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Abstract—Program queries play an important role in several
software evolution tasks like program comprehension, impact
analysis, or the automated identification of anti-patterns for
complex refactoring operations. A central artifact of these tasks
is the reverse engineered program model built up from the
source code (usually an Abstract Semantic Graph, ASG), which
is traditionally post-processed by dedicated, hand-coded queries.
Our paper investigates the use of the popular industrial Eclipse
Modeling Framework (EMF) as an underlying representation
of program models processed by three general-purpose model
query techniques based on native Java code, local-search and
incremental evaluation. We provide in-depth comparison of these
techniques on the source code of 17 Java projects using queries
taken from refactoring operations in different usage profiles.
Our results show that general purpose model queries outperform
hand-coded queries by 2-3 orders of magnitude, while there is a
5-10 times increase in memory consumption and model load time.
In addition, measurement results of usage profiles can be used
as guidelines for selecting the appropriate query technologies in
concrete scenarios.

I. INTRODUCTION

Program queries play a central role in various software
maintenance and evolution tasks. Refactoring, an example of
such tasks, aims at changing the source code of a program
without altering its behavior in order to increase its read-
ability, maintainability, or to eliminate coding anti-patterns.
The refactoring process starts with identifying the location of
the problem in the source code, and then applying predefined
operations to fix the issue. In practice, the identification step is
frequently defined by program queries, while the manipulation
step is captured by program transformations.

Advanced refactoring and reverse engineering tools (like the
Columbus framework [1]) first build up an Abstract Semantic
Graph (ASG) as a model from the source code of the pro-
gram, which enhances a traditional Abstract Syntax Tree with
semantic edges for method calls, inheritance, type resolution,
etc. In order to handle large programs, the ASG is typically
stored in a highly optimized in-memory representation. More-
over, program queries are captured as hand-coded programs
traversing the ASG driven by a visitor pattern, which can be
a significant development and maintenance effort.

Models used in model-driven engineering (MDE) are uni-
formly stored and manipulated in accordance with a metamod-
eling framework, such as the Eclipse Modeling Framework
(EMF), which offers advanced tooling features. Essentially,
EMF automatically generates a systematic API, model ma-
nipulation code, notifications for model changes, persistence
layer in XMI, and simple editors and viewers (and many more)
from a domain metamodel, which significantly speeds up the
development of EMF-compliant domain-specific tools.

EMF models are frequently post-processed by advanced
model query techniques based on graph pattern matching
exploiting different strategies such as local search [2] or
incremental evaluation [3]. Some of these approaches have
demonstrated to scale up for large models with millions of
elements in forward engineering scenarios, but up to now, no
systematic investigation has been carried out to show if they
are efficiently applicable as a program query technology. If
this is the case, then advanced tooling offered by EMF could
be directly used by refactoring and program comprehension
tools without compromise.

The paper contributes a detailed comparison of (1) memory
usage in different ASG representations (dedicated vs. EMF)
and (2) run time performance of different program query
techniques. For the latter, we evaluate four essentially different
solutions: (i) hand-coded visitor queries (as used in Colum-
bus), (ii) queries implemented in native Java code over EMF
models, (iii) generic model queries following a local search
strategy and (iv) incremental model queries using a caching
technique.

We compare the performance characteristics of these query
technologies by using the source code of 17 open-source Java
projects (with a detailed comparison of 5 projects in the paper)
using queries for 6 anti-patterns. Considering typical usage
scenarios, we evaluate different usage profiles for queries
(one-time vs. on-commit vs. on-save query evaluation). As
a consequence, execution time in our measurements includes
the one-time penalty of loading the model itself, and various
number of query executions depending on the actual scenario.

Our main finding is that advanced generic model queries
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over EMF models execute several orders of magnitude faster
than dedicated, hand coded techniques. However, this per-
formance gain is balanced by a factor of 5-10 increase in
memory usage and model load time for EMF based tools
and queries compared to native Columbus results. Therefore,
the best strategy can be planned in advance, depending on
how many times the queries are planned to be evaluated after
loading the model from scratch.

The rest of the paper is structured as follows. Section II
introduces the six queries to be investigated in the paper.
Section III provides a technological overview including how
to represent models of Java programs and capture queries as
graph patterns. Our experimental results and their analysis are
detailed in Section IV. Section VI lists research related to ours,
while Section VII concludes our paper.

