Automated Software Engineering Journal manuscript No.
(will be inserted by the editor)

A model-driven framework for guided design space
exploration

Abel Hegediis, Akos Horvath, and Daniel
Varro

Received: date / Accepted: date

Abstract Design space exploration (DSE) aims at searching through vari-
ous models representing different design candidates to support activities like
configuration design of critical systems or automated maintenance of IT sys-
tems. In model-driven engineering, DSE is applied to find instance models
that are (i) reachable from an initial model with a sequence of transforma-
tion rules and (ii) satisfy a set of structural and numerical constraints. Since
exhaustive exploration of the design space is infeasible for large models, the
traversal is often guided by hints, derived by system analysis, to prioritize the
next states to traverse (selection criteria) and to avoid searching unpromis-
ing states (cut-off criteria). In this paper, we define an exploration approach
where selection and cut-off criteria are defined using dependency analysis and
algebraic abstraction of transformation rules. Additionally, we apply different
state encoding techniques to identify recurring states and reduce the number
of visited states. Finally, we illustrate our approach on a cloud infrastructure
configuration problem and provide detailed evaluation on both synthetic and
real applications. This evaluation includes (i) the comparison of several explo-
ration techniques, (ii) performance measurements on multiple state encoding
techniques and (iii) comparing two implementation architectures of our design
space exploration framework.

Keywords Design space exploration - Model-driven engineering - Search-
based software engineering

This work was partially supported by the CERTIMOT (ERC_HU-09-01-2010-0003) project,
the TAMOP (4.2.2.B-10/1-2010-0009, 4.2.2.C-11/1/KONV-2012-0001) grants and the
Janos Bolyai Scholarship.

A. Hegediis - A. Horvéth - D. Varré

Budapest University of Technology and Economics,
Department of Measurement and Information Systems,
1117 Budapest, Magyar tudésok krt. 2. — Hungary
E-mail: {abel.hegedus,akos.horvath,varro}@mit.bme.hu

2 Abel Hegediis, Akos Horvéth, and Déniel Varré

1 Introduction

Design space exploration (DSE) is a process to analyze several “functionally
equivalent” implementation alternatives, which meets all design constraints in
order to identify the most suitable design choice (solution) based on quality
metrics such as cost or dependability. Design space exploration often appears
as a challenging problem in application areas, such as dependable embedded
systems [32], 40] and IT system management, where model-driven engineering
(MDE) techniques are already popular. DSE can be performed either during
the design process to find optimal designs or during runtime to help dynamic
reconfigurations.

In traditional DSE problems, the design constraints and quality metrics are
numeric attributes to express cost, time or memory limits etc. However, sys-
tems with modular software and hardware architectures (like AUTOSAR [2] in
the automotive domain or large reconfigurable architectures) introduced com-
plex structural constraints that express restrictions on the graph-based model
of the system under design. These constraints may include restrictions related
to the communication architecture or allocation of software and hardware re-
sources. Furthermore, during the design of dynamically changing systems (e.g.
reconfiguration of virtual servers over physical ones), the design space explo-
ration also requires the dynamic creation and deletion of elements.

Existing DSE approaches usually apply model checking with exhaustive
state space exploration [4], 44] [T4] or solve finite domain constraint satisfac-
tion problems (CSP) [25] [13]. In both cases, the high-level system models are
often mapped to low-level formalisms that can be used as inputs for model
checking tools or CSP solvers. Exhaustive approaches are well suited to prob-
lems where most of the design space is traversed to identify rare solutions
and explores states are efficiently stored. CSP solvers are capable of efficiently
apply branch-and-bound or other numerical techniques to solve high number
of equations that share variables. However, neither approach can effectively
handle structural constraints and dynamic manipulation of elements.

To better align generic exploration techniques with specific problems, de-
signers often provide additional information (hints) about the system (e.g.
from earlier experience or by some analysis) that can reduce the design space
to a more feasible size [32]. The design process is often complemented with
different design and analysis and verification tools, which can also provide
(mathematically well-founded) hints about the model in the early stages of
development. These hints may express additional system properties, which
can be incorporated in the DSE process to assist the evaluation of alternate
solutions.

Guided model-driven design space exploration aims to explore alternative
system designs efficiently by making use of advanced model-driven techniques
(e.g. incremental model transformations) and hints (obtained by analysis tools
or provided by the designer). These hints are interpreted during the exploration
to continue along promising search paths (using selection criteria) and to avoid
the traversal of unpromising designs (by cut-off criteria). Additionally, the

A model-driven framework for guided design space exploration 3

Goals |—> > Design alternative 1
Global constraints > Design alternative 2
Model-driven Guided | —> Design alternative 3

Design Space Exploration
Initial design =]

Hints & guidance l—) > Design alternative n

Fig. 1 Inputs and outputs of guided DSE

use of incremental techniques leads to exploration strategies that are able to
find additional (alternative) solutions, which are close to an earlier solution.
illustrates the inputs (goals, constraints, operations, initial design,
hints and guidance) and outputs (alternative designs as possible solutions) of
guided design space exploration.

In our paper, we propose a model-driven framework for guided design space
exploration, where the system states are graphs, operations are defined as
graph transformation rules, while goals and constraints are defined as graph
patterns. We extend our previous work on model-driven design space explo-
ration [23] by incorporating hints during the exploration strategy, which are
derived from dependency analysis of transformation rules and algebraic analy-
sis on the Petri net abstraction of the system [55]. Cut-off and selection criteria
are defined based on these hints [20], and their evaluation guides the design
space exploration by identifying dead end states and prioritizing possible op-
erations, respectively.

Major contributions of this paper with respect to our previous work [23], 20}
22, [21] are (1) the formal definitions of the concepts of guided design space ex-
ploration, (ii) the new implementation architecture of our model-driven frame-
work based on the Eclipse Modeling Framework, (iii) a comparison of state
encoding techniques used in our framework and (iv) a detailed evaluation of
our framework with multiple scenarios using relevant case studies.

2 Overview of the Approach

In our paper, we describe a novel framework that combines the model-driven
approach of design space exploration (DSE) with guided exploration techniques
building on hints from analysis and guidance through cut-off and selection
criteria. The schematic overview of the framework for guided design space
exploration is illustrated in

First, the design problem description specifies the domain where the explo-
ration takes place to produce solutions. It includes: (1) the initial state of the
system at the start of the exploration, (2) the set of manipulation operations
(called labeling or exploration rules) defined on the system, (3) goals described
as structural or numerical constraints, which need to be satisfied by solution
states found by the exploration, and (4) global constraints, which are satisfied
by the initial and solution states and all intermediate states on the trajectory

4 Abel Hegediis, Akos Horvéth, and Déniel Varré

Model-driven Guided
Hints:

1 * occurrence vector
* rule dependency

Design problem description:
* initial state

¢ goals
B
P * cut-off criteria
'r * selection criteria
1
Design Space .| Exploration
Exploration i strategy

Design Space Exploration

Fig. 2 Model-driven Guided Design Space Exploration

between them. The detailed discussion of the problem description is found in

Section 4

The design space exploration performs the search for solutions by exploring
the design (or state) space of the problem description. It starts from the initial
state and traverses reachable states by applying the operations on the system
(see . In order to find a solution quickly exploration is often aided by
an exploration strategy (detailed in [Section 7). A simple strategy (as proposed
in [23]) may use random selection in a depth first search or statically assign
priority levels to operations. However, a more advanced strategy should also
determine whether a given state will never lead to a valid solution (i.e. it is a
dead end) and states reachable from it should not be traversed. In a guided
approach, the exploration strategy relies on guidance, which uses hints for
driving the traversal and identifying dead ends.

Hints are information originating from the designer or (as in our paper)
from some automated analysis carried out using formal methods that often
abstract the design problem description. The result of the analysis can be
information regarding the number of operation applications (called as an oc-
currence vector), partial ordering of operations, restricting the set of required
operations etc. These results are often generated before the exploration in a
preprocessing phase. Our guided approach uses occurrence vectors and depen-
dency relations between rules as hints (see [Section 5)).

Finally, the guidance calculates and interprets hints and provides decision
support for the exploration strategy (see details in. In our approach,
guidance is defined as the evaluation of cut-off and selection criteria based on
the current state and the hints (as defined in [20]). Cut-off criteria identify
dead end states and bound the exploration, while selection criteria prioritize
available rules in a state by their likelihood of leading to a final (solution)
state.

A model-driven framework for guided design space exploration 5

2.1 Challenges of Guided Design Space Exploration

While existing model-driven frameworks (e.g. GROOVE [30]) are able to ex-
plore the design space of smaller problems by exhaustively traversing reach-
able states and checking global constraints and goals in each state, they use
no global information when selecting the applied labeling rules. Our guided
approach, however, takes advantage of hints and guidance that help the ex-
ploration and addresses the following challenges:

— identify decisions in the exploration: the framework should clearly separate
the guidance from the exploration strategy to easily allow the modification
of both parts of the framework.

— soundly reduce traversed design space: the guidance should reduce the num-
ber of traversed states before finding solutions, but it must ensure that no
valid solutions are removed by the cut-off criteria.

— provide optimal solutions: the guided framework should find the solutions
that are optimal (with respect to a user-defined metric). Moreover, the
framework should be able to continue exploration to find other (less opti-
mal) solutions if necessary.

— extensibility: the approach should be easily applicable on different design
problems and the set of criteria should be extensible. This is a key feature
for adapting the framework to various domains.

3 Guided Design Space Exploration

The guided design space exploration approach is based on a general search
process, which traverses the design space starting from the initial state. This
general process includes a step (Fvaluate criteria), which relies on the guidance
and hints provided by system analysis to the different exploration strategies
(identify decisions challenge). The search process, depicted in con-
sists of the following steps:

Design Problem Description

@ ‘ Hints /Occurence veitor//RuIe dependency/‘
Q ‘ Guidance/Cut-off Criteria//Selection Criteria/‘ 9

Check rule Evaluate p Eut-of{’ [Select | Apply " Check
applicability criteria No ._rule | "L rule) new state

Yes
No

) . Is vahd’
Continue F—,W
search No J Yes
o : SV e s solution?
Guided Design Space Exploration solution) yeg

Fig. 3 Workflow of the guided design space exploration

1. Check operation applicability. First, labeling rules (of the design problem
description) are checked for executability (i.e. whether they can be executed

6 Abel Hegediis, Akos Horvéth, and Déniel Varré

in the current state of the model) and this information is passed to the

criteria evaluation.

2. Fwvaluate criteria. The cut-off and selection criteria are evaluated using the
hints (the rule dependencies and the occurrence vector) and the results are
stored.

3. Cut-off? If at least one of the cut-off criteria were satisfied during the
evaluation, or there are no applicable rules, the state is a dead end and the
branch is cut.

4. Select rule. The design space exploration then selects the next applicable
rule based on the evaluation results.

5. Apply rule. The selected rule is applied to the model resulting in a new
model state.

6. Check new state. The global constraints and goals are checked on the new
state to decide whether it is an invalid or solution state.

