerging industrial practice
of system integrators is to outsource the development of
various design artifacts to subcontractors in an architecture-
driven supply chain.
Collaboration scenarios include traditional offline collab-

orations with asynchronous long transactions (i.e. to check
out an artifact from a version control system and commit
local changes afterwards) as well as online collaborations
with short and synchronous transactions (e.g. when a group
of collaborators simultaneously edit a model). Even though,
various collaborative modeling frameworks (like [18, 21],
etc.) exist to support such scenarios, additional challenges
arise that cannot be naturally extended from traditional code-
based approaches due to the graph-like nature of the artifacts.

1.1 Secure Collaborative Modeling
An increased level of collaboration in a model-driven devel-
opment process introduces additional confidentiality chal-
lenges to sufficiently protect the intellectual property of the
collaborating parties, which are either overlooked or signifi-
cantly underestimated by existing initiatives. Even within a
single company, there are often teams with differentiated re-
sponsibilities, areas of competence and clearances described
by high-level access control policies. Such processes likewise
demand confidentiality and integrity of certain modeling ar-
tifacts. My first research question is constructed as follows:

RQ-1 How to capture and enforce high-level access control
policies during collaborative modeling?
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1.2 Conflict Prevention and Resolution
Enabling a high degree of concurrent edits for collaborators
is required to make the traditionally rigid development pro-
cesses more agile. The increasing number of collaborators
concurrently developing artifacts increases the probability of
introducing conflicts. Conflict avoidance techniques such as
locks try to prevent conflicts by letting the users request that
certain engineering artifacts should be made unmodified by
all other participants for a duration of time. But it usually
leads to unnecessary preventions (locks) which significantly
limits the degree of concurrent development and does not
scale with the increasing number of collaborating teams.
Model merging aims to resolve the conflicts, but, it can be
complex tasks as the interdependence within a model makes
conflicts easy to introduce and hard to resolve. My second
research question is the following.
RQ-2 How to provide fine-grained prevention and autom-
atized resolution strategies of conflicts?

1.3 Bidirectional Synchronization of View Models
Views are key concepts of domain-specific modeling in order
to provide specific focus of the system to the engineers with
various knowledge and expertise by abstracting the unneces-
sary details of the underlying model. Usually, these views are
represented as models themselves (view models), computed
from the source model. On one hand, the efficient forward
propagation of changes from the source model to the views
is challenging, as recalculating the view from scratch has
to be avoided to achieve scalability. On the other hand, the
efficient backward propagation of complex changes from
one or more abstract view models to the underlying source
model is also a challenging task which requires to limit the
propagation to a well-defined part of the source model. My
third research question is as follows.
RQ-3 How to derive and incrementally maintain view
models and trace back complex changes to the underlying
source models?

2 Preliminaries
2.1 Related Work
2.1.1 Secure Collaborative Modeling
Traditional version control systems (like [3]) adopt file-level
access policies, which are clearly insufficient for fine-grained
access control specifications. [18] allows for role-based ac-
cess control with type-specific (class, package and resource-
level) permissions, but disallows instance level access control
policy specifications. Access control is not considered in re-
cent collaborative modeling environments like [4, 10, 21,
29, 30, 39], or the tools developed according to [22]. [38]
provides fine-grained role-based access control for online
collaboration but no offline scenario is supported, though.
Both online collaboration and role-based access control with
type-specific (class, package and resource-level) permissions

is provided in [18], but no facility for instance level access
control policy specifications. However, there is a pluggable
access control mechanism that can specify access on the
object level.

2.1.2 Locking Support
The state-of-the-art locking techniques are the fragment-
based and object-based locks. Fragment-based locking re-
quires that models are partitioned into storage fragments,
e.g. files or projects and entire fragments can be locked at
once. Object-based locking locks individual model objects
(including their attributes and connections) which requires
to inspect the structure of the model.
Existing collaborative modeling tools either lack locking

support or implement rigid strategies such as fragment-based
locking, or locking subtrees or elements of a specific type,
which hinder effective collaboration. Most of offline collabo-
rative modeling tools [2, 21, 27], rely on traditional version
control systems using file-based (same as fragment-based)
locking with contributors committing large deltas of work.
Model repositories [18, 39], support both implicit and explicit
locking of subtrees and sets of elements. These locks can
prevent others from modifying elements to avoid conflicts.
Online collaborative modelling frameworks [4, 10, 29, 38], rely
on a short transaction model: a single, shared instance of
the model is concurrently edited by multiple users, with
all changes propagated to all participants instantaneously.
These approaches use timestamped operations to resolve
conflicts or provide only lightweight lock mechanisms, e.g.,
explicit locks to certain elements.