II. CASE STUDY SETUP

The results presented in this paper are motivated by an on-
going 3-year refactoring research project involving 5 industrial
partners, which aims to find an efficient solution to the problem
of software erosion. We focus on the detection of coding
anti-patterns, the starting point of the refactoring process. In
this step we have to find patterns of problems, like when
two Java strings are compared using the == operator instead
of the equals() method. After identifying an occurrence of
such anti-pattern, the problematic code is replaced with a new
condition containing a call to the equals() method with an
appropriate argument. Such queries for finding patterns and
related refactorings are usually implemented on the top of
an ASG. We investigate two viable options for implementing
queries and refactorings: (1) to implement queries and trans-
formations by developing Java code working directly on the
ASG; (2) to create the EMF implementation of the ASG and
use model based tools to do the job. Years ago, we experienced
that typical modeling tools were able to handle only mid-size
program graphs [4]. We now revisit this question and evaluate
whether model-based solutions evolved to compete with hand-
coded Java based solutions.

In the following we present our study on program queries
in a refactoring context, however our results can be used more
generally. For instance, program queries are applied in several
scenarios in maintenance and evolution from design pattern
detection to impact analysis; furthermore, real-life case studies
are first-class drivers of improvements of model driven tools
and approaches.

We capture anti-patterns as model queries using a high-
level, declarative graph pattern based query language [5].
Compared to standard languages like OCL, this language
offers advanced reuse and navigation. What is more, different
execution strategies are available to evaluate them.

We selected 6 types of anti-patterns based on the feedback
of project partners and formalized them as model queries.
The diversity of the problems was among the highest pri-
ority selection criteria, therefore, these queries vary both
in complexity and programming language context ranging
from simple traverse-and-check queries to complex navigation

queries potentially with multiple negations. Here we briefly
and informally describe the refactoring problems and related
queries used in our case study.

a) Switch without Default: Missing default case has to
be added to the switch. Related query: We traverse the whole
graph to find Switch nodes without a default case.

b) Catch Problem: In a catch block there is an
instanceOf check for the type of the catch parameter. Instead
of the instanceOf check a new catch block has to be added
for the checked type and the body of the conditional has to
be moved there. Related query: We search for identifiers on
the left hand side of instanceOf operator and check whether
it points to the parameter of the containing catch block.

c) Concatenation to Empty String: When a new String

is created starting with a number, usually an empty String

is added from left to the number to force the int to String

conversion, because there is no int + String operator in Java.
A much better solution is to convert the number using the
String.valueOf() method first. Related query: We search
for empty string literals, and check the type of containing
expression. If the container expression is an infix expression,
then we also make sure that the string is located at the
expression’s left hand side and the kind of the infix operator
is the String concatenation (“+”).

d) String Literal as Compare Parameter: When a String

variable is compared to a String literal using the equals()

method, it is unsafe to have the variable on the left hand side.
Changing the order makes the code safe (by avoiding null
pointer exception) even if the String variable to compare is
null. Related query: We search for all method invocations
with the name "equals". After that, we check that its only
parameter is a string literal.

e) String Compare without Equals Method: This refac-
toring is already mentioned above. Related query: We search
for the == operator and check whether the left hand side
operand is of type java.lang.String. We have to check for
the right hand side operand as well: in case of null we cannot
use the method call. In fact, it is not necessary because in this
case the comparison operator is the right choice.

f) Unused Parameter: When unused parameters remain
in the parameter list they can be removed from the source
code in most cases. Related query: We search for places in the
method body where parameters are used. However, there are
specific cases when an unused parameter cannot be removed
such as (1) when the method has no body (interface or abstract
method); (2) when the method is overridden by or overrides
other methods; and (3) public static void main methods.

III. TECHNOLOGICAL OVERVIEW

In this section we first give a brief overview on how to
represent Java programs as an ASG or EMF, then present the
graph pattern formalism, and use it to capture various program
queries. Finally, we detail the implementation of these queries
using three methods: ASG visitors, local search techniques and
Rete networks.
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public boolean equals(Object other) {...}

...
// Code inside another method
// The variable ’srcVar’ is defined locally
srcVar.equals("source");
...

(a) Java Code Snippet

NormalMethod,
name:&“equals”&
accessibility:&public&

StringLiteral,
value:&“source”&

Iden3fier,
name:&“srcVar”&

Method,
Invoca3on,

Parameter,
name:&“other”&

parameter&

invokes&

operand& argument&

(b) ASG Representation

Fig. 1: ASG Representation of Java Code

A. Managing Models of Java Programs

1) Abstract Semantic Graph for Java: The Java analyzer
of the Columbus reverse engineering framework is used to
obtain program models from the source code (similarly as for
the C++ language [1], [6]). The ASG contains all information
that is in a usual AST extended with semantic edges (e.g., call
edges, type resolution, overrides). It is designed primarily for
reverse engineering purposes [7], [8] and it conforms to our
Java metamodel.

