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Abstract

Context Program queries play an important role in several software evo-
lution tasks like program comprehension, impact analysis, or the automated
identification of anti-patterns for complex refactoring operations. A central
artifact of these tasks is the reverse engineered program model built up from
the source code (usually an Abstract Semantic Graph, ASG), which is tradi-
tionally post-processed by dedicated, hand-coded queries.

Objective Our paper investigates the costs and benefits of using the pop-
ular industrial Eclipse Modeling Framework (EMF) as an underlying rep-
resentation of program models processed by four different general-purpose
model query techniques based on native Java code, OCL evaluation and (in-
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cremental) graph pattern matching.

Method We provide in-depth comparison of these techniques on the source
code of 28 Java projects using anti-pattern queries taken from refactoring
operations in different usage profiles.

Results Our results show that general purpose model queries can outper-
form hand-coded queries by 2-3 orders of magnitude, with the trade-off of an
increased in memory consumption and model load time of up to an order of
magnitude.

Conclusion The measurement results of usage profiles can be used as
guidelines for selecting the appropriate query technologies in concrete sce-
narios.
Keywords: Anti-patterns, Refactoring, Program models, Performance
measurements, Columbus, EMF-IncQuery, OCL

1. Introduction

Program queries play a central role in various software maintenance and
evolution tasks. Refactoring, an example of such tasks, aims at changing the
source code of a program without altering its behavior in order to increase its
readability, maintainability, or to detect and eliminate coding anti-patterns.
After identifying the location of the problem in the source code the refac-
toring process applies predefined operations to fix the issue. In practice,
the identification step is frequently defined by program queries, while the
manipulation step is captured by program transformations.

Advanced refactoring and reverse engineering tools (like the Columbus
framework [1]) first build up an Abstract Semantic Graph (ASG) as a model
from the source code of the program, which enhances a traditional Abstract
Syntax Tree with semantic edges for method calls, inheritance, type reso-
lution, etc. In order to handle large programs, the ASG is typically stored
in a highly optimized in-memory representation. Moreover, program queries
are captured as hand-coded programs traversing the ASG driven by a visitor
pattern, which can be a significant development and maintenance effort.

Models used in model-driven engineering (MDE) are uniformly stored
and manipulated in accordance with a metamodeling framework, such as the
Eclipse Modeling Framework (EMF), which offers advanced tooling features.
Essentially, EMF automatically generates a Java API, model manipulation
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code, notifications for model changes, persistence layer in XMI, and sim-
ple editors and viewers (and many more) from a domain metamodel, which
significantly speeds up the development of EMF-compliant domain-specific
tools.

EMFmodels are frequently post-processed by advanced model query tech-
niques based on graph pattern matching exploiting different strategies such
as local search [2] or incremental evaluation [3]. Some of these approaches
have demonstrated to scale up for large models with millions of elements in
forward engineering scenarios, but up to now, no systematic investigation
has been carried out to show if they are efficiently applicable as a program
query technology. If this is the case, then advanced tooling offered by the
EMF could be directly used by refactoring and program comprehension tools
without compromise.

The paper contributes a detailed comparison of (1) memory usage in
different ASG representations (dedicated vs. EMF) and (2) run time perfor-
mance of different program query techniques. For the latter, we evaluate five
essentially different solutions: (i) hand-coded visitor queries implemented in
native Java code (as used in Columbus), (ii) the same queries over EMF
models, (iii) the standard OCL language, and generic model queries follow-
ing (iv) a local search strategy and (v) incremental model queries, both using
caching techniques from the EMF-IncQuery.

We compare the performance characteristics of these query technologies
by using the source code of 28 open-source Java projects (with a detailed
comparison of the largest 14 projects in the paper) using queries for 8 anti-
patterns. Considering typical usage scenarios, we evaluate different usage
profiles for queries (one-time vs. on-commit vs. on-save query evaluation).
As a consequence, execution time in our measurements includes the one-time
penalty of loading the model itself, and various number of query executions
depending on the actual scenario.

This article is based on a conference paper [4] with extensions along four
directions: two new types of anti-pattern queries were implemented, which
are different from previous ones in their complexity and nature; OCL queries
were included in the study as a fifth approach; the size of subject programs
were increased from 1.9M to 10M lines of code, including three large pro-
grams (over 1M lines of code each) to experiment with the limitations of the
approaches; and the evaluation was extended, among others, with model and
query metrics and with a lessons learned section.

Our main finding is that advanced generic model queries over EMFmodels
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can execute several orders of magnitude faster than dedicated, hand coded
techniques. However, this performance gain is balanced by an up to 10-15
fold increase in memory usage (in case of full incremental query evaluation)
and an up to 3-4 fold increase in model load time for EMF based tools and
queries, compared to native Columbus results. Therefore, the best strategy
can be planned in advance, depending on how many times the queries are
planned to be evaluated after loading the model from scratch.

The rest of the paper is structured as follows. Section 2 introduces the
queries to be investigated in the paper. Section 3 provides a technological
overview including how to represent models of Java programs, while Section 4
describes how to capture queries as visitors, graph patterns and OCL queries.
Section 5 presents the measurement environment including the measured
applications and the measurement process. Our experimental results and
their analysis are detailed in Section 6 and Section 7. Section 8 discusses
related work to ours, while Section 9 concludes the paper.

2. Motivation

The results presented in this paper are motivated by an ongoing three-year
refactoring research project involving five industrial partners, which aims to
find an efficient solution for the problem of software erosion. The starting
point of the refactoring process is the detection of coding anti-patterns to
provide developers with problematic points in the source code. Developers
then decide how to handle the revealed issues. During the project, the first
phase was a manual refactoring phase [5], where developers investigated the
list of reported anti-patterns and manually solved the problems. Based on
these experiences, the real needs of partners were evaluated, and a refactor-
ing framework was implemented with support for anti-pattern detection and
guided automated refactoring with IDE integration.

In this paper we focus on the detection of coding anti-patterns, the start-
ing point of the refactoring process. At this step one has to find patterns
of problems, like when two Java strings are compared using the == operator
instead of the equals() method. After identifying an occurrence of such an
anti-pattern, the problematic code is replaced with a new condition contain-
ing a call to the equals() method with an appropriate argument.

In the refactoring project, the original plan was to use the Columbus ASG
as the program representation together with its API to implement queries,
since the API provides a program modification functionality to implement
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refactorings as well. However, queries for finding anti-patterns and the actual
modifications can be separated. The presented research builds on this sep-
aration to investigate the performance of various query solutions. Our aim
was to involve generic, model based solutions in the comparison. Generic
solutions offer flexibility and additional features like change notification sup-
port in the EMF and reusable tools and algorithms, such as supporting for
high-level declarative query definitions [6, 7]. Such features could reduce the
effort needed to define refactorings as well.

In this paper, we investigate two viable options for developing queries
for refactorings: (1) execute queries and transformations by developing Java
code working directly on the ASG; and (2) create the EMF representation
of the ASG and use EMF models with generic model based tools. Years
ago, we experienced that typical modeling tools were able to handle only
mid-size program graphs [8]. We now revisit this question and evaluate
whether model-based generic solutions have evolved to compete with hand-
coded Java based solutions. We seek for answers to questions like: What
are the main factors that affect the performance of anti-pattern detection
(like the representation of program models, their handling and traversing)?
What size of programs can be handled (with respect to memory and runtime)
with various solutions? Does incremental query execution result in better
performance?

We note that while we present our study on program queries in a refac-
toring context, our results can be used more generally. For instance, program
queries are applied in several scenarios in maintenance and evolution from
design pattern detection to impact analysis; furthermore, we think that real-
life case studies are first-class drivers of improvements of model driven tools
and approaches.

In the first round of experiments we selected six types of anti-patterns
based on the feedback of project partners and formalized them as model
queries. The diversity of the problems was among the most important se-
lection criteria, resulting in queries that varied both in complexity and pro-
gramming language context ranging from simple traverse-and-check queries
to complex navigation queries potentially with negative conditions. Here,
we briefly and informally describe the selected refactoring problems and the
related queries used in our case study.

Switch without Default. Missing default case has to be added to the switch.
Related query: We traverse the whole graph to find Switch nodes without a
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default case.

Catch Problem. In a catch block there is an instanceof check for the type of
the catch parameter. Instead of the instanceof check a new catch block has
to be added for the checked type and the body of the conditional has to be
moved there. Related query: We search for identifiers on the left hand side
of the instanceOf operator and check whether it points to the parameter of
the containing catch block.

Concatenation to Empty String. When a new String is created starting with
a number, usually an empty String is added from the left to the number
to force the int to String conversion, because there is no int + String op-
erator in Java. A much better solution is to convert the number using the
String.valueOf() method first. Related query: We search for empty string
literals, and check the type of the containing expression. If the container
expression is an infix expression, then we also make sure that the string is lo-
cated at the left hand side of the expression and the kind of the infix operator
is the String concatenation (“+”).

String Literal as Compare Parameter. When a String variable is compared
to a String literal using the equals() method, it is unsafe to have the variable
on the left hand side. Changing the order makes the code safe (by avoiding
null pointer exception) even if the String variable to compare is null. Related
query: We search for all method invocations with the name "equals". After
that, we check that their only parameter is a string literal.