2.1.3 Conflict Resolution in Model Artifacts
Model comparison refers to identifying the differences be-
tween models. Based on its result,model merge synthesizes a
combined model which reconciles the identified differences.
My research focuses on three-way merge, which uses the
common ancestor O of local copy L and remote copy R to
derive the merged modelM . To determine the changes exe-
cuted on O , a comparison is conducted between O ↔ L and
O ↔ R. The solution of mergeM is obtained by applying a
combination of changes performed either on L or R to the
original model O .

Most approaches [6, 19, 20, 32, 34] are semi-automated as
they use a two-phase process: (i) first, they apply the non-
conflicting operations and then (ii) let the user prioritize
and select the operation to apply in case of two conflicting
changes. This always results in a single solution due to the
manual resolution by the user. In comparison, [11, 28] resolve
the conflicts automatically in different ways and offer several
solutions.

2.1.4 Incremental Maintenance of View Models.
View maintenance by incremental and live QVT transforma-
tions is used in [37] to define views from runtime models.
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The proposed algorithm operates in two phase, starting in
check-only mode before an enforcement run, but its scalabil-
ity is demonstrated only on models up to 1000 elements. [10]
allows the composition of multiple EMF models into a vir-
tual model based on a composition metamodel, and provides
both a model virtualization API and a linking API to manage
these models. The approach is also able to add virtual links
based on composition rules. In [41], an ATL-based method is
presented for automatically synchronizing source and target
models. In [26], correspondences between models are han-
dled by matching rules defined in the Epsilon Comparison
Language, but incremental derivation is not discussed.

2.1.5 Backward Propagation
For the backward propagation of changes, the use of trace-
ability links is a well-accepted approach to define which part
of the source model has to be updated upon a change on the
target model. In [33], these links are stored as a correspon-
dence model where their maintenance is derived from the
TGG rules. [31] also specifies trace classes to facilitate and
maintain traceability links. [23] stores traceability links in
Alloy[25] as a bijective mapping. [7] uses a weaving model
that stores the traces of references between different models
in the view, however all objects in the view model act as
proxies to an object in the source model.

2.2 Foundational Techniques
2.2.1 Graph Patterns
A graph pattern represents structural constraints prescrib-
ing the interconnection between nodes and edges of given
types extended with algebraic expressions to define attribute
constraints. Pattern parameters are a subset of nodes and
attributes representing the model elements interesting from
the perspective of the pattern user. A match of a pattern is a
tuple of pattern parameters that has the same structure as the
pattern and satisfies all structural and attribute constraints.

2.2.2 Design Space Exploration
Design space exploration (DSE) aims to find optimal design
candidates of a domain with respect to different objectives
where design candidates are constrained by complex struc-
tural and numerical restrictions (e.g. described by graph pat-
tern) and are reachable from an initial model by applying a
sequence of exploration rules.

3 Overview of the Approaches
3.1 General Secure Collaboration Scheme
Approach. In [5], we proposed a query-based approach for
modeling fine-grained access control policies, and we de-
fined bidirectional model transformations to (i) derive fil-
tered views (front models) for each collaborator from the
original model (gold model) containing all the information
and to (ii) propagate changes introduced into these views

Figure 1. MONDO Offline Collaboration - Architecture

back to a server in both online and offline scenarios. Access
control policies consist of rules that allow, obfuscate or deny
read and/or write permissions of model parts identified by
graph patterns detailed in [13].
In [14], a collaboration scheme between the clients of

multiple collaborators and exactly one server is described to
support fine-grained access control in offline scenario. The
server stores the gold models and the clients can download
their specific front models. Modifications, executed by a
clients, are submitted to the server and they are accepted if
write permissions are successfully checked. Right after the
submission, the changes are propagated to the other front
model while read permissions are enforced. Finally, clients
can downloaded their updated front models.
The scheme is realized by extending SVN [3] using its

hooks. The server and clients are realized as a gold repos-
itory and multiple front repositories, respecively. The gold
repository contains gold models, but it is not accessible to
collaborators. Each collaborator is assigned to a specific front
repository containing a full version history of the front mod-
els. Change propagations are maintained between the repos-
itories.