(a) Is valid state? If any of the constraint are violated, the state is invalid
and the exploration continues from the previous state. Note, that a
state is also considered invalid if the exploration has visited it earlier,
since in this case the reachable states are already explored from this
state.

(b) Is solution found? If all of the goals are satisfied, the state is a solution.

7. Save solution. When a solution model is found, the trajectory (with the
executed rules and corresponding model state information) is saved to a
solution list.

8. Continue search. Once the new model state is checked, the next applicable
rule is selected from a valid new state, otherwise from the previous state.

Design space exploration terminates either once a predefined number of
solutions are found (or if the found solution is acceptable by other, user-defined
metrics) or if there are no applicable rules within the limited search space.
Since a hint does not always represent a feasible trajectory, the exploration is
restarted with an alternative vector if more solutions are required to be found.

4 Design Problem Description
4.1 Motivating Example: Cloud Configuration

Today services are often built on top of a cloud middleware (CM) using com-
ponents as building blocks to be able to scale dynamically to meet demands.
Servers (S) and high-availability clusters (Cl) can be deployed on the cloud
middleware, while databases (DB) are installed on servers and applications
(App) are executed over databases. Finally, servers can also be deployed on
clusters and storage (St) subsystems can only operate over clustered servers.
In order to provide an appropriate infrastructure for clients, the configu-
ration of the cloud infrastructure must meet certain requirements (including
complex structural constraints), e.g. an application and a storage subsystem

A model-driven framework for guided design space exploration 7

is required for a cloud-based web service. Such an infrastructure is shown in
0 Al

Storage

Fig. 4 An example system providing reliable service

To satisfy this constraint the cloud configuration has to be designed in an
appropriate way. We assume that regular change management commands (in-
cluding deletion or creation, e.g. deploying a new database) are issued by some
middleware service broker. If the current infrastructure of the cloud detects
that the required parameters cannot be satisfied by the actual cloud configu-
ration, reconfiguration operations are to be initiated, which lead the system
into a state where all constraints are met. To deal with changes of require-
ments and possible commands, guided design space exploration is used to find
command sequences that should be executed to create a valid configuration.

4.2 Initial State

States are represented as instance models that conform to a metamodel. This
metamodel describes the problem domain and the initial state defines where
the design space exploration starts from.

Definition 1 (Graph) A graph G = (N, E, src,trg) is a 4-tuple with a set
N of nodes, a set E of edges, a source and a target function src,trg: E — N.

Definition 2 (Type and instance graphs) A type graph TG is a graph.
An instance graph G is typed over T'G by a typing morphism type : G — TG.

We assume that type inheritance is also allowed in type graphs, where
a given type can be a specialization of other types, while those types are
generalizations of the given type. We refer to type graphs as metamodels and
to instance graphs as instance models of a metamodel. We will use this simple
structure for describing models, while more complete and formal treatment of
metamodeling can be found e.g. in [11 28] [53].

The left part of shows the metamodel for the cloud case study.
The metamodel contains a cloud component Node designated graphically as a
rectangle. The specific components Socket, Server, Database, Application and
Storage are specialized from this node, Socket is a generalization of Cloud
MW and Cluster. Edge deployedOn is a relation that connects two different
components denoting that the source node is deployed on the target node of

8 Abel Hegediis, Akos Horvath, and Déaniel Varré

deployedOn (don)

:dOn
Socket (So) Storage (St)
I:dOn

Fig. 5 Metamodel and instance model of the cloud infrastructure

this relation. The right part of [Figure f|illustrates an instance model containing
a database d deployed on two servers s1,s2 that are on cloud c¢. Note that in
the rest of the paper, we omit deployedOn (dOn) relations by illustrating the
relation using vertical arrangement of components.

4.3 Goals and Global Constraints

Goals and global constraints of the design problem description are defined as
functions evaluated over matches of graph patterns [15].

Graph patterns (query) represent conditions that have to be fulfilled by a
part of the model and are frequently considered as the atomic units of model
transformations [62]. A match of a graph pattern is a set of nodes in the
instance model that satisfies all conditions defined by the graph pattern. For-
mally defined as follows:

Definition 3 (Graph pattern) A graph pattern gp = (sc,Vjesnac;) con-
sists of (i) structural conditions sc prescribing the existence of type conformant
nodes and edges and (ii) negative application condition nac = —gp, defined by
a negative subpattern, prescribes conditions which are forbidden in a specific
context of sc.

Definition 4 (Match) A match m for a graph pattern gp = (sc, Vjenac;)
in an instance model G denoted by m : gp — G means that: (i) Im : sc — G
there exists an injective, type conformant total morphism m from the graph
sc to the instance model G, (i) Vj € JAm' O m where m’ : 9Pnac; — G-
there is no match for any of its embedded NACs that extends the match of
the pattern gp.

F———————— e

m(DB) >= 5{{m(S) <= 100|

Fig. 6 Example goal and global constraint

A model-driven framework for guided design space exploration 9

The left part of shows a graph pattern describing a database (DB
node) deployed on two servers (S) that are both deployed on the same cluster
(Cl). The example goal specifies using this pattern requires that a solution
model includes at least 5 databases deployed on clusters, while the right part
shows a global constraint, that allows maximum 100 servers deployed on clouds
altogether.

The examples in[Figure 6 use very simple numeric bounds on the size of the
match set but for the purposes of DSE more complex functions may be used.
We have experimented with goals that evaluate interdependent and symmet-
ric matches as well. However, it is important to note that the computationally
expensive part of constraint and goal evaluation is done by pattern matching
that can work fully incrementally [9]. Additionally, graph patterns with em-
bedded NACs provide expression power equal to first-order logic [37], while
advanced features (e.g. transitive closure [I1], match counting and evaluation
of expressions) further increase the usability of the language.

4.4 Operations

The operations that define the possible elementary manipulations on the prob-
lem state are represented by graph transformation (GT) rules [I5].

Definition 5 (Graph transformation rule) A graph transformation rule
is a pair r = (pre, post), where pre is the precondition (or left-hand side - LHS)
pattern determining the applicability of the rule and post is the postcondition
(or right-hand side - RHS) pattern that specifies the result model declaratively.

Definition 6 (Activation) An activation act(rule,m) of a transformation
rule rule is a match m of the precondition pattern pre of the rule.

The reconfiguration actions of the ongoing example are captured by a set
of graph transformation rules in An overview on using graph trans-
formations for software architecture reconfigurations can be found in [5].

Lemy Cloud MW |) v |
LGl HACluster | addoM
| DB | Database
i Server
PAgBl Application: o
Storage
\S_o| Socket

Fig. 7 Graph transformation rules

10 Abel Hegediis, Akos Horvéth, and Déniel Varré

The addCM rule adds a new cloud CM, addS creates a new server S de-
ploying it on top of a CM or cluster C/, however, a C/ cannot have more than
two S deployed on it. Rule addCl produces a new Cl deploying it on top of a
CM, addDb adds a new database DB deploying it on top of two S that have no
other Node deployed on them, addApp creates a new application App deploy-
ing it on top of two DB that have no other Node deployed on them. Finally,
addSt adds a new storage St deploying it on two S that are deployed on the
same C/ and have no other Node deployed on them.

It is important that the set of goals, constraints and rules are easily exten-
sible by the designer (extensibility challenge). The design problem description
is not hard-coded into the exploration and can be modified using a high-level
textual language [52]. Our framework also supports dynamic handling of goals,
constraints and rules, e.g. to generate solutions for different subsets of rules.

Ezecuting an activation act(rule, m) alters the model by replacing the pattern
defined by LHS with the pattern of the RHS of the transformation rule rule
(illustrated in [Figure 8)). This is performed by (1) taking the match m of the
LHS in the model (2) checking the negative application conditions, (3) removing
a part of the model that can be mapped to the LHS but not the RHS yielding
an intermediate graph and (4) adding new elements to the intermediate graph,
which exist in the RHS but not in LHS or updating existing elements, yielding
the derived graph.

Definition 7 (Exploration step) An exploration step G 24 G’ is the exe-
cution of the activation act on the instance model G resulting in the modified
model G'.

4.5 Design Space Exploration

The design space traversed by the guided exploration approach is represented
by a graph transition system [35] containing the states, which are reachable
from the initial state by executing the operations.

Definition 8 (Exploration sequence) An exploration sequence Gy ety

G1 acty Gy = ... is a sequence of exploration steps (executing an activa-
tion of a given transformation rule).

An exploration sequence starting from G and yielding G’ is denoted shortly
by G == G, where * denotes that one or more exploration steps may belong
to the sequence.

Definition 9 (Design space exploration problem) The design space ex-
ploration problem is a 4-tuple DSE = (G, Op, Goal,Cons), where Gy is the
initial state, Op is the set of possible operations, Goal is the set of goals, Cons
is the set of global constraints.

A model-driven framework for guided design space exploration 11

Definition 10 (Solutions of design space exploration) The solutions of
DSE is a pair Sol = (DSE, ES), where ES is a set of exploration sequences
and for each sequence Gy = G; € ES, the final state G; contains matches
of the patterns in Goal, each state in the sequence is reached by exploration
steps from Op and does contain matches of any pattern in Cons.

The solutions are found by constructing the possible execution sequences
starting from the initial state of the DSE problem.

Definition 11 (Design space) A design space of a DSE problem is a graph
DS = (Nim, Ees, src,trg, Geyrr), where the nodes G; € N, are instance

models, edges are exploration steps G; 2 G € E.s and the source and
target of an edge are the instance models before and after the execution of
the step. The exploration starts from the initial state Gg of DSE and the
exploration steps use only operations from Op in DSFE. Finally, Geyrr € Nim
is the current state of the design space which is also the target of the last
exploration step.

A path in the design space is an exploration sequence also called a trajectory
between two states. A state G; is reachable from Gy iff there is a trajectory in

DS from Go to Gl
adds | |‘
| E | addCl
|)
! - I adds

{ I
Lo
Lo
I
|-
| ol
o |
In.l
| o
I
-
by
b
Loy
|
o
Q
2|
2|
sy
8-
S |
S
(oo}
I
[+%)
o
Q.
UI
@ |
I

Fig. 8 A part of a design space

In an extract of the design space of the running example is shown.
On the left, the root of the design space is the start graph G where the system
configuration contains a CM, three S, and one DB components. Operations
addS, addCl, and addCM are applicable to Gg, here we follow the execution of
addS and addCl.

12 Abel Hegediis, Akos Horvéth, and Déniel Varré

5 Hints

The design space exploration framework uses exploration sequences to reach
solution states. In order to guide the exploration efficiently, both the amount
and order of operation executions are useful hints.