String Compare without Equals Method. This refactoring is already men-
tioned above. Related query: We search for the == operator and check whether
the left hand side operand is of type java.lang.String. We have to check for
the right hand side operand as well: in case of null we cannot use the method
call. In fact, it is not necessary because in this case the comparison operator
is the right choice.

Unused Parameter. When unused parameters remain in the parameter list
they can be removed from the source code in most cases. Related query:
We search for the places in the method body where parameters are used.
However, there are specific cases when removing a parameter that is not
used in the method body results in errors, such as (1) when the method has
no body (interface or abstract method); (2) when the method is overridden
by or overrides other methods; and (3) public static void main methods.
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After the first round of our experiments described in [4], it turned out
that all antipatterns can be evaluated by our selection of tools effectively. In
order to find the limits of the approaches, we selected two additional, more
complex antipatterns requiring additional capabilities.

Avoid Rethrowing Exception. The catch block is unnecessary if the exception
handling code only re-throws the caught exception without further actions.
We seek for a thrown exception in the catch block and check whether the
thrown exception is the same (or descendant) as the caught one. However,
simply rethrowing the exception is valid, if a specific exception is to be han-
dled externally, while a more generic exception handler block is responsible
for managing a superclass of the caught exception. This antipattern requires
transitive closure calculation for the inheritance hierarchy as a new feature.

Cyclomatic Complexity. Cyclomatic complexity measures the number of lin-
early independent paths through a program’s source code, usually calculated
for a function as the number of decision points +1. A highly complex code
(e.g. by means of cyclomatic complexity) tends to be difficult to test and
maintain and tend to have more defects. The pattern requires counting vari-
ous types of program elements within a method body. This calculation relies
on counting model elements together with simple arithmetic operations and
extensive traversal around the containment hierarchy. To have the same val-
idation format, we list the methods with cyclomatic complexity higher than
10.

3. Technological Overview

In this section, we first give a brief overview on how to represent Java
programs as an ASG or an EMF model, then present the graph pattern
formalism and use it to capture various anti-patterns.

3.1. Managing Models of Java Programs
3.1.1. Abstract Semantic Graph for Java

The Java analyzer of the Columbus reverse engineering framework is used
to obtain program models from the source code (similarly as for the C++
language [1, 9]). The ASG contains all information that is in a usual AST
extended with semantic edges (e.g., call edges, type resolution, overrides). It
is designed primarily for reverse engineering purposes [10, 11] and it conforms
to our Java metamodel.
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public boolean equals(Object other) {...}

...
// Code inside another method
// The variable ’srcVar ’ is defined locally
srcVar.equals("source");
...

(a) Java Code Snippet

NormalMethod,
name:&“equals”&
accessibility:&public&

StringLiteral,
value:&“source”&

Iden3fier,
name:&“srcVar”&

Method,
Invoca3on,

Parameter,
name:&“other”&

parameter&

invokes&

operand& argument&

(b) ASG Representation

Figure 1: ASG Representation of Java Code

In order to keep the models of large programs in memory, the ASG imple-
mentation is heavily optimized for low memory consumption, e.g., handling
all model elements and String values centrally avoids storing duplicate values.
However, these optimizations are hidden behind an API interface.

In order to support processing the model, e.g., executing a program query,
the ASG API supports visitor-based traversal [12]. These visitors can be used
to process each element on-the-fly during traversal, without manually coding
the (usually preorder) traversal algorithm.

Example 1. To illustrate the use of the ASG, we present a short Java code
snippet and its model representation in Figure 1. The code consists of a pub-
lic method called equals with a single parameter, together with a call of this
method using a Java variable srcVar. The corresponding ASG representa-
tion is depicted in Figure 1b, omitting type information and boolean attribute
values such as the final flags for readability.

The method is represented by a NormalMethod node that has the name
equals and public accessibility attribute. The method parameter is repre-
sented by a Parameter node with the name attribute other, and is connected
to the method using a parameter reference.

The call of this method is depicted by a MethodInvocation node that is con-
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nected to the method node by an invokes reference. The variable the method
is executed on is represented by an Identifier node via an operand reference.
Finally, an argument reference connects a StringLiteral node describing the
"source" value.

3.1.2. Java Application Models in EMF
Metamodeling in the EMF. Metamodeling is a fundamental part of modeling
language design as it allows the structural definition (e.g., abstract syntax)
of modeling languages.

The EMF provides a Java-based representation of models with various
features, e.g., notification, persistence, or generic, reflective model handling.
These common persistence and reflective model handling capabilities enable
the development of generic (search) algorithms that can be executed on any
given EMF-based instance model, regardless of its metamodel.

The model handling code is generated from a metamodel defined in the
Ecore metamodeling language together with higher level features such as
editors. The generator work-flow is highly customizable, e.g., allowing the
definition of additional methods.

The main elements of the Ecore metamodeling language are the following:
EClass elements define the types of objects; EAttribute extend EClasses with
attribute values while EReference objects present directed relations between
EClasses.

Example 2. As an illustration, we present a small subset of the Java ASG
metamodel realized in the Ecore language in Figure 2 that focuses on method
invocations as depicted in Figure 1. The metamodel was designed to provide
an equivalent representation of the ASG of the Columbus framework in the
EMF, both on the model level and the generated Java API. The entire meta-
model consists of 142 EClasses with 46 EAttributes and 102 EReferences.

The NormalMethod and Parameter EClasses are both elements of the meta-
model that can be referenced from Java code by name. This is represented
by generalization relations (either direct or indirect) between them and the
NamedDeclaration EClass. This way, both inherit all the EAttributes of the
NamedDeclaration, such as the name or the accessibility controlling the visi-
bility of the declaration.

Similarly, the EClasses MethodInvocation, Identifier and StringLiteral
are part of the Expression elements of Java. Instead of attribute definitions,
the MethodInvocation is connected to other EClasses using three EReferences:
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Figure 2: A Subset of the Ecore Model of the Java ASG

(1) the EReference invokes points to the referred MethodDeclaration; (2) the
argument selects a list of expressions to be used as the arguments of the called
methods, and (3) the inherited operand EReference selects an expression rep-
resenting the object the method is called on.

Notes on Columbus Compatibility. The Java implementation of the Java
ASG of the Columbus Framework and the generated code from the EMF
metamodel use similar interfaces. This makes possible to create a combined
implementation that supports the advanced features of the EMF, such as the
change notification support or reflective model access, while remains com-
patible with the existing analysis algorithms of the Columbus Framework by
generating an EMF implementation from the Java interface specification.

However, there are also some differences between the two interfaces that
should be dealt with. The most important difference lies in multi-valued
reference semantics, where the EMF disallows having two model elements
connected multiple times using the same reference type, while the Colum-
bus ASG occasionally relies on such features. To maintain compatibility,
the EMF implementation is extended with proxy objects, which ensure the
uniqueness of references. The implementation hides the presence of these
proxies from the ASG interface while the EMF-based tools can navigate
through them.

Other minor changes range from different method naming conventions for
boolean attributes to defining additional methods to traverse multi-valued
references. All of them are handled by generating the standard EMF imple-
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mentation together with the Columbus compatibility methods.

3.2. Definition of Model Queries using Graph Patterns
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Figure 3: Graph Pattern Representation of the Search Queries

Graph patterns [6] are a declarative, graph-like formalism representing a
condition (or constraint) to be matched against instance model graphs. This
formalism is usable for various purposes in model-driven development, such
as defining model transformation rules or defining general purpose model
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queries including model validation constraints. In this paper, we give only a
brief overview of the concepts, for more detailed, formal definitions see [13].

A graph pattern consists of structural constraints prescribing the inter-
connection between the nodes and edges of a given type and expressions to
define attribute constraints . These constraints can be illustrated as a graph
where the nodes are classes from the metamodel, while the edges prescribe
the required connections of the selected types between them.

Pattern parameters are a subset of nodes and attributes interfacing the
model elements interesting from the perspective of the pattern user. A match
of a pattern is a tuple of pattern parameters that fulfills all the following con-
ditions: (1) has the same structure as the pattern; (2) satisfies all structural
and attribute constraints; and (3) does not satisfy any NAC.

Complex patterns may reuse other patterns by different types of pattern
composition constraints . A (positive) pattern call identifies a subpattern (or
called pattern) that is used as an additional set of constraints to meet, while
negative application conditions (NAC) describes the cases when the original
pattern is not valid. Finally, match set counting constraints are used to
calculate the number of matches a called pattern has, and use them as a
variable in attribute constraints. Pattern composition constraints can be
illustrated as a subgraph of the graph pattern.

When evaluating the results of a graph pattern, any subset of the param-
eters can be bound to model elements or attribute values that the pattern
matcher will handle as additional constraints. This allows re-using the same
pattern in different scenarios, such as checking whether a set of model ele-
ments fulfill a pattern, or list all matches of the model.

Example 3. Figure 3 captures all the search problems from Section 2 as
graph patterns. Here, we only discuss the String Literal as Compare Pa-
rameter problem (Figure 3d) in detail, all other patterns can be interpreted
similarly.

The pattern consists of five nodes named inv, m, op and arg, represent-
ing the model elements of the types MethodInvocation, NormalMethod, Literal,
Expression and StringLiteral, respectively. The distinguishing (blue) format-
ting for the node inv describes that it is the parameter of the pattern.

