
Implementing Efficient Model Validation
in EMF Tools

Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, István Ráth, Zoltán Ujhelyi, and Dániel Varró
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Budapest, Hungary

{bergmann,hegedusa,ahorvath,rath,ujhelyiz,varro}@mit.bme.hu

Abstract—Model-driven development tools built on industry
standard platforms, such as the Eclipse Modeling Framework
(EMF), heavily use model queries in various use cases, such as
model transformation, well-formedness constraint validation and
domain-specific model execution. As these queries are executed
rather frequently in interactive modeling applications, they have
a significant impact on the runtime performance of the tool, and
also on the end user experience. However, due to their complexity,
they can be time consuming to implement and optimize on a
case-by-case basis. To address these shortcomings, we developed
the EMF-INCQUERY framework for defining declarative queries
over EMF models and executing them effectively using a caching
mechanism.

In the current paper, we demonstrate how our framework
can be easily integrated with other EMF tools. We describe
a case study in which EMF-INCQUERY is integrated into the
open source Papyrus UML environment to provide on-the-fly
validation of well-formedness criteria in UML models.

Index Terms—EMF; model query; incremental evaluation;
model validation

I. INTRODUCTION

As model management platforms are gaining more and
more industrial attraction, the importance of automated model
querying techniques is also increasing. Queries form the under-
pinning of various technologies such as model transformation,
code generation, domain-specific behaviour simulation and
well-formedness validation.

The leading industrial modeling ecosystem, the Eclipse
Modeling Framework (EMF [1]), provides different ways for
querying the contents of models. These approaches range from
manually coded model traversal to high-level declarative con-
straint languages such as MDT-OCL [2]. However, industrial
experience [3] shows scalability problems of complex query
evaluation over large EMF models, taken from the various
modeling domains; and manual query optimization is time
consuming to implement on a case-by-case basis.

In order to overcome this limitation we implemented the
EMF-INCQUERY1 framework [3] for declaratively defining
queries over EMF models, and executing them efficiently
without manual coding using incremental pattern matching
techniques [4]. The benefits of EMF-INCQUERY with respect
to the state-of-the-art of querying EMF models include: (i)
high performance querying of models in the range of millions

1http://viatra.inf.mit.bme.hu/incquery

of elements, (ii) efficient addressing of instance enumera-
tion and backward navigation both frequently encountered
shortcomings of EMF’s programming interface and (iii) user
friendly declarative graph pattern based formalism for easier
query definition.

In the current tool paper, our aim is to demonstrate how eas-
ily EMF-INCQUERY can be integrated with EMF-based tools.
As a complex case study2, we show how EMF-INCQUERY can
be integrated non-intrusively into standard tools such as the the
Papyrus UML [5] modeling environment, to provide support
for on-the-fly well-formedness validation of UML models.

The paper is structured as follows: first, Section II gives
a brief introduction to the basics of EMF-INCQUERY. Sec-
tion III shows how incremental model validation using EMF-
INCQUERY can be integrated into an EMF application. Sec-
tion IV gives an overview of some related technologies, and
Section V concludes the paper.

II. BACKGROUND

The basics of EMF-INCQUERY are briefly outlined in this
Section.

A. Model Queries by Graph Patterns

Graph patterns [6] constitute an expressive formalism used
for various purposes in model-driven development, such as
defining declarative model transformation rules, capturing
general-purpose model queries including model validation
constraints, or defining the behavioral semantics of dynamic
domain-specific languages. A graph pattern (GP) represents
conditions (or constraints) that have to be fulfilled by a part of
the instance model. A basic graph pattern consists of structural
constraints prescribing the existence of nodes and edges of
a given type. Languages usually include a way to express
attribute constraints. A negative application condition (NAC)
defines cases when the original pattern is not valid (even
if all other constraints are met), in the form of a negative
sub-pattern. A match of a graph pattern is a group of model
elements that have the exact same configuration as the pattern,
satisfying all the constraints (except for NACs, which must
be made unsatisfiable). The complete query language of the
EMF-INCQUERY framework is described in [7].

