
Towards Precise Metrics for Predicting
Graph Query Performance

Benedek Izsó, Zoltán Szatmári, Gábor Bergmann, Ákos Horváth, István Ráth
Department of Measurement and Information Systems

Budapest University of Technology and Economics, Budapest, Hungary
{izso,szatmari,bergmann,ahorvath,rath}@mit.bme.hu

Abstract—Queries are the foundations of data intensive ap-
plications. In model-driven software engineering (MDSE), model
queries are core technologies of tools and transformations. As
software models are rapidly increasing in size and complexity,
most MDSE tools frequently exhibit scalability issues that de-
crease developer productivity and increase costs. As a result,
choosing the right model representation and query evaluation
approach is a significant challenge for tool engineers. In the
current paper, we aim to provide a benchmarking framework
for the systematic investigation of query evaluation performance.
More specifically, we experimentally evaluate (existing and novel)
query and instance model metrics to highlight which provide
sufficient performance estimates for different MDSE scenarios
in various model query tools. For that purpose, we also present
a comparative benchmark, which is designed to differentiate
model representation and graph query evaluation approaches
according to their performance when using large models and
complex queries.

Index Terms—Performance benchmark, Model queries, Model
metrics, Query metrics

I. INTRODUCTION

Nowadays, model-driven software engineering (MDSE)
plays an important role in the development processes of critical
embedded systems. Advanced modeling tools provide support
for a wide range of development tasks such as requirements
and traceability management, system modeling, early design
validation, automated code generation, model-based testing
and other validation and verification tasks. With the dra-
matic increase in complexity that is also affecting critical
embedded systems in recent years, modeling toolchains are
facing scalability challenges as the size of design models
constantly increases, and automated tool features become more
sophisticated.

A key factor in the scalability of MDE toolchains is the
performance of model representation [1], which is, in turn, de-
termined by the characteristics of persistence, query evaluation
and model manipulation operations. Traditionally, modeling
tools built on state-of-the-art frameworks such as the Eclipse
Modeling Framework (EMF [2]) have relied on an in-memory
object model backed by an XML serialization. More recently,
model repositories (such as CDO [3] or Morsa [4]) have
emerged that aim to tackle scalability issues by making use
of advances in object persistence technology. As the majority
of model-based tools uses a graph-oriented data model, recent
results of the NoSQL and Linked Data movement [5]–[7] are
straightforward candidates for adaptation to MDE purposes.

Model queries support several essential scenarios including
model validation, model transformations, model synchroniza-
tion, view maintenance and model execution. As a conse-
quence, many scalability issues can be addressed by improving
query performance. This led to the development of several
model indexing and query evaluation engines (such as Eclipse
OCL [8], EMF Query [9], complementary approaches that
translate model queries into lower level queries that can be
executed on the (relational) back-end [10]). There are also
several approaches (such as EMF-INCQUERY [11] and the
Impact Analyzer of Eclipse OCL [8]) to support the incremen-
tal evaluation of model queries, which reduces query response
time by limiting the impact of model modifications to query
result calculation.

For tool engineers, benchmarks may provide guidance on
picking the right technology for building a new tool archi-
tecture to fulfill increasing scalability requirements. Due to
their central role in data-intensive applications, the perfor-
mance of persistence technologies has been evaluated by many
benchmarks [12], [13] that focus on throughput and response
time measurements, and investigate scalability in terms of
the size of the data set and the number of transactions. In
addition to these traditional scalability aspects, the semantic
web community has investigated the scalability of semantic
graph databases (RDF triple stores). These benchmarks rely
on graph queries over a structurally richer data set and also
investigate the effects of advanced semantic technologies such
as inference. Up to now, the most complex benchmarking
workloads have been investigated by the academic and in-
dustrial MDE tool building community in transformation tool
contests [14], which feature synthetic model transformation
case studies inspired by real-world applications.

Despite all these efforts, making a well-founded techno-
logical choice based on existing benchmarking results re-
mains a tough challenge. First, MDE tools have very specific
workloads (both in terms of model structure and transaction
complexity) that are different in key aspects compared to
traditional RDBMS and newer graph persistence benchmarks.
MDE tools rely on much more complex queries and their
performance is dominated by response time and re-evaluation
time rather than throughput. Additionally, RDBMS and seman-
tic technologies have key conceptual differences that require
mapping layers which might have adverse and unpredictable
effects on real life performance. The generalizability of bench-

mark results is further limited by the scarcity of relevant
metrics that could be used to assess an engineering problem
and predict which technology would be best suited. Existing
metrics emphasize a single aspect of the problem (most
typically model size), while internal metrics (used by e.g.
optimizing query evaluation engines or pattern matchers inside
GT tools, for estimating query evaluation difficulty) are either
not documented well or not accessible in a reusable way.

In this paper, we aim to address these challenges by
assessing existing metrics, along with newly proposed ones.
These metrics take instance model characteristics, static query
characteristics and their combination into account. Based on
our real-life experiences with tools and models, we outline a
benchmark that uses model validation as its core scenario, thus
focusing on model loading and model validation workloads.
Guidelines are provided on the generation of instance models
and queries, on which we evaluated the metrics and executed
the benchmark using three, characteristically different graph
query tools. In order to identify which metrics provide reliable
performance prediction for a given workload and tool category,
we calculate the correlation with significance values between
execution times and metrics.

The rest of the paper is structured as follows. Sec. II
overviews the most important concepts of modeling languages
and model queries, and Sec. III discusses benchmarking and
metrics related work. Sec. IV presents our analysis of existing
benchmarks and proposes new metrics and benchmarks, with
their evaluation presented in Sec. V. Sec. VI outlines directions
for future work and concludes the paper.

II. BACKGROUND

Graph based models can be used to abstract, and formally
describe real world structures. Vertices of such a model can be
grouped into classes (which are the types of these individuals),
and similarly, relations can have labels to describe their types.
A metamodel consists of such labels, and constraints that can
restrict model combinations, or can be used for inferencing.
In this section the EMF (Eclipse Modeling Framework) and
RDF (Resource Description Framework) model description
languages are described briefly. To process models of these
languages, imperative traversal or declarative query evaluation
tools can be used.

A. Model Representation Technologies and the Example Do-
main

1) Modeling Languages: The Eclipse Modeling Framework
(EMF) [2] uses the Ecore language to describe domain-
specific models and metamodels. Such models can be edited
by framework provided graphical editors, which are similar
to UML class diagram editors. Instance model elements are
EObjects in Ecore, which have exactly one type, described
by an EClass. EReference (or associations) connect EClasses,
and EAttribute of EClasses point to primitive datatypes (like
EString, EInt). EReferences and EAttributes can be single-
valued or multi-valued and they can be ordered or unordered.
EReferences may additionally imply containment, which is

Fig. 1: Train metamodel described in EMF

mainly used during model serialization. Inheritance may be
defined between classes, which means that the inherited class
has all the properties its parent has, and its instances are also
instances of the ancestor class, but it may further define some
extra features. Note, that inheritance between relations is not
supported by the language. The language supports two level
metamodeling, where the metamodel is stored separately from
instance models. An example metamodel is depicted in Fig. 1.