In order to keep the models of large programs in memory,
the ASG implementation was heavily optimized for low mem-
ory consumption, e.g., handling all model elements and String
values centrally avoids storing duplicate values. However,
these optimizations are hidden behind an API interface.

In order to support processing the model, e.g., executing
a program query, the ASG API supports visitor-based traver-
sal [9]. These visitors can be used to process each element on-
the-fly during traversal, without manually coding the (usually
preorder) traversal algorithm.

Example 1: To illustrate the use of the ASG we present a
short Java code snippet and its model representation in Fig. 1.
The code consists of a public method called equals with a
single parameter, together with a call of this method using a
Java variable srcVar. The corresponding ASG representation
is depicted in Fig. 1b, omitting type information and boolean
attribute values such as the final flags for readability.

The method is represented by a NormalMethod node that
has the name equals and public accessibility attribute. The
method parameter is represented by a Parameter node with the
name attribute other, and is connected to the method using a
parameter reference.

The call of this method is depicted by a MethodInvocation

node that is connected to the method node by an invokes

reference. The variable the method is executed on is rep-
resented by an Identifier node via an operand reference.
Finally, an argument reference connects a StringLiteral

node describing the "source" value.
2) Java Application Models in EMF:

a) Metamodeling in EMF: Metamodeling is a fundamen-
tal part of modeling language design as it allows the structural
definition (e.g., abstract syntax) of modeling languages.

EMF provides a Java-based representation of models with
various features, e.g., notification, persistence, or generic,
reflective model handling. These common persistence and
reflective model handling capabilities enable the development
of generic (search) algorithms that can be executed on any
given EMF-based instance model, regardless of its metamodel.

The model handling code is generated from a metamodel
defined in the Ecore metamodeling language together with
higher level features such as editors. The generator work-
flow is highly customizable, e.g., allowing the definition of
additional methods.

The main elements of the Ecore metamodeling language
are the following: EClass elements define the types of
objects; EAttribute extend EClasses with attribute values
while EReference objects present directed relations between
EClasses.

Example 2: As an illustration, we present a small subset of
the Java ASG metamodel realized as in the Ecore language
in Fig. 2 that focuses on method invocations as depicted
in Fig. 1. The entire metamodel consists of 142 EClasses
with 46 EAttributes and 102 EReferences.

Fig. 2: A Subset of the Ecore Model of the Java ASG

The NormalMethod and Parameter EClasses are both ele-
ments of the metamodel that can be referenced from Java code
by name. This is represented by generalization relations (either
direct or indirect) between them and the NamedDeclaration

EClass. This way both inherit all the EAttributes of the
NamedDeclaration, such as the name or the accessibility

controlling the visibility of the declaration.
Similarly, the EClasses MethodInvocation, Identifier and

StringLiteral are part of the Expression elements of Java.
Instead of attribute definitions, the MethodInvocation is con-
nected to other EClasses using three EReferences: (1) the
EReference invokes selects a MethodDeclaration to execute;
(2) the argument selects a list of expressions to use as the
arguments of the called methods, and (3) the inherited operand

EReference selects an expression representing the object the
method is called on.

b) Notes on Columbus Compatibility: The Java imple-
mentation of the Java ASG of the Columbus Framework and
generated code from the EMF metamodel use similar inter-
faces. This makes possible to create a combined implementa-
tion that supports the advanced features of EMF, such as the
change notification support or reflective model access, while
remains compatible with existing analysis algorithms of the
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catch%:%Handler% cast:%InstanceOf%

ref%:%Iden1fier%

p:%Parameter%

operand%

e:%InfixExpression%

value%=%“”%
lit:%StringLiteral% k:%OperatorKind%

check(%k%==%PlusOperator)%

leFOperand% kind%

inv:%MethodInvoca1on%

name%=%“equals”%
m:%NormalMethod%

arg:%StringLiteral%

op:%Literal%

invokes% operand%

argument%

sw:%Switch%

defCase:%Default%

case%

(a) Switch without De-
fault

catch%:%Handler% cast:%InstanceOf%

ref%:%Iden1fier%

p:%Parameter%

operand%

e:%InfixExpression%

value%=%“”%
lit:%StringLiteral% k:%OperatorKind%

check(%k%==%PlusOperator)%

leFOperand% kind%

inv:%MethodInvoca1on%

name%=%“equals”%
m:%NormalMethod%

arg:%StringLiteral%

op:%Literal%

invokes% operand%

argument%

sw:%Switch%

defCase:%Default%

case%

(b) Catch Problem
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name%=%“equals”%
m:%NormalMethod%