2http://viatra.inf.mit.bme.hu/incquery/examples#Papyrus

http://viatra.inf.mit.bme.hu/incquery
http://viatra.inf.mit.bme.hu/incquery/examples#Papyrus

Figure 1. Graph Pattern for Message without Association

Figure 1 depicts a simplified graph pattern that identifies a
violation of a UML design guideline. The pattern will match
a pair of lifelines in a sequence diagram that exchange a
message, and yet the classes represented by them are not
connected by an association. The structural part captures the
existence of the classes (depicted as ClassA and ClassB in a
class diagram), one lifeline typed with each of these classes
(depicted as O1 and O2 in a sequence diagram), and a
message defined between the lifelines. The NAC part defines
the missing association between the classes.

B. Overview of EMF-IncQuery

The overall workflow of using EMF-INCQUERY separates
development time tasks from runtime tasks, as summarized in
Figure 2.

First, in development time the queries need to be defined as
graph patterns. Our implementation relies on the VIATRA2
model transformation framework [6] to support this devel-
opment activity. EMF-specific query evaluator components
are generated from the query definitions. These components
represent the direct interface to Java client applications and
rely on the EMF-INCQUERY Runtime, which is responsible
for evaluating the queries over EMF ResourceSets.

!"#$%&'#&(")*+,-'"-%'.+

/01234#5('"6+
7(489'+

:)-)+
!;;*%#)8,4+

<)='"4>5('"6+
?;'#+

@'4'")&'A+5('"6+
B,9;,4'4&?+

C'-'*,;9'4&+
+89'+

7(489'+

Figure 2. Overview on the EMF-IncQuery Development workflow

The aim of the EMF-INCQUERY approach is to bring
the benefits of graph pattern based declarative queries and
incremental pattern matching to the EMF domain. The ad-
vantage of declarative query specification is that it achieves

(efficient) pattern matching without time-consuming, manual
coding effort compared to ad-hoc model traversal. While
EMF-INCQUERY is not the only technology for declaratively
defining queries over EMF (see EMF Query or MDT-OCL),
it is distinguished by its incremental evaluation feature.

Incremental query evaluation means that the query results
(the match sets of graph patterns) are cached in memory,
and can be instantaneously retrieved when queries are issued.
These caches are automatically and incrementally maintained
upon model updates, using automatic notifications provided
by EMF. There is a slight performance overhead on model
manipulation, and a memory cost proportional to the cache
size (approx. the size of match sets). These special perfor-
mance characteristics make incremental techniques suitable
for application scenarios such as on-the-fly well-formedness
checking, live model transformation and other complex use
cases. Specifically in well-formedness checking, as the number
of constraint violations is usually relatively small, the addi-
tional memory footprint is affordable. In [3] we carried out
an extensive performance benchmark in an industrial scenario
of well-formedness checking, and found EMF-INCQUERY to
outperform alternatives by a large margin due to its incremen-
tality.

III. EXTENDING EMF TOOLS WITH
INCREMENTAL MODEL VALIDATION

!"

#$%&'()"
*+,"

-./0%)1"
#'23/14)"5016"

7181'$91:";(1'&"
<24%28189)"

*+,"
5$/0:$92'"
=%%/0.$>28"

*+,"
42:1/"

#'23/14"
+$'?1')"

-+@"42:1/"'1A1'18.1"
B"<C$8D1"E2>F.$>28"

;(1'&"'1)(/9)"
B"G1/9$"+28092'"

H80>$/0I$>28"
B"+2:1/"+$80%(/$>28"

+$'?1'"".'1$>28"
B"+$'?1'"(%:$91"

-J0)>8D"
.24%28189)"

5$/0:$92'"
.24%28189)"

Figure 3. The Papyrus integration of EMF-INCQUERY

Components using EMF-INCQUERY for incremental query
evaluation, including on-the-fly model validators, can be easily
integrated into any EMF-based tool. We illustrate this by a case
study where the Papyrus UML tool is non-intrusively extended
with efficient model validation capabilities. The architecture
of the integration is depicted in Figure 3. The following
paragraphs will discuss each of the following validator com-
ponents.

