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Abstract—Design space exploration (DSE) aims at searching
through various models representing different design candi-
dates to support activities like configuration design of critical
systems or automated maintenance of IT systems. In model-
driven engineering, DSE is applied to find instance models
that are (i) reachable from an initial model with a sequence
of transformation rules and (ii) satisfy a set of structural and
numerical constraints. Since exhaustive exploration of the design
space is infeasible for large models, the traversal is often guided
by hints, derived by system analysis, to prioritize the next states
to traverse (selection criteria) and to avoid searching unpromising
states (cut-off criteria). In this paper, we define an exploration
approach where selection and cut-off criteria are defined using
dependency analysis of transformation rules and an algebraic
abstraction. The approach is evaluated against other exploration
techniques and illustrated on a cloud infrastructure configuration
problem.

Index Terms—design space exploration; model transformation;

I. INTRODUCTION

Design space exploration (DSE) is a process to analyze
several “functionally equivalent” implementation alternatives,
which meets all design constraints in order to identify the
most suitable design choice (solution) based on quality metrics
such as cost or dependability. Design space exploration often
appears as a challenging problem in application areas, such
as dependable embedded systems [1], [2] and IT system man-
agement, where model-driven engineering (MDE) techniques
are already popular. DSE can be performed either during the
design process to find optimal designs or during runtime to
help dynamic reconfigurations.

In traditional DSE problems, the design constraints and
quality metrics are numeric attributes to express cost, time or
memory limits, etc. However, systems with modular software
and hardware architectures (like AUTOSAR [3] in the automo-
tive domain or large reconfigurable architectures) introduced
complex structural constraints that express restrictions on
the graph-based model of the system under design. These
constraints may include restrictions related to the commu-
nication architecture or allocation of software and hardware
resources. Furthermore, during the design of dynamically
changing systems (e.g. reconfiguration of virtual servers over
physical ones), the design space exploration also requires the
dynamic creation and deletion of elements.

Existing DSE approaches usually apply model checking
with exhaustive state space exploration or solve finite domain
constraint satisfaction problems that cannot effectively handle
structural constraints and dynamic manipulation of elements.
In order to alleviate these issues, designers often provide
additional information (hints) about the system (e.g. from
earlier experience or by some analysis) that can reduce the
design space to a more feasible size [1]. The design process
is often complemented with different design and analysis and
verification tools, which can also provide (mathematically
well-founded) hints about the model in the early stages of
development. These hints may express additional system prop-
erties, which can be incorporated in the DSE process to assist
the evaluation of alternate solutions.

Guided model-driven design space exploration aims to
explore alternative system designs efficiently by making use
of advanced model-driven techniques (e.g. incremental model
transformations) and hints (obtained by analysis tools or pro-
vided by the designer). These hints are interpreted during the
exploration to continue along promising search paths (using
selection criteria) and to avoid the traversal of unpromising
designs (by cut-off criteria). Additionally, the use of incre-
mental techniques leads to exploration strategies that are able
to find additional (alternative) solutions, which are close to an
earlier solution.

In our paper, we propose a model-driven framework for
guided design space exploration, where the system states are
graphs, operations are defined as graph transformation rules,
while goals and constraints are defined as graph patterns.
We extend our previous work on model-driven design space
exploration [4] by incorporating hints during the exploration
strategy, which are derived from dependency analysis of
transformation rules and algebraic analysis on the Petri net
abstraction of the system [5]. Cut-off and selection criteria are
defined based on these hints [6], and their evaluation guides
the design space exploration by identifying dead end states
and prioritizing possible operations, respectively.

Major contributions of this paper with respect to our pre-
vious work [4], [6] are (i) the design and implementation of
a complete model-driven framework for guided design space
exploration, (ii) a guided exploration strategy that exploits
various hints and (iii) an experimental evaluation of the
approach on relevant case studies.



II. OVERVIEW OF THE APPROACH

In our paper, we describe a novel framework that combines
the model-driven approach of design space exploration (DSE)
with guided exploration techniques building on hints from
analysis and guidance through cut-off and selection criteria.
The schematic overview of the framework for guided design
space exploration is illustrated in Figure 1.