My contributions related to the fulfillment of RQ-1 :

Contribution 1 I proposed a generic modeling language
to capture fine-grained access control policies integrated
into a provenly secure collaborative architecture.
C1.1 Access Control Language. I proposed a rule-based ac-
cess control language to describe high-level and fine-
grained policies in both online and offline scenarios. Rules
may allow, obfuscate or deny read and/or write permis-
sions of model parts identified by graph patterns[13, 14].

C1.2 Read and Write Dependencies. I analyzed read and
write dependencies implied by high-level access control
policies as read and write permissions of a model part
may depend on other model parts implied by internal
consistency rules [13].



ACM SRC, September 17–22, Austin, Texas, USA Csaba Debreceni

C1.3 Formalization of Transformation Rules. I formalized
transformation rules to derive secure front models with
respect to the read and write permissions [14].

C1.4 Secure Collaboration Scheme. I formalized a collabora-
tion scheme as communicating sequential processes (CSP)
to enforce high-level access control policies. I specified
correctness criteria and proved the correctness of the
scheme [14].

C1.5 Realization of Secure Collaboration. I realized the col-
laboration scheme in case of offline scenarios by extend-
ing an existing version control system to enforce fine-
grained access control while collaborators can use off-
the-shelf tools [12, 14].

C1.6 Evaluation. I evaluated the scalability of the collab-
oration architecture on a case study of offshore wind
turbine controllers [5, 12, 14, 24].

The bidirectional transformation and the algorithm to de-
rive effective permission based on the proposed language is
the contribution of Gábor Bergmann whereas the concept of
the common architecture to support both online and offline
scenarios is the contribution of István Ráth.

Uniqueness. Our provenly correct collaboration scheme
is able to enforce fine-grained access control policies of mod-
eling artifacts over existing version control system in case
of offline scenarios.

3.2 Conflict Reduction and Handling
Approach. In our preliminary work [9], we introduced the
concept of property-based locking where collaborators re-
quest locks specified as a property of themodel which need to
be maintained as long as the lock is active. Hence, other col-
laborators are permitted to carry out any modifications that
do not violate the defined property of the lock. In [15], the
realization of property-based locking strategy is proposed
as a common generalization of existing fragment-based and
object-based locking approaches. Complex properties are de-
scribed as graph patterns to express structural (and attribute)
constraints for a model where the result set, i.e. the matches
of graph pattern, can be calculated by pattern matchers or
query engines. Only those modifications are allowed that do
not change the result set of a list of queries as depicted in
Fig. 2.

In [17], we proposed DSE-Merge that exploits guided rule-
based design space exploration (DSE) [1] to automate the
three-way model merge with an architecture depicted in
Fig. 3. Three-way model merge is applied to DSE problem
where the initial model consists of the original model O
and two difference models (∆L and ∆R); the goal is that
there are no executable changes left in ∆L and ∆R; oper-
ations are defined by change driven transformation rules
to process generic composite (domain-specific) operators;
and constraints may identify inconsistencies and conflicts

Figure 2. Behavior of Property-Based Locks

Figure 3. Architecture of DSE Merge

to eliminate certain trajectories. The output is a set of so-
lutions consisting of (i) the merged modelM ; (ii) the set of
non-executed changes ∆L′,∆R′; and (iii) the collection of the
deleted objects stored in Cemetery.
My contributions related to the fulfillment of RQ-2 :

Contribution 2 I proposed a fine-grained property-based
locking technique to avoid conflicts and an automated
three-way model merge technique to resolve conflicts.
C2.1 Fine-grained Property-based Locking. I proposed a
property-based locking technique as generalization of
traditional fragment-based and object-based locking tech-
niques which captures fine-grained locks as graph pat-
terns and exploits incremental query engines to maintain
and evaluate locks [15].