The incremental evaluation feature of EMF-INCQUERY re-
quires notifications of changes to the model, so that the cached
query results can be incrementally maintained. Fortunately,
EMF can automatically provide such change notifications.

After specifying the EMF model that the queries should evalu-
ate against, EMF-INCQUERY can automatically subscribe for
notifications along with producing the initial result set. In this
context, any EMF resource (e.g. XMI file) or resource set
(group of interreferencing resources) can play the role of an
EMF model (in rare cases an arbitrary EObject containment
subtree is also possible).

It is even possible to apply EMF-INCQUERY on the run-
time EMF model used by an application, without any mod-
ifications required to said application. Many Eclipse-based
applications offer extension points where a reference to their
run-time EMF instance model can be obtained. Even if the
extension point only provides access to a single EMF model
element, it can be used to identify its containing resource
or resource set, and thus it is enough to initialize EMF-
INCQUERY. This is also how the Papyrus integration was
performed: the UML validator can be initialized by selecting
a context menu entry that was contributed through an Eclipse
extension point; no direct modification of Papyrus code was
reqiured. There can be, of course, benefits of more cooperation
between the program that owns the EMF model and EMF-
INCQUERY, such as tighter control of when and how the query
engine should be initialized, and more direct feedback of query
results.

Although model queries and incrementally evaluated queries
in particular have many usage scenarios, our case study in
particular focuses on finding violations of structural well-
formedness constraints. For this purpose, in addition to simply
executing the queries and retrieving the results, it is also
neccessary to inform the user about the current violations in
the model. Fortunately, this task can also be carried out without
modifications to Papyrus, as problems can be indicated in a
separate view. We have opted to use the standard problem
markers provided by Eclipse, where problems are bound to
files and can be listed in the Problems View. This provides
tight cooperation with the UI facilities of Papyrus, e.g. the
ability to indicate the actual location of violations within the
model, directly in the graphical editor of the tool.

The final task is handling model evolution, i.e. reacting to
changes in the result set of the query. When a new violation
is detected, a new problem marker should be created; when a
previously detected violation ceases to occur, the correspond-
ing problem marker should be removed. The challenge is in
detecting when these changes occur. The incremental query
evaluation engine of EMF-INCQUERY includes a feature
called delta monitor that serves the purposes of monitoring
the difference of the result set of a query from a given point in
time onward. In our particular case, delta monitors can be used
to report which violations have appeared or disappeared since
the last time they were checked. There still remains one issue:
when to check. EMF-INCQUERY provides a callback hook
that is invoked whenever the result set has been updated. This
can be used entirely automatically and without cooperation
from the modeling tool, so our case study relies on this
callback mechanism to update the problem markers.

Unfortunately, each step of a complex model manipulation
operation will do some partial updates in the model, result-
ing in the invocation of the callback mechanism mentioned
above. In this case, the routine that updates problem markers
may observe the model in an inconsistent intermediate state.
Therefore the problem markers may show erroneous results
for a very short amount of time, while the modeling tool is
in the middle of a model manipulation sequence. In case of
tighter integration between the modeling tool and the model
validator, it can be ensured that the problem marker update
routine is called only when the model is in a semantically
consistent state. For example, it would be a good idea to
call this routine at the end of each EMF Transaction (if the
transaction framework is used), or any application-specific unit
of model manipulation. With the latter approach, there are
two easy mistakes to consider. The first is neglecting to call
this update routine after every kind of model manipulation
(e.g. performed by a background transformation as opposed
to a GUI operation), so that the results become stale until a
subsequent operation is performed that does properly refresh
them. The second is updating the markers regularly but too
infrequently (e.g. only when saving the model). In both cases,
the outdated results can rob the on-the-fly validation approach
of its greatest advantage: immediate feedback to the modeler.