5.1 Graph Transformation Rule Dependency

Given the precondition-postcondition nature of GT rules used as operations,
it is possible to derive which rules might be affected by the execution of a
given operation. For example, executing an activation of GT rule r can alter
the model in a way that other rules, which were disabled before, become en-
abled (or the other way around), thus the application of these rules depend on
the application of r. The dependencies between rules are independent of the
instance models, and can be derived from the rule definitions. This analysis
can be carried out using various techniques, such as critical pair analysis [19]
or conditional transformation-based dependency analysis [31], and results in a
matrix of dependencies between rules.

JaddS 4

add
1 \ApR

Fig. 9 Dependency graph example

Definition 12 (Dependency graph) A dependency graph for a DSE prob-
lem is a graph Dep = (N, Esq, src, trg), where the nodes N, are the possible
operations Op of DSFE and the edges Esq denote sequential dependency (i.e.
for an edge e the application of the source operation (src(e)) may affect the
activations of target operation trg(e)).

The result of the analysis is used to create a dependency graph (Dep,
illustrated in. Note that there may be arcs in both directions between
two rules. As illustrated on[Figure 9] rule addS depends on rules addCM, add(Cl,
while rules addSt, addDB depend on addS (the sets are represented by < 14445
and 74445 P, respectively).

A model-driven framework for guided design space exploration 13

5.2 Transformation Rule Occurrence Vector

We use a Petri net abstraction technique introduced for GTS in [54], which
provides hints that estimate how many times each rule is applied in order to
reach a given state.

Definition 13 (Occurrence vector) A candidate occurrence vector o is a
solution of the analysis of the Petri net abstraction, where o (i) is the number
of times that rule r; is applied during the execution.

During the design space exploration, the number of times rule r; has been
applied in a given path is stored in the application vector (T,) as T, (i).

Definition 14 (Compliant exploration sequence) An exploration sequence
of the design space exploration is compliant with ¢ if 7, < o (the number of
applications is less than or equal to o(i) for each rule r;).

Throughout the paper we use the difference o (i) — 7, (7) as the remaining
application number #; of rule r;. This number is stored as an attribute for
nodes in Dep (see together with the state of r; that is either enabled
or disabled in a given state.

Note that in some design problems, the occurrence vectors provided by
the analysis could be used as the least amount of executed rules instead of
maximum. In such cases, the guidance would be able to efficiently reach states
where those rules are executed in the predefined number of times. Naturally,
it is possible to prepare design problems where such guidance is not entirely
beneficial (e.g. there are rules that are not part of the occurrence vector but
have to be executed earlier than those that are part of the vector). In our
paper, we use occurrence vectors as upper limit of execution on the rules and
instead apply alternative occurrence vectors when no solution is found for a
given one.

5.3 Using Dependency Graphs in Design Space Exploration

The model state and the dependency graph are tightly connected for a given
initial graph and occurrence vector. illustrates how the application
of a GT rule affects the current state and the remaining application number.
First, the current state is depicted as the model M (representing the current
cloud configuration) and remaining application number and state of each node
in the dependency graph Dep (in short, the current dependency graph). The
color of the nodes (e.g. nq44s) of Dep represents the state of the corresponding
GT rules (r444s5), green (dark) background for enabled, grey (light) for dis-
abled. The number near each node is the remaining application number (e.g.
Haddis = 3).

In the course of design space exploration, the next GT rule, which is applied
(radds in the example) is selected from the set of enabled rules. The application

14 Abel Hegediis, Akos Horvath, and Déniel Varré

Fig. 10 Executing an operation and its effects on the dependency graph

has the following effects on the models: (a) model M changes according to the
rule definition (here, a new server S is added to cloud C' M), the new model is
illustrated as M’ (b) the #4445 is modified to represent that the rule is applied
(it decreases from 3 to 2) (c¢) Dep is also changed to Dep’, as #4445 decreased
and the applicability of GT rules may change (here r,44pp becomes enabled).
The design space exploration then continues from M’ by selecting a rule based
on the dependency graph Dep'.

Note that both the Petri net abstraction and the dependency analysis of
rules are techniques more tailored for design problems with dynamic creation
and deletion of elements. While they can be applied in special problems where a
graph-based model is used but the operations do not create or delete elements,
they may be less efficient in guiding the exploration.

6 Guidance
6.1 Overview of Cut-off and Selection Criteria

Cut-off and selection criteria are used as guidance to decide in which order
the states of the design space are explored. We define formal criteria over the
current dependency graph, which are evaluated to support decisions:

Definition 15 (Cut-off criteria) A cut-off criterion is a function cut :
(DS, Dep) — bool, where DS is the design space and Dep is the current
dependency graph, which returns true if further exploration from the current
state Geyrr of DS cannot lead to a goal state with a compliant trajectory.

When a cut-off criterion returns true, the exploration continues from an-
other state instead of executing an operation in the current state.

A model-driven framework for guided design space exploration 15

Definition 16 (Selection criteria) A selection criterion is a function sel :
(DS, Dep) — Op, where DS is the design space and Dep is the current depen-
dency graph, which returns an ordered list of operations that have activations
in the current state Gy of DS.

A given rule r; is placed before an other rule r;, if the execution of r; is
more promising, based on Dep and the current state, than the execution of r;.

6.2 Criteria for Guided Design Space Exploration

We used the following cut-off and selection criteria [20], which are meaningful
when dealing with guided DSE.

— Non-compliant path (Look-ahead) cut-off criterion. If the application of any
GT rule would make the current execution path non-compliant with the
occurrence vector, it can be cut.

— Permanently disabled rule cut-off criterion. The current path can be cut if
there is a disabled rule, which still has to be applied based on the occurrence
vector, but rules that may enable it will not be applied.

— Independent rule application selection criterion. Applicable rules with no
forward dependency should be applied as early as possible to reduce the
number of different applicable operations later in the trajectory.

— Maximal forward-dependant application path selection criterion. Among
the applicable rules at any given state of the exploration, the rule that
affects more applications should be applied earlier in the trajectory.

The criteria defined over the dependency graph are evaluated at every state
using an algorithm described in [20] (interpret hints challenge). The main steps
of the algorithm are: (1) a starting point is selected from the criterion, (2) the
list of nodes satisfying the starting point are created, (3) the operations of the
criterion are applied on each node and (4) the result is assembled as a boolean
value (cut-off criteria) or an ordered list of rules (selection criteria).

7 Exploration Strategy

Guided exploration strategies can be categorized by the used hints and guid-
ance. We specified two guided strategies (see 7 the first uses occur-
rence vectors only as hints (occurrence), while the other uses rule dependency
as well (full guidance). Note that the full guidance strategy uses rule priori-
ties only if two labeling rules were evaluated as equal by the guidance. These
strategies are compared to the fixed priority depth-first search strategy.
Figure 12] illustrates the design space exploration for these techniques on
a simple example. The circles denote the traversed states which are numbered
according to the traversal order, while the applicable rules are listed beside
them. Downward arrows illustrate rule applications, while upward (and dotted)
arrows represent backtracking from invalid or cut-off states. The same rule can

16 Abel Hegediis, Akos Horvéth, and Déniel Varré

. Used hints
Exploration strategy —
Rule dependency |Occurrence vector |Rule priority
Fixed priority No No Yes
Occurrence No Yes No
Guided
ut Full guidance Yes Yes Yes

Fig. 11 Comparison of exploration strategies by used hints

be applied multiple times at a given state if more than one applicable match
is found in the graph (see state 2 on the right side). The termination of the
exploration is done based on the evaluation of found solutions. In a very simple
case, we terminate if the path leading to the last found solution contains a
total number of rule applications equal to a problem-specific limit (i.e. it is
the shortest trajectory to a solution model).

Note that many other, more complex termination techniques are possible,
for example by extending labeling rules with costs and terminating when so-
lutions identified by a total cost less then a predefined limit are found [55].
Additionally, in DSE it is often required to provide multiple solutions and
apply an evaluation on the quality of these afterwards. This evaluation may
define quantitative goals instead of simple boolean function, e.g. in the case
study it would be possible to count the number of components, evaluate pos-
sible redundancy structures or optimize resource usage (if such information is
added to the model). Finally, similar evaluation is done in flexible CSPM [23],
where hard and soft goals are defined and solutions have to (i) satisfy all hard
goals and (ii) their quality is calculated as a linear function on the weight of
the fulfilled soft goals (similarly to weighted CSP).

/ Fixed priority \ (" Occurrence \(Full guidance\
P1<P,<Ps3 ry, rsrs ry, o, 3
c=1{0,2,1} c={0,2,1}

{r., rz}

Fig. 12 Comparison of exploration strategies

Comparison of exploration strategies In the case of the fized priority strategy,
the next applied operation is the one with the highest priority among the
applicable ones. In the example, first 1 is applied then r. From state 2, first
r1 is applied leading to state 3 without applicable rules. After backtracking,
r3 is applied instead. Note that after this point all reachable states from state

A model-driven framework for guided design space exploration 17

2 and state 1 are explored before trying 7o in state 0 (which finally leads to an
optimal solution). Moreover, as the depth-first technique is used in the fixed
priority exploration strategy, the first solution found by that strategy is often
several times longer than the optimal, suboptimal solutions are used as depth
limits to force the exploration to find shorter solutions.

The occurrence strategy applies operations based on the occurrence vector
provided by the system analysis. The example in shows that 7o
should be applied twice and r3 once. Therefore, r1 is not applied in state 0
or 2 (highlighted) in order to be compliant with the occurrence vector. In
states 3 and 4, the exploration backtracks (as no more rule applications are
allowed by the vector) and then continues to find the solution in state 6.

The full guidance exploration strategy (illustrated in the right side of
takes the dependency relations between rules into account in addition
to the occurrence vector. Therefore, in state 1 (highlighted) it selects r3 for
the next application. Rule 75 is applicable on two matches in state 2, the first
leading to a dead-end state, while the second application leads to a solution
in state 4. Note that the selection in state 1 leads to a reduced traversed de-
sign space compared to the occurrence exploration strategy (reduce traversed
design space challenge).

8 Implementation Details

We implemented the first version of our model-driven framework for guided
design space exploration on top of the VIATRA2 model transformation frame-
work [22]. In this paper we present a new implementation architecture that
builds on the Eclipse Modeling Framework (EMF) (Section 8.1)). We also dis-
cuss the challenge of identifying recurring states during the exploration using
state encoding techniques (Section 8.2)).

8.1 EMF-based Impementation

The Eclipse Modeling Framework [48] has become a de facto standard mod-
eling representation in the Eclipse ecosystem. EMF provides metamodeling
capabilities and handles instance models, however it does not include model
transformation and model query support that are required for design space
exploration. In the following we describe the technologies that were integrated
to provide guided design space exploration over EMF models.

Metamodels and instance models. The metamodel of a domain is created us-
ing the Ecore metametamodel which defines the concept of EClasses (types)
and EReferences (relations). Based on the metamodel, EMF uses a generative
approach to provide capabilities to create, manipulate, store and load instance
models for the defined metamodel.