arg:%StringLiteral%

op:%Literal%

invokes% operand%

argument%

sw:%Switch%

defCase:%Default%

case%

(c) Concatenation to Empty String
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arg:%StringLiteral%

op:%Literal%
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defCase:%Default%

case%

(d) String Literal as Compare Parameter
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lP:#Package#
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jP:#Package#
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(e) String Compare without Equals Method

ref:%Iden)fier%

p:%Parameter%

parameter%

refersTo%body%

name%=%“main”%
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m:%NormalMethod%

returnType%

rEx:%Expression%

type:%VoidType%

type%overrides%

m1:%NormalMethod%

m2:%NormalMethod%

overrides%

m1:%NormalMethod%

m2:%NormalMethod%

m:%NormalMethod%

bl:%block%

parameter%

parameter%parameter%

(f) Unused Parameter

Fig. 3: Graph Pattern Representation of the Search Queries

Columbus Framework by generating an EMF implementation
from the Java interface specification.

However, there are also some differences between the two
interfaces that should be dealt with. The most important
difference lies in multi-valued reference semantics, where
EMF disallows having two model elements connected multiple
times using the same reference type, while the Columbus ASG
occasionally relies on such features. To maintain compatibility,
the EMF implementation was extended with proxy objects,
which ensure the uniqueness of references. The implementa-
tion hides the presence of these proxies from the ASG interface
while the EMF-based tools can navigate through them.

Other minor changes range from different method nam-
ing conventions for boolean attributes to defining additional
methods to traverse multi-valued references. All of them
were handled by generating the standard EMF implementation
together with Columbus compatibility methods.

B. Definition of Model Queries using Graph Patterns

Graph patterns [5] are a declarative, graph-like formalism
representing a condition (or constraint) to be matched against
instance model graphs. The formalism is usable for various
purposes in model-driven development, such as defining model
transformation rules or defining general purpose model queries
including model validation constraints.

A graph pattern consists of structural constraints prescrib-
ing the interconnection between nodes and edges of a given
type. They are extended with expressions to define attribute
constraints and pattern composition to reuse existing patterns.
The called pattern is used as an additional set of constraints to
meet, except if it is formed as negative application condition
(NAC) describing cases when the original pattern is not valid.

Pattern parameters are a subset of nodes and attributes
interfacing the model elements interesting from the perspective
of the pattern user.

A match of a pattern is a tuple of pattern parameters that
fulfill all the following conditions: (1) have the same structure
as the pattern; (2) satisfy all structural and attribute constraints;
and (3) does not satisfy any NAC.

When evaluating the results of a graph pattern, any subset
of the parameters can be bound to model elements or attribute
values that the pattern matcher will handle as additional
constraints. This allows re-using the same pattern in different
scenarios, such as checking whether a set of model elements
fulfill a pattern, or list all matches of the model.

Example 3: Fig. 3 captures all the search problems from
Sec. II as graph patterns. Here we only discuss the String
Literal as Compare Parameter problem (Fig. 3d) in detail, all
other patterns can be interpreted similarly.

The pattern consists of four nodes identified by the vari-
ables inv, m, op and arg, representing model elements
of types MethodInvocation, NormalMethod, Literal and
StringLiteral, respectively. The distinguishing (blue) for-
matting for the node inv describes its matches that are
considered the result of each query.

In addition to the type constraints, node m shall also fulfill an
attribute constraint (“equals”) on its name attribute. The edges
between the nodes inv and m (and similarly arg) represent
a typed reference between the corresponding model elements.
However, as the node op is included in a NAC block (depicted
by the dotted red box), the edge operand means that either no
operand should be given or the operand must not point to a
Literal typed node.
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public class CompareParameterVisitor extends Visitor {

//A set to store results
private Set<MethodInvocation> invocations

= new HashSet<MethodInvocation>();

@Override
public void visit(MethodInvocation node) {

super.visit(node);
//Checking invoked method name
if ("equals".equals(node.getInvokes().getName())) {

//Node argument
Expression argument = node.getArgument(0);
//Node operand
Expression operand = node.getOperand();
//Type checking for argument
if (argument instanceof StringLiteral

//NAC checking for operand
&& !(operand instanceof Literal)) {

//Result found
invocations.add(node);

}
}

}
}

Fig. 4: Visitor for the String Literal as Compare Parameter Problem

C. Implementing Program Queries

1) Manual Search Code: The manually implemented ASG
implementation allows to traverse the Java program models
using the visitor [9] design pattern that can form the basis of
the required search operations.