Fig. 1. Model-driven Guided Design Space Exploration

First, the design problem description specifies the domain
where the exploration takes place to produce solutions. It
includes: (1) the initial state of the system at the start of
the exploration, (2) the set of manipulation operations (called
labeling or exploration rules) defined on the system, (3) goals
described as structural or numerical constraints, which need
to be satisfied by solution states found by the exploration,
and (4) global constraints, which are satisfied by the initial
and solution states and all intermediate states on the trajec-
tory between them. The detailed discussion of the problem
description is found in Section IV

The design space exploration performs the search for solu-
tions by exploring the design (or state) space of the problem
description. It starts from the initial state and traverses reach-
able states by applying the operations on the system (see Sec-
tion III). In order to find a solution quickly exploration is often
aided by an exploration strategy (detailed in Section VII). A
simple strategy (as proposed in [4]) may use random selection
in a depth first search or statically assign priority levels to
operations. However, a more advanced strategy should also
determine whether a given state will never lead to a valid
solution (i.e. it is a dead end) and states reachable from it
should not be traversed. In a guided approach, the exploration
strategy relies on guidance, which uses hints for driving the
traversal and identifying dead ends.

Hints are information originating from the designer or
(as in our paper) from some automated analysis carried out
using formal methods that often abstract the design problem
description. The result of the analysis can be information
regarding the number of operation applications (called as an
occurrence vector), partial ordering of operations, restricting

the set of required operations etc. These results are often
generated before the exploration in a preprocessing phase.
Our guided approach uses occurrence vectors and dependency
relations between rules as hints (see Section V).

Finally, the guidance calculates and interprets hints and
provides decision support for the exploration strategy (see
details in Section VI). In our approach, guidance is defined
as the evaluation of cut-off and selection criteria based on
the current state and the hints (as defined in [6]). Cut-off
criteria identify dead end states and bound the exploration,
while selection criteria prioritize available rules in a state by
their likelihood of leading to a final (solution) state.

Challenges of Guided Design Space Exploration: While
existing model-driven frameworks (e.g. GROOVE [7]) are
able to explore the design space of smaller problems by
exhaustively traversing reachable states and checking global
constraints and goals in each state, they use no global infor-
mation when selecting the applied labeling rules. Our guided
approach, however, takes advantage of hints and guidance that
help the exploration and addresses the following challenges:
• identify decisions in the exploration: the framework

should clearly separate the guidance from the exploration
strategy to easily allow the modification of both parts of
the framework.

• soundly reduce traversed design space: the guidance
should reduce the number of traversed states before find-
ing solutions, but it must ensure that no valid solutions
are removed by the cut-off criteria.

• provide optimal solutions: the guided framework should
find the solutions that are optimal (with respect to a
user-defined metric). Moreover, the framework should be
able to continue exploration to find other (less optimal)
solutions if necessary.

• extensibility: the approach should be easily applicable on
different design problems and the set of criteria should
be extensible. This is a key feature for adapting the
framework to various domains.

III. GUIDED DESIGN SPACE EXPLORATION

The guided design space exploration approach is based on
a general search process, which traverses the design space
starting from the initial state. This general process includes
a step (Evaluate criteria), which relies on the guidance and
hints provided by system analysis to the different exploration
strategies (identify decisions challenge). The search process,
depicted in Figure 2, consists of the following steps:

1) Check operation applicability. First, labeling rules (of
the design problem description) are checked for ex-
ecutability (i.e. whether they can be executed in the
current state of the model) and this information is passed
to the criteria evaluation.

2) Evaluate criteria. The cut-off and selection criteria are
evaluated using the hints (the rule dependencies and the
occurrence vector) and the results are stored.

3) Cut-off? If at least one of the cut-off criteria were
satisfied during the evaluation, or there are no applicable



Fig. 2. Workflow of the guided design space exploration

rules, the state is a dead end and the branch is cut.
4) Select rule. The design space exploration then selects

the next applicable rule based on the evaluation results.
5) Apply rule. The selected rule is applied to the model

resulting in a new model state.
6) Check new state. The global constraints and goals are

checked on the new state to decide whether it is an
invalid or solution state.

a) Is valid state? If any of the constraint are violated,
the state is invalid and the exploration continues
from the previous state. Note, that a state is also
considered invalid if the exploration has visited it
earlier, since in this case the reachable states are
already explored from this state.

b) Is solution found? If all of the goals are satisfied,
the state is a solution.

7) Save solution. When a solution model is found, the
trajectory (with the executed rules and corresponding
model state information) is saved to a solution list.