18 Abel Hegediis, Akos Horvéth, and Déniel Varré

Model-driven Guided Design Space Exploration
Exploration o Criteria
strategy >Cuicance > definitions
|
24 EMF-IncQuery |
— Rule engine
L7 1
Query Dependency
evaluation Desi *=> analysis
G (Condor)
|—> problem r
Transaction desarigticn Dependency e
handling graph
EMF ; A
ILP solver
Abstraction I—---> (CPLEX)

Fig. 13 Overview of the EMF-based guided DSE framework

Model queries for goals and global constraints. There are several tools avail-
able for querying EMF instance models, including EMF-Query2 [49], EMF
Search [50] and Eclipse-OCL [51]. We choose EMF-IncQuery [10], which is an
incremental query evaluation framework that uses the pattern matching tech-
nology (RETE network) of VIATRA2 over EMF models. Incremental evalua-
tion is important for the DSE framework for efficiency including evaluating
goals, global constraints, and operation preconditions in each state.

Operations. We define operations using EMF-IncQuery model query defini-
tions as preconditions and simple Java code for model manipulation that is
parameterized by the match of the precondition query.

For DSE, we need to efficiently manage the possible activations in an in-
stance model of an arbitrary set of operations that have model queries as
preconditions and to provide a common way for executing an operation with a
selected activation. EMF-IncQuery includes an event-driven rule engine (where
events are the incremental changes in query results) which supports the exe-
cution scenarios including the manual selection and execution of activations
required for DSE.

Backtracking and exploration. The EMF transaction framework supports the
execution of complex commands that are composed of a series of primitives
(such as create, add, remove, set) and are undoable or redoable as required.
The transaction handling is used by creating composite commands for each
operation execution. These commands can be undone when the exploration
backtracks.

Dependency graph and criteria evaluation The representation of the depen-
dency graph uses EMF and was developed to be independent from the repre-
sentation of instance models. The criteria definitions and the criteria evaluation

A model-driven framework for guided design space exploration 19

algorithm (guidance) are implemented in Java as separate components, and are
connected to the guided design space exploration strategy. Therefore, it can be
used with the EMF-based DSE implementation. However, we do not have an
automated way of inspecting the simple Java code to perform the abstraction
from transformation rules to Petri Nets. Note that the precondition queries
can be evaluated automatically as the query language of EMF-IncQuery is
declarative and query specifications can be processed as models. We used the
industry leading IBM CPLEXE| optimization tool, which supports the calcula-
tion of alternate solutions (occurrence vectors used for initializing the depen-
dency graph). The edges of Dep are computed from the transformation rules
using the Condo:ﬂ dependency analyzer tool.

8.2 State Encoding Techniques

The exploration may encounter the same model state on different trajectories
and has to identify such states in order to avoid the re-exploration of states
reachable from that state (see Step 6.a in . In the graph transition
system illustrated in several states are reached through different tra-
jectories, for example by adding a server or a cluster on the same middleware
in different order.

8.2.1 Identifying Recurring States

Recurring states can be identified by iterating through each already visited
state in the search space and comparing the current state to them. However,
there are multiple reasons that make this approach infeasible:

— The exploration is performed over a single instance model and (a) it would
have to be copied in each explored state for comparison (infeasible for mem-
ory limitations) or (b) each comparison would require the re-exploration
of each explored state (infeasible for runtime limitations).

— Model comparison itself as a single operation is also challenging and often
slow.

— The complete search space does not fit into available memory, therefore
fully explored parts of the search space are deleted to free up memory for
the part that is explored currently.

Due to these limitations, we need to represent the current state of the
exploration in a concise way that can be stored and efficiently compared to
previously stored states. The concise representation of the current state is
called state encoding, while the result for a given state is called the state code.

In the following we describe the challenges in state encoding and present
possible techniques that can be used for DSE.

1 http://www.ibm.com/software/integration/optimization/cplex-optimizer/
2 http://roots.iai.uni-bonn.de/research/condor/

http://www.ibm.com/software/integration/optimization/cplex-optimizer/
http://roots.iai.uni-bonn.de/research/condor/

20

Abel Hegediis, Akos Horvéth, and Déniel Varré

8.2.2 Challenges of State Encoding

There are a number of challenges related to the specification of state encoding
methods:

Deterministic: applying the encoding to the same state must always re-
sult in the same state code.

Under-approximating: if two different states have the same state code,
then each solution reachable from one state is reachable from the other as
well.

Fast: the time to calculate the state code for a given state and check
whether it was already explored should not be orders of magnitude slower
than one iteration of the search process (see [Section 3).

Minimal: state codes should not contain redundant information or data
that is common in all state codes. This is important as the DSE framework
has to store a large number of state codes.

8.2.3 Comparison of State Encoding Techniques

We developed several different state encoding techniques for the DSE frame-

work, which are compared in

State encoding Op | Oplncr | Mod | ModFull Ind | Indincr
Metamodel dependent Yes No

State information Operations Instance model

Incremental calculation No | Yes No | Yes
Precision Partial Full

Fig. 14 Comparison of state encoding techniques

The state encoding techniques are classified along the following aspects:

Metamodel dependent state encoding techniques (Op, Oplncr, Mod and
ModFull) are customized for encoding instance models of a given meta-
model, while the remaining techniques (/nd and IndIncr) can be applied on
an arbitrary metamodel. While the former techniques can take advantage
of the specific structure of the metamodel and provide faster computation
or smaller state codes, the latter are reusable in the framework for any
design problem description.

The information that identifies a state can be the operations that were
executed to reach the encoded state (Op and Oplncr) or the instance model
in the current state (Mod, ModFull, Ind, IndIncr). Techniques that use the
operations calculate state codes by evaluating the current trajectory from
the initial state and can identify equivalent trajectories. When the instance
model is used for encoding, the state code usually includes information on
each element in the model and the relations between them.

A model-driven framework for guided design space exploration 21

— Since the execution or backtracking of applying an operation involves model
manipulations that change only a small part of the model (or the trajec-
tory), it is possible to create incremental state encoding techniques that
update the state code of the previous state based on the change (Oplncr
and IndIncr). The other techniques perform the encoding without prior
knowledge of the previous state, state code or the last change and calcu-
late the state code only from the current state (Op, Mod, ModFull and
Ind).

— Finally, some techniques are only partially precise (Op, Oplncr and Mod),
which means that they can associate the same state code to states that are
significantly different and depending on the design problem description,
they may violate the under-approximating challenge of state encoding. On
the contrary, there are techniques that are fully precise (ModFull, Ind and
IndIncr) and will ensure that two states will only have equal state codes if
the states themselves are also equal.

Instance model 1 E Partially precise state codes
1
1

:_w : . Op,| ”addCM,addcm | :_ :

| F>0plncr|addCl(CM),addCl(CM)”| € |

| e |
I Mod["CI(CM;CM),CM(O;O)”]: I

["allemoem-o),emio-cro-cly’] [“ciiem-0;em-0),emo-cicl;o-0)]

1
| Fully precise state codes ~ ModFull, Ind, Indincr

Fig. 15 State encoding example

illustrates the state codes calculated by the different state en-
coding techniques we listed in[Figure 14] The two instance models on each side
contain two middleware and two cluster nodes, but on the left the clusters are
on different middleware nodes, while on the right they are on the same one.
Techniques that are only partially precise associate the same state code for
the two instance models.

Operation-based encoding. Techniques Op and Oplncr take the execution of
operations in the trajectory and encode them in a sorted list. This means that
if two trajectories include the same operations in different order, then the two
states have the same state code. The state code also includes the activation
of each operation as well. However, if the specific elements in the activation
are used, then equal states will get different state codes, since a cluster node
created by one application of the addC/ operation will be different from the
one created by another application of the same operation. On the contrary,
if only the types of nodes are used, then the encoding will only be partially

precise, as illustrated by

22 Abel Hegediis, Akos Horvéth, and Déniel Varré

Partially precise model encoding. The partially precise technique Mod uses
the instance model for encoding. It stores the type of each element and the
type of the elements that are targets of deployedOn relations to the given ele-
ment. For example, the instance models in contain two cluster nodes
deployed on middleware nodes, which is encoded as CI(CM;CM). Further-
more, the middleware nodes are not deployed on any nodes, which is encoded
as CM(0;0). Note that the state code of both instance models is the same
although they are clearly different. That is why we specify the fully precise
state encoding technique ModFull.

Fully precise model encoding. The ModFull technique extends Mod by identify-
ing that storing the deployedOn relations only in one direction leads to partially
precise encoding. To ensure that instance models with the same state code are
truly structurally the same, state codes calculated by ModFull include the in-
verse of deployedOn relation as well. This means that for each element, the
state code will include the types of elements that are deployed on the given
element. Therefore, the state code for the instance model on the left side of
will include CM (0 — C1;0 — C1), while the same part for the right
side will contain CM (0 — CIC1;0 — 0).

Metamodel independent encoding Finally, all the above techniques were cus-
tomized for the metamodel of the cloud case study, but we can also define
techniques that calculate state codes for instance models of arbitrary meta-
models, as long as the metamodels themselves are also available at the time
of the encoding. The technique Ind calculates the state code of an instance
model by taking each element and finding their type in the provided meta-
model. Then the possible relations for the given type and their inverses are
encoded similarly to ModFull. Instead of iterating through each element every
time the state encoding is performed, the incremental technique IndIncr stores
the partial state codes corresponding to the elements in the instance model
and updates these stored values based on the model changes related to the
execution or backtracking of an operation. This incremental approach can add
a bit of overhead for handling model changes but also means that calculating
the state code takes less time.

9 Evaluation of the Approach

We evaluate our model-driven framework for guided design space exploration
in four different measurement scenarios. Apart from synthetic benchmarks
(1,3 —4), we also evaluate a real application of guided DSE (2).

1. First, we demonstrate that the full guidance strategy can be more efficient
than the other strategies (namely, fixed priority and occurrence, which we
used for previous measurements in [23]) as it traverses considerably fewer
states and does not introduce significant overhead, thus provides better
runtime in most test sets than the other approaches.

A model-driven framework for guided design space exploration 23

2. Next, we evaluate a different kind of guided exploration that uses local vio-
lations of structural constraints to generate quick fixes for domain-specific
modeling languages and demonstrate that the added information makes the
approach feasible in a live modeling scenario, unlike exploration without
guidance.

3. We compare the different state encoding techniques on the cloud case study
and demonstrate that by identifying equivalent states they allow the ex-
ploration to scale to larger design spaces.

4. Finally, we show our initial results with an EMF-based implementation of
our framework and compare it to the existing VIATRA2-based framework.

In each scenario, we introduce the test sets used in the evaluation and the
environment and method used for the measurement, then we evaluate the re-
sults. The reader is directed to [23] for comparison of (the previous version of)
the DSE framework with other tools (e.g. SICStus Prolog CLP(FD), KORAT
and GROOVE).