Visitor-based search implementations are easy to imple-
ment and maintain if the traversed relations are based on
containment references, and require no custom setup before
execution. On the other hand, as the order of the traversal is
determined outside the visitor, non-containment references are
required to be traversed manually, typically with nested loops.
Alternatively, traversed model elements and references can be
indexed, and in a post-processing step these indexes can be
evaluated for efficient query execution. In both cases, signifi-
cant programming effort is needed for efficient execution.

Example 4: The results of the String Literal as Compare
Parameter (Fig. 3d) pattern can be calculated by collecting all
MethodInvocation instances from the model, and then execut-
ing three local checks whether the invoked method is named
equals, if it has an argument with a type of StringLiteral,
and if it is not invoked on a Literal operand.

Fig. 4 presents (a simplified) Java implementation of the
visitor. A single visit method is used as a start for traversing
all MethodInvocation instances from the model, and checking
the attributes and references of the invocation. It is possible to
delegate the checks to different visit methods, but in that case
the visitor has to track and combine the status of the distributed
checks to prepare the results that is hard to implement in a
sound and efficient way.

2) Graph Pattern Matching with Local Search Algorithms:
Local search based pattern matching (LS) are commonly used
in graph transformation tools [10]–[12] starting the match
process from a single node and extending it step-by-step with
the neighboring nodes and edges following a search plan.
From a single pattern specification multiple search plans can

TABLE I: Search Plan for the String Literal Compare Pattern

Operation Type Notes

1: Find all m that m ⊂ NormalMethod Extend Iterate
2: Attribute test: m.name=="equals" Check
3: Find inv that inv.invokes → m Extend Backward
4: Find arg that inv.argument → arg Extend Forward
5: Instance test: arg ⊂ StringLiteral Check
6: Find op that inv.operand → op Extend Forward
7: NAC analysis: op 6⊂ Literal Check Called plan

NormalMethod,
name:&“equals”&
accessibility:&public&

StringLiteral,
value:&“source”&

Iden3fier,
name:&“srcVar”&

Method,
Invoca3on,

Parameter,
name:&“other”&

parameter&

invokes&

operand& argument&

1&

2
3&

4&

5&

6&

7&

Fig. 5: Executing the Search Plan

be calculated [2], thus the pattern matching process starts with
a plan selection based on the input parameter binding and
model-specific metrics.

A search plan consists of a totally ordered list of extend and
check operations. An extend operation binds a new element
in the calculated matching (e.g., by matching the target node
along an edge), while check operations are used to validate
constraints between already bounded pattern elements (e.g.,
attribute constraints or whether an edge runs between two
matched nodes). If an operation fails, the algorithm backtracks;
if all operations are executed successfully, a match is found.

Some extend operations, such as finding the possible source
nodes of an edge or iterating over all elements of a certain type
might be very expensive to execute during search, but this cost
can be reduced by the use of a model indexer. Such an indexer
can be set up while loading the model, and then updating it
on model changes using the notification mechanism of EMF.
If no such indexing mechanism is available (e.g., because of
its memory overhead), the search plan generation algorithm
should consider these operations with higher costs, and thus
provide alternative plans.

Example 5: To find all String Literals appearing as param-
eters of equals methods a 7-step search plan presented in
Table I was used. First, all NormalMethod instances are iterated
over to check for their name. Then a backward navigation
operation is executed to find all corresponding method invoca-
tions to check its argument and operand references. At the last
step, a NAC check is executed by starting a new plan execution
for the negative subplan, but only looking for a single solution.

Fig. 5 illustrates the execution of the search plan on the sim-
ple instance model introduced previously. In the first step, the
NormalMethod is selected, then its name attribute is validated,
followed by the search for the MethodInvocation. At this
point, following the argument reference the StringLiteral is
found and checked. Finally, the operand reference is followed,
and a NAC check is executed using a different search plan.

It is important to note that the search begins with listing
all NormalMethod elements as opposed to the visitor-based
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implementation, which starts with the MethodInvocations.
This was motivated by the observation that in a typical Java
program there are more method invocations than method
definitions, thus starting this way would likely result in less
search states traversed, while still finding the same results
in the end. However, this optimization relies on having an
index which allows cheap backward navigation during pattern
matching for step 3.