8) Continue search. Once the new model state is checked,
the next applicable rule is selected from a valid new
state, otherwise from the previous state.

Design space exploration terminates either once a predefined
number of solutions are found (or if the found solution is
acceptable by other, user-defined metrics) or if there are no
applicable rules within the limited search space. Since a hint
does not always represent a feasible trajectory, the exploration
is restarted with an alternative vector if more solutions are
required to be found.

IV. DESIGN PROBLEM DESCRIPTION

A. Motivating Example: Cloud Configuration

Today services are often built on top of a cloud middleware
(CM) using components as building blocks to be able to
scale dynamically to meet demands. Servers (S) and high-
availability clusters (Cl) can be deployed on the cloud mid-
dleware, while databases (DB) are installed on servers and
applications (App) are executed over databases. Finally, servers
can also be deployed on clusters and storage (St) subsystems
can only operate over clustered servers.

In order to provide an appropriate infrastructure for clients,
the configuration of the cloud infrastructure must meet certain
requirements (including complex structural constraints), e.g.
an application and a storage subsystem is required for a cloud-
based web service. Such an infrastructure is shown in Figure 3.

Fig. 3. An example system providing reliable service

To satisfy this constraint the cloud configuration has to be
designed in an appropriate way. We assume that regular change
management commands (including deletion or creation, e.g.
deploying a new database) are issued by some middleware
service broker. If the current infrastructure of the cloud detects
that the required parameters cannot be satisfied by the actual
cloud configuration, reconfiguration operations are to be initi-
ated, which lead the system into a state where all constraints
are met. To deal with changes of requirements and possible
commands, guided design space exploration is used to find
command sequences that should be executed to create a valid
configuration.

B. Initial State

States are represented as instance models that conform to
a metamodel. This metamodel describes the problem domain
and the initial state defines where the design space exploration
starts from.

A metamodel MM for a design problem includes the set
of model element types of the domain, their attributes and
relationships between model elements. An instance model is a
model that conforms to a metamodel, if it only includes model
elements and relations with types defined in MM .

Fig. 4. Metamodel and instance model of the cloud infrastructure

The left part of Figure 4 shows the metamodel for the
cloud case study. The metamodel contains a cloud component
Node designated graphically as a rectangle. The specific
components Socket, Server, Database, Application and Storage
are specialized from this node, Socket is a generalization of
Cloud MW and Cluster ). Edge deployedOn is a relation that
connects two different components denoting that the source
node is deployed on the target node of this relation. The right
part of Figure 4 illustrates an instance model containing a



Fig. 5. Example goal and global constraint

database d deployed on two servers s1, s2 that are on cloud c.
Note that in the rest of the paper, we omit deployedOn (dOn)
relations by illustrating the relation using vertical arrangement
of components.

C. Goals and Global Constraints

Goals and global constraints of the design problem descrip-
tion are defined as bounds on the number of matches for graph
patterns.

Graph patterns represent conditions that have to be fulfilled
by a part of the model, this part is called a match.

The left part of Figure 5 shows an example goal, which
specifies that a solution model includes at least 5 databases
deployed on clusters, while the right part shows a global
constraint, that allows maximum 100 servers deployed on
clouds altogether.

D. Labeling Rules

The labeling rules that define the possible manipulation
operations on the problem state are represented by graph
transformation (GT) rules.

GT rules [8] are specified by a precondition (or left-hand
side - LHS) pattern determining the applicability of the rule
and a postcondition (or right-hand side - RHS) pattern that
specifies the result model declaratively. The negative appli-
cation conditions (NAC) of a GT rule specify patterns that
prohibit the application of the rule if they have matches.

The reconfiguration actions of the ongoing example is
captured by a set of graph transformation rules in Figure 6.
An overview on using graph transformations for software
architecture reconfigurations can be found in [9].

Fig. 6. Graph transformation rules

The addCM rule adds a new cloud CM, addS creates a
new server S deploying it on top of a CM or cluster Cl ,

however, a Cl cannot have more than two S deployed on it.
Rule addCl produces a new Cl deploying it on top of a CM,
addDb adds a new database DB deploying it on top of two S
that have no other Node deployed on them, addApp creates a
new application App deploying it on top of two DB that have
no other Node deployed on them. Finally, addSt adds a new
storage St deploying it on two S that are deployed on the
same Cl and have no other Node deployed on them.