We consolidated the common components described above
as a light-weight model validation framework built on the
EMF-INCQUERY runtime. This library handles the registra-
tion and initialization of the EMF-INCQUERY pattern match-
ers, and the creation of problem markers from query results
and delta markers. To extend this validator with a new well-
formedness constraint, only the high-level specification of the
corresponding graph pattern needs to be annotated accordingly,
as the tooling supports full code generation.

IV. RELATED WORK

Model queries over EMF: There are numerous technolo-
gies for providing declarative model queries over EMF. Here
we give a brief summary of the mainstream techniques, none
of which support incremental behavior.

EMF Model Query [8] provides query primitives for se-
lecting model elements that satisfy a set of conditions; these
conditions range from type and attribute checks to enforcing
similar condition checks on model elements reachable through
references. The query formalism has several important restric-
tions: (i) it can only describe tree-like patterns (as opposed to
graph patterns); (ii) nodes cannot be captured in variables to
be referenced elsewhere in the query; and (iii) the query can
only traverse unidirectional relations in their natural direction.
Indeed, the expressive power of Model Query is weaker than
first order logic. Therefore, more complex patterns involving
circles of references or attribute comparisons between nodes
cannot be detected by EMF Model Query without additional
coding.

EMF Search [9] is a framework for searching over EMF
resources, with controllable scope, several extension facili-
ties, and GUI integration. Unfortunately, only simple textual

search (for model element name/label) is available by default;
advanced search engines can be provided manually in a
metamodel-specific way.

EMF-INCQUERY is not the first tool to apply graph pattern
based techniques to EMF [10], [11], but its incremental pattern
matching feature is unique.

OCL evaluation approaches: OCL [12] is a standardized
navigation-based query language, applicable over a range of
modeling formalisms. Taking advantage of the expressive
features and wide-spread adoption of OCL, the project MDT
OCL provides a powerful query interface that evaluates OCL
expressions over EMF models. However, backwards naviga-
tion along references can still have low performance, and there
is no support for incrementality.

Cabot et al. [13] present an advanced three-step optimization
algorithm for incremental runtime validation of OCL con-
straints that ensures that constraints are reevaluated only if
changes may induce their violation and only on elements that
caused this violation. The approach uses promising optimiza-
tions, however, it works only on boolean constraints, and as
such it is less expressive than our technique.

An interesting model validator over UML models [14] incre-
mentally re-evaluates constraint instances (defined in OCL or
by an arbitrary validator program) whenever they are affected
by changes. During evaluation of the constraint instance, each
model access is recorded, triggering a re-evaluation when
the recorded parts are changed. This is also an important
weakness: the approach is only applicable in environments
where read-only access to the model can be easily recorded,
unlike EMF. Additionally, the approach is tailored for model
validation, and only permits constraints that have a single
free variable; therefore, general-purpose model querying is not
viable.

V. CONCLUSION AND FUTURE WORK

Previously we presented EMF-INCQUERY as the next evo-
lutionary step in efficiently executing complex queries over
EMF models, by adapting incremental technologies [4] for
graph pattern matching. In the current paper, we examined
how a simple and efficient model validator based on EMF-
INCQUERY can be integrated non-intrusively into an existing
EMF-based modeling environment.

In the typical workloads associated with well-formedness
checking and other structural model validation, incremental
techniques can provide excellent performance. Our previous
measurement results [3] have confirmed this, but also the
fact that the designer needs to keep the memory impact in
mind. Practical applications of this technology include on-

the-fly model validation, interactive execution of domain-
specific languages, live incremental model synchronization
and incremental maintenance of (aggregated) model views for
development tool environments.