9.1 Scenario 1: Dependency Graph Guided Exploration
9.1.1 Test Sets Used in the Evaluation

For evaluation, we used the cloud case study presented in and
a service configuration case study (presented in [55]). These cases are rele-
vant in the context of model-driven DSE as they represent both design time
and runtime exploration problems, respectively, and it allows comparison with
previous results [55] 23].

Both case studies included multiple test sets (see . PowerOn
test sets deal with empty initial models, while Reconfigure test sets deal with
existing models which must be modified to satisfy goals. In the cloud test sets,
the goals describe the number of required components (e.g. 2 applications and
2 storage in PowerOn Small). Furthermore, global constraints are raised to give
some limit to the priority based strategy (e.g. a cloud middleware should have
at most 100 nodes installed). Finally, the Clustered Database test set requires

databases to be deployed on clusters (see [Figure 6]).
In the service configuration test sets, the models represent a set of services

that are reconfigured runtime (e.g. removing faulty or starting new instances)
to meet some QoS requirements. The constraints in these test sets define the
maximum number of services, while goals describe the number of active ser-
vices and that faulty services are removed.

The size of the models are given after the name of the problem, in the
cloud test sets the required applications and storage subsystems, while in the
service test sets the maximum number of services, faulty and active services
in the initial model and active services in solutions.

24 Abel Hegediis, Akos Horvéth, and Déniel Varré

9.1.2 Evaluation Environment and Method

The evaluation was carried out 5 times for each test set and strategy in the
following Wayﬁ (1) the initial model is loaded into VIATRAZ2, (2) the goals,
constraints and operations are added to the framework, (3) the exploration
component is initialized and runtime measurement is started (using wall time
with OS-level nanotime precision). Next, (4) the design space exploration
framework looks for an optimal solution. Finally, (5) the runtime measure-
ment is stopped and the results are saved. The exploration is limited to 1
million visited states.

9.1.3 FEvaluation of Results

The table in shows the results of measurements using the case study
models. For each test set, we measured the average length of the shortest dis-
covered solution trajectory (the number of applied rules), the average number
of visited states during the design space exploration and the average runtime
of the exploration.

Exploration Optimal trajectory Visited Runtime

Problem strategy found [length] states [ms]
1) PowerOn |Fixed priority 23 205393 | 108 408
g 1 Small Occurrence 23 715 676
) (2/2) Full guidance 23 23 77
47 PowerOn |Fixed priority 66 154669 | 94902
g 2 Large Occurrencet - - -
£ (5/5) |Full guidance 56 56 147
_g Clustered |Fixed priority 28 662425 | 360418
o 3| Databases |Occurrence 27 39096 | 22444
© (5/5) |Full guidance 27 6543 | 4533
Reconfigure |Fixed priority 5 372 451
g 4 Small Occurrence 5 52 271
= (8/2/1/3) [Full guidance 5 5 170
g g Reconfigure |Fixed priority 9 34639 | 17312
¢ oo|5| Medium [Occurrence 9 1475 1318
& €| | (15/3/5/8) |Full guidance 9 607 759
8 Reconfigure |Fixed priority 21 441640 | 203122
g 6 Large Occurrence 21 716671 | 359 152
(20/8/0/8) |Full guidance 21 558976 | 268042

Fig. 16 Results for exploration until optimal solution (f denote test sets where exploration
did not terminate in all tests)

3 For measurements we used a computer with Intel Centrino Duo 1.66 GHz, 1.5 GB
memory (Java heap size), Windows 7 Professional 32 bit, Eclipse 3.6.1, VIATRA2 3.2

A model-driven framework for guided design space exploration 25

We made the following observations based on the results from the different
cases:

Find optimal solution. We observed that the usage of occurrence vectors as
hints in the exploration ensures that the first solution found by such strategies
is optimal as well (optimal solutions challenge). In our observations, the fixed
priority strategy, finds longer solutions first and traverses a large number of
states even in case 4 (which is the smallest), before finding an optimal solution.

Low overhead of criteria evaluation. The evaluation of cut-off and selection
criteria is performed at every new traversed state, and it might (in principle)
slow down the exploration considerably. However, our observation is that cri-
teria evaluation has very low overhead (less than 5% of the overall runtime).
The full guidance strategy requires some initial bookkeeping (building depen-
dency graph and initializing criteria), but afterwards, it traverses 1000 states
in roughly 600ms (similarly to the other strategies).

Rule dependency increases efficiency. In all test sets, the full guidance strategy
traverses significantly fewer states than the occurrence strategy. Note that the
only test set when the fixed priority strategy traverses less states is test set 6,
where the occurrence vector is recalculated at least 20 times before finding a
feasible solution.

It is important to note that in these test sets, the full guidance approach
outperforms the occurrence strategy by identifying infeasible occurrence vec-
tors with less exploration. illustrates how the number of traversed
states for these two strategies when exploring infeasible occurrence vectors in
test set 5. The graph clearly shows that the full guidance strategy explores half
of the states in average that the occurrence does. Note that in test set 2, the
occurrence strategy did not find a solution inside the limit in some instances.

Visited 1600

states)
1200

800 /’ ‘

400

1
1 2 3 4 g 6 7 Occ. vec.
=4=0ccurrence ==Full guidance

Fig. 17 Reduction in visited states by the full guidance strategy

26 Abel Hegediis, Akos Horvéth, and Déniel Varré

To sum up the results of the evaluation, we observed that:

— The combined use of occurrence vectors and rule dependency for cut-off
and selection criteria based guidance outperforms our previously published
strategies [23]. The full guidance strategy finishes in less time than (1) the
occurrence strategy in all 6 test sets (with at least 25%) and (2) the fixed
priority strategy in 5 out of 6 test sets (with at least 60%).

— The added computation required for criteria evaluation increase runtime
only by 5% in average.

— The under-approximation of the occurrence vector based analysis ensures
that guided exploration strategies always find optimal solutions first.

9.1.4 Limatations

Our guided DSE relies on the quality of the hints provided for the design
problems. This may be a limitation in the following cases: (1) if the occur-
rence vector is infeasible and it includes a large number of rule applications
(similarly to test set 6) and (2) if the dependency graph (Dep) is close to
a complete directed graph, the guidance of the cut-off and selection criteria
is less effective. Finally, a large Dep (in case of large set of operations) may
increase the overhead of criteria evaluation.

9.2 Scenario 2: Quick Fix Generation for Domain-specific Modeling
Languages

9.2.1 Test Sets Used for the Evaluation

We defined the generation of quick fixes that correct inconsistencies in domain
specific models as a design space exploration problem in a previous paper [21].
In this scenario, the initial state of the exploration is an instance model con-
taining a number of inconsistencies. The operations are elementary model ma-
nipulations that preserve syntactic correctness (by e.g. syntaz-driven editing).
The goal of the exploration is to eliminate the inconsistencies corresponding
to a given model element e without introducing additional inconsistencies into
the model.

We use the Business Process Model And Notation (BPMN [34]) as an
illustrative case study. BPMN is a well-known and widely used standard,
flowchart-like notation system for specifying business processes. We evaluate
the approach on two real BPMN projects, obtained from an industrial part-
ner from the banking sector. One project is a corporate customer registering
workflow, composed of five processes and approximately 250 model activities
in total. The other project is a corporate procurement workflow, composed of
three processes and around 70 model activities.

In [21] we presented a guided exploration strategy that uses the inconsis-
tencies in the model as hints for the selection criteria. In each iteration of the
search process, each model element included in the inconsistencies that also

A model-driven framework for guided design space exploration 27

include the selected model element e are collected into a set V. Then the pos-
sible activations of the operations are collected and only those activations that
include an element in V' are selected. Between those activations, we use simple
priorities for each operation. Since the execution of the operation modifies the
model, the set V' may change.

To demonstrate that this guidance increases the efficiency of the explo-
ration, we use a breadth-first search exploration strategy that only uses pri-
orities and imitates a fixed quick fix strategy encoded into a development
environment. We show that the guided strategy finds possible quick fixes in
less time and thus makes our approach applicable as an assistance for model
editing.

9.2.2 Evaluation Environment and Method

The evaluation was carried out by adding inconsistencies to each process and
running the quick fix generation approach independently. We performed mea-
surementd] five times for each test set including different total and local num-
ber of inconsistencies in the model.

The measurement of a given test set was done as follows: the inconsistent
BPMN model is loaded into VIATRAZ2, the inconsistency rules and operations
are added to the framework, the DSE framework is initialized and time mea-
surement is started. Next, the exploration looks for three different solutions
and gathers them in a list, once it is done the time measurement is stopped.
Finally, the results are saved and the framework is disposed to return the envi-
ronment to the initial state. We limited the measurement to 300000 states for
test sets with one local inconsistency and 1000000 states for other test sets.

9.2.3 Fvaluation of Results

The table in shows the results of our measurements using the case
study models (with the size of the models given under their name). For each
model we measured the performance for the given number of total and local
inconsistencies. For each test set, we measured the number of visited states
and the time of quick fix generation for both the guided and BF'S exploration
strategies. Finally, measurement results are given with the mean values along
with deviations.

We made the following observations based on the results from the different
models:

One local violation (#1—2,5—10,13—16) In these test sets the guided strategy
generated quick fixes in less than 2.2 seconds in all test sets except #14, where
finding three different solutions takes 19 seconds. However, the BFS strategy

4 All measurements were carried out on a computer with Intel Core i5 2.3 GHz processor,
2.5 GB DDR3 memory (Java heap space), Windows 8 Professional 64 bit, Eclipse 3.8, BPMN
1.2, VIATRA2 3.3

28 Abel Hegediis, Akos Horvéth, and Déniel Varré

Model Guided BFS with priority

Project 4 (N/E/S/P) IV(M)| |Ve(M)]| TIms] Dr S Ds| T[ms] Dr S Ds

| 1] Delivery 1 1 251 0,10| 140 0,00] 5271]0,04] 5621 [0,00

§ 2 (8/8/0/2) 1 1 219 0,11 109 0,000 4196 |0,03| 2814 [0,00
E | 3| PurchaseOrder 5 3 73879 |0,03| 51460 (0,00 - - - -

é 4 (14/15/0/1) 5 2 979 0,45/ 330 0,01 12010 |0,04] 9572 [0,00

E | 5| PurchaseRequest 3 1 159 0,06 96 0,000 3440 |0,01] 2926 |0,00

6 (13/13/0/3) 3 1 78 0,01 107 0,01] 1749 0,35 2916 [0,00

| 7] Macro 5 1 301 0,41 133 0,00] 4533 |0,11| 3328 [0,00

8 (16/12/4/1) 5 1 242 0,07 206 0,00] 2665 |0,05/ 3318 [0,00

5 |9 Soliciting 4 1 666 0,15| 261 0,00/ 8881 |0,13| 4810 [0,00

% 10 (20/25/0/1) 4 1 2114 |0,05| 855 0,02| 225277 |0,19| 111489 [0,18
E 111 Instructing 13 2 172378 (0,20| 92245 |0,00 - - - -
ﬁ 12 (40/45/2/1) 13 3 748179 |0,06| 340090 |0,00 - - - -

% 113 Deciding 3 1 544 0,13 113 0,00 3857 |0,03] 2810 |[0,00
3 |14 (9/10/0/1) 3 1 18965 [0,02| 13289 |0,00 - - - -

115] Contracting 9 1 407 0,12 49 0,00] 5407 |0,04] 5496 [0,00

16 (36/43/2/1) 9 1 1117 |0,05 158 0,00| 12608 |0,02| 5511 [0,00

Fig. 18 Quick fix generation for DSMLs (N/E/S/P: no. of nodes/edges/subprocesses/
pools, |[V(M)|: total number of violations, |Ve(M)|: no. of violations for selected element, T
time [ms], Dr: standard deviation of time, S: no. of visited states, Dg: standard deviation
of visited states)

performs at least one order of magnitude slower in most test sets. In test set
#10 the exploration takes more than 100 seconds, while in test set #14 it is
unable to find three solutions within the measurement limits.