The Resource Description Framework (RDF) [15] is in-
spired by the Semantic Web, and describes graph models with
{subject, predicate, object} triples. The subject and object are
vertices, while the predicate is the type of the relation from
subject to object. One atom of a triple statement can be an
IRI (Internationalized Resource Identifier), while objects can
be IRIs or XML Schema defined literals for describing values
(like string or int). In contrast to EMF, RDF supports multi-
level and multi-domain metamodeling. Other constraints can
be expressed, like subsumption between classes or references,
domain and range restrictions of relations. EMF supports
inverse relations and cardinality restrictions by default, while
in RDF these can be expressed only by using the OWL
extension. In the measurements of the paper, for the RDF tools
inferencing was not enabled and explicit metamodel was not
constructed, so the metamodel of RDF documents are consist
only of the types (labels) of instance model elements.

2) Example from the Railway Domain: The method de-
scribed in the paper is domain independent, however for better
understanding, an example from the railway domain is used
throughout the paper which is depicted on Fig. 1. A train route
can be defined by a set of sensors. Sensors are associated with
track elements, which can be a track segment or a switch. A
route can have associated switch positions, which describe the
required state of a switch belonging to the route. Different
route definitions can specify different states for a specific
switch. Segments have lengths and heights, while sensors have
production year integer properties.

3) Model Storage Backends: For EMF, the Eclipse provided
in-memory backend was used. It can de-serialize models from
an XML-based syntax, and perform basic inference (subsump-
tion, inverse relations), as well as some basic validations

(like cardinality check). The Java based API provides model
manipulation and traversal functions.

Sesame [7] is a standard API for handling RDF docu-
ments with implementation bundled into the distribution. RDF
models can be read from multiple file formats (including
RDF/XML) into various repositories, like to the in-memory
MemoryStore (that we used), or to the disk based B-Tree
indexed NativeStore. For reasoning and consistency checking
a forward chaining inferrer can be used which implements
inference rules described in the RDF standard [15].

B. Model Query Technologies and Languages

In order to process a model, a well defined part of it should
be selected. As a basic solution, a Java based imperative
program can traverse the model, and gather element tuples
into a result set. Such a code usually collects elements of some
types, and iterates over some of their references. This is similar
to local search based approaches, however careful Java coding
is needed, usually contains no special optimizations, or query
plan construction, and highly depends on the actual structure
(i.e.: inverse relations).

Graph patterns (GP) are used to refer to subgraphs of an
instance model in a declarative way. A basic graph pattern
is built up from structural constraints, prescribing the type
and connection between instances (denoted by variables). The
absence of an instance model combination can be described
using negative application condition, while basic attribute
checks filter results based on the values of basic data objects.
Two GP evaluation engines are EMF-INCQUERY and Sesame.
Patterns of EMF-INCQUERY can be evaluated on EMF mod-
els incrementally, and the language supports extensions, like
pattern calls, recursive patterns and match counting. Sesame
is a representative of many tools that evaluate queries over
RDF that are formulated as SPARQL [16] graph patterns,
which support aggregate function (like AVG, SUM) and query
aggregates (like GROUP BY and HAVING).

III. RELATED WORK

Benchmarks have been proposed earlier, mainly to track
improvements of a query engine, or to compare tool per-
formance for a given use case. However, most benchmarks
are only useful for predicting (relative) performance of tools
depending on model size; there is rarely enough data to
consider other signals such as query or model structure.
Despite the abundance of benchmarks, it is still difficult to
choose the best tool for a given purpose, due to the absence
of common metrics.

A. RDF Benchmarks

SP2Bench [13] is a SPARQL benchmark that measures only
query throughput. The goal of this benchmark is to measure
query evaluating performance of different tools for a single
set of SPARQL queries that contain most language elements.
The artificially generated data is based on the real world
DBLP bibliography; this way instance models of different
sizes reflect the structure and complexity of the original real

world dataset. However, other model element distributions or
queries were not considered, and the complexity of queries
were not analyzed.

The Berlin SPARQL Benchmark (BSBM) [12] measures
SPARQL query evaluation throughput for an e-commerce case
study modeled in RDF. The benchmark uses a single dataset,
but recognizes several use cases with their own query mix.
The dataset scales in model size (10M-150B), but does not
vary in structure.

SPLODGE [17] is an approach, where SPARQL queries
were generated systematically, based on metrics for a pre-
defined dataset. The method supports distributed SPARQL
queries (via the SERVICE keyword), however the implemen-
tation scaled only up to three steps of navigation, due to the
resource consumption of the generator. The paper did not
mention instance model complexity, and only the adequacy
of the approach was demonstrated with the RDF3X engine,
the effect of queries with different metrics combinations to
different engines was not tested.

B. Model Transformation and Graph Transformation Bench-
marks

There are numerous graph transformation benchmarks that
do not focus specifically on query performance. However [18]
aims to design and evaluate graph transformation benchmark
cases corresponding to three usage patterns for the purpose of
measuring the performance of incremental approaches on dif-
ferent model sizes and workloads. These scenarios are concep-
tual continuations of the comprehensive graph transformation
benchmark library proposed earlier in [19] (described more
extensively in [20]), which gave an overview on typical ap-
plication scenarios of graph transformation together with their
characteristic features. [21] suggested some improvements to
the benchmarks described in [19] and reported measurement
results for many graph transformation tools.

A similar approach to graph transformation benchmarking
was used for the AGTIVE Tool Contest [22], including a sim-
ulation problem for the Ludo table game. Later, the GraBaTs
tool contest [23] introduced an AntWorld case study [24], and
the community continued to hold tool contests in the TTC [14]
series.

As model validation is an important use case of incre-
mental model queries, several model query and/or validation
tools have been measured in incremental constraint validation
benchmarks [11], [25], [26].

IV. BENCHMARKING AND METRICS

A. Overview

The aim of our metrics and benchmarking scenarios is
to give a precise mechanism for identifying key-factors in
selecting between different query evaluation technologies.

The presented metrics for our evaluation (see in Sec. IV-B)
were constructed based on a set of already and widely used
metrics, extended with two more specific ones that aims to
give a gross upper bound on the cost of query evaluation.

For the benchmark scenario we opted for a simple execution
schema (see in Figure 2) that represents a batch-validation
scenario, where the underlying model is checked against a set
of predefined queries in batch execution, while the execution
time and memory consumption was measured. Using this
scenario, the scalability and sensitivity of model queries and
tools can be evaluated according to the defined metrics.

1) Read Phase: In the first phase the previously generated
instance model is loaded from hard drive to memory. This
includes parsing of the input, as well as initializing data
structures (cache)) of the tool. The latter can consume minimal
time for a tool that performs only local search, but for
incremental tools indexes or in-memory caches are initialized.

2) Check Phase: In the second, check phase the instance
model is queried. This can be as simple as reading the results
from cache, or the model can be traversed based on some
index. Theoretically cache or index building can be deferred
from the read phase to the check phase, but it depends on the
actual tool implementation. To the end of this phase, results
must be available in a list.