Further work is expected in performance tuning and general
usability improvements of EMF-INCQUERY. Finally, we plan
to work on integrating OCL as a query specification language.
As it has been shown [15], a significant subset of OCL can
be mapped to the graph pattern formalism, especially with
extensions such as those in [7].

ACKNOWLEDGEMENTS

This work was partially supported by the SecureChange
(ICT-FET-231101) European Research Project, the CERTIMOT
(ERC_HU-09-01-2010-0003) Project and the János Bolyai
Scholarship.

REFERENCES

[1] The Eclipse Project, Eclipse Modeling Framework, http://www.eclipse.
org/emf.

[2] MDT OCL, The Eclipse Project, http://www.eclipse.org/modeling/mdt/
?project=ocl.

[3] G. Bergmann, Á. Horváth, I. Ráth, D. Varró, A. Balogh, Z. Balogh,
and A. Ökrös, “Incremental Evaluation of Model Queries over EMF
Models,” in Model Driven Engineering Languages and Systems, MOD-
ELS’10, ser. LNCS, vol. 6395. Springer, 2010.

[4] G. Bergmann, A. Ökrös, I. Ráth, D. Varró, and G. Varró, “Incremental
pattern matching in the VIATRA model transformation system,” in
Graph and Model Transformation (GraMoT 2008), G. Karsai and
G. Taentzer, Eds. ACM, 2008.

[5] MDT Papyrus, The Eclipse Project, http://www.eclipse.org/modeling/
mdt/papyrus/.

[6] D. Varró and A. Balogh, “The Model Transformation Language of the
VIATRA2 Framework,” Science of Computer Programming, vol. 68,
no. 3, pp. 214–234, October 2007.

[7] G. Bergmann, Z. Ujhelyi, I. Ráth, and D. Varró, “A Graph Query
Language for EMF models,” in Proc. of ICMT’11, 3rd Intl. Conference
on Model Transformation. Springer, 2011.

[8] EMF Model Query, The Eclipse Project, http://www.eclipse.org/
modeling/emf/?project=query.

[9] EMFT Search, The Eclipse Project, http://www.eclipse.org/modeling/
emft/?project=search.

[10] E. Biermann, C. Ermel, and G. Taentzer, “Precise Semantics of EMF
Model Transformations by Graph Transformation,” in MoDELS ’08.
Springer, 2008.

[11] H. Giese, S. Hildebrandt, and A. Seibel, “Improved flexibility and
scalability by interpreting story diagrams,” in Proceedings of GT-VMT
2009, vol. 18. ECEASST, 2009.

[12] Object Constraint Language, v2.0, The Object Management Group, May
2006, http://www.omg.org/spec/OCL/2.0/.

[13] J. Cabot and E. Teniente, “Incremental integrity checking of UML/OCL
conceptual schemas,” J. Syst. Softw., vol. 82, no. 9, pp. 1459–1478, 2009.

[14] I. Groher, A. Reder, and A. Egyed, “Incremental consistency checking
of dynamic constraints,” in FASE 2009, ser. LNCS, vol. 6013. Springer,
2010.

[15] J. Winkelmann, G. Taentzer, K. Ehrig, and J. M. Küster, “Translation
of restricted OCL constraints into graph constraints for generating meta
model instances by graph grammars,” ENTCS, vol. 211, 2008.

http://www.eclipse.org/emf
http://www.eclipse.org/emf
http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/modeling/mdt/papyrus/
http://www.eclipse.org/modeling/mdt/papyrus/
http://www.eclipse.org/modeling/emf/?project=query
http://www.eclipse.org/modeling/emf/?project=query
http://www.eclipse.org/modeling/emft/?project=search
http://www.eclipse.org/modeling/emft/?project=search
http://www.omg.org/spec/OCL/2.0/

	Introduction
	Background
	Model Queries by Graph Patterns
	Overview of EMF-IncQuery

	Extending EMF Tools with Incremental Model Validation
	Related Work
	Conclusion and Future Work
	References