Locality (#5,12,14,15) The higher number of local violations for the selected
element leads to slower fix generation, while the total number of violations in
the model does not affect the performance significantly. For example, finding
three solutions for test set #3 takes more than one minute and the exploration
of more than 50000 states with the guided strategy, while in test set #12 the
exploration takes more than 12 minutes. However, we found that even with
complex DSMLs such as BPMN visiting one state only takes between 2ms and
4ms, independently of the number of states explored before (at least in the
scope of the measurements this held).

Model size (#3,10 — 12,14) The guided strategy is less sensitive to the size
of the instance model than the BFS strategy. This is a direct consequence
of our guided approach, which applies operations on elements specified by
local violations. The operations have a higher number of activations in larger
models, which means that the BFS strategy has to try each activation, while
the guided strategy can focus on local modifications.

To summarize, it is feasible to generate quick fixes for DSMLs with the
guided strategy, in most cases without interrupting the editing process (i.e.
with a response within 3 seconds). However, exploring the same design space
with a simple BFS strategy is much slower and often infeasible.

A model-driven framework for guided design space exploration 29

9.2.4 Limitations

The guided exploration strategy of the quick fix generation assumes that each
well-formedness constraint includes all elements in the violations that are re-
lated to the constraint violation. Additionally, if the set of possible operations
is not representative of the model editing of the domain, then the quick fixes
found by the exploration may not be helpful to the user (e.g. if the quick fix
consists of deleting the neighborhood of the selected element).

9.3 Scenario 3: State Encoding Techniques
9.3.1 Test Sets Used for the Evaluation

We used the cloud case study metamodel for comparing the different state
encoding techniques detailed in Sec. The design space exploration uses
the same set of operations as before, but we have removed the goals and
any guidance from the design problem description to be able to measure the
performance of the encoding techniques by exploring the complete design space
of the cloud case study to a specific depth.

9.8.2 Fvaluation Environment and Method

The evaluation was carried out using the EMF-based implementation archi-
tecture by starting the exploration from the empty model and traversing all
reachable states with a depth-first search that has limited dept}ﬂ Each mea-
surement was performed at least 10 times for each encoding technique.

9.3.3 FEvaluation of Results

We present measurement results for the number of different visited states in
the design space to a given depth (Figure 19) and the total time the exploration
took to traverse the complete design space to a given depth (Figure 20f).

Number of visited states
Search depth 4 7 10 13 16 18
Without state encoding 33 [4508 | 1990528 - - -
Partially precise (Op, Oplncr, Mod) | 25 | 231 1131 3872 | 10557 | 18820
Fully precise (ModFull, Ind, IndIncr) | 25 | 327 2567 14429 | 64 444 | 158 818

Fig. 19 Visited states by depth first search

We made the following observations based on the results in for
the different encoding techniques:

5 All measurements were carried out on a computer with Intel Core i7 3.4 Ghz processor,
2.5 GB DDR3 memory (Java heap size), Windows 7 Professional 64 bit, Eclipse 4.2

30 Abel Hegediis, Akos Horvéth, and Déniel Varré

Often recurring states. We found that while the exploration traverses almost
2 million states even for a depth limit of 10, the number of different state codes
is orders of magnitude lower, 1131 for the partially precise techniques and 2567
for the fully precise techniques. This also shows that most of the operations
in this case study can be performed in different order and still reach the same
state (similar to the interleaving of concurrent events in distributed systems).

Scaling to deeper search. We can see that while the number of visited states
increases super-exponentially, the number of different states scales well even
to a 18 depth. As discussed, the state codes are kept in memory while most of
the search tree can be disposed during a depth-first search. This means that by
identifying equivalent states, the memory needs of the exploration are lowered
while the possible depth of the exploration is increased.

dep 4 0

Without state encoding | 27(0) 637(0) [271138(0) - - -

Op 22(1) 53(5) 192(14) | 633(54) 1830(175) 3371(349)
Oplncr 19(1) 45(4) 186(12) | 618(32) 1713(75) 3139(133)
Mod 24(3) 55(7) 197(27) | 698(110) 1995(348) 3 704(685)
ModFull 25(4) 74(12) | 481(91) | 2849(634) | 13710(3 415) | 35537(9371)
Ind 27(7) 88(33) | 712(326) |4744(2518)|25 381(14 925) | 70 340(43 642)
Indincr 28(3) 75(12) | 533(94) | 3139(626) | 15012(3 341) | 38 923(9 226)

Fig. 20 Exploration and encoding time with different state encoding techniques

We also evaluate the results on the exploration time for the different tech-
niques, shown in [Figure 20)

Low overhead for state encoding. While the application of a state encoding
technique means that the state code is calculated in each state, this calculation
does not cause considerable overhead. Combined with the fact that most of
the design space is not explored when a state is identified as a recurring state
means that the total time of the exploration is much lower than without using
encoding.

Reusable encoding techniques. We can see that using a metamodel dependent
encoding technique (ModFull) can be twice as fast as a metamodel independent
technique (/nd). On one hand, by defining the encoding on the specific meta-
model, it is possible to take into account the characteristics of such instance
models and optimize the encoding accordingly. On the other hand, a meta-
model independent technique is reusable without modification for any design
problem description while still performing in the same order of magnitude.

Incremental techniques. We found that updating the state codes incremen-
tally results in a faster state encoding even with the increased overhead on
changes. While in the case of operation encoding (Oplncr) the gain is mini-
mal, incremental encoding of the instance model (/ndIncr) can be almost twice

A model-driven framework for guided design space exploration 31

as fast as calculating the complete state code each time (/nd). The difference
in gain is caused by the fact that even in greater depth, the length of the tra-
jectory (the number of operations) is quite low, while the size of the instance
model can get larger. The incremental model encoding would be especially
useful when the initial state already contains a large instance model, while the
model modifications of a given operation execution is relatively few.

9.3.4 Limitations

Four out of the total six state encoding techniques were specifically developed
for the case study used for the evaluation. Therefore state encoding techniques
that follow similar approach may not work well for different metamodels or
problems. Additionally, the test sets used in the measurements did not in-
clude industrial size models, therefore the scalability of the techniques is not
measured with regards to model size. It is possible that only an incremental
technique would be acceptable in such cases.

9.4 Scenario 4: VIATRA2-based versus EMF-based Implementation
9.4.1 Test sets used for the evaluation

The comparison between the VIATRA2-based and EMF-based implementations
of the DSE framework uses the cloud case study as well. Similarly to the first
scenario, the exploration is performed with different goals. In the Clustered DB
Small and Clustered DB Big test sets, the goal is to have two or three database
nodes deployed on clustered servers, with an optimal trajectory consisting of
9 or 13 operations, respectively. In the Simple Power On test set, the goal
is to have one application and one storage node deployed, with an optimal
trajectory consisting of 14 operations.

9.4.2 Evaluation Environment and Method

The main goal of the measurementsﬁ was to get an overview about the per-
formance characteristic of the simple EMF-based solution opposed to the ViI-
ATRA2-based one. Both engines used a depth-first search exploration strategy
and were executed without guidance and also with priorities. Note that state
encoding is not used in these measurements.

Each test set was measured multiple times and recorded the length of the
shortest solution found and whether it is the optimal one, the number of visited
states for the given exploration (with a limit of 500000 states) and the total
runtime of the exploration (in milliseconds).

6 All measurements were carried out on a computer with Intel Core i5 2.5 GHz processor,
2.5 GB DDR3 memory (Java heap size), Windows 7 Professional 64 bit, Eclipse 4.2

32 Abel Hegediis, Akos Horvéth, and Déniel Varré

9.4.3 FEvaluation of Results

Fig. [21| presents the measurement results for the three scenarios.

Shortest trajectory Visited Runtime
found [length] states [ms]

Problem Exploration strategy

VIATRA2 no guidance 9 (optimal) 435217 | 42968
Clustered|EMF no guidance 9 (optimal) 421588 | 77056
DB Small |VIATRA2 priority 9 (optimal) 206864 | 21056

EMF priority 9 (optimal) 207893 | 35141

VIATRA2 no guidance 15 500000 | 50612
Clustered|EMF no guidance 14 500000 | 99244

DB Big |VIATRAZ2 priority 16 500000 | 59176

EMF priority 16 500000 | 100521

VIATRA2 no guidance 16 500000 | 51085

Simple |EMF no guidance 15 500000 | 102 652
Power on|VIATRA2 priority 16 500000 | 55151
EMF priority 16 500000 | 110294

Fig. 21 Comparison of VIATRA2-based and EMF-based implementation

Our key observations from the results are the following:

Similar functionality. In all test sets, the shortest trajectory leading to a so-
lution and the number of visited states is very close in both implementations.
This shows that the DSE framework can be realized using different model rep-
resentations and technologies. The slight difference between the results is due
to the fact that there is random choice in the selection of the next activation.

Slower transaction handling. The exploration time is about 1.5—2 times longer
for the EMF-based solution than it is for the VIATRA2-based one. Based on
further profiling, it is clear that the transaction handling of the VIATRA2
framework, that is specifically designed for model transformations, is much
more efficient than the EMF Transactions framework (based on the times
spent in the lock/unlock/commit calls during transaction handling). Addi-
tionally, change propagation in EMF about model manipulations involves a
lot of operations with collections and those increase the exploration time.

9.4.4 Limitations

The EMF-based solution is only a proof of concept at the current state of
development which needs further optimization and incorporation of additional
techniques in order to reduce the state space and cut off unnecessary branches
in the search tree. A more efficient transaction handling or just simply an
efficient operation redo functionality (as there are no parallel access present
which would require transactions) in EMF model management would result in
better performance characteristics.

A model-driven framework for guided design space exploration 33

9.5 Summary

We selected these scenarios when evaluating our DSE framework to measure
the applicability and performance from different perspectives. To summarize
our main observations are:

— The results of the guided exploration using a dependency graph showed
that our criteria-driven approach can reduce the design space further thus
increasing the efficiency of the exploration, while also ensuring the optimal
solutions are found early .