In addition to the type constraints, node m shall also fulfill an attribute
constraint (“equals”) on its name attribute. The edges between the nodes
inv and m (and similarly arg) represent a typed reference between the cor-
responding model elements. However, as the node op is included in a NAC
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block (depicted by the dotted red box), the edge operand means that either no
operand should be given or the operand must not point to a Literal typed
node.

Finally, to ensure that the invoked method has only a single parameter,
the number of arguments are counted. The highlighted part of the pattern
formulates a subpattern consisting of the arguments of the MethodInvocation,
and the number of these subpattern matches is checked to be 1. This kind
of checking could also be expressed using a NAC block describing a different
parameter, but the use of match counting is easier to read.

After matching this pattern to the model from Figure 1, the result will be
a set containing a single element: the MethodInvocation instance.

4. Program Queries Approaches

In this section we give a brief overview of the possible approaches for
implementing anti-pattern detection as program queries. At first, a visitor-
based search approach is described, followed by two different graph-pattern
based approaches (both supported by the EMF-IncQuery), and finally we
use the OCL language to describe the query problems.

4.1. Manual Search Code
The ASG representation allows traversing the Java program models using

the visitor [12] design pattern that can form the basis of the search operations.
Visitor-based searches are easy to implement and maintain if the tra-

versed relations are based on containment references, and require no custom
setup before execution. On the other hand, as the order of the traversal is
determined outside the visitor, non-containment references are required to
be traversed manually, typically with nested loops. Alternatively, traversed
model elements and references can be indexed, and in a post-processing step
these indexes can be evaluated for efficient query execution. In both cases,
significant programming effort is needed for achieving efficient execution.

Example 4. The results of the String Literal as Compare Parameter (Fig-
ure 3d) pattern can be calculated by collecting all MethodInvocation instances
from the model, and then executing three local checks whether the invoked
method is named equals, if it has an argument with a type of StringLiteral,
and if it is not invoked on a Literal operand.
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public class CompareParameterVisitor extends Visitor {

//A set to store results
private Set <MethodInvocation > invocations

= new HashSet <MethodInvocation >();

@Override
public void visit(MethodInvocation node) {

super.visit(node);
// Checking invoked method name and number of parameters
if ("equals".equals(node.getInvokes (). getName ())

&& node.getArgument (). size() == 1) {
//Node argument
Expression argument = node.getArgument (0);
//Node operand
Expression operand = node.getOperand ();
//Type checking for argument
if (argument instanceof StringLiteral

//NAC checking for operand
&& !( operand instanceof Literal )) {

// Result found
invocations.add(node);

}
}

}
}

Figure 4: Visitor for the String Literal as Compare Parameter Problem

Figure 4 presents (a simplified) Java implementation of the visitor. A
single visit method is used as a start for traversing all MethodInvocation in-
stances from the model, and checking the attributes and references of the
invocation. It is possible to delegate the checks to different visit methods,
but in that case the visitor has to track and combine the status of the dis-
tributed checks to prepare the results that is difficult to implement in a sound
and efficient way.

The ASG does not initially contain reverse edges in the model. It provides
an API to generate these extra edges in a second pass after loading the model,
but this requires extra time and memory. As the subject queries in this study
could be implemented without these extra resources, to keep the memory
footprint low, we prefer not generating them.

4.2. Graph Pattern Matching with Local Search Algorithms
Local search based pattern matching (LS) are commonly used in graph

transformation tools [14, 15, 16] starting the match process from a single
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node and extending it step-by-step with the neighboring nodes and edges
following a search plan. From a single pattern specification multiple search
plans can be calculated [2], thus the pattern matching process starts with
a plan selection based on the input parameter binding and model-specific
metrics.

A search plan consists of a totally ordered list of extend and check opera-
tions. An extend operation binds a new element in the calculated match (e.g.,
by matching the target node along an edge), while check operations are used
to validate the constraints between the already bounded pattern elements
(e.g., attribute constraints or whether an edge runs between two matched
nodes). If an operation fails, the algorithm backtracks; if all operations are
executed successfully, a match is found.

Some extend operations, such as finding the possible source nodes of an
edge or iterating over all elements of a certain type might be very expensive
to execute during a search, but this cost can be reduced by the use of an
incremental model indexer, such as the EMF-IncQuery Base1. Such an
indexer can be set up while loading the model, and then updating it on
model changes using the notification mechanism of the EMF. If no such
indexing mechanism is available (e.g., because of its memory overhead), the
search planner algorithm should consider these operations with higher costs,
and thus provide alternative plans.

Example 5. To find all String Literals appearing as parameters of equals
methods, a 7-step search plan presented in Table 1 was used. First, all
NormalMethod instances are iterated over to check for their name. Then a
backward navigation operation is executed to find all corresponding method
invocations to check its argument and operand references. At the last step,
a NAC check is executed by starting a new plan execution for the negative
subplan, but only looking for a single solution.

Figure 5 illustrates the execution of the search plan on the simple in-
stance model introduced previously. In the first step, the NormalMethod is
selected, then its name attribute is validated, followed by the search for the
MethodInvocation. At this point, following the argument reference made it sure
that only a single element is available, then the StringLiteral is found and
checked. Finally, the operand reference is followed, and a NAC check is exe-
cuted using a different search plan.

1https://wiki.eclipse.org/EMFIncQuery/UserDocumentation/API/BaseIndexer
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Table 1: Search Plan for the String Literal Compare Pattern

Operation Type Notes

1: Find all m that m ⊂ NormalMethod Extend Iterate
2: Attribute test: m.name=="equals" Check
3: Find inv that inv.invokes → m Extend Backward
4: Count of inv.argument → arg is 1 Check Called Plan
5: Find arg that inv.argument → arg Extend Forward
6: Instance test: arg ⊂ StringLiteral Check
7: Find op that inv.operand → op Extend Forward
8: NAC analysis: op 6⊂ Literal Check Called plan

NormalMethod,
name:&“equals”&
accessibility:&public&

StringLiteral,
value:&“source”&

Iden3fier,
name:&“srcVar”&

Method,
Invoca3on,

Parameter,
name:&“other”&

parameter&

invokes&

operand& argument&

1&

2
3&

5&

6&

7&

8&

4&

Figure 5: Executing the Search Plan

It is important to note that the search begins with listing all NormalMethod
elements as opposed to the visitor-based implementation, which starts with the
MethodInvocations. This was motivated by the observation that in a typical
Java program there are more method invocations than method definitions,
thus starting this way would likely result in less traversed search states, while
still finding the same results in the end. However, this optimization relies
on having an index which allows cheap backward navigation during pattern
matching for step 3 (on the contrary to the ASG based solution where this
information is not available without extra traversal).

4.3. Incremental Graph Pattern Matching using the Rete algorithm
Incremental pattern matching [3, 17] is an alternative pattern matching

approach that explicitly caches matches. This makes the results available at
any time without further searching, however, the cache needs to be incre-
mentally updated whenever changes are made to the model.

The Rete algorithm [18], which is well-known in rule-based systems, was
efficiently adapted to several incremental pattern matchers [19, 20, 21]. The
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algorithm uses an extended incremental caching approach that not only in-
dexes the basic model elements but also indexes partial matches of a graph
pattern that enumerates the model element tuples that satisfy a subset of the
graph pattern constraints. These caches are organized in the graph structure
called Rete network that can be incrementally updated at model changes.

The input nodes of Rete networks represent the index of the underlying
model elements. The intermediate nodes execute basic operations, such as
filtering, projection, or join, on other Rete nodes (either input or intermedi-
ate) they are connected to, and store the results. Finally, the match set of
the entire pattern is available as an output (or production) node.

When the network is initialized, the initial match set is calculated and
the input nodes are set up to react on the model changes. When receiving
a change notification, an update token is released on each of their outgoing
edges. Upon receiving such a token, a Rete node determines how (or whether)
the set of stored tuples will change, and releases update tokens on its outgoing
edges. This way, the effects of an update will propagate through the network,
eventually influencing the result set stored in the production nodes.

Example 6. To illustrate a Rete-based incremental pattern matching, we
first depict the Rete network of the String Literal as Compare Parameter
pattern in Figure 6.

Method'
Invoca-on'

Normal'
Method'

String'
Literal' Expression' Literal'

join'
invokes(

join'
argument(

join'
operand(

NAC(filter'
name(

join'

equals,(inv,(source,(srcVar(

equals,((inv( inv,(source(

equals,((inv(

inv,(srcVar(

inv,(srcVar(

Count'=='1(

inv,(source(

Figure 6: Rete Network for the String Literal Compare Pattern

The network consists of five input nodes that store the instances of the
types NormalMethod, MethodInvocation, StringLiteral, Expression and Literal,
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respectively. The input nodes are coupled by join nodes that calculate the
list of elements connected by invokes, argument and operand references, re-
spectively. As both ends are already enumerated in the parent nodes, both
forward and backward references can be calculated efficiently. The invoked
method list (output of the invokes join node) is filtered by the name attribute
of Methods, while the argument lists are filtered for one per call. The NAC
checking is executed by removing the elements with Literal types from the
result of the operand join. Finally, all partial matches are joined together to
form the resulting matches.

It is important to note that the Rete node, such as the MethodInvocation in
the example, can be used in multiple join operations; in such cases the final
join is responsible for filtering out the unwanted duplicates (for a selected
variable).