It is important that the set of goals, constraints and rules
are easily extensible by the designer (extensibility challenge).
The design problem description is not hard-coded into the
exploration and can be modified using a high-level textual
language [10]. Our framework also supports dynamic handling
of goals, constraints and rules, e.g. to generate solutions for
different subsets of rules.

Application of a Rule: r alters the model by replacing the
pattern defined by LHS with the pattern of the RHS (illustrated
in Figure 7). This is performed by (1) finding a match of
the LHS in the model (2) checking the negative application
conditions, (3) removing a part of the model that can be
mapped to the LHS but not the RHS yielding an intermediate
graph and (4) adding new elements to the intermediate graph,
which exist in the RHS but not in LHS or updating existing
elements, yielding the derived graph.

E. Design Space

The design space traversed by the guided exploration ap-
proach is represented by a graph transition system containing
the states, which are reachable from the initial state by
applying the labeling rules.

A graph transformation sequence (GT sequence) is a se-
quence of GT steps (application of a rule on a given match),
i.e., a sequence of rule applications.

A graph transition system GTS is defined as a graph where
nodes are instance models, and edges are rule applications.
Starting from G0 (initial state) the state space (i.e. the reach-
able instance graphs) of GTS is represented by executing all
applicable rules from a given initial graph as long as possible.
The different matches of applicable rules may lead to different
edges in GTS. A path in the graph transition system is a GT
sequence also called a trajectory between two states. A state
Gi is reachable from G0 iff there is a trajectory in GTS from
G0 to Gi.

In Figure 7 an extract of the graph transition system of
the running example is shown. On the left, the root of the
graph transition system is the start graph G0 where the system
configuration contains a CM, three S, and one DB components.
Rules addS, addCl , and addCM are applicable to G0, here we
follow the application of addS and addCl .

V. HINTS

The design space exploration framework uses graph trans-
formation sequences to reach solution states. In order to guide
the exploration efficiently, both the amount and order of rule
applications are useful hints.



Fig. 7. A part of a graph transition system

A. Graph Transformation Rule Dependency

Given the precondition-postcondition nature of GT rules,
it is possible to derive which rules might be affected by
the application of a given rule. For example, the application
of a GT rule r can alter the model in a way that other
rules, which were disabled before, become enabled (or the
other way around), thus the application of these rules depend
on the application of r. The dependencies between rules
are independent of the instance models, and can be derived
from the rule definitions. This analysis can be carried out
using various techniques, such as critical pair analysis [11]
or conditional transformation-based dependency analysis [12],
and results in a matrix of dependencies between rules.

Fig. 8. Dependency graph example

The result of the analysis is used to create a dependency
graph (Gd, illustrated in Figure 8) of the rules, where an
arc denotes sequential dependency (i.e. the application of the
source rule may affect the match set of target rule). Note that
there may be arcs in both direction between two rules. As
illustrated on Figure 8, rule addS depends on rules addCM,
addCl , while rules addSt, addDB depend on addS (the sets
are represented by J raddS and raddS I, respectively).

B. Transformation Rule Occurrence Vector

We use a Petri net abstraction technique introduced for GTS
in [13], which provides hints that estimate how many times
each rule is applied in order to reach a given state.

A candidate occurrence vector (σ) is a solution of the
analysis of the Petri net abstraction, where σ(i) is the number

of times that rule ri is applied during the execution. During the
design space exploration, the number of times rule ri has been
applied in a given path is stored in the application vector (va)
as va(i). An execution path of the state space exploration is
compliant with σ if va ≤ σ (the number of applications is
less or equal for each rule). Throughout the paper we use the
difference σ(i) − va(i) as the remaining application number
#i of rule ri. This number is stored as an attribute for nodes
in Gd (see Figure 8) together with the state of ri that is either
enabled or disabled in a given state.

C. Using Dependency Graph in Design Space Exploration

The model state and the dependency graph are tightly
connected for a given initial graph and occurrence vector.
Figure 9 illustrates how the application of a GT rule affects
the current state and the remaining application number. First,
the current state is depicted as the model M (representing the
current cloud configuration) and remaining application number
and state of each node in the dependency graph Gd (in short,
the current dependency graph). The color of the nodes (e.g.
naddS) of Gd represent the state of the corresponding GT
rules (raddS), green (dark) background for enabled, grey (light)
for disabled. The number near each node is the remaining
application number (e.g. #addS = 3).