3) Incremental Graph Pattern Matching using the Rete
algorithm: Incremental pattern matching [3], [13] is an al-
ternative pattern matching approach that explicitly caches
matches. This makes the results available at any time without
further searching, however, the cache needs to be incremen-
tally updated whenever changes are made to the model.

The Rete algorithm [14], which is well-known in rule-
based systems, was efficiently adapted to several incremental
pattern matchers [15]–[17]. The algorithm relies on a network
of nodes to store partial matches of a graph pattern that
enumerate the model elements that satisfy a subset of the
graph pattern constraints. The partial matches of a node are
readily available at any time as they are updated incrementally
at model changes.

Input nodes represent underlying model elements (can be
enumerated using an incrementally maintained index, such
as EMF-INCQUERY Base). Intermediate nodes execute basic
operations, such as filtering, projection, or join, on other Rete
nodes (either input or intermediate) they are connected to, and
store the results. Finally, the match set of the entire pattern is
available as an output (or production) node.

When the network is initialized, the initial match set is
calculated and the input nodes are set up to react on model
changes. When receiving a change notification, an update
token is released on each of their outgoing edges. Upon
receiving such a token, a Rete node determines how (or
whether) the set of stored tuples will change, and releases
update tokens on its outgoing edges. This way, the effects
of an update will propagate through the network, eventually
influencing the result set stored in production nodes.

Example 6: To illustrate a Rete-based incremental pattern
matching, we first depict the Rete network of the String Literal
as Compare Parameter pattern in Fig. 6.

The network consists of five input nodes that store the
instances of the types NormalMethod, MethodInvocation,
StringLiteral, Expression and Literal, respectively. The
input nodes are connected by join nodes that calculate the list
of elements connected by invokes, argument and operand

references, respectively. As both ends of the references are
already enumerated in the parent nodes, both forward and
backward references can be calculated efficiently. The invoked
method list (output of the invokes join node) is filtered by
the name attribute of Methods. The NAC checking is executed
by removing the elements with Literal types from the result
of the operand join. Finally, all partial matches are joined
together to form the resulting matches.

It is important to note that the same model element, such as
the MethodInvocation in the example, can be used in multiple

Method'
Invoca-on'

Normal'
Method'

String'
Literal' Expression' Literal'

join'
invokes(

join'
argument(

join'
operand(

NAC(filter'
name(

join'

equals,(inv,(source,(srcVar(

equals,((inv( inv,(source(

equals,((inv(

inv,(srcVar(

inv,(srcVar(

Fig. 6: Rete Network for the String Literal Compare Pattern

join operations; in such cases the final join is responsible for
having only a single occurrence of that value (for a selected
variable).

IV. EVALUATION

To compare the performance characteristics of the different
program query techniques, in this section we present detailed
performance measurement experiments using program models
obtained from Java projects.

A. Description of the Measurements

1) Java Projects: The approaches were evaluated on a test
set of 17 open-source projects. The projects are sized between
1kLOC and 500kLOC, and used in various scenarios. The list
of projects include the ArgoUML1 UML editor, JTransforms2,
a Fourier transformation library, the SVNKit3 Subversion
client, the online homework system WeBWorK4, the Weka5

data mining software, and many more.
Due to space constraints only the results related to these

five projects are presented in full details, as they represent a
wide range of application scenarios, and they are the largest
ones tested. For a detailed test result with all models visit our
website6. Table IIb describes the sizes of these projects in lines
of code together with the size of the ASG and EMF models in
terms of nodes and edges. The larger size of the EMF models
are caused by the created proxy model elements.

2) Measurements: All measurements were executed on a
dedicated Linux-based server with 6 GB RAM running Java 6.
On the server the Java ASG of the Columbus Framework was
installed together with EMF-INCQUERY.