4.4. Model Queries with OCL
OCL [7] is a standardized, pure functional model validation and query lan-

guage for defining expressions in the context of a metamodel. The language
itself is very expressive, exceeding the expressive power of first order logic
by offering constructs such as collection aggregation operations (sum(), etc.).
The rest of the section gives a basic overview of OCL expressions, for a more
detailed description of the possible elements consult the specification [7].

Variables of an OCL expression refer to instance model elements and a
set of basic types including strings, various number formats and different
kinds of collections. For these types, built-in operations are defined such as
comparison operators or membership testing.

Furthermore, OCL expressions are compositional, allowing the definition
of sub-expressions in more complex expressions, including the let expression
for defining additional variables, the if expression for implementing condi-
tions or iterator expressions that evaluate subexpressions on all members of
a collection.

Each OCL expression is valid in a context , described as a metamodel
type. The OCL standard allows the definition of multiple context variables,
however OCL implementations often support only a single one.

Example 7. To illustrate the capabilities of OCL, Figure 7 formulates the
String Literal as Compare Parameter problem as an OCL query. The query
can be evaluated starting from a MethodInvocation context variable, that is
referred to throughout the query as self.
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context MethodInvocation:
def: stringLiteralAsCompareParameter : Boolean =
self.invokes.name = ’equals ’

and self.arguments -> exists(oclIsKindOf(StringLiteral ))
and self.arguments -> size() = 1
and not self.operand.oclIsKindOf(Literal)

Figure 7: The OCL Expression of the String Literal as Compare Parameter Problem

The query is described as the conjunction of 4 different sub-expressions:

1. It is checked whether the target of the invocation has a name attribute
with the value of ’equals’. The type of the invoked call is not checked,
as based on the metamodel it is known to be correct.

2. It is checked whether the list of arguments contain an element that has
the type of (StringLiteral). The exists operation is one of the iterator
operations, that detects whether any member of the collection fulfills the
condition.

3. It is checked whether the size of the arguments collection is exactly 1.
4. Finally, the operand type is checked not to be Literal.

OCL expressions can be evaluated as a search of the model, where the
corresponding search plan is encoded in the expression itself. This makes
the manual optimizations of the queries possible, however it needs a detailed
understanding of both the instance and metamodels and the underlying OCL
engine as well.

5. Measurement Context

To provide a context for our performance evaluation, in this section we
describe the executed measurements of this paper. This includes a detailed
evaluation of all our instance models and queries using different complexity
metrics and the description of our measurement process. The selection of
metrics was motivated by earlier results of [22] where the values of different
metrics are compared to the execution time of different queries.

The use of metrics helps to identify which queries/models are more diffi-
cult for the selected tools. Furthermore, it would allow to compare both the
models and the queries to other available performance benchmarks.
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5.1. Java Projects
The approaches were evaluated on a test set of 28 open-source projects.

The projects are sized between 1kLOC and 2MLOC, and used in various
scenarios. The list of projects include the ArgoUML editor, the Apache
CloudStack infrastructure manager tool, the Eclipse Platform, the Google
Web Toolkit (GWT) library, the Tomcat Java application server, the SVNKit
Subversion client, the online homework system WeBWorK, the Weka data
mining software, and many more. Table 2 contains the full list of projects
and their analyzed versions (projects where snapshots were used are marked
in the table).

To compare these models, Table 2 shows different metrics about them,
including their size in lines of code and in number of nodes, edges and at-
tributes of the graph representation, the number of metamodel types used
and the indegree and outdegree of the graph nodes. The graph structure of
all models are similar: they use about 90–100 of the types specified in the
metamodel, and the average indegree and outdegree is 3. The large numbers
in the maximum indegree column are related to the representation of the
Java type system: a few types, such as String or int are referred to many
times throughout the code.

In the remainder of the section, only the results related to the programs
larger than 100kLOC are presented, as they still represent a wide range of
Java applications, and in the case of smaller models the differences between
the tools are much smaller (but similar to those presented here)2.

5.2. Query Complexity
The antipatterns used different approaches in the various tools, result-

ing in different query complexity in each case. To compare them, Table 3
describes the complexity of queries implemented in the various tools. We
have selected different complexity measures for the different formalisms to
understand how query complexity changes with the different approaches.

In the case of visitors we are calculating the lines of Java code required
together with its cyclomatic complexity. The six original queries were written
in less than 100 lines of code and had a cyclomatic complexity of 10–20. The

2For a detailed test result containing all models and raw measurement data visit our
website: http://incquery.net/publications/extended-program-query-comparison
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Table 2: Model Metrics

Version LOC
Node-
Count

Edge---
Count

Attribute-
Count

Type-
Count

ArgoUML 0.35.1&(*) 174&516 1&002&129 2&973&258 6&895&018 100 3 72&230 3 445
CloudStack 4.1.0 1&369&952 5&390&662 16&478&218 36&650&136 100 3,1 631&140 3,1 1&198
Eclipse 3.0.0 2&294&146 8&403&914 26&254&507 58&219&100 97 3,1 1&245&390 3,1 1&958
Frinika 0.5.1 64&828 429&407 1&292&961 3&065&383 99 3 54&286 3 844
GWT 2.3.0 1&078&630 3&219&239 9&986&705 22&364&819 101 3,1 392&098 3,1 1&206
Hibernate 3.5.0 773&166 2&444&419 7&563&207 16&789&330 102 3,1 193&769 3,1 522
Jackrabbit 2.8 590&420 1&765&882 5&341&431 12&145&662 100 3 271&217 3 708
Java-DjVu 0.8.06 23&570 129&068 372&444 926&653 92 2,9 26&918 2,9 1&026
javax.usb 1.0.1& 1&161 12&231 32&388 89&399 83 2,6 969 2,6 148
JFreechart 1.2.0 327&865 865&148 2&663&967 6&022&410 93 3,1 50&658 3,1 445
JML 1.0b3 10&159 72&598 212&544 520&599 94 2,9 4&908 2,9 221
JTransforms 2.4 38&400 295&009 945&643 2&053&900 80 3,2 117&775 3,2 217
Makumba 0.8.1.9 65&065 378&204 1&127&797 2&637&424 98 3 62&717 3 445
OpenEJB 4.5.2 575&363 1&785&660 5&428&385 12&377&185 101 3 152&624 3 540
Physhun 0.5.1 4&935 36&962 108&888 263&091 86 2,9 2&944 2,9 148
ProteinShader 0.9.0 22&651 137&416 391&322 997&679 88 2,8 9&654 2,8 445
Qwicap-Guess 1.4b24 443 7&903 21&222 59&069 85 2,7 918 2,7 107
Robocode 1.5.4 28&245 204&362 599&556 1&500&298 97 2,9 17&323 2,9 445
sdedit 3.0.5 14&717 145&453 413&998 1&075&471 97 2,8 12&643 2,8 445
Stendhal 0.75.1 105&411 667&142 2&037&645 4&688&300 98 3,1 49&556 3,1 445
Struts2 1.4.0 274&092 927&163 2&849&021 6&452&090 100 3,1 95&272 3,1 620
Superversion 2.0b8 29&282 238&842 705&875 1&731&692 94 3,0 2&041 3,0 445
SVNKit 1.3.0.5847 114&189 698&753 2&203&436 4&843&209 93 3,2 57&987 3,2 272
Tomcat 8.0.0&(*) 459&579 1&338&601 4&084&668 9&302&681 102 3,1 116&637 3,1 620
WebWork 2.2.7 46&208 285&372 853&724 2&018&672 95 3 36&439 3 445
Weka 3.7.10&(*) 205&537 1&615&637 4&989&653 11&259&543 99 3,1 216&651 3,1 550
Xalan 2.7 349&681 708&445 2&093&338 4&937&831 93 3 87&447 3 445
Xins 2.2a2 21&698 164&989 472&003 1&193&822 89 2,9 15&169 2,9 445

Avg/Max-
InDegree

Avg/Max-
OutDegree

Table 3: Query Complexity Metrics

OCL
LOC CC Param. Variables Edges Attr. Calls NEG MC

catch 78 14 4 6 3 0 1 0 9
concatenate 32 8 6 8 3 1 3 0 4
constant;compare 39 10 6 11 5 0 2 2 7
no;default;switch 53 11 2 3 1 0 0 1 2
string;compare 56 15 10 17 10 1 7 2 15
unused;parameter 88 21 11 19 8 0 6 1 21
avoid;rethrow 210 54 11 24 12 0 2 1 23
cyclomatic;complexity 114 22 23 40 5 2 9 7 34

QueryVisitor
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two new queries were more complex both in lines of code and cyclomatic
complexity.

For graph patterns, we rely on metrics defined in [22]: the number of query
variables and parameters , the number of edge and attribute constraints, the
number of subpattern calls and the combined number of negative pattern
calls and match counters NEG . It is important to note that the metrics were
not calculated from the graphical notation of Figure 3, but their implemen-
tation in the EMF-IncQuery, where different subpatterns were created to
facilitate reuse both in the design level and during runtime. A subpattern call
introduces new variables for the parameters of the subpattern that are equal
to some parameters at their call site; this might cause an increased number
of variables compared to the number of edge and attribute constraints.

To measure the complexity of OCL queries, we used a minimum com-
plexity (MC) metric presented in [23] that is based on either calculating or
estimating the number of model elements visited during the execution of its
search, where multiple visits of the same element accounts as different ones.
However, the metric definition relies on the model structures; in order to have
a model-independent metric, estimates need to be provided for the models.