Fig. 9. GT rule application and its effects on the dependency graph

In the course of design space exploration, the next GT rule,
which is applied (raddS in the example) is selected from the
set of enabled rules. The application has the following effects
on the models: (a) model M changes according to the rule
definition (here, a new server S is added to cloud CM ), the
new model is illustrated as M ′ (b) the #addS is modified to
represent that the rule is applied (it decreases from 3 to 2)
(c) Gd is also changed to G′d, as #addS decreased and the
applicability of GT rules may change (here raddDB becomes
enabled). The design space exploration then continues from
M ′ by selecting a rule based on G′d.

VI. GUIDANCE

A. Overview of Cut-off and Selection Criteria

Cut-off and selection criteria are used as guidance to decide
in which order the states of the design space are explored.



We define formal criteria over the current dependency graph,
which are evaluated to support decisions:
• Cut-off criteria inspect the current dependency graph and

return a boolean result, which is true if further exploration
of the current branch cannot lead to a goal state with a
compliant trajectory. In this case, the exploration contin-
ues from an other state instead of executing a rule in the
current state.

• Selection criteria take the current dependency graph and
define an ordering of applicable rules. A given rule ri
is placed before an other rule rj , if the execution of ri
is more promising, based on the criteria and the current
state, than the execution of rj .

B. Criteria for Guided Design Space Exploration

We used the following cut-off and selection criteria, which
are meaningful when dealing with guided DSE.
• Non-compliant path (Look-ahead) cut-off criterion. If

the application of any GT rule would make the current
execution path non-compliant with the occurrence vector,
it can be cut.

• Permanently disabled rule cut-off criterion. The current
path can be cut if there is a disabled rule, which still has
to be applied based on the occurrence vector, but rules
that may enable it will not be applied.

• Independent rule application selection criterion. Applica-
ble rules with no forward dependency should be applied
as early as possible to reduce the number of different
applicable operations later in the trajectory.

• Maximal forward-dependant application path selection
criterion. Among the applicable rules at any given state
of the exploration, the rule that affects more applications
should be applied earlier in the trajectory.

C. Criteria Evaluation

The criteria defined over the dependency graph are evaluated
at every state using an algorithm described in [6] (interpret
hints challenge). The main steps of the algorithm are: (1) a
starting point is selected from the criterion, (2) the list of nodes
satisfying the starting point are created, (3) the operations of
the criterion are applied on each node and (4) the result is
assembled as a boolean value (cut-off criteria) or an ordered
list of rules (selection criteria).

VII. EXPLORATION STRATEGY

Guided exploration strategies can be categorized by the used
hints and guidance. We specified two guided strategies (see
Figure 10), the first uses occurrence vectors only as hints
(occurrence), while the other uses rule dependency as well
(full guidance). Note that the full guidance strategy uses rule
priorities only if two labeling rules were evaluated as equal
by the guidance. These strategies are compared to the fixed
priority depth-first search strategy.

Figure 11 illustrates the design space exploration for these
techniques on a simple example. The circles denote the tra-
versed states which are numbered according to the traversal

Fig. 10. Comparison of exploration strategies by used hints

order, while the applicable rules are listed beside them. Down-
ward arrows illustrate rule applications, while upward (and
dotted) arrows represent backtracking from invalid or cut-off
states. The same rule can be applied multiple times at a given
state if more than one applicable match is found in the graph
(see state 2 on the right side). The exploration terminates when
an optimal solution is found. A solution is optimal if the path
leading to it contains the least number of rule applications (i.e.
it is the shortest trajectory to a solution model). Note that the
framework is extensible also to labeling rules with costs and
optimal solutions identified by the lowest total cost [5].

Fig. 11. Comparison of exploration strategies

In the case of the fixed priority strategy, the next applied
operation is the one with the highest priority among the
applicable ones. In the example, first r1 is applied then r2.
From state 2, first r1 is applied leading to state 3 without
applicable rules. After backtracking, r3 is applied instead.
Note that after this point all reachable states from state 2
and state 1 are explored before trying r2 in state 0 (which
finally leads to an optimal solution). Moreover, as the depth-
first technique is used in the fixed priority exploration strategy,
the first solution found by that strategy is often several times
longer than the optimal, suboptimal solutions are used as depth
limits to force the exploration to find shorter solutions.