Read Check

Model
In Memory

Model
Result set

Read phase Check phase

Fig. 2: Benchmark Scenario Overview

This benchmark was evaluated on three characteristically
different query technologies:

1) An imperative local search-based approach imple-
mented completely in Java, operating on EMF models

2) A declarative, incremental approach based on the con-
cepts of Rete nets as provided by the EMF-INCQUERY
framework, operating on EMF models.

3) A declarative, black-box execution engine as imple-
mented in the Sesame framework based on the SPARQL
query specification language, operating on RDF models.

Finally, we perform statistical correlation analysis against
the data set generated from the execution of our benchmarks
and the evaluation of our metrics.

B. Metrics

Our investigation relies on a selection of metrics that quan-
titatively describe queries tasks, independently of the actual
strategy or technological solution that provides the query
results. Broadly speaking, such a querying task consist of
(a) an instance model, (b) a query specification that defines
what results should be yielded, (c) a runtime context in which
the queries are evaluated, such as the frequency of individual
query evaluations and model manipulation inbetween.

The metrics discussed in the following, tipify one or more
of these factors generally, without characterizing a unique

property of a specific graph/query description language or
environment. Most of these metrics have previously been
defined by other sources, while others are newly proposed in
this paper.

1) Metrics for Instance Model Only: Clearly, properties
of the instance model may have a direct effect on query
performance, e.g. querying larger models may consume more
resources.

A first model metric is model size, which can be defined
either as the number of objects (metric countNodes), the
number of references (edges) between objects (countEdges),
the number of attribute value assignments (not used in the
paper); or some combination of these three, such as their
sum (countTriples), which is basically the total number of
model elements / RDF triples. This is complemented by the
number of different classes the objects in the model belong
to (countTypes), and the instance count distribution of the
classes. Additional important model metrics characterize the
distribution of the out-degrees and in-degrees (the number of
edges incident on an object), particularly the maximum and
average degrees (maxInDegree, maxOutDegree, avgInDegree

and avgOutDegree).
The metrics discussed above have been defined e.g. in [27],

along with other metrics such as the relative frequencies of
the edge label sequences of directed paths of length 2 or 3.

2) Metrics for Query Specification Only: The query speci-
fication is a decisive factor of performance as well, as complex
queries may be costly to evaluate. Such query metrics can be
defined separately, in several query formalisms. Due to the
close analogies between graph patterns and SPARQL queries,
we can consider these metrics applying to graph pattern-like
queries in general. This allows us to formulate and calculate
metrics expressed on the graph patterns interpreted by EMF-
INCQUERY, and characterize the complexity of the equivalent
SPARQL query with the same metric value.

As superficial metrics for graph pattern complexity, we
propose the number of variables (numVariables) and the
number of parameter variables (numParameters); the number
of pattern edge constraints (numEdgeConstraints) and the
number of attribute check constraints (numAttrChecks); finally
the maximum depth of nesting NACs (nestedNacDepth). Some
of these are similar/equivalent to SPARQL query metrics
defined in [17]. Other metrics proposed by [17] are mostly
aimed at measuring special properties relevant to certain
implementation strategies (see also paragraph IV-B5b).

3) Metrics for Combination of Query and Instance Model:
The following two metrics (defined previously in literature)
characterize the query and the instance model together.

The most trivial such metric is the cardinality of the query
results (metric countMatches); intuitively, a query with a
larger result set typically takes longer to evaluate on the
same model, while a single query is typically more expen-
sive to evaluate on models where it has more matches. The
metric selectivity is proposed by [17], is the ratio of the
number of results to the number of model elements (i.e.
countMatches/countTriples).

4) New Metrics for Assessing Query Evaluation Difficulty:
We propose two more metrics that take query and instance
model characteristics into account. Our aim is to provide a
gross upper bound on the cost of query evaluation. We consider
all enumerable constraints in the query, for which it is possible
to enumerate all tuples of variables satisfying it; thus edge con-
straints and pattern composition are enumerable, while NACs
and attribute checks in general are not. At any given state
of evaluation, a hypothetical search-based query engine has
either already identified a single occurrence of an enumerable
constraint c (e.g. a single instance of an edge type for the
corresponding edge constraint), or not; there are therefore
|c|+1 possible cases for c, where |c| is the number of different
ways that c can be satisfied in the model. This gives

∏
c 1 + |c|

as the overestimate of the search space of the query evaluator.
To make this astronomical figure manageable, we propose the
absolute difficulty metric (absDifficulty) as the logarithm of
the search space size, i.e. ln

∏
c (1 + |c|) =

∑
c ln(1 + |c|).

The result size is a lower bound of query evaluation
cost, since query evaluation takes at least as much time or
memory as the number of results. It is therefore expected
that queries with a high number of matches also score high
on the absolute difficulty metric. To compensate for this,
the relative difficulty metric (relDifficulty) is defined as
ln

∏
c (1+|c|)

1+countMatches =
∑

c ln(1 + |c|)−ln(1+countMatches),
expressing the logarithm of the “challenge” the query poses -
this is how much worse a query engine can do than the lower
bound. If the relative metric is a low figure, than the cost of
query evaluation will not be much worse than the optimum,
regardless of the query evaluation strategy. It can be easily
shown that if a part of a graph pattern is extracted as a helper
pattern that is used via pattern composition, then the sum of
the relative difficulties of the two resulting patterns will be
the same as the relative difficulty of the original pattern. This
suggests that this metric should be treated as additive over
dependent queries, and also that it is worth extracting common
parts of multiple patterns into reusable helper patterns.

5) Other Factors:
a) Metrics Involving a Runtime Context: Compared to

the instance model or the query specification, the role of the
runtime context is less evident. Nevertheless, the performance
of query strategies that rely on caching or indexing (such as
the incremental evaluator of EMF-INCQUERY) may depend
on such factors as well. If there are very frequent queries
on a rarely changing model, caching the results pays off
greatly. The more model modification is carried out between
each query invocation, the more diminished these advantages
become. In the extreme case, if queries are only ever evaluated
once, then strategies that construct and incrementally maintain
caches are obviously not worth applying.

Comparing a range of such workloads is beyond the scope
of the current paper. Instead, we distilled performance mea-
surement down to three indicators (read / check times and
memory, see Sec. IV-A), so that the trade-offs of incremental
strategies can be observed.

b) Metrics for Query Evaluation Strategies: In this pa-
per, metrics are used for comparing query tasks, regardless
of the evaluation strategy or technology applied as a solution.
Therefore metrics that are specific to query evaluation strate-
gies, especially metrics aimed at comparing evaluation plans,
are not useful for the purposes of the current investigation.

Nevertheless, we briefly mention a few such metrics found
in literature. The SST weight [28] is a cost estimate of search-
based query evaluation plans for graph patterns, which can
be used by a query optimizer to select the best alternative.
Analogously, a cost estimate of OWL/SPARQL query plans
is presented in [29]. For optimized parallelization of graph
pattern matching on large distributed graphs, query variables
(graph pattern nodes) are ranked by [30] according to a
so-called f-value. Join operations in SPARQL queries are
classified as star-shaped and path-shaped and counted in [17].