In the current paper, we calculate a lower bound of this metric by under-
estimating the number of visited model elements with stating that each OCL
expression or operation will be evaluated with at most one model element
that relates to the number of conditions to evaluate. This way, it is possible
to get a lower bound of the complexity for instance models that have at least
one single result for the query.

The complexity of the queries over the different approaches behave sim-
ilarly for almost all cases except for the following three: (i) the no default
switch case uses the most simple pattern and OCL query, while in the case of
visitors, (ii) the concatenation case uses the simplest visitor. (iii) Conversely,
the calculation of cyclomatic complexity is clearly the most complex query in
the graph patterns formalism and OCL, while its visitor is considerably sim-
pler than the avoid rethrow . We believe that this difference is based on the
fact that the calculation of cyclomatic complexity needs only the traversal of
the containment hierarchy that visitors excel in.

5.3. Measurement process
All measurements were executed on a dedicated Linux-based server with

32 GB RAM running Java 7. On the server the Java ASG of the Columbus
Framework was installed together with the EMF-IncQuery (supporting
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graph pattern matching using both the local search and the Rete-based in-
cremental approaches) and the Eclipse OCL [24] tool.

All program queries were implemented as both visitors for the ASG (by
a Columbus expert from the University of Szeged) and as graph patterns
(by a model query expert from the Budapest University of Technology and
Economics) - a different reviewer than the original implementer of the query.
In the case of OCL expressions, we relied on our previous experience in com-
paring model query tools for [22], where OCL experts were asked to verify
the developed queries. Visitors were executed on both model representa-
tions, while the graph patterns (both for local search-based and incremental
queries) and the OCL queries were evaluated on the EMF representation. In
order to also be able to reason about use cases where multiple queries are
executed together, indexes were built for all queries. In all cases, the time to
load the model from its serialized form and the time to execute the program
query were measured together with the maximum heap size usage.

The query implementations were manually verified to return the same
values for all tools in three ways. At first, (1) the created specifications were
reviewed to fulfill the original, textual specifications. Then, (2) in a selection
of smaller programs all instances were manually compared to return exactly
the same issues. Finally, (3) in case of all models, the number of found issues
was reported and compared.

Every program query was executed ten times, and the standard deviation
of the results was verified. After that, we averaged time and memory results
without the smallest and the largest values. In order to minimize the inter-
ference between the different runs, for the execution of model, tool and query
a new JVM was created and ran in isolation. Additionally, all measurements
were executed with a 10 minute timeout: if loading the model, initializing
and executing the query took more than the timeout, the measurement was
considered a failed one. The time to start up and shut down the JVM was
not included in the measurement results.

6. Measurement Results

To compare the performance characteristics of the different program query
techniques, in this section we present the detailed performance measurement
results.
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Table 4: Measurement Results

(a) Load Time (in seconds)

CloudStack 27,5 ± 0,6 115 ± 3,2 115 ± 1,8 156 ± 3,0 343 ± 5,9
ArgoUML 6,7 ± 0,1 25 ± 0,6 25 ± 0,5 35 ± 0,6 52 ± 1,3 312 ± 53,3
Eclipse 41,7 ± 0,7 169 ± 2,3 171 ± 2,8 238 ± 3,2 470 ± 4,1
GWT 16,1 ± 0,1 80 ± 2,1 80 ± 0,5 102 ± 2,7 199 ± 2,3
Hibernate 13 ± 0,2 58 ± 1,7 57 ± 1,8 83 ± 1,9 146 ± 2
Jackrabbit 10,4 ± 0,2 39 ± 0,5 38 ± 0,6 55 ± 0,7 113 ± 2,3 796 ± 152
JFreeChart 5,6 ± 0,2 21 ± 0,4 21 ± 0,4 30 ± 0,5 44 ± 1,2 277 ± 7,0
OpenEJB 10,6 ± 0,2 44 ± 0,8 43 ± 0,7 60 ± 0,8 117 ± 3,1
Stendhal 4,4 ± 0,1 17 ± 0,5 17 ± 0,4 23 ± 0,4 36 ± 1,2 239 ± 11,7
SVNKit 4,4 ± 0,1 18 ± 0,3 18 ± 0,4 25 ± 0,5 39 ± 14 268 ± 7,7
Struts2 5,7 ± 0,1 23 ± 0,4 23 ± 0,4 32 ± 0,6 49 ± 1,1 292 ± 8,7
Tomcat 8,3 ± 0,2 33 ± 0,6 33 ± 0,6 43 ± 0,6 69 ± 1,7 484 ± 15,8
Weka 9,4 ± 0,2 38 ± 0,7 37 ± 0,3 52 ± 0,4 111 ± 2,4 526 ± 29,5
Xalan 4,8 ± 0,1 19 ± 0,3 19 ± 0,2 25 ± 0,3 38 ± 1,1 254 ± 9,4

ASG EMF OCL LS INCHCCINC

NA//

/NA//
/NA//
/NA//

/NA//

(b) Memory Usage (in MB)

CloudStack 2189 ± 0,47 3503 ± 1,39 3925 ± 38 4017 ± 2,7 10414 ± 58,88
ArgoUML 198 ± 0,81 404 ± 0,9 461 ± 2,3 549 ± 9,1 5068 ± 42,09 11974 ± 841
Eclipse 2453 ± 0,66 4054 ± 1,87 4641 ± 3,9 4745 ± 1848 17754 ± 753,93
GWT 2579 ± 0,12 1967 ± 2,49 2178 ± 2,9 3566 ± 1,3 5973 ± 32,93
Hibernate 2086 ± 0,14 2524 ± 1,73 2788 ± 2,4 2995 ± 37,5 4507 ± 2,54
Jackrabbit 309 ± 0,04 583 ± 4,62 651 ± 63 955 ± 9,8 3652 ± 59,45 22123 ± 1593
JFreeChart 160 ± 0,06 360 ± 2,18 429 ± 67 530 ± 82,6 4400 ± 0,34 10560 ± 273
OpenEJB 344 ± 0,26 656 ± 2,89 662 ± 82 946 ± 6,5 3889 ± 23
Stendhal 109 ± 0,06 229 ± 0,51 431 ± 36 460 ± 124,2 3383 ± 68,85 7783 ± 629
SVNKit 129 ± 0,48 252 ± 3,12 401 ± 2,6 409 ± 2,8 3717 ± 4819 9835 ± 556
Struts2 159 ± 0,03 359 ± 2,71 479 ± 2,6 521 ± 2,9 4893 ± 70,27 11636 ± 180
Tomcat 246 ± 0,04 547 ± 6,05 601 ± 7,6 788 ± 66,7 6637 ± 64,05 16929 ± 2169
Weka 290 ± 0,07 616 ± 6,08 615 ± 151 695 ± 10,6 3427 ± 1 20357 ± 1377
Xalan 146 ± 0,59 260 ± 2,85 441 ± 1,7 445 ± 9 3600 ± 0,52 8259 ± 535