All program queries were implemented as both visitors
for the ASG (by Columbus experts) and as graph patterns
(by EMF-INCQUERY experts). The visitor implementation
was executed on both model representations, while the graph
patterns were used to initialize local search and Rete network

1http://argouml.tigris.org/
2https://sites.google.com/site/piotrwendykier/software/jtransforms
3http://svnkit.com
4http://webwork.maa.org/
5http://www.cs.waikato.ac.nz/ml/weka/
6http://incquery.net/publications/program-query-comparison
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TABLE II: Measurement Results

(a) Load Times (in seconds)

ASG EMF LS IQ
argouml 5.30±0.04 14.50±0.15 19.70±0.18 35.00±0.24
jtransforms 2.10±0.06 5.00±0.06 8.00±0.07 17.00±0.12
svnkit 3.90±0.03 10.00±0.16 15.10±0.14 30.00±0.31
webwork 2.30±0.01 5.20±0.06 8.00±0.08 15.00±0.12
weka 9.20±0.15 23.00±0.32 34.40±0.34 71.00±0.56

(b) Code (in LOC) and Model Sizes (# of elements)

Nodes Edges Nodes Edges
(argouml 307069 700459 1468495 711121 1479044
(jtransforms 43118 294067 651947 294910 652790
(svnkit 118733 554165 1225837 566166 1237308
(webwork 48472 217616 446727 224544 453641
(weka 495412 1529023 3286541 1542205 3299530

LOC
ASG EMF

(c) Memory Usage (in MB)

ASG EMF LS IQ
argouml 117.00±0.002 273.00±0.390 361.00±0.006 1571.00±0.572
jtransforms 50.00±0.066 132.00±0.002 174.00±0.0 668.00±0.642
svnkit 76.00±0.001 203.00±0.354 278.00±13.44 1206.00±1.303
webwork 55.00±0.004 84.00±0.002 121.00±0.458 404.00±0.002
weka 234.00±0.001 645.00±0.895 701.00±0.923 3308.00±28.149

(d) Program Query Execution Time (in seconds)

ca
tc
h

co
nc
at
e(

na
te

co
ns
ta
nt
*

co
m
pa
re

no
*d
ef
.*

sw
itc
h

st
rin

g*
co
m
pa
re

un
us
ed

*
pa
ra
m
et
er

To
ta
l

ASG 2.1 2.0 2.1 2.0 2.0 2.3 12.6
EMF 1.3 1.3 1.3 1.3 1.2 1.5 7.9
LS 0.02 0.67 0.12 0.01 0.14 0.20 1.15
IQ 0.003 0.003 0.003 0.003 0.003 0.003 0.018
ASG 1.1 1.1 1.1 1.1 0.9 1.2 6.4
EMF 0.6 0.6 0.6 0.6 0.5 0.6 3.3
LS 0.03 0.51 0.03 0.02 0.07 0.09 0.75
IQ 0.005 0.005 0.004 0.004 0.003 0.003 0.024
ASG 1.9 2.3 1.9 1.9 1.8 2.2 12.0
EMF 1.0 1.0 1.0 1.0 0.9 1.1 6.0
LS 0.02 0.63 0.07 0.01 0.15 0.21 1.09
IQ 0.003 0.003 0.003 0.003 0.003 0.003 0.019
ASG 0.9 0.8 0.9 0.8 0.8 1.0 5.2
EMF 0.7 0.7 0.7 0.7 0.6 0.8 4.0
LS 0.02 0.34 0.09 0.02 0.14 0.13 0.74
IQ 0.004 0.005 0.004 0.004 0.005 0.005 0.027
ASG 2.4 2.3 2.5 2.5 2.2 2.8 14.6
EMF 1.8 1.8 1.8 1.8 1.6 2.0 10.7
LS 0.03 1.43 0.12 0.01 0.26 0.32 2.17
IQ 0.003 0.004 0.004 0.003 0.003 0.003 0.020

ar
go
um

l
jt
ra
ns
fo
rm

s
sv
nk

it
w
eb

w
or
k

w
ek
a

based pattern matchers for the EMF representation. In all
cases, the time to load the model from its serialized form and
the time to execute the program query was measured together
with the maximum heap size usage.

Every program query was executed ten times, and the time
and memory results were averaged. In order to minimize the
interference between different runs, for each execution a new
JVM was created and each query was run in isolation. The
time to start up and shut down the JVM was not included in
the measurement results.

B. Detailed Results

1) Load Time and Memory Usage: Table IIa presents the
time to load the models in seconds. As our measurements
showed that model load time is largely independent from the
query selection, we only present an aggregated result table. It
can be seen that the load time is 2-3 times longer when using
an EMF-based implementation over the manual Java ASG,
and further significant increases can be seen when initializing
the pattern matchers for local search and incremental queries.
The two-phase load algorithm for the EMF model (EMF case),
and the time to set up the indexes (local search) and partial
matches (Rete) can account for these increases.

A similar increase can be seen on the memory usage in
Table IIc: the EMF representation uses more than twice, while
the incremental engine uses around 10 times more memory to
store its partial result caches compared to the ASG.