C. Benchmark Models

Models are characterized by their size and structure. Here
size refers to the cardinalities of node and edge types. The fact
that increasing model size tends to increase the cost of queries
is intuitively self evident (and also empirically confirmed
e.g. by our previous experiments [11], [18]). Handling large
models in real life is a great chellenge, but model structure
(that determines which nodes are connected to each other by
which edges) must also be take into account, which here means
edge distribution of nodes. Different edge distributions also
present in real-world networks: the internet or protein-protein
interaction networks show scale-free characteristics [31], while
in other areas self-healing algorithms for binomial computer
networks are studied [32]. Average degree can impact perfor-
mance greatly, which is a typical property of different model
kinds. For example, software models have usually nodes with
low degree, while social models are usually dense graphs.

We have conducted the experiments on synthetic models,
generted automatically with our model builder, belonging to
three model families (without comparing them directly to real
world ones, leaving it as a future work). All generated models
within a family have the same approximate size; though there
is some random variation due to the generation process (see
later), with low standard deviation (e.g. measured as 0.3%
in family A). Family A models are relatively dense graphs
(~26 edges/nodes, i.e. metric avgOutDegree) with 1.8 million
total model elements (metric numTriples); family B models
are equally dense, but are scaled back to only 113 thousand
elements; finally family C models have almost 1.3 million
model elements that form a relatively sparse graph (8.4− 8.7
edges/nodes).

Each model of a family has the same (expected) number
of instances for any given type. However, these models of
the same size still differ in their internal structure. Given
the cardinalities of each type, our generator first created the
instance sets of node types, along with generating attribute
values according to an associated distribution. Then for each
edge type, the generator created edge instances (with the
given expected cardinality) between instances of the source

type and instances of the target type. The structure of the
graph is induced by the method of choosing which source
node and which target node to connect. We have applied the
following four methods, each taking as input the set S of
source node candidates, the set T of target node candidates,
and the expected cardinality e of the edge type.

Binomial case. Inspired by the well-known Erdős-Rényi
model of random graphs [33], the first approach is to take each
pair of source and target nodes, and draw an edge between
them with a given probability p. This makes the expected
cardinality of edges e = p × |S| × |T |, thus p is chosen as

e
|S|×|T | . The degrees of nodes will be binomially distributed,
e.g. out-degrees with parameters |T | and p.

Hypergeometric case. While the previous solution ended
up with a random number of edges (with expected value
e), this slightly different approach will generate exactly e
edges, by taking each pair of source and target nodes, and
randomly selecting e from them into the graph. The degrees
will be hypergeometrically distributed, e.g. out-degrees with
parameters |S| × |T |, |T | and e.

Regular case. In software engineering models, one often
finds for a given edge type that out-degrees of all nodes of
the source type are roughly equal, and the same is true for
in-degrees. This motivated a method that tries to uniformly
(but randomly) divide e edges between the source nodes, so
that the difference between any two out-degrees is at most 1;
while also dividing the same edges between the target nodes,
with a similar restriction on in-degrees.

Scale-free case. It has been observed in many different
disciplines that degree distributions of certain large graphs
follow a power law, especially growing / evolving graphs with
the preferential attachment property (a new edge is more likely
to connect to a node which already has a higher degree). We
have used a variant of the preferential attachment bipartite
graph generator algorithm of [34] to generate the connections
from source nodes to target nodes.

The four generation methods induced significantly different
degree distributions. This and other differences are shown in
Table I.

One-to-many relationships were treated in a special way
to meet the multiplicity restriction. In particular, a single
top-level container element (not depicted in the metamodel
figure, neither involved in any queries) was used to contain
all elements; it therefore has an outgoing containment edge
for every other object, thereby “polluting” the maxOutDegree

metric.

D. Benchmark Queries

Based on the previously defined metrics for query spec-
ification and based on the metamodel, six series of model
query specifications were systematically constructed. Each
query series includes four to seven model queries that aim to
be different in only one of the defined model query metrics.
Executing a query series on the same model and tool results
in a data series that shows how the tool is scalable according
to the represented model metric.

1) Locals Query Series for the numVariables Metric:
Five queries were defined, where each one includes the same
number of edge constraints, but the number of local variables
increases.

It can be realized using the Segment type and connectsTo

reference, so it means, that only one node type and reference
type is used in these patterns and the focus is on the structure
of the patterns. The simple graph based visualisation of these
pattern structures is shown in Fig. 3, where the node drawn
with empty circle represents the single pattern parameter.

3

2

2

3 4

2 3

4 5

2

3

45

6

2 3

4

5

7

6

Fig. 3: Locals patterns

2) Refs Query Series for the numEdgeConstraints Metric:
The Refs query series is also constructed based on the Segment

type and connectsTo reference.
Here, the number of edge constraints increases along the

series, but the number of local variables is constant in all of
the generated four queries. The visualisation of these pattern
structures is shown in Fig. 4.

Fig. 4: Refs patterns

3) Params and ParamCircle Query Series for the
numParameters Metric: Two series of queries were con-
structed for this metric, because of performance reasons. The
Params query series is the more complex and some tools
exceed the time limit in the benchmark. The ParamsCircle

query series is a simplification of the Params series.
The goal of this constructed query series is to create

patterns with the same body, but with an increasing number of
parameters. The first of these queries (returning one parameter)
is shown in Fig. 5, where the parameter is the blue object.
Other queries use the same body, but add sen1, then sen2,
then other variables to the parameter list.

4) Checks Query Series for the numAttrChecks Metric:
Each Checks query use the same pattern body described by
the pattern schema in Fig. 6, but each one is extended with an
increasing number of attribute check constraints. These check
constraints filter results based on the year, height and length
value of the segments seg1 and seg2, resulting in seven queries.

5) Negs Query Series for the nestedNacDepth Metric: Negs

queries present increasing number of nested neg constraints.

TABLE I: Values of model metrics on the generated instance models

Model Family Model structure countNodes countEdges countTriples countTypes avgOutDegree avgInDegree maxOutDegree maxInDegree
A Regular 63289 1646386 1811752 7 26.01 26.01 63288 44
A Binomial 63289 1649179 1814545 7 26.06 26.06 63288 69
A HyperGeo 63289 1646386 1811752 7 26.01 26.01 63288 74
A Scalefree 63289 1660033 1825399 7 26.23 26.23 63288 10390
B Regular 3954 102839 113170 7 26.01 26.01 3953 44
B Binomial 3954 102984 113315 7 26.05 26.05 3953 64
B HyperGeo 3954 102839 113170 7 26.01 26.01 3953 69
B Scalefree 3954 96029 106360 7 24.29 24.29 3953 918
C Regular 120001 1040000 1280001 7 8.67 8.67 120000 13
C Binomial 120001 1041323 1281324 7 8.68 8.68 120000 30
C HyperGeo 120001 1040000 1280001 7 8.67 8.67 120000 29
C Scalefree 120001 1012858 1252859 7 8.44 8.44 120000 8929

r: Route

sen1: Sensor sen2: Sensor

routeDefinitionrouteDefinition

te: TrackElement sw: Switch

trackElementtrackElement

swp: SwitchPosition

switchPosition

route
r: Route

sen2: Sensor

routeDefinition

sw: Switch

trackElement

swp: SwitchPosition

switchPosition

route

Fig. 5: Params and ParamsCircle pattern schemas (first
step)

check(seg1.length < 10)
check(seg1.length < 10)

r: Route

sen1: Sensor sen2: Sensor

check(seg1.length < 10)

routeDefinitionrouteDefinition

seg1: Segment seg2: Segment

trackElement trackElement

Fig. 6: Checks pattern schema

These queries are defined based on the following schema: at
the bottom there is a pattern checking for segments with length
less than ten. Next, for each query a new segment is matched,
and the previous pattern is encapsulated in a negative pattern
call. i = 5 queries are defined in the benchmark, described by
the schema in Fig. 7.