ASG EMF OCL LS INCHCCINC

NA

NA
NA
NA

NA

(c) Query Execution Time (in seconds)
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ASG 5,3 7,6 6,0 5,5 5,3 5,9 5,4 6,0 16%
EMF 3,9 5,0 3,7 3,7 4,1 4,0 3,6 4,4 15%
OCL 6,2 90,7 6,8 9,0 6,6 7,1 7,4 ---NA 6%
LS 0,13 81,50 0,55 0,28 0,02 0,26 1,09 0,76 24%
INC 0,012 -----NA 0,010 0,024 0,012 0,013 0,013 0,020 18%
ASG 1,8 2,4 1,7 1,9 1,7 1,8 1,6 1,9 5%
EMF 1,3 1,5 1,3 1,3 1,2 1,3 1,1 1,3 9%
OCL 2,4 14,3 2,0 2,9 1,6 2,1 2,2 ---NA 11%
LS 0,05 6,94 0,16 0,09 0,01 0,06 0,17 0,26 13%
INC 0,012 0,011 0,010 0,013 0,012 0,012 0,012 0,012 13%
ASG 8,0 11,3 8,3 9,2 7,8 7,7 7,0 9,3 11%
EMF 5,6 7,4 5,5 5,6 5,9 5,7 5,3 6,1 10%
OCL 10,3 122,2 10,0 12,4 9,4 9,9 12,1 ---NA 3%
LS 0,20 99,82 0,85 0,25 0,08 0,21 1,03 1,45 8%
INC 0,010 -----NA 0,009 0,013 0,014 0,010 0,011 0,022 11%
ASG 5,2 11,2 5,4 5,1 6,9 5,9 5,4 6,4 24%
EMF 3,0 3,9 2,8 2,8 2,9 2,9 2,8 3,2 8%
OCL 4,7 37,5 4,6 5,8 4,0 4,6 4,6 ---NA 9%
LS 0,05 29,15 0,47 0,15 0,03 0,10 0,53 0,39 4%
INC 0,010 -----NA 0,009 0,012 0,012 0,011 0,011 0,013 7%
ASG 4,2 5,3 4,6 3,9 4,5 3,9 5,1 4,5 19%
EMF 2,8 3,2 2,7 2,6 2,4 2,7 2,3 2,8 9%
OCL 3,8 34,4 3,7 6,0 3,3 4,3 3,7 ---NA 10%
LS 0,05 14,58 0,23 0,13 0,02 0,10 0,30 0,37 5%
INC 0,011 -----NA 0,009 0,011 0,011 0,010 0,010 0,011 14%
ASG 2,8 3,6 2,8 2,8 2,7 2,8 2,6 3,0 4%
EMF 1,8 2,3 1,8 1,8 1,8 1,8 1,6 1,9 6%
OCL 2,9 24,1 2,9 4,1 2,6 3,3 3,2 ---NA 8%
LS 0,10 50,93 0,26 0,10 0,04 0,13 0,32 0,36 36%
INC 0,012 0,013 0,010 0,011 0,011 0,011 0,011 0,012 13%
ASG 2,3 2,9 2,2 2,3 2,2 2,3 2,1 2,4 8%
EMF 1,2 1,4 1,1 1,2 1,1 1,1 1,0 1,2 6%
OCL 1,9 12,1 1,9 2,7 1,4 1,8 2,3 ---NA 6%
LS 0,05 6,94 0,16 0,10 0,01 0,06 0,10 0,21 28%
INC 0,009 0,010 0,010 0,012 0,012 0,010 0,012 0,012 23%
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ASG 2,6 3,5 2,6 2,8 2,5 2,6 2,4 2,9 3%
EMF 1,8 2,3 1,8 1,9 1,9 1,9 1,7 2,0 9%
OCL 2,9 20,4 2,8 3,9 2,3 3,4 3,1 ---NA 7%
LS 0,12 12,40 0,25 0,11 0,02 0,17 0,36 0,36 32%
INC 0,012 -----NA 0,009 0,012 0,011 0,011 0,011 0,013 16%
ASG 1,6 2,1 1,7 1,8 1,6 1,7 1,5 1,9 9%
EMF 0,9 1,2 1,0 1,0 1,0 1,0 0,9 1,0 2%
OCL 1,5 10,1 1,7 2,2 1,2 1,5 1,8 ---NA 3%
LS 0,03 4,64 0,16 0,09 0,01 0,05 0,19 0,23 20%
INC 0,010 0,011 0,010 0,013 0,012 0,010 0,012 0,012 14%
ASG 1,6 1,9 1,6 1,7 1,6 1,6 1,5 1,8 7%
EMF 1,0 1,2 1,0 1,0 1,0 1,0 0,9 1,0 9%
OCL 1,5 13,3 1,8 2,2 1,2 1,6 2,3 ---NA 6%
LS 0,06 9,49 0,16 0,06 0,01 0,09 0,19 0,25 18%
INC 0,012 0,012 0,010 0,012 0,011 0,011 0,010 0,012 16%
ASG 2,2 2,9 2,2 2,3 2,3 2,2 2,0 2,4 7%
EMF 1,2 1,5 1,2 1,2 1,2 1,2 1,1 1,3 4%
OCL 2,0 12,7 2,0 2,8 1,5 1,9 2,1 ---NA 7%
LS 0,05 7,09 0,15 0,08 0,02 0,07 0,23 0,26 16%
INC 0,012 0,011 0,010 0,011 0,012 0,011 0,011 0,013 14%
ASG 2,3 3,0 2,4 2,4 2,4 2,4 2,2 2,6 7%
EMF 1,5 2,0 1,5 1,5 1,5 1,5 1,3 1,6 15%
OCL 2,6 21,3 2,5 3,3 2,1 2,7 3,1 ---NA 8%
LS 0,08 13,48 0,23 0,10 0,02 0,13 0,33 0,31 16%
INC 0,013 0,012 0,011 0,013 0,012 0,012 0,013 0,012 24%
ASG 3,2 4,3 3,2 3,3 3,1 3,2 3,0 3,4 5%
EMF 1,7 2,2 1,7 1,7 1,7 1,7 1,5 1,8 4%
OCL 2,8 26,2 3,1 3,6 2,3 2,8 3,2 ---NA 7%
LS 0,06 21,46 0,27 0,09 0,02 0,09 0,39 0,33 23%
INC 0,010 0,013 0,009 0,011 0,010 0,010 0,011 0,011 11%
ASG 1,7 2,0 1,7 1,7 1,6 1,7 1,6 1,8 9%
EMF 1,1 1,3 1,1 1,2 1,1 1,1 1,0 1,2 8%
OCL 1,9 12,5 1,8 2,2 1,3 1,8 2,2 ---NA 3%
LS 0,05 11,32 0,16 0,07 0,02 0,08 0,21 0,24 3%
INC 0,011 0,011 0,010 0,013 0,012 0,012 0,011 0,013 11%
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6.1. Load Time and Memory Usage
Table 4a presents the time required to load the models in seconds. As

our measurements showed that the model load time is largely independent
of the query selection, we only present an aggregated result table. The only
exception to this rule is the cyclomatic complexity pattern with incremental
pattern matching: in that case we found that indexing the transitive closure
of the containment hierarchy was prohibitively expensive both in terms of
load time and memory usage. For this reason, we executed two sets of mea-
surements: (1) one without initializing the cyclomatic complexity pattern
(INC), and (2) another that also includes this pattern (INC-CC).

Figure 8 depicts the detailed load time and memory usage measurements
for the Jackrabbit tool in box plots; the diagrams for the other cases were
similar. In general, the diagrams show that the repeated measurements of
the test cases show generally very little differences, except a few cases, while
there are large differences when comparing the results of different techniques.

It can be seen that the load time is 3–4 times longer when using an EMF-
based implementation over the manual Java ASG, and further increases can
be seen when initializing the pattern matchers for local search and incremen-
tal queries. The two-phase load algorithm for the EMF model (EMF case),
and the time to set up the indexes (local search) and partial matches (Rete)
can account for these increases. As OCL does not use any specific index, no
additional load overhead over the EMF visitor implementation is measured.

A similar increase can be seen for the memory usage in Table 4b: the EMF
representation uses around twice as much memory, while the incremental en-
gine may require an additional 10–15 times more memory to store its partial
result caches compared to the ASG. When adding the cyclomatic complexity
pattern as well, an additional increase in memory usage is observed, result-
ing in a memory exhaustion for the largest models (over 500kLOC, or 1.7M
graph nodes).

The smaller memory footprint of the Java ASG representation is the result
of model-specific optimizations not applicable in generic EMF models. The
additional increase for local search and Rete-based pattern matchers mainly
represent the index and partial match set sizes, respectively. Similarly to
load times, the use of OCL does not result in a change in memory usage
compared to the EMF model.

The memory footprint increase of the cyclomatic complexity pattern is
caused by the indexing of the transitive closure of the parent relation. As
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Figure 8: Distribution of Load Time and Memory Usage of the Jackrabbit Project
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every model element has a parent and the containment hierarchy is usually
deep, this transitive closure can alone become several times of the size of
the entire model making it very expensive to index. On the other hand, the
containment hierarchy can be effectively traversed using search operations,
thus the other approaches can handle this query much better.

Generally, neither for load times nor memory usage were the standard
deviation of the results significant compared to the other values, with the
notable exceptions of the load time of the Jackrabbit tool with INC-CC,
and the SVNKit applications memory usage with INC. The first one can
be explained with garbage collection, as the memory usage was close to the
25 GB limit. For the latter one we have no clear explanation; however as
we have witnessed no other fluctuations of this size, we believe that it was
caused by a temporary issue during our measurements.

6.2. Search Time
Table 4c presents the search time measurements (and uses NA if the mea-

surement timed out). For each model and each program query the average
search time is listed at first. Furthermore, in Figure 9, we have highlighted
the results of the Jackrabbit project in a box plot, where there are only min-
imal differences between the different executions of the same case, similar to
load and search times.

Both visitor implementations perform similarly, producing similar execu-
tion times for queries, but increasing with model size as they traverse the
entire model to find the results. The time differences between the ASG and
EMF visitors are mainly the results of the memory optimizations of the origi-
nal ASG implementation that avoided storing the same values multiple times,
but required additional indirections during the model traversal. The reverse
navigation option is not used in our measurements.

The local search and Rete based solutions provide a two or three orders of
magnitude faster query execution, achieved by replacing the model traversal
by calls to a pre-populated (and incrementally updated) index. Additionally,
the search time of incremental queries is largely independent of model size,
while in the case of local search it increases much slower than in the case of
the visitor executions. As the search times for INC queries were exactly the
same regardless whether the cyclomatic complexity query was loaded or not,
their rows merged in the table.

The execution of OCL queries include a traversal of the model together
with additional search operations, making its search slower than the visitor
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implementations. An exception from this to note is the unused parameter
query: in that case the search operation timed out every time. This is most
likely caused by the usage of the allInstances function that is used to find
the source of an edge without reverse navigation options.

Additionally, as Table 4c shows, the execution time of visitor implemen-
tations increases linearly. This is in line with our expectation, as visitors
have to traverse the entire model during the search. On the other hand, the
search time for incremental queries are roughly the same for all queries, as the
search simply means returning the results. In most of our patterns, the local
search is an order of magnitude slower than incremental queries. However,
the concatenation pattern (see Figure 3c) executes as slow as the visitors
in this regard. This is in line with our earlier experience [25] with different
pattern matching strategies that the execution performance for local search
techniques depends on the query complexity and the model structure.

To validate the results, for each program and tool combination we have
the maximum standard deviation in percentage of their corresponding search
time. In most cases, the standard deviation is low; only 9 rows contain devi-
ations over 20%. As our measurements have shown time differences of orders
of magnitude, these differences do not invalidate our conclusions during the
analysis.