C2.2 Automated Model Merge using DSE. I proposed an
automated three way model merge technique by adapting
rule-based design space exploration to derive consistent
and semantically correct merged models [1, 17].

C2.3 Realization of DSE-merge. I realized an infrastructure
of automated model merge over EMF integrated into the
Eclipse IDE [12, 17].

C2.4 Evaluation. I evaluated the scalability of the auto-
mated model merge and I compared the effectiveness of
fine-grained property-based locking and traditional lock-
ing strategies for conflict prevention on a case study of
offshore wind turbine controllers [15, 17, 24].
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Figure 4. Overview of integration architecture

The novel concept of property-based locking has been
carried out in a collaborativework [9] wheremy contribution
is the first adaption in a practical setting.

Uniqueness.Our property-based approach is general and
can be used for both implicit locking of subtrees and set of
elements or explicit locking of a certain element and its
incoming and outgoing references. In addition it extends
these lock types with the definition of properties to provide
less restrictive locking for the collaborators.
The closest to our merge approach are [11] and [28], but

we rely on state-based comparison, apply a guided local-
search strategy (vs. [28]), detect conflicts at runtime and al-
low complex generic merge operations (vs. [11]). Internally,
we uniquely use incremental and change-driven transfor-
mations to derive the merged models. Finally, we reported
scalability of merge process for models which are at least
one order of magnitude larger compared to [11] and [28].

3.3 Synchronization of View Models
Approach. In [16], we introduced an approach where view
models are conceptually equivalent to regular models and
they are defined using a fully declarative, rule based for-
malism. Preconditions of rules are defined by graph patterns,
which identify parts of interest in the source model. Deriva-
tion rules then use the match set of a graph pattern to define
elements of the view model. Informally, when a new match
of a query appears then the corresponding derivation rule is
fired to create elements of the view model. When an existing
match of a query disappears, the inverse of the derivation
rule is fired to delete the corresponding viewmodel elements.
View models derived by a unidirectional transformation

are read-only representations, and they cannot be changed
directly. To tackle this problem, we proposed an approach in
[35] to automatically calculate possible source model candi-
dates for a set of changes in different viewmodels as depicted
on Fig. 5. First, the possibly impacted partition of the source
model is need to be identified by observing traceability links
to restrict the impact of a view modification. Then the mod-
ified view models and the query-based view specification
are transformed into logic formulae. Finally, multiple valid
resolutions of the source model are generated using logic
solvers corresponding to the changes of view models and
the constraints of the source model.

My contributions related to the fulfillment of RQ-3 :

Figure 5. Overview of backward change propagation

Contribution 3 I proposed a novel technique of bidi-
rectional synchronization of view models where the for-
ward incremental synchronization is achieved by unidirec-
tional derivation rules while the backward propagation of
changes is generated using logic solvers.
C3.1 Incremental Forward Synchronization. I formalized a
fully forward incremental, unidirectional synchronization
technique of view models allowing chaining of views
where the object of view model depend on the match set
of the precondition of derivation rules [16, 36].

C3.2 Change Impact Analysis. I analyzed the impact of
changes in underlying source models in case of back-
ward propagation. The impacted part is added to the
logic solver as additional constraints to calculate mini-
mally modified source model candidates [35].

C3.3 Realization of Forward Synchronization. I realized the
incremental and forward view synchronization technique
where elementary derivation rules are captured by graph
patterns and the reactive synchronization process uses
the Viatra Event-driven Virtual Machine (EVM) [16].

C3.4 Evaluation. I evaluated the scalability of the proposed
approaches on case studies from the avionics and the
health-care domain [16, 35, 36].

The transformation of the preconditions described by
graph patterns and the impacted parts to first order logic is
the contribution of Oszkár Semeráth whereas my contribu-
tions are the impact analysis and the concept of using logic
solver for backward propagation extended with impacted
parts as additional constraints.

Uniqueness. Definition of a view model is unidirectional,
while the forward propagation of the operation-based changes
are live, incremental and executed automatically that also
maintains explicit traces. At backward propagation, using
partitioning as an additional input of the logic solver im-
proves scalability issues and limits the impact of changes to
a well-defined part of the source model.
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