After the construction of the query series, we evaluated the
query only metrics on them. Table II shows the results of the
evaluation: each cell contains the value or range of values that
we got on each query series. This table confirms that there are
query series for every metric (shown in blue), and each query
series differ in one or more metrics.

E. Implementation Details

These query series are first defined in graph patterns and
then formalized using a query language suited for the given
tool. The presented query series were implemented using each
model query technology mentioned in Sec IV-A. In Fig. 8 the
sample implementation of the locals_3 query is depicted.

connectsTo

Seg(i): Segment

Seg(i-1): Segment

Seg(i-2)

Seg(i-3)

connectsTo

connectsTo

NEG

NEG

NEG

…..

Fig. 7: Negs pattern schema

In the IncQuery Pattern Language [35] (Fig. 8a), object
constraints and reference constraints are used to describe
the structure, and individuals matching the Seg1 variable are
returned.

Using the SPARQL [16] notation (Fig. 8b), triples describe
the same structural constraint, and the semantically equivalent
query returns distinct matches of the xSeg1 variable.

The query function was also coded in Java (illustrated
in Fig. 8c). The model is traversed by embedded iterations
and for every Segment the connections are checked. The
implementation does not contain any search plan specific
optimization (i.e. the embedding order of for cycles is ad-
hoc), but it cuts unnecessary search branches at the earliest
possibility. This coding style represents an experienced pro-
grammer, who writes good quality source code. This way, such
Java implementation could be used as a baseline in the future,
to compare multiple tools qualitatively.

V. EXPERIMENTAL EVALUATION

A. Measurement Setup

For the implementation details, source codes and raw re-
sults, see the benchmark website1. In this section we describe
the runtime environment, and highlight some design decisions.

1http://incquery.net/publications/benchmarkmetrics

http://incquery.net/publications/benchmarkmetrics

TABLE II: Query-only metrics

Query series numParameters numVariables numEdgeConstraints numAttrChecks nestedNacDepth
Param 1 - 5 8 8 0 0
ParamCircle 1 - 5 6 6 0 0
Locals 1 3 - 7 6 0 0
Refs 1 5 4 - 7 0 0
Checks 1 5 - 11 4 - 10 0 - 6 0
Neg 2 - 6 3 - 11 1 - 5 1 0 - 10

1 pattern locals_3(Seg1) =
2 {
3 Segment(Seg1);
4 Segment(Seg2);
5 Segment(Seg3);
6 Segment.connectsTo(Seg1,Seg2);
7 Segment.connectsTo(Seg2,Seg3);
8 Segment.connectsTo(Seg3,Seg1);
9 Segment.connectsTo(Seg2,Seg1);
10 Segment.connectsTo(Seg3,Seg2);
11 Segment.connectsTo(Seg1,Seg3);
12 }

(a) EMF-INCQUERY graph pattern

1 SELECT distinct ?xSeg1
2 WHERE
3 {
4 ?xSeg1 rdf:type base:Segment .
5 ?xSeg2 rdf:type base:Segment .
6 ?xSeg3 rdf:type base:Segment .
7 ?xSeg1 base:connectsTo ?xSeg2 .
8 ?xSeg2 base:connectsTo ?xSeg3 .
9 ?xSeg3 base:connectsTo ?xSeg1 .
10 ?xSeg2 base:connectsTo ?xSeg1 .
11 ?xSeg3 base:connectsTo ?xSeg2 .
12 ?xSeg1 base:connectsTo ?xSeg3 .
13 }

(b) SPARQL graph pattern

1 protected void locals3() {
2 Collection<Segment> candidates1 = getSegments();
3 Top:
4 for (Segment s1 : candidates1) {
5 Collection<Segment> candidates2 = getSegmentsConnectedTo(s1);
6 for (Segment s2 : candidates2) {
7 if (!s2.getConnectsTo().contains(s1))
8 continue;
9 Collection<Segment> candidates3 = getSegmentsConnectedTo(s2);

10 for (Segment s3 : candidates3) {
11 if (!s1.getConnectsTo().contains(s3))
12 continue;
13 if (!s3.getConnectsTo().contains(s2))
14 continue;
15 if (!s3.getConnectsTo().contains(s1))
16 continue;
17 foundInvalid(s1);
18 continue Top;
19 }
20 }
21 }
22 }

(c) Java code

Fig. 8: Pattern schemas for Locals_3 query

The benchmark machine contains two quad core Intel Xeon
L5420 (2.50GHz) CPU, 32 GBs of RAM and a SAS disk
formatted to ext4 for storing the models. In order to alleviate
disturbance of a running measurement and minimize noise in
the results, a bare metal 64 bit Ubuntu 12.04 OS was installed
with unnecessary services (like cron) turned off. OpenJDK
JVM version 1.6.0_24 is used as the Java environment and
Eclipse Juno Modeling 64 bit for Linux for development, and
for the EMF-INCQUERY and Java dependencies.

The performance measurements of a tool for a given query-
model pair was independent from the others, i.e. for every tool
only its codebase was loaded, and every scenario measurement
(see Fig. 2) was run in a different JVM. Before the execution,
OS file cache was cleared, and swap was disabled to avoid
this kind of thrashing. Each test (including all phases) must
be run within 15 minutes, otherwise it was killed.

To obtain faithful execution times, we implemented a bench-
marking framework, which accounted for the time measure-
ments with nanosec precision (that can have less accuracy!),
and the clear separation of phases enforced by the defined
interfaces. These model loading and querying functions were

TABLE III: Measured tools

Tool Model Query Language Version
Java EMF Java 6.0
EMF-IncQuery EMF IQPL 0.7.0
Sesame RDF SPARQL 2.5.0

implemented using functionally equivalent calls of a given
tool. See Table III for the model management format and
query language of the benchmarked tools. The benchmarks
were realized as Java applications.

Before acquiring memory usage (free heap space) from
the JVM, GC calls were triggered five times to sweep
unfreed objects from the RAM. For a JVM, 25 GB heap
limit was specified, but to compensate 64 bit pointers, OOPS
(ordinary object pointers) compression was also turned on:
(-XX:MaxPermSize=256m -XX:+UseCompressedOops -Xmx25g).

In the benchmark all cases were run ten times, and the
results were dumped into files, then processed by a spreadsheet
software. Finally they are analyzed and visualized using the
R statistical framework.

B. Method of Analysis

Our long-term goal is providing a catalog of reliable
benchmark data that, based on metrics of the model and the
queries, will allow the engineer to extrapolate the expected
performance characteristics of various query technologies,
which in turn will support making an informed decision on
the solution to apply. In scope of this paper, we attempt to
provide a necessary prerequisite with a narrower focus of
investigation: finding out which model and query metrics are
useful for predicting the performance of the various tools, over
a wide range of different queries and model structures.