— The quick fix generation for BPMN processes is a real application that
demonstrated that a guided approach can support the editing process by
acceptable response times (Section 9.2]).

— The evaluation of state encoding has shown that the application of en-
coding techniques can reduce the number of visited states far more than
the overhead that their calculation adds to the overall exploration runtime
(Section 9.3)).

— Finally, the comparison between the new EMF-based architecture and the
previous, VIATRA2-based implementation indicates that the framework can
be applied to offer DSE over EMF models (Section 9.4]).

It is important to note that in each scenario we also identified certain
limitations (Sections [9.1.4}}9.2.4)9.3.4 and [9.4.4]) that require future work and
additional evaluation on other case studies to further enhance the described
exploration strategies and techniques.

10 Related Work

Model-driven guided design space exploration implemented over graph trans-
formations is a novel idea in the field, however, similar approaches are not
unprecedented in a broader research scope as described below.

The formal foundations of model-driven DSE used in our approach is de-
scribed in [23]. In our previous work, [55] introduces the usage of occurrence
vectors for hints in the optimization of GT systems, while [20] defines the
dependency graph and the evaluation algorithm for arbitrary cut-off and se-
lection criteria. We introduced the concept of quick fixes for DSMLs in [21].
Finally, this paper extends our ASE 2011 paper [22] that introduced the design
of the guided DSE framework and guided exploration strategies based on the
dependency graph as hint. The major contributions of the paper are (i) the
formal definitions of the concepts of guided design space exploration, (ii) the
new implementation architecture based on the Eclipse Modeling Framework,
(iii) the description of different state encoding techniques and (iv) a detailed
evaluation of our framework with multiple scenarios.

34 Abel Hegediis, Akos Horvéth, and Déniel Varré

10.1 Graph Transformation based Approaches

The approach in [I6] is similar to our approach as it also exploits the de-
pendencies between GT rules using critical pair analysis. Here, GT systems
are enhanced with control flow as well and the dependency information helps
in discovering possible runtime problems. Model checking approaches to an-
alyze GT systems are similar to our approach as they also perform state
space exploration. One can categorize them as compiled approaches such as
[44, 14], [6l, [41), [], which translate graphs and GT rules into off-the-shelf model
checkers to carry out verification, and interpreted approaches like [36] 3], 27],
which store system states as graphs and directly apply transformation rules
to explore the state space, similarly to our approach. They place emphasis on
exhaustive traversal (e.g. by optimizing the storage of individual states), while
we aim at finding solutions quickly using guidance and hints.

10.2 Model-driven Design Space Exploration Techniques

The DESERT tool suite [33] provides model synthesis and constraint-based
DSE for DSMLs with structural semantics using ordered binary decision dia-
grams for encoding and pruning the design space. [42] presents a generic DSE
framework extending upon DESERT by supporting arbitrary analysis tools
and includes model transformations for mapping design problems to interme-
diate and low-level formats.

The OCTOPUS Toolset [7] uses an intermediate representation for design
problem specification and performs DSE using integrated analysis tools. It has
been successfully applied to design software-intensive embedded systems [g].

The GASPARD Framework [17] is specifically focused on the design of mas-
sively parallel embedded systems and uses multilevel modeling where high-
level UML models are automatically refined to allow design space exploration
to evaluate performance characteristics through simulations.

These are all compiled approaches, where the design problems are speci-
fied as models and model transformations are applied to derive inputs for tools
that will execute the exploration. These tools are often specifically designed for
efficient exploration, however some information from the exploration (e.g. the
explicitly explored states) may not always be available or back-translatable.
On the contrary, we use model transformations as a way to perform the explo-
ration itself. We proposed using information from analysis tools to guide this
model transformation based exploration, which provides opportunity to apply
conceptually different methods for guidance (e.g. dependency analyzer).

An efficient design space exploration approach was also presented built
on the FORMULA framework in [24]. The design problem is described using
domain-specific languages, exploration is done with symbolic execution and an
SMT solver is used to check the satisfiability of a set of constraints generated
by the symbolic execution.

A model-driven framework for guided design space exploration 35

Schétz et al. [43] developed an interactive, incremental process using declar-
ative transformation rules for driving the exploration. The rules are modified
interactively to improve the performance of the exploration, which can be
considered as a guidance. However, the hints do not originate from analysis,
contrary to our approach.

[29] presents a framework for the automatic deployment of software com-
ponents to hardware architecture that uses design space exploration to find
deployment alternatives that offer near-optimal reliability characteristics. The
design problem consists of architecture models annotated with reliability-
relevant properties, while the exploration uses an evolutionary algorithm to
find possible alternatives. Similarly to our approach, global constraints prevent
the exploration of infeasible solutions.

10.3 Guided Design Space Exploration Techniques

Existing DSE techniques sometimes use guidance information to reduce the
number of alternatives that are evaluated.

Mohanty et al. [32] use “human in the loop” guidance in addition to sym-
bolic search techniques for finding candidates, which are then analyzed using
low-level simulation to find the final design. In [40], different chip design alter-
natives are evaluated using implementation specific information from earlier
designs (e.g. cycle counts and energy consumption) or estimates by experi-
enced designers. The hints are a collection of values, while guidance is used
for selecting optimal mappings. These approaches use hints and guidance for
reducing the design space, although hints originate from earlier experience or
human interaction, not formal mathematical analysis of the design problem.

10.4 Structural Constraint Solving

Structural constraint solving aims to find object graphs that satisfy given
constraints both on attributes and (object) structures by exploring a (usually)
bounded number of possible object graphs. The CUTE [45] framework uses a
combination of symbolic and concrete execution to derive path constraints for
each separate execution paths. Java PathFinder [56] is based on Generalized
Symbolic Execution that first introduced the use of model checkers for solving
structural constraints.

KORAT [13] performs specification based testing by using a predicate rep-
resenting the properties (constraints) of the desired output structures and
explores the input state space of predicates using bounded exhaustive testing.

In all of these approaches hints are given in the form of explicit bounds
on the size of the state space. However, they cannot restrict how solutions are
achieved from the initial model, meaning that no constraints can be defined to
hold on states visited during a solution trajectory. In our case it is supported by
global constraints and explicit rule definitions, thus resulting in fundamentally
different search strategies.

36 Abel Hegediis, Akos Horvéth, and Déniel Varré

10.5 Metaheuristic based Search Strategies

There are several single-solution based metaheuristic techniques used in search
based software engineering for the optimization of various design space explo-
ration problems [47].

Guided local search based techniques [57] uses a predefined schema to in-
ject penalties into their guidance functions. Simulated annealing based tech-
niques [12] are similar to hill climbing approaches with the ability to avoid
local optimum solutions by permitting moves to less fit states, with a decreas-
ing probability over time.

Common in these techniques that they use an iterative traversal algorithms
to improve candidate solutions with regards to their measure of quality (e.g.,
guidance function). However, with no hints available about the global optimum
these techniques rely only on neighboring states when selecting the next step
on the contrary our approach uses hints like the occurrence vector for finding
the optimum solution.

10.6 State encoding techniques in graph-based validation tools

State encoding techniques are often used in graph-based validation tools where
the exhaustive exploration of all possible graphs also introduces the challenge
of storing a large number of graphs and identifying equal or isomorphic states.

The GROOVE model checker [36] stores changes or deltas between states
similarly to our incremental state encoding techniques [38]. The idea was pro-
posed earlier by Mens [30], while the GRAS database [26] has also used this ap-
proach. GROOVE also three steps for checking equality, by introducing graph
certificates (similar to state codes), isomorphism checking (with an improved
approach presented in [39]) and graph equality.

Godefroid et al. [I§] presented a state caching method that identifies the
possible interleaving of concurrent executions and ensures that most states are
visited only once during the exploration. In [46] hash compaction is combined
with state caching to further increase efficient storing of the explored states.

11 Conclusion and Future Work

Design space exploration can be used in Model-driven engineering for problems
that involve searching through a large number of possible alternatives and
selecting solutions that satisfy design goals and global constraints.

Guided DSE exploration uses hints to reduce the number of states traversed
when searching for solutions. Hints are used (i) to identify dead-end states
(cut-off criteria) and (ii) to order applicable rules in a given state (selection
criteria).

In the current paper, we defined a model-driven framework for guided DSE,
which uses rule dependency and occurrence vectors as hints for the exploration

A model-driven framework for guided design space exploration 37

strategy. Evaluation of the exploration strategies using a cloud configuration
problem showed that our criteria-driven approach can reduce the design space
further thus increasing the efficiency of the exploration.

Guided exploration is also applied in a real application for generating
quick fixes to help business process designers in correcting violations of well-
formedness constraints. The evaluation results show that guidance is required
to achieve response time acceptable to use during the editing process.

We presented a new implementation architecture that builds on the de
facto industrial standard Eclipse Modeling Framework and the EMF-IncQuery
incremental query evaluation framework. We have evaluated the new architec-
ture against the previous version of our DSE framework based on the VIATRA2
model transformation framework and argue that even in an early phase it per-
forms well.

Our DSE framework uses state encoding to identify states that were already
explored earlier in the process and thus further reduce the number of traversed
states. We specified six encoding techniques that are evaluated on the cloud
reconfiguration case study. The evaluation showed that these techniques can
significantly reduce the design space.

Future work. We are actively working on improving our EMF-based ar-
chitecture and are planning to explore techniques to further increase the scope
of guided exploration. The dependency graph can be further extended with
additional information such as including the goals and constraints in the graph
or adorning dependency relations with the cause of the dependency.

We are investigating ways for better reusing the design space when ex-
ploring subsequent occurrence vectors to identify states where the traversal
should continue. We are also working on defining problem-specific criteria and
specialized algorithms to increase the efficiency of the approach.

We are also interested in evaluating similarity of solutions based on auto-
morphism groups as an extension to state encoding and guide the exploration
to find dissimilar solutions, as suggested by one of our reviewers.

Finally, we are planning to apply design space exploration to new problems
that we encounter in our cooperation with industrial partners.

Acknowledgements The authors would like to thank their students Miklés Féldényi and
Tamads Szabd, who helped in the evaluation of state encoding techniques and comparing the
VIATRA2 and EMF-based DSE framework implementations and the anonymous reviewers
for their excellent comments and suggestions.

References

1. Atkinson C, Kithne T (2003) Model-driven development: A metamodeling
foundation. IEEE Softw 20(5):36-41, DOT 10.1109/MS.2003.1231149
2. AUTOSAR Consortium (2013) The AUTOSAR Standard. http://www.

autosar.org/

http://www.autosar.org/
http://www.autosar.org/

38

Abel Hegediis, Akos Horvéth, and Déniel Varré

10.

11.

12.

13.

14.

15.

16.