7. Evaluation of Usage Profiles

In addition to the raw evaluation of the measurement results, in this
section, we discuss how the different approaches are compared in various
usage profiles, and we summarize our findings. Furthermore, we discuss the
different threats to validity, and the ways they were managed.

7.1. Usage Profiles
In order to compare the approaches, we calculated the total time re-

quired to execute program queries for three different usage profiles : one-time,
commit-time, and save-time analysis. The profiles were selected by estimat-
ing the daily number of commits and file changes for a small development
team.

One-time analysis consists of loading the model and executing each pro-
gram query in a batch mode. In case the analysis needs to be repeated, the
model is reloaded. In our measurements, this mode is represented by a load
operation followed by a single query evaluation.
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Commit-time analysis can be used in a program analysis server that keeps
the model in-memory, and on each commit, it is updated as opposed to
be reloaded, and then it re-executes all queries. In our case, this mode is
represented by a load operation followed by 10 query evaluations.

Save-time analysis is executed whenever the programmer saves a file in
the IDE, and then the IDE either executes the analysis itself, or notifies the
analysis server. It is similar to commit-time analysis, but it is executed more
often. In our measurements, this mode is represented by a load operation
followed by 100 query evaluations.

7.2. Usage Profile Analysis
We calculated the execution times for the search profiles considering all

projects by considering the time to load the models (Table 4a), and increasing
it with 1, 10 and 100 times of the search time of six queries one after another,
respectively. As the unused parameter and cyclomatic complexity query could
not always be executed in OCL and the incremental matcher, respectively,
to keep the results comparable, they were excluded from this calculation.

Figure 10 shows our measurement results of total execution times on the
various usage profiles from two points of view. We have included detailed
graphs for the selected models where load times and query times can be
observed (note the differences in the time axis).

The results show that albeit the visitor approaches execute queries slowly,
as there are no additional data structures initialized, the lower load time
makes this approach very effective for one-time, batch analysis. However, as
all visitors are implemented separately, to execute all of them would require
six model traversals; reducing this would get further time advantage of this
solution over the local search based ones. This issue could be managed by
combining all queries in a single visitor, thus increasing its complexity. On the
other hand, visitors behave worse regarding run time in the case of repeated
analysis: the mean time for executing 100 searches has increased from 32 to
1967 seconds for the ASG-based implementation (and from 62 to 1257 when
executed over EMF).

OCL queries behave similarly to visitor-based searches: no indexing is
used, but the model is traversed during search. Executing a single query is
more expensive than executing a single visitor, and during the measurements
nothing is shared between the different executions making the mean one-time
execution time of the six queries 71 seconds (almost the same as the result
of the local search based pattern matcher), repeating it a hundred times is
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Figure 10: Execution Time over Models

done in 2204 seconds (slower than the ASG version). However, selecting an
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OCL execution mode that evaluates multiple OCL queries during a single
traversal if possible could considerably reduce the total search time, making
this approach also a viable alternative to the hand-coded visitors.

The local search based approach is noticeably faster than visitor-based
solutions with memory usage and initialization time penalties introduced
by the use of caching. The mean execution times range from 69 to 171
seconds. These properties make the approach work very well in the Commit-
time analysis profile, and other profiles with a moderate amount of queries.
However, if a bad search plan is selected for a query, such as in the case of
the Concatenation to Empty String pattern, its execution time may become
similar to the visitor-based implementations.

The incremental , Rete-based pattern matching approach provides instan-
taneous model query times, as the results are always available in a cache. This
makes such an algorithm powerful for repeatedly executed analysis scenarios,
such as the Save-time analysis profile (mean time: 131 seconds, the lowest
from all approaches). However, to initialize the caches, a lengthy prepara-
tion phase is needed making the technique the slowest for one-time analysis
scenarios (mean time: 394 seconds).

If the save-time analysis profile is used and the required memory of the
incremental approach cannot be met, it is possible to use the complementing
local search matcher that still has a performance benefit over the visitor-based
solutions. Additionally, by moving the analysis to a distributed, cloud-based
system, it is possible to manage even larger models using the incremental
approach [26].

Additionally, we evaluated how execution times changed when increasing
the model size. Figure 11 depicts the analysis time using different tools over
the model size in each usage profile and adds linear trend lines to compare
the levels of increase. We have found observed our findings are consistent
over different models: regardless of the model size, the same relative ordering
can be observed in the case of each profile.

7.3. Lessons Learned
From a memory consumption perspective, the manually optimized ASG

excels while providing fast query execution for the one-time usage profile.
However, generic model implementations, such as EMF, may be viable al-
ternatives when additional features of these frameworks are used and the
doubled memory usage is acceptable. Furthermore, the use of generic model
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Figure 11: Execution Time with regards to Model Sizes
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implementations allows generic query approaches to become an alternative
for manually coded searches based on usage profiles:

• Batch solutions, such as the Eclipse OCL implementation have minimal
additional memory requirements while their performance is similar to
manually written visitors.

• Full incremental solutions, such as the Rete-based pattern matcher of
the EMF-IncQuery, provide results instantaneously even after model
changes, making it very useful for recurring queries and evolving source
code, if its memory requirements are met.

• The local search implementation of the EMF-IncQuery uses an in-
cremental indexer to speed up search implementations, achieving query
evaluation times that are still orders of magnitude faster than non-
indexed solutions, but with a lesser memory consumption. This result
is in line with the idea of hybrid pattern matching [25], where incre-
mental and search-based approaches are complementing each other for
better performance characteristics.

Both the OCL and the graph pattern formalism provides a higher-level
specification of program queries resulting in a compact query description
compared to manually coding visitors, and in our subjective experience, they
are easier to understand and reduce query development time. Advanced
features, such as the computation of transitive closures, are also supported,
further reducing the length of query descriptions.

Regardleess of the modeling technology, optimizing the queries, either
for performance or memory consumption, may require a deep understanding
of the underlying algorithms. In some cases, this means a complete refor-
mulation of the query, e.g. in the case of the catch problem, the pattern
description requires an inverse navigation between the catch parameters and
its references, while the visitor implementation traverses the containment
subtree instead.

We have also identified cases where one of the selected tools works no-
ticeably better or worse than the other candidates:

• If inverse relations are not modeled, some queries in OCL cannot be
implemented efficiently (e.g. without iterating all instances of a type).
Unsurprisingly, adding inverse relations increases the memory usage of
the model.
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• Navigating the containment hierarchy (especially transitively) requires
huge amount of memory with the Rete-based incremental approach, as
it requires storing many model element-ancestor pairs in the memory.

• Visitor-based solutions can very effectively traverse the containment
hierarchy. In the case of the cyclomatic complexity calculation, this is
the main reason why the visitor implementations outperform all the
others.

Figure 12: Decision Model (Simplified Representation)

Additionally, as a rule of thumb, we have created a simplified representa-
tion (see Figure 12) of the lessons we learned from the results in a form of a
decision model to choose the best suited tools for the different usage scenar-
ios. The figure stands as a supplementary guide to help the understanding of
our observations above, but it is not a standalone presentation of our results.

In the refactoring project, as mentioned in the motivation section, a refac-
toring framework is implemented. In this framework, the one time scenario
is applied, as the usage scenario was planned for the ASG which does not
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support incremental model updates. In addition, a large, 4M LOC propri-
etary program is refactored, so the decision during this project was to keep
the ASG and the one time approach. From this research, we have concluded
that generic solutions are viable alternatives and using by an incremental
tool setup a huge performance gain can be achieved when enough memory is
available.

7.4. Threats to Validity
We have identified several validity threats that can affect the construct,

the internal and external validity of our results.
Low construct validity may threaten our results of various usage profiles,

as the results do not include the time required to update the indexes and Rete
networks on model changes. However, based on the previous measurement
results the related to EMF-IncQuery [21], we believe that such slowdowns
are negligible in the cases where the change size is small compared to the
model.

Furthermore, in the case of very large heap sizes (over 10 GB) the garbage
collection of JVM instances may block the program execution for minutes, in
a non-deterministic way. To make the measurements reproducible, the JVM
instances were allocating their maximum heap size during startup instead of
gradually extending it as needed.

We tried to mitigate internal validity threats by comparing the measure-
ments changing only one measurement parameter at a time. For example,
the EMF implementation of the Java ASG allows to differentiate between the
changes caused by different internal model representations by comparing the
different model representations using the same search algorithm first, then
comparing the EMF-based visitor to generic pattern matching solutions.

An important threat in a study to compare various methods is that the
evaluation is done through actual implementations. The decisions in the
implementation may affect the overall outcome and the judgement of the
methods. To weaken this threat, the implementation is performed by experts
of the given technologies. Hence, the same query is implemented in a slightly
different way in each method depending on the features of the methods like
the availability of reverse edges.

Note that the authors are not experts of the OCL tools, furthermore,
the metamodel itself does not favor the structure expected by OCL. How-
ever, as we have found that OCL performs comparably to the visitor-based
implementations, it is clearly a viable alternative to manually coded searches.
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Considering external validity , the generalizability of our results largely
depends on whether the selected program queries and models are representa-
tive for general applications. The queries were selected prior to the projects
and scenarios. These refactorings were marked important by project partners
and were selected to cover several aspects of transformations.