A given metric can only be a useful predictor of a certain
performance indicator of a certain tool if they are strongly
correlated. Therefore our analysis investigated correlations
of metrics and performance indicators. Neither previous ex-
perience nor current measurement data supported a linear
relationship between these variables; therefore we opted to
abandon the commonly used Pearson correlation coefficient
that is associated with linear regression. We rely instead on
Kendall’s τ rank correlation coefficient, ranging from −1 to
+1; without assuming a linear model, τ characterises the
degree to which it can be said that larger values of the metric
correspond to larger values of the performance indicator.

Correlation coefficients may lead to incorrect conclusions
if the sample of models and queries is too small. Therefore,
whenever measuring an absolute value of τ , we additionally
conducted the associated statistical test (τ -test) to decide
whether the detected correlation between the variables is sta-
tistically significant (p < 0.001). Note that any such statistical
result is conditional to the uniform sampling of the selected
queries and models.

A limitation of the approach is that two strongly correlated
variables (e.g. countEdges and countTriples) may show up as
equally good predictors, but in reality they can not be used as
two independent signals for predicting performance (as most
triples in our models are edges). The simple correlation-based
analysis presented here is intended as preliminary feature
selection; we intend to follow up with redundancy-reducing
feature selection techniques such as mRMR [36] that can take
into account which metrics convey independent information.
Afterwards, predicting the best choice of technology based
on the metric values is a problem of multivariate regression /
classification, for which we plan to employ advanced machine
learning techniques (e.g. ID3 [37] decision trees or MARS [38]
regression model) in future work.

C. Results

For each tool performance indicator and each metric, we
conducted Kendall’s correlation test to see whether the data
available is sufficient to form a statistically significant support
of correlation between the performance indicator and the
metric. For metrics that were found to correlate, the absolute
value of Kendall’s τ correlation coefficient is displayed on a
spider chart specific to the performance indicator of the tool
(see Figure 9); positive correlation values are displayed as red
triangles, while negative ones as blue squares.

1) Evaluation: Consistently with previously published re-
sults, the data shows that model size is a strong predictor of
both model loading time and memory consumption, regardless
of the technology.

a) Tool-specific Observations: However, check times
show a more diverse picture. The check times for the Java im-
plementation (being a dominantly search-intensive approach)
are additionally correlated with the query-on-model metrics as
well, with the strongest correlation shown by the absDifficulty
metric.

Interestingly, the best Sesame check time predictor turned
out to be the number of pattern variables, and there is no
significant correlation with any direct model metrics.

Check times in EMF-INCQUERY are very strongly corre-
lated to the number of matches - which is to be expected
of an incremental tool whose check phase consists of just
enumerating the cached match set. As the incremental indexes
are constructed during the load time, the model-on-query
metrics become correlated with EMF-INCQUERY read time.
It can also be highlighted that EMF-INCQUERY seems not
to be sensitive towards the “difficulty” of the query (in any
phase) or the model size (during the check phase) due to the
very small correlations with corresponding metrics.

b) Metrics: Overall, it can be said that model-only
metrics are useful in predicting the performance of model
persistence operations. However, query-based and combined
metrics (such as our proposed abs- and relDifficulty) are
necessary to provide a more thorough picture. Note that
since only statistically significant correlations are included,
a low magnitude correlation does not necessarily mean a
measurement error. It is possible that there is a true link
between the two variables, but the τ value is lowered by other
metrics that strongly influence the performance indicator.

2) Threats to Validity: Regarding the technological foun-
dations and methodology of our measurements, the most
important threats to validity stem from time measurement
uncertainty and distortions due to transient effects such as
garbage collection in the JVM and thrashing due to heap size
exhaustion. Such effects were mitigated by using the most
accurate Java time measurement method (System.nanoTime),
allocating as much heap as possible, and using a timeout
mechanism to identify and exclude cases affected by thrashing
from the results. Additionally, it is also possible that there is
sampling bias in our choice of models and metrics; we believe
that this is sufficiently mitigated by our systematic choice of
model generation strategies and the design principles of the
queries. To improve the magnitude of correlation we increased
the sample size by running the benchmarks ten times.

VI. CONCLUSION AND FUTURE WORK

In this paper, our aim was to develop a methodology
whereby the performance of model queries can be systemati-
cally evaluated, and relevant performance predictor metrics can
be identified. Based on an analysis of MDSE scalability issues
and previously proposed model and query metrics, we devised
a set of metrics that estimate the complexity of a modeling tool

0

0,2

0,4

0,6

0,8

1

countNodes

countEdges

countTriples

avgOutDegree

avgInDegree

maxInDegree

numParameters

numAttrChecks

countMatches

selectivity

relDifficulty

absDifficulty

Positive

Negative

(a) Java Memory

0

0,2

0,4

0,6

0,8

1

countNodes

countEdges

countTriples

avgOutDegree

avgInDegreecountMatches

selectivity

relDifficulty

absDifficulty

Positive

Negative

(b) Java Read time

0

0,2

0,4

0,6

0,8

1

countNodes

countEdges

countTriples

numParameters

numAttrChecks

nestedNacDepth

countMatches

selectivity

relDifficulty

absDifficulty

Positive

Negative

(c) Java Check time

0

0,2

0,4

0,6

0,8

1

countNodes

countEdges

countTriples

numVariables

numEdgeConstraints

numAttrChecks

nestedNacDepth

countMatches

relDifficulty

absDifficulty

Positive

Negative

(d) EMF-INCQUERY Memory

0

0,2

0,4

0,6

0,8

1

countNodes

countEdges

countTriples

numEdgeConstraints

numAttrChecksnestedNacDepth

countMatches

relDifficulty

absDifficulty

Positive

Negative

(e) EMF-INCQUERY Read time

0

0,2

0,4

0,6

0,8

1

countNodes

countEdges

countTriples

maxInDegree

numParameters

numVariables

numEdgeConstraints

numAttrChecks

nestedNacDepth

countMatches

selectivity

relDifficulty

Positive

Negative

(f) EMF-INCQUERY Check time

0

0,2

0,4

0,6

0,8

1

countNodes

countEdges

countTriples

avgOutDegree

avgInDegree

maxInDegree

numVariables

numAttrChecks

nestedNacDepth

countMatches

relDifficulty

absDifficulty

Positive

Negative

(g) Sesame Memory

0

0,2

0,4

0,6

0,8

1

countNodes

countEdges

countTriples

avgOutDegree

avgInDegree

maxInDegree

numParameters

numVariables

nestedNacDepth

selectivity

relDifficulty

absDifficulty

Positive

Negative

(h) Sesame Read time

0

0,2

0,4

0,6

0,8

1

countNodes

avgOutDegree

avgInDegree

numParameters

numVariablesnumEdgeConstraints

numAttrChecks

countMatches

selectivity

Positive

Negative

(i) Sesame Check time

Fig. 9: |τ | of correlating (p < 0.001) metrics for each performance indicator

workload based on combined characteristics of instance mod-
els and model queries. We designed a benchmark to effectively
differentiate various model representation and query evaluation
approaches with respect to their scalability. To verify our
approach with real-life MDSE tools, we conducted an initial
experimental evaluation and found that our methodology is
useful for distinguishing key tool characteristics (such as
batch vs. incremental evaluation). In addition to model size,
we identified several additional metrics that correlate with
query performance, which may be useful for the design and
optimization of query-intensive modeling applications.