The occurrence strategy applies operations based on the oc-
currence vector provided by the system analysis. The example
in Figure 11 shows that r2 should be applied twice and r3
once. Therefore, r1 is not applied in state 0 or 2 (highlighted)
in order to be compliant to the occurrence vector. In states 3
and 4, the exploration backtracks (as no more rule applications
are allowed by the vector) and then continues to find the
solution in state 6.

The full guidance exploration strategy (illustrated in the
right side of Figure 11) takes the dependency relations be-



tween rules into account in addition to the occurrence vector.
Therefore, in state 1 (highlighted) it selects r3 for the next
application. Rule r2 is applicable on two matches in state 2, the
first leading to a dead-end state, while the second application
leads to a solution in state 4. Note that the selection in state 1
leads to a reduced traversed design space compared to the
occurrence exploration strategy (reduce traversed design space
challenge).

VIII. IMPLEMENTATION DETAILS

Figure 12 gives an overview of the implemented guided
design space exploration framework. The implementation uses
the VIATRA2 model transformation framework [14], which
provides metamodeling capabilities and supports model trans-
formations based on the concepts of graph transformations and
abstract state machines. Its incremental pattern matcher is used
as a powerful query engine [15].

Fig. 12. Overview of the guided DSE framework

The design space exploration is performed by the constraint
satisfaction engine, CSP(M), presented in [4], where rules,
goals and constraints (specified using graph transformation
rules and patterns) are used in solving constraint satisfaction
problems over the input model (both included in the design
problem description).

The abstraction of graph transformation rules into Petri
nets (PN) and ILP problems are also automated. We used
the industry leading IBM CPLEX 1 optimization tool, which
supports the calculation of alternate solutions (occurrence
vectors used for initializing the dependency graph). The edges
of Gd are computed from the transformation rules using the
Condor2 dependency analyzer tool, while the graph itself
is built and stored as an EMF instance model. The criteria
definitions and the criteria evaluation algorithm (guidance)
are implemented in Java as separate components, and are
connected to the guided design space exploration strategy .

IX. EVALUATION OF THE APPROACH

The aim of the evaluation is to demonstrate that the full
guidance strategy is more efficient than the other strategies
(namely, fixed priority and occurrence, which we used for

1http://www.ibm.com/software/integration/optimization/cplex-optimizer/
2http://roots.iai.uni-bonn.de/research/condor/

previous measurements in [4]) as it traverses considerably
fewer states and does not introduce significant overhead,
thus provides better runtime in most cases than the other
approaches. The reader is directed to [4] for comparison
with other tools (e.g. SICStus Prolog CLP(FD), KORAT and
GROOVE), which is omitted here for space considerations.

A. Cases used in the Evaluation
For evaluation, we used the cloud case study presented

in Section IV-A and a service configuration case study (pre-
sented in [5]). These cases are relevant in the context of model-
driven DSE as they represent both design time and runtime
exploration problems, respectively, and it allows comparison
with previous results [4], [5].

Both case studies included multiple cases (see Figure 13).
PowerOn cases deal with empty initial models, while Reconfig-
ure cases deal with existing models which must be modified to
satisfy goals. In the cloud cases, the goals describe the number
of required components (e.g. 2 applications and 2 storage in
PowerOn Small). Furthermore, global constraints are raised to
give some limit to the priority based strategy (e.g. a cloud
middleware should have at most 100 nodes installed). Finally,
the Clustered Database case requires databases to be deployed
on clusters (see Figure 5).

In the service configuration cases, the models represent a set
of services that are reconfigured runtime (e.g. removing faulty
or starting new instances) to meet some QoS requirements.
The constraints in these cases define the maximum number of
services, while goals describe the number of active services
and that faulty services are removed.

The size of the models are given after the name of the
problem, in the cloud cases the required applications and
storages subsystems, while in the service cases the maximum
number of services, faulty and active services in the initial
model and active services in solutions.

B. Evaluation Environment and Method
The evaluation was carried out 5 times for each test case

and strategy in the following way3:
(1) the initial model is loaded into VIATRA2, (2) the goals,

constraints and operations are added to the framework, (3) the
exploration component is initialized and runtime measurement
is started (using wall time with OS-level nanotime precision).
Next, (4) the design space exploration framework looks for
an optimal solution. Finally, (5) the runtime measurement is
stopped and the results are saved. The exploration is limited
to 1 million visited states.