Baldan P, Konig B (2002) Approximating the behaviour of graph trans-
formation systems. In: Proc. ICGT 2002, Springer, LNCS, vol 2505, pp
14-29

Baresi L, Spoletini P (2006) On the Use of Alloy to Analyze Graph Trans-
formation Systems. In: Graph Transformations, LNCS, vol 4178, Springer,
pp 306-320

Baresi L, Heckel R, Thone S, Varré D (2006) Style-based modeling and
refinement of service-oriented architectures. Journal of Software and Sys-
tems Modelling 5

. Baresi L, Rafe V, Rahmani AT, Spoletini P (2008) An efficient solution

for model checking graph transformation systems. ENTCS 213

Basten T, van Benthum E, et al (2010) Model-driven design-space explo-
ration for embedded systems: The octopus toolset. In: Margaria T, Steffen
B (eds) Leveraging Applications of Formal Methods, Verification, and Val-
idation, LNCS, vol 6415, Springer, pp 90-105

Basten T, Hendriks M, Trcéka N, Somers L, Geilen M, Yang Y, Igna
G, de Smet S, Voorhoeve M, van der Aalst W, et al (2013) Model-
driven design-space exploration for software-intensive embedded systems.
In: Model-Based Design of Adaptive Embedded Systems, Springer, pp
189-244

Bergmann G, Okrés A, Rath 1, Varré D, Varré G (2008) Incremental pat-
tern matching in the viatra model transformation system. In: Proceedings
of the Third International Workshop on Graph and model transformations,
ACM, pp 25-32

Bergmann G, Hegediis A, Horvath A, Ujhelyi Z, Rath I, Varré D
(2012) Integrating efficient model queries in state-of-the-art EMF tools.
In: 50th International Conference on Objects, Models, Components,
Patterns (TOOLS Europe), Springer, Prague, LNCS, DOI 10.1007/
978-3-642-30561-0_1

Bergmann G, Rath I, Szab6 T, Torrini P, Varré D (2012) Incremental pat-
tern matching for the efficient computation of transitive closures. In: Sixth
International Conference on Graph Transformation, Bremen, Germany
Bouktif S, Sahraoui H, Antoniol G (2006) Simulated annealing for improv-
ing software quality prediction. In: Proc. of GECCO 06, ACM

Boyapati C, Khurshid S, Marinov D (2002) Korat: Automated testing
based on Java predicates. In: International Symposium on Software Test-
ing and Analysis (ISSTA), ACM

Edelkamp S, Jabbar S, Lluch-Lafuente A (2006) Heuristic search for the
analysis of graph transition systems. In: Proc. ICGT 2006, Springer,
LNCS, vol 4178

Ehrig H, Engels G, Kreowski HJ, Rozenberg G (eds) (1999) Handbook
on Graph Grammars and Computing by Graph Transformation, vol 2:
Applications, Languages and Tools. World Scientific

Ermel C, Gall J, Lambers L, Taentzer G (2011) Modeling with plausibility
checking: Inspecting favorable and critical signs for consistency between
control flow and functional behavior. In: Proc. FASE 11, Springer, LNCS

A model-driven framework for guided design space exploration 39

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

6603

Gamatié A, Le Beux S, Piel E, Ben Atitallah R, Etien A, Marquet P,
Dekeyser JL (2011) A model-driven design framework for massively paral-
lel embedded systems. ACM Transactions on Embedded Computing Sys-
tems (TECS) 10(4):39

Godefroid P, Holzmann GJ, Pirottin D (1995) State-space caching revis-
ited. Formal Methods in System Design 7(3):227-241

Heckel R, Kiister JM, Taentzer G (2002) Confluence of Typed Attributed
Graph Transformation Systems. In: Proc. ICGT 2002. LNCS, Springer
Hegediis A, Horvéath A, Varré D (2010) Towards guided trajectory explo-
ration of graph transformation systems. ECEASST 40, Proc. of PNGT
10

Hegediis A, Horvath A, Rath I, Branco MC, Varré D (2011) Quick fix
generation for DSMLs. In: IEEE Symposium on Visual Languages and
Human-Centric Computing, VL/HCC, IEEE Computer Society, DOI 10.
1109/VLHCC.2011.6070373

Hegediis A, Horvéth A, R&th I, Varré D (2011) A model-driven framework
for guided design space exploration. In: 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE), IEEE Computer
Society, pp 173 —182, DOI 10.1109/ASE.2011.6100051

Horvéth A, Varré D (2011) Dynamic constraint satisfaction problems over
models. Software and Systems Modeling 10.1007/s10270-010-0185-5
Jackson EK, Simko G, Sztipanovits J (2013) Diversely enumerating
system-level architectures. In: EMSOFT, pp 1-10

Kang E, Jackson EK, Schulte W (2010) An approach for effective design
space exploration. In: Calinescu R, Jackson EK (eds) Monterey Workshop,
Springer, LNCS, vol 6662, pp 33-54

Kiesel N, Schuerr A, Westfechtel B (1995) GRAS, a graph-oriented (soft-
ware) engineering database system. Information Systems 20(1):21 — 51
Konig B, Kozioura V (2006) Counterexample-guided abstraction refine-
ment for the analysis of graph transformation systems. In: TACAS, pp
197-211

Kiihne T (2006) Matters of (meta-) modeling. Software and Systems Mod-
eling 5:369-385, 10.1007/s10270-006-0017-9

Meedeniya I, Buhnova B, Aleti A, Grunske L (2011) Reliability-driven
deployment optimization for embedded systems. Journal of Systems and
Software 84(5):835-846

Mens T (1999) A formal foundation for object-oriented software evolution.
PhD thesis, Vrije Universiteit Brussel

Mens T, Kniesel G, Runge O (2006) Transformation dependency analysis
- a comparison of two approaches. In: Langages et Modeles a Objets (LMO
2006)

Mohanty S, Prasanna VK, Neema S, Davis J (2002) Rapid design space
exploration of heterogeneous embedded systems using symbolic search and
multi-granular simulation. SIGPLAN Not 37:18-27

40

Abel Hegediis, Akos Horvéth, and Déniel Varré

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Neema S, Sztipanovits J, Karsai G, Butts K (2003) Constraint-based
design-space exploration and model synthesis. In: Alur R, Lee I (eds) Em-
bedded Software, LNCS, vol 2855, Springer, pp 290-305

Object Management Group (2013) Business Process Model and Notation
(BPMN) Version 1.2. http://www.omg.org/spec/BPMN/1.2/

Rensink A (2003) Towards model checking graph grammars. In: Workshop
on Automated Verification of Critical Systems (AVoCS), Technical Report
DSSE-TR~-2003-2, Citeseer, pp 150-160

Rensink A (2004) The GROOVE simulator: A tool for state space genera-
tion. In: Applications of Graph Transformations with Industrial Relevance
(AGTIVE), Springer, LNCS

Rensink A (2004) Representing first-order logic using graphs. In: In-
ternational Conference on Graph Transformations (ICGT), LNCS 3256,
Springer, pp 319-335

Rensink A (2005) Time and space issues in the generation of graph tran-
sition systems. In: Mens T, Schiirr A, Taentzer G (eds) Proceedings of
the International Workshop on Graph-Based Tools (GraBaTs 2004), Elec-
tronic Notes in Theoretical Computer Science, vol 127, pp 127-139
Rensink A (2007) Isomorphism checking in GROOVE. Electronic Com-
munications of the EASST 1

Ristau B, Limberg T, Fettweis G (2008) A mapping framework for guided
design space exploration of heterogeneous MP-SoCs. In: Proc. of the conf.
on Design, automation and test in Europe, ACM, DATE ’08

dos Santos OM, Dotti FL, Ribeiro L (2004) Verifying object-based graph
grammars. ENTCS 109:125-136

Saxena T, Karsai G (2010) MDE-based approach for generalizing design
space exploration. In: Petriu D, Rouquette N, Haugen y (eds) Model
Driven Engineering Languages and Systems, LNCS, vol 6394, Springer,
pp 46-60

Schatz B, Holzl F, Lundkvist T (2010) Design-space exploration through
constraint-based model-transformation. In: Engineering of Computer
Based Systems (ECBS), pp 173 —182

Schmidt A, Varré D (2003) CheckVML: A tool for model checking visual
modeling languages. In: Proc. UML 2003, Springer, LNCS, vol 2863

Sen K, Marinov D, Agha G (2005) CUTE: a concolic unit testing engine
for C. SIGSOFT Softw Eng Notes 30:263-272

Stern U, Dill DL (1996) Combining state space caching and hash com-
paction. Methoden des Entwurfs und der Verifikation digitaler Systeme
4:81-90

Talbi EG (2009) Metaheuristics: From Design to Implementation. Wiley
The Eclipse Project (2012) Eclipse Modeling Framework. http://www.
eclipse.org/emf

The Eclipse Project (2012) EMF Model Query 2. http://wiki.eclipse.
org/EMF/Query2

The Eclipse Project (2012) EMFT Search. http://www.eclipse.org/
modeling/emft/7project=search

http://www.omg.org/spec/BPMN/1.2/
http://www.eclipse.org/emf
http://www.eclipse.org/emf
http://wiki.eclipse.org/EMF/Query2
http://wiki.eclipse.org/EMF/Query2
http://www.eclipse.org/modeling/emft/?project=search
http://www.eclipse.org/modeling/emft/?project=search

A model-driven framework for guided design space exploration 41

51.

92.

53.

o4.

55.

96.

o7.

The Eclipse Project (2012) MDT OCL. http://www.eclipse.org/
modeling/mdt/7?project=ocl

Varré D, Balogh A (2007) The model transformation language of the VI-
ATRA2 framework. Science of Computer Programming 68(3):214—-234
Varré D, Pataricza A (2003) VPM: A visual, precise and multilevel meta-
modeling framework for describing mathematical domains and UML. Soft-
ware and Systems Modeling 2(3):187-210

Varré D, Varr6-Gyapay S, Ehrig H, Prange U, Taentzer G (2006) Termi-
nation analysis of model transformations by petri nets. In: Proc. ICGT
2006, Springer, Brazil, LNCS, vol 4178

Varré-Gyapay S, Varré D (2006) Optimization in Graph Transformation
Systems Using Petri Net Based Techniques. ECEASST 2, Proc. of PNGT
"06

Visser W, Pasareanu CS, Khurshid S (2004) Test input generation with
Java PathFinder. SIGSOFT Softw Eng Notes 29(4):97-107, DOI http:
//doi.acm.org/10.1145/1013886.1007526

Voudouris C, Tsang EPK, Alsheddy A (2010) Effective application of
guided local search. Wiley Encyclopedia of Operations Research and Man-
agement Science

http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/modeling/mdt/?project=ocl

	Introduction
	Overview of the Approach
	Guided Design Space Exploration
	Design Problem Description
	Hints
	Guidance
	Exploration Strategy
	Implementation Details
	Evaluation of the Approach
	Related Work
	Conclusion and Future Work