As a primary direction for future work, we plan to extend the
benchmark into a comprehensive evaluation of real-life large
models of varying size and a wide spectrum of tools (including
traditional, object-oriented and graph database systems, as
well as various MDSE technologies). Using these results
decision trees could be built, the Goal Question Metric [39]
method could be applied to improve software quality or more
sophisticated statistical analysis could be performed, aiding
domain engineers to choose the right tools and languages for

their task. We will also extend the benchmark with a case
specifically tuned for incremental re-evaluation, with metrics
that take workload-specific model change characteristics as
well as long-term query re-execution performance into ac-
count. Since the challenges of “big MDSE” are characteris-
tically very similar to the issues of emerging graph database
systems, we believe that our methodology can be generalized
to graph search problems outside of the MDSE world. Our
long term goal is to improve on existing modeling and graph
search benchmarks in order to increase their relevance and
applicability to real-life engineering tasks.

ACKNOWLEDGMENT

This work was partially supported by the CERTIMOT
(ERC_HU-09-01-2010-0003) project, and the European Union
and the State of Hungary, co-financed by the European Social
Fund in the framework of TÁMOP 4.2.4. A/-11-1-2012-0001
“National Excellence Program”.

REFERENCES

[1] Dimitris Kolovos and Richard Paige and Fiona Polack, “The Grand
Challenge of Scalability for Model Driven Engineering,” in Models
in Software Engineering, ser. Lecture Notes in Computer Science,
Chaudron, Michel, Ed. Springer Berlin / Heidelberg, 2009, vol. 5421,
pp. 48–53.

[2] The Eclipse Project, “Eclipse Modeling Framework,” http://www.eclipse.
org/emf/.

[3] ——, “The CDO Model Repository,” http://eclipse.org/cdo/.
[4] J. Espinazo Pagan, J. Sanchez Cuadrado, and J. García Molina,

“Morsa: A scalable approach for persisting and accessing large
models,” in Model Driven Engineering Languages and Systems,
ser. Lecture Notes in Computer Science, J. Whittle, T. Clark,
and T. Kühne, Eds. Springer Berlin / Heidelberg, 2011, vol.
6981, pp. 77–92, 10.1007/978-3-642-24485-8_7. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-24485-8_7

[5] “Neo Technology: Neo4j,” http://neo4j.org/.
[6] “OpenLink Software: Open Virtuoso,” http://virtuoso.openlinksw.com/

dataspace/dav/wiki/Main/.
[7] “Sesame: RDF API and Query Engine,” http://www.openrdf.org/.
[8] Eclipse Model Development Tools Project, “Eclispe OCL website,”

2011, http://www.eclipse.org/modeling/mdt/?project=ocl.
[9] Eclipse Modeling Project, “EMF model query,” http://www.eclipse.org/

modeling/emf/?project=query.
[10] M. Scheidgen, A. Zubow, J. Fischer, and T. H. Kolbe, “Automated and

transparent model fragmentation for persisting large models,” in Model
Driven Engineering Languages and Systems. Springer, 2012, pp. 102–
118.

[11] G. Bergmann, Á. Horváth, I. Ráth, D. Varró, A. Balogh, Z. Balogh,
and A. Ökrös, “Incremental evaluation of model queries over EMF
models,” in Model Driven Engineering Languages and Systems, 13th
International Conference, MODELS’10, Springer. Springer, 10/2010
2010, acceptance rate: 21%.

[12] C. Bizer and A. Schultz, “The Berlin SPARQL Benchmark,” Interna-
tional Journal On Semantic Web and Information Systems, vol. 5, no. 2,
2009.

[13] M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel, “SP2Bench: A
SPARQL performance benchmark,” in Proc. of the 25th International
Conference on Data Engineering. Shanghai, China: IEEE, 2009, pp.
222–233.

[14] “Transformation tool contest,” planet-sl.org/ttc2013/, 2013.
[15] World Wide Web Consortium, “Resource Description Framework

(RDF),” http://www.w3.org/standards/techs/rdf/.
[16] ——, “SPARQL Query Language for RDF,” http://www.w3.org/TR/

rdf-sparql-query/.
[17] O. Görlitz, M. Thimm, and S. Staab, “SPLODGE: Systematic generation

of SPARQL benchmark queries for Linked Open Data,” in The Semantic
Web – ISWC 2012, ser. Lecture Notes in Computer Science, P. Cudré-
Mauroux, J. Heflin, E. Sirin, T. Tudorache, J. Euzenat, M. Hauswirth,
J. Parreira, J. Hendler, G. Schreiber, A. Bernstein, and E. Blomqvist,
Eds. Springer Berlin Heidelberg, 2012, vol. 7649, pp. 116–132.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-35176-1_8

[18] G. Bergmann, Á. Horváth, I. Ráth, and D. Varró, “A benchmark
evaluation of incremental pattern matching in graph transformation,”
in Proc. 4th International Conference on Graph Transformations, ICGT
2008, ser. Lecture Notes in Computer Science, H. Ehrig, R. Heckel,
G. Rozenberg, and G. Taentzer, Eds., vol. 5214, Springer. Springer,
2008, pp. 396–410, acceptance rate: 40%.

[19] G. Varró, A. Schürr, and D. Varró, “Benchmarking for graph transfor-
mation,” in Proc. IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC 05). Dallas, Texas, USA: IEEE Press,
September 2005, pp. 79–88.

[20] ——, “Benchmarking for graph transformation,” Budapest University of
Technology and Economics, Tech. Rep. TUB-TR-05-EE17, March 2005,
http://www.cs.bme.hu/~gervarro/publication/TUB-TR-05-EE17.pdf.

[21] R. Geiß and M. Kroll, “On improvements of the Varro benchmark
for graph transformation tools,” Universität Karlsruhe, IPD Goos,
Tech. Rep. 2007-7, 12 2007, iSSN 1432-7864. [Online]. Available:
http://www.info.uni-karlsruhe.de/papers/TR_2007_7.pdf

[22] The AGTIVE Tool Contest, “official website,” 2007, http://www.
informatik.uni-marburg.de/~swt/agtive-contest.

[23] GraBaTs - Graph-Based Tools: The Contest, “official website,” 2008,
http://www.fots.ua.ac.be/events/grabats2008/.

[24] Albert Zündorf, “AntWorld benchmark specification, GraBaTs
2008,” 2008, http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/cases/
grabats2008performancecase.pdf.

[25] A. Reder and A. Egyed, “Incremental consistency checking for complex
design rules and larger model changes,” in Proceedings of the 15th
international conference on Model Driven Engineering Languages
and Systems, ser. MODELS’12. Berlin, Heidelberg: Springer-Verlag,
2012, pp. 202–218. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-33666-9_14

[26] J.-R. Falleri, X. Blanc, R. Bendraou, M. Aurélio, A. da Silva, and
C. Teyton, “Incremental inconsistencies detection with low memory
overhead,” Software: Practice and Experience, vol. 43, 2013.