C. Evaluation of Results
The table in Figure 13 shows the results of measurements

using the case study models. For each case, we measured the
average length of the shortest discovered solution trajectory
(the number of applied rules), the average number of visited
states during the design space exploration and the average
runtime of the exploration.

3For measurements we used a computer with Intel Centrino Duo 1.66 GHz,
3 GB memory, Win7 Prof. 32 bit, Eclipse 3.6.1, VIATRA2 3.2

http://www.ibm.com/software/integration/optimization/cplex-optimizer/
http://roots.iai.uni-bonn.de/research/condor/


Fig. 13. Results for exploration until optimal solution († denote cases where
exploration did not terminate in all tests)

We made the following observations based on the results
from the different cases:

Find optimal solution: We observed that the usage of
occurrence vectors as hints in the exploration ensures that
the first solution found by such strategies is optimal as well
(optimal solutions challenge). In our observations, the fixed
priority strategy, finds longer solutions first and traverses a
large number of states even in case 4 (which is the smallest),
before finding an optimal solution.

Low overhead of criteria evaluation: The evaluation
of cut-off and selection criteria is performed at every new
traversed state, and it might (in principle) slow down the
exploration considerably. However, our observation is that
criteria evaluation has very low overhead (less than 5% of
the overall runtime). The full guidance strategy requires some
initial bookkeeping (building dependency graph and initializ-
ing criteria), but afterwards, it traverses 1000 states in roughly
600ms (similarly to the other strategies).

Rule dependency increases efficiency: In all cases, the
full guidance strategy traverses significantly fewer states than
the occurrence strategy. Note that the only case when the
fixed priority strategy traverses less states is case 6, where
the occurrence vector is recalculated at least 20 times before
finding a feasible solution.

It is important to note that in these cases, the full guidance
approach outperforms the occurrence strategy by identifying
infeasible occurrence vectors with less exploration. Figure 14
illustrates how the number of traversed states for these two
strategies when exploring infeasible occurrence vectors in case
5. The graph clearly shows that the full guidance strategy
explores only half the states in average that the occurrence
does. Note that in case 2, the occurrence strategy did not find
a solution inside the limit in some instances.

To sum up the results of the evaluation, we observed that:

Fig. 14. Reduction in visited states by the full guidance strategy

• The combined use of occurrence vectors and rule depen-
dency for cut-off and selection criteria based guidance
outperforms our previously published strategies.

• The added computation required for criteria evaluation
does not significantly increase runtime.

• The under-approximation of the occurrence vector based
analysis ensures that guided exploration strategies always
find optimal solutions first.

D. Limitations

Our guided DSE relies on the quality of the hints provided
for the design problems. This manifests as a limitation in the
following cases: (1) if the occurrence vector is infeasible and it
includes a large number of rule applications (similarly to case
6) and (2) if the dependency graph (Gd) is close to a complete
directed graph, which makes criteria less effective as guidance.
Finally, a large Gd (in case of large set of operations) may
increase the overhead of criteria evaluation.

X. RELATED WORK

Model-driven guided design space exploration implemented
over graph transformations is a novel idea in the field, however,
similar approaches are not unprecedented in a broader research
scope as described below.

In our previous work, [5] introduces the usage of occurrence
vectors for hints in the optimization of GT systems, while [6]
defines the dependency graph and the evaluation algorithm for
arbitrary cut-off and selection criteria. Finally, [4] describes the
formal foundations of model-driven DSE used in our approach.
While we apply these techniques, the design of the guided
DSE framework and guided exploration strategies are major
novel contributions.

Graph Transformation based Approaches: The approach
in [16] is similar to our approach as it also exploits the
dependencies between GT rules using critical pair analysis.
Here, GT systems are enhanced with control flow as well
and the dependency information helps in discovering possible
runtime problems. Model checking approaches to analyze GT
systems are similar to our approach as they also perform
state space exploration. One can categorize them as compiled
approaches such as [17]–[21], which translate graphs and GT



rules into off-the-shelf model checkers to carry out verifica-
tion, and interpreted approaches like [7], [22], [23], which
store system states as graphs and directly apply transformation
rules to explore the state space, similarly to our approach. They
place emphasis on exhaustive traversal (e.g. by optimizing the
storage of individual states), while we aim at finding solutions
quickly using guidance and hints.