The selected open-source projects differ in size and characteristics – in-
cluding computational intensive programs, applications with heavy network
and file access and with graphical user interface. Furthermore, the projects
were selected from the testbed of the Columbus Java static analyzer and ASG
builder program where the aim was to cover a wide range of Java language
constructs.

Considering projects from different programming languages requires a
corresponding metamodel and instance models. The Columbus framework
itself provides metamodels and code analyzers to create these models for
various languages, such as C/C++, C# or RPG, and these metamodels can
be ported similarly to the EMF. However, an additional evaluation may be
needed to validate whether the results still hold, as the properties of those
program models may differ significantly.

Another issue is the selection of model query tools. Although several
other tools are available, based on the results of more than 10 years of re-
search in efficient graph pattern matching techniques we believe that other
pattern matcher tools would provide similar results to either our local search
or incremental measurements.

In our work, we used Java-based tools and the EMF framework so that
the results of the tools could be comparable. On the other hand, the inves-
tigated tools support additional languages. For example, the Columbus API
is available in C++ as well, OCL tools are available for different modeling
formalisms and languages. The EMF-IncQuery framework is implemented
in Java and focuses on EMF models; however the language and runtime are
being adapted to different formalisms such as RDF or the metamodeling core
of MPS.

OCL queries expect that a context object is selected from the environment
and expressions can be evaluated from this point. However, the standard does
not specify how to select this context object, and different OCL tools support
varying query execution modes. Such modes include the Impact Analyzer of
the Eclipse OCL tool [24] that tracks model changes and recomputes only
those results that rely on the changed model elements; or the model invariant
formulation that can evaluate multiple boolean queries parallel. In order to
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be able to measure the execution times of single queries, we selected all
possible context objects by traversing the entire source model. To evaluate
the effects of choosing a different context selection strategy or execution
mode, additional measurements are needed.

Altogether, our results were similar for all the models and queries, so we
believe our results will generalize well to other program queries and models,
until the memory requirements of indexing or Rete building are met.

8. Related Work

In our comparison, we evaluated solutions that are specific to program
models and generic methods not restricted to the domain of program models.
We present related research in two groups starting from generic to program
model-specific solutions.

8.1. Software Analysis Using Generic Modeling Techniques
Program queries are a common use case for modeling and model trans-

formation technologies including transformation tool contests. The program
refactoring case of the GraBaTs Tool Contest 2009 [27] and the program
understanding case of the Transformation Tool Contest 2011 [28] rely on a
program query evaluation followed by some transformation rules, focusing on
the applicability of modeling tools for refactoring and reverse engineering. In
2011, six tools entered the contest (GreTL, VIATRA2, Edapt, MOLA, Gr-
Gen.NET and Henshin), some of them were EMF-based, others relied on a
different metamodeling approach, and in the case of all tools the tasks were
executed in a few seconds (albeit sometimes after costly model import op-
erations). This paper extends these results by comparing the costs of using
generic modeling environments to manually optimized refactoring models;
and extends the performance comparisons with a larger pool of real-world
software models and the use of different model queries.

The refactoring case was reused in [29] to select a query engine for a model
repository, however, its performance evaluations did not consider incremental
cases.

A series of refactoring operations were defined as graph transformation
rules by Mens et al. [30], and they were also implemented for both the Fujaba
Tool Suite and the AGG graph transformation tools. Although the paper
presents that graph transformations are useful as an efficient description of
refactoring operations, no performance measurements were included. The
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Fujaba Tool Suite was also used to find design pattern applications [31].
As a Java model representation, the abstract syntax tree of the used parser
generator was used, and the performance of the queries were also evaluated.

The Java Model Parser and Printer (JaMoPP) project [32] provides a
different EMF metamodel for Java programs. It was created to directly open
and edit Java source files using EMF based techniques, and the changes were
written back to the original source code. On the other hand, the EMF model
of the JaMoPP project does not support any existing model query or refac-
toring approaches, every program query or refactoring is to be reimplemented
to execute it over the JaMoPP models. This approach was used in [33] re-
lying on the Eclipse OCL tool together with a display of the found issues in
the Eclipse IDE.

The EMF Smell and EMF Refactor projects [34] offer to find design smells
and execute refactorings over EMF models based on the graph pattern for-
malism. As Java programs can be translated into EMF models, this also
allows the definition and execution of program queries.

As a distinguishing feature from the above mentioned related works, we
have compared the performance characteristics of hand-coded and model-
based query approaches.

When comparing the performance of the different approaches, an addi-
tional factor needs to be considered: as there are multiple different (some-
times not even EMF-based) metamodels used to describe Java applications,
additional measurements are required to evaluate the effects of metamodel
selection. However, we believe that our test setup is general enough to handle
the large set of tools, approaches and queries proposed by these papers.

The train benchmark described in [21] focuses on measuring the perfor-
mance of incremental model query approaches. It relies on synthetic models
scalable to any model size, and defines both query and model manipula-
tion steps to measure the real impact of query re-evaluation. [22] aimed to
predict the query evaluation performance based on metrics of models and
queries both. In the current paper, we reused these metrics on real-world
models to evaluate the query engine instead of synthetic models, and while
our results were largely similar, further a detailed comparison is required to
analyze their usefulness.

8.2. Software Analysis Designed for Program Models
For detecting coding issues in Java programs several tools exist. The

closest solutions to our ASG+Visitor method are for example the PMD
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checker [35] and FrontEndART’s FaultHunter [36], which is, in fact, built
on the top of the Columbus ASG. These applications can be integrated into
IDEs as plug-ins, and can be extended with the searches implemented in Java
code or in a higher level language, such as XPath queries in PMD. PMD pro-
vides rules for a great variety of coding problems, but the provided model
and query API is not as flexible as the solutions used in this research. The
main usage scenario of these tools is to run the checkers once on (any version
of) the source code and find coding issues, they do not support incremental
model updates.

On the contrary to generic solutions, there are several systems that sup-
port (meta) modeling and querying especially program models. FAMIX [37]
is a language-independent meta-model for representing procedural and object-
oriented code, used in the Moose reverse engineering environment [38]. The
MOOSE environment provides query possibilities in Smalltalk. The authors
state that their approach is not Smalltalk specific and can be applied Java
as well. The Rascal [39] metaprogramming language is designed for source
code analysis and manipulation; its analysis features are based on relational
calculus, relation algebra and logic programming systems. Its tool support
includes an Eclipse based IDE, and the language provides Java integration:
for any task not (easily) expressible in RASCAL, one may use Java method
bodies inside Rascal functions. These solutions use their own meta model to
represent Java programs, on the contrary to solutions in our research, where
the Columbus meta model is used through the EMF. However, these tools
are candidates for comparative research in the future.

Furthermore, several approaches allow defining program queries using
logical programming, such as the JTransformer [40] using Prolog clauses,
the SOUL approach [41] relying on logic metaprogramming, while Code-
Quest [42] is based on Datalog. However, none of these include a comparison
with hand-coded query approaches. The DECOR methodology [43] provides
a high-level domain-specific language to evaluate program queries. It was
evaluated on 11 open-source projects, including the Eclipse project for per-
formance; it took around one hour to find its defined smells. These results
are difficult to compare to ours, as the evaluated queries are different (and
some of them more complex than the ones defined in our paper), but they are
described in enough detail to extend our environment. However, evaluating
the effects of representation and tool selection is problematic, as neither the
model representation, implementation structure nor the used programming
language is shared between the different approaches.
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An important benefit of our approach is the ability to select the query
evaluation strategy based on the required usage profile. Additionally, it is
possible to re-use the existing program query implementations while using a
high-level, graph pattern-based definition for the new queries.

9. Conclusions and Future Perspectives

We evaluated different query approaches to locate anti-patterns for refac-
toring Java programs. In a traditional setup, an optimized Abstract Seman-
tic Graph was built by the state-of-the-art static code analysis tool called
Columbus, and processed by hand-coded visitor queries. In contrast, an
EMF representation was built for the same program model which offers var-
ious advantages from a tooling perspective. Furthermore, anti-patterns were
identified by generic, declarative queries in different formalisms evaluated
with an incremental and a local-search based strategy.

Our experiments that were carried out on 28 open source Java projects of
different size and complexity demonstrated that encoding ASG as an EMF
model results in an up to 2-3 fold increase in memory usage and an up to 3-4
fold increase in model load time, while incremental model queries provided a
better run time compared to hand-coded visitors with 2-3 orders of magnitude
faster execution, at the cost of an additional increase in memory consumption
by a factor of up to 10-15. Additionally, we provided a detailed comparison
between the different approaches making it possible to select one over the
other based on the required usage profile and the expressive capabilities of
the queries.

To sum up, we emphasize the expressiveness and concise formalism of
pattern matching solutions over hand-coded approaches. They offer a quick
implementation and an easier way to experiment with queries together with
different available execution strategies; on the other hand, depending on the
usage profile, their performance is comparable even on 2 000 000 lines of
code.

This work provides basis for the improvement of the ASG and its API
towards incremental model handling. In addition, several research aims are
identified during this work. We plan to involve additional solutions that are
designed for program analysis like Rascal and FAMIX. We also plan to extend
the empirical analysis from anti-pattern detection to the whole refactoring
process including model transformations. The actual transformations can be
programmed using Java or the Xtend language, and can be defined as graph
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transformations as well, where an empirical comparison is of our interest.
Another promising idea is provide automatic refactoring fixes to anti-patterns
based on primitive transformations and design space exploration techniques.
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