[27] J. Stárka, M. Svoboda, and I. Mlynkova, “Analyses of RDF triples in
sample datasets,” in COLD, 2012.

[28] G. Varró, D. Varró, and K. Friedl, “Adaptive graph pattern matching for
model transformations using model-sensitive search plans,” in GraMot
2005, International Workshop on Graph and Model Transformations,
ser. ENTCS, G. Karsai and G. Taentzer, Eds., vol. 152, Elsevier.
Elsevier, 2006, p. 191–205. [Online]. Available: http://www.inf.mit.
bme.hu/FTSRG/Publications/varro/2005/gramot05_vvf.pdf

[29] I. Kollia and B. Glimm, “Cost based query ordering over OWL
ontologies,” in The Semantic Web – ISWC 2012, ser. Lecture
Notes in Computer Science, P. Cudré-Mauroux, J. Heflin, E. Sirin,
T. Tudorache, J. Euzenat, M. Hauswirth, J. Parreira, J. Hendler,
G. Schreiber, A. Bernstein, and E. Blomqvist, Eds. Springer
Berlin Heidelberg, 2012, vol. 7649, pp. 231–246. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-35176-1_15

[30] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li, “Efficient
subgraph matching on billion node graphs,” Proc. VLDB Endow.,
vol. 5, no. 9, pp. 788–799, May 2012. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2311906.2311907

[31] A.-L. Barabasi and Z. N. Oltvai, “Network biology: understanding the
cell’s functional organization,” Nat Rev Genet, vol. 5, no. 2, pp. 101–
113, Feb. 2004. [Online]. Available: http://dx.doi.org/10.1038/nrg1272

[32] T. Angskun, G. Bosilca, and J. Dongarra, “Self-healing in binomial
graph networks,” in Proceedings of the 2007 OTM Confederated
international conference on On the move to meaningful internet
systems - Volume Part II, ser. OTM’07. Berlin, Heidelberg:
Springer-Verlag, 2007, pp. 1032–1041. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1780453.1780490

[33] P. Erdos and A. Renyi, “On the evolution of random graphs,” Publ.
Math. Inst. Hung. Acad. Sci, vol. 5, pp. 17–61, 1960.

[34] B. Vladimir and B. Ulrik, “Efficient generation of large random net-
works,” Physical Review E, vol. 71, no. 3, p. 036113, 04 2005.

[35] G. Bergmann, Z. Ujhelyi, I. Ráth, and D. Varró, “A Graph Query
Language for EMF models,” in Theory and Practice of Model Trans-
formations, ICMT 2011. Springer, 2011.

[36] H. Peng, F. Long, and C. Ding, “Feature selection based on mu-
tual information criteria of max-dependency, max-relevance, and min-
redundancy,” Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, vol. 27, no. 8, pp. 1226–1238, 2005.

[37] J. R. Quinlan, “Induction of decision trees,” Machine Learning,
vol. 1, no. 1, pp. 81–106, Mar. 1986. [Online]. Available: http:
//dx.doi.org/10.1007/BF00116251

[38] J. H. Friedman, “Multivariate adaptive regression splines,” Ann. Statist.,
vol. 19, no. 1, pp. 1–141, 1991, with discussion and a rejoinder by the
author. [Online]. Available: http://dx.doi.org/10.1214/aos/1176347963

[39] V. R. Basili, G. Caldiera, and H. D. Rombach, “The goal question metric
approach,” in Encyclopedia of Software Engineering. Wiley, 1994.

http://www.eclipse.org/emf/
http://www.eclipse.org/emf/
http://eclipse.org/cdo/
http://dx.doi.org/10.1007/978-3-642-24485-8_7
http://neo4j.org/
http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/
http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/
http://www.openrdf.org/
http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/modeling/emf/?project=query
http://www.eclipse.org/modeling/emf/?project=query
planet-sl.org/ttc2013/
http://www.w3.org/standards/techs/rdf/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://dx.doi.org/10.1007/978-3-642-35176-1_8
http://www.cs.bme.hu/~gervarro/publication/TUB-TR-05-EE17.pdf
http://www.info.uni-karlsruhe.de/papers/TR_2007_7.pdf
http://www.informatik.uni-marburg.de/~swt/agtive-contest
http://www.informatik.uni-marburg.de/~swt/agtive-contest
http://www.fots.ua.ac.be/events/grabats2008/
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/cases/grabats2008performancecase.pdf
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/cases/grabats2008performancecase.pdf
http://dx.doi.org/10.1007/978-3-642-33666-9_14
http://dx.doi.org/10.1007/978-3-642-33666-9_14
http://www.inf.mit.bme.hu/FTSRG/Publications/varro/2005/gramot05_vvf.pdf
http://www.inf.mit.bme.hu/FTSRG/Publications/varro/2005/gramot05_vvf.pdf
http://dx.doi.org/10.1007/978-3-642-35176-1_15
http://dl.acm.org/citation.cfm?id=2311906.2311907
http://dx.doi.org/10.1038/nrg1272
http://dl.acm.org/citation.cfm?id=1780453.1780490
http://dl.acm.org/citation.cfm?id=1780453.1780490
http://dx.doi.org/10.1007/BF00116251
http://dx.doi.org/10.1007/BF00116251
http://dx.doi.org/10.1214/aos/1176347963

	Introduction
	Background
	Model Representation Technologies and the Example Domain
	Modeling Languages
	Example from the Railway Domain
	Model Storage Backends

	Model Query Technologies and Languages

	Related Work
	RDF Benchmarks
	Model Transformation and Graph Transformation Benchmarks

	Benchmarking and Metrics
	Overview
	Read Phase
	Check Phase

	Metrics
	Metrics for Instance Model Only
	Metrics for Query Specification Only
	Metrics for Combination of Query and Instance Model
	New Metrics for Assessing Query Evaluation Difficulty
	Other Factors

	Benchmark Models
	Benchmark Queries
	[language=viatra,keepspaces=true,basicstyle=]Locals Query Series for the [language=viatra,keepspaces=true,basicstyle=]numVariables Metric
	[language=viatra,keepspaces=true,basicstyle=]Refs Query Series for the [language=viatra,keepspaces=true,basicstyle=]numEdgeConstraints Metric
	[language=viatra,keepspaces=true,basicstyle=]Params and [language=viatra,keepspaces=true,basicstyle=]ParamCircle Query Series for the [language=viatra,keepspaces=true,basicstyle=]numParameters Metric
	[language=viatra,keepspaces=true,basicstyle=]Checks Query Series for the [language=viatra,keepspaces=true,basicstyle=]numAttrChecks Metric
	[language=viatra,keepspaces=true,basicstyle=]Negs Query Series for the [language=viatra,keepspaces=true,basicstyle=]nestedNacDepth Metric

	Implementation Details

	Experimental Evaluation
	Measurement Setup
	Method of Analysis
	Results
	Evaluation
	Threats to Validity

	Conclusion and Future Work
	References