Model-driven Design Space Exploration Techniques:
The DESERT tool suite [24] provides model synthesis and
constraint-based DSE for DSMLs with structural semantics
using ordered binary decision diagrams for encoding and prun-
ing the design space. [25] presents a generic DSE framework
extending upon DESERT by supporting arbitrary analysis
tools and includes model transformations for mapping design
problems to intermediate and low-level formats.

The OCTOPUS Toolset [26] uses an intermediate rep-
resentation for design problem specification and performs
DSE using integrated analysis tools. These are all compiled
approaches, where the design problems are specified as models
and model transformations are applied to derive inputs for
analysis tools. Furthermore, the analysis tools perform the
DSE, while in our approach, they only provide hints for the
exploration.

Schätz et al. [27] developed an interactive, incremental
process using declarative transformation rules for driving the
exploration. The rules are modified interactively to improve
DSE performance, which can be considered as a guidance.
However, the hints do not originate from analysis, contrary to
our approach.

Guided Design Space Exploration Techniques: Existing
DSE techniques sometimes use guidance information to reduce
the number of alternatives that are evaluated.

Mohanty et al. [1] use “human in the loop” guidance in
addition to symbolic search techniques for finding candidates,
which are then analyzed using low-level simulation to find the
final design.

In [2], different chip design alternatives are evaluated us-
ing implementation specific information from earlier designs
(e.g. cycle counts and energy consumption) or estimates by
experienced designers. The hints are a collection of values,
while guidance is used for selecting optimal mappings. These
approaches use hints and guidance for reducing the design
space, although hints originate from earlier experience or
human interaction instead of formal mathematical analysis of
the design problem.

Structural Constraint Solving: Structural constraint solv-
ing aims to find object graphs that satisfy given constraints
both on attributes and (object) structures by exploring a
(usually) bounded number of possible object graphs. The
CUTE [28] framework uses a combination of symbolic and
concrete execution to derive path constraints for each separate
execution paths. Java PathFinder [29] is based on Generalized
Symbolic Execution that first introduced the use of model
checkers for solving structural constraints.

KORAT [30] performs specification based testing by using
a predicate representing the properties (constraints) of the

desired output structures and explores the input state space
of the predicate using bounded exhaustive testing.

In all of these approaches hints are given in the form of
explicit bounds on the size of the state space. However, they
cannot restrict how solutions are achieved from the initial
model, meaning that no constraints can be defined to hold
on states visited during a solution trajectory. In our case it is
supported by global constraints and explicit rule definitions,
thus resulting in fundamentally different search strategies.

Metaheuristic based Search Strategies: There are several
single-solution based metaheuristic techniques used in search
based software engineering for the optimization of various
design space exploration problems [31].

Guided local search based techniques [32] uses a prede-
fined schema to inject penalties into their guidance func-
tions.Simulated annealing based techniques [33] are similar
to hill climbing approaches with the ability to avoid local
optimum solutions by permitting moves to less fit states, with
a decreasing probability over time.

Common in these techniques that they use an iterative
traversal algorithms to improve candidate solutions with re-
gards to their measure of quality (e.g., guidance function).
However, with no hints available about the global optimum
these techniques rely only on neighboring states when select-
ing the next step on the contrary our approach uses hints like
the occurrence vector for finding the optimum solution.

XI. CONCLUSION AND FUTURE WORK

Guided DSE exploration uses hints to reduce the number of
states traversed when searching for solutions. Hints are used
(i) to identify dead-end states (cut-off criteria) and (ii) to order
applicable rules in a given state (selection criteria).

In the current paper, we defined a model-driven framework
for guided DSE, which uses rule dependency and occurrence
vectors as hints for the exploration strategy. Evaluation of
the exploration strategies using a cloud configuration problem
showed that our criteria-driven approach can reduce the design
space further thus increasing the efficiency of the exploration.

Future work. We plan to improve the framework by
better reusing the design space when exploring subsequent
occurrence vectors to identify states where the traversal should
continue. We are also working on defining problem-specific
criteria and specialized algorithms to increase the efficiency
of the approach.
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[5] S. Varró-Gyapay and D. Varró, “Optimization in Graph Transformation
Systems Using Petri Net Based Techniques,” ECEASST, vol. 2, 2006,
Proc. of PNGT ’06.
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