The smaller memory footprint of the Java ASG representa-
tion is probably the result of model-specific optimizations not
applicable in generic EMF models. The additional increase for
local search and Rete-based pattern matchers mainly represent
the index and partial match set sizes, respectively.

2) Search Time: Table IId presents the search time mea-
surements. For each model and each program query the
average search time is listed at first. The visitor implemen-
tations perform similarly, as they traverse the entire model
to find the results. The time differences between the ASG
and EMF visitor implementations are mainly the result of
memory optimizations, as traversing the model requires more
indirection than in the EMF case.

The local search and Rete based solutions provide a two
or three orders of magnitude faster query execution, achieved
by replacing model traversal by calls to a pre-populated (and
incrementally updated) index.

Additionally, as Table IId shows, the runtime of visitor
implementation increases linearly. This is in line with our
expectation, as visitors have to traverse the entire model during
search. On the other hand, the search time for incremental
queries are roughly the same for all queries, as the search
means only returning the results. In most of our patterns, local
search is only an order of magnitude slower than incremental
queries. However, the concatenation pattern (see Fig. 3c) exe-
cutes as slow as the visitors in this regard. Based on our earlier
experience [18] with different pattern matching strategies the
execution performance for local search techniques depends on
the query complexity and the model structure.

C. Usage Profiles

In order to compare the approaches, we calculated the total
time required to execute program queries for three different
usage profiles: one-time, commit-time and save-time analysis.
The profiles were selected by estimating the daily number of
commits and file changes for a small development team.

One-time analysis consists of loading the model and ex-
ecuting each program query in a batch mode. In case the
analysis needs to be repeated, the model is reloaded. In our
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measurements, this mode is represented by a load operation
followed by a single query evaluation.

Commit-time analysis can be used in a program analysis
server that keeps the model in-memory, and on each commit,
it is updated as opposed to be reloaded, and then re-executes
all queries. In our measurements, this mode is represented by
a load operation followed by 10 query evaluations.

Save-time analysis is executed whenever the programmer
saves a file in the IDE, and then the IDE either executes the
analysis itself, or notifies the analysis server. It is similar to
commit-time analysis, just it is executed more often. In our
measurements, this mode is represented by a load operation
followed by 100 query evaluations.

D. Evaluation of Results

We have calculated the execution times for the search
profiles considering all projects by considering the time to
load the models (Table IIa), and increasing it with 1, 10 and
100 times of the search time of all six queries one after another
(the Total column in Table IId), respectively.

Fig. 7 shows our measurement results of total execution
times on the various usage profiles from two points of view.
First, we have included detailed graphs for the five selected
models where load times and query times can be observed
(Fig. 7a, Fig. 7b and Fig. 7c; note the differences in the time
axis). Second, considering all Java program models, we have
added a box plot showing average time values on a logarithmic
scale in Fig. 7d. Overall, we found only a few outlier results,
meaning our results are largely model-independent.

The results show that albeit the visitor implementations
execute queries slow, as there are no additional data structures
initialized, the lower load time makes this approach very
effective for one-time, batch analysis. However, as all visitors
are implemented separately, to execute all of them would
require six model traversals; reducing this would get further
time advantage of this solution over the local search based
ones. This issue could be managed by implementing all queries
in a single visitor thus increasing implementation complexity.
On the other hand, visitors behave worse regarding running
time in case of repeated analysis: the mean time for executing
100 searches has increased from 14.7 to 1020 seconds for the
ASG-based implementation for the five selected models (for
all models it is 14.7 and 574 seconds).

The incremental, Rete-based pattern matching approach
provides very fast model query times, as the results are always
available in a cache. This makes such an algorithm ideal for
repeatedly executed analysis scenarios, such as the Save-time
analysis profile (mean time: 35.8/15.3 seconds for the five/all
models). However, to initialize the caches, a lengthy prepa-
ration phase is needed, making the technique the slowest for
one-time analysis scenarios (mean time: 33.7/12.6 seconds).

The local search based approach is noticeably faster than
visitor-based solutions (with memory usage penalty), but con-
sume much less memory to operate than Rete networks. The
mean execution times range from 18.2 to 135 seconds (7.9-
65.5 for all models). These properties make the approach

work very well in the Commit-time analysis profile, and other
profiles with a moderate amount of queries. However, if a
bad search plan is selected for a model, such as in case of
the Concatenation to Empty String pattern, its execution time
may become similar to the visitor-based implementations.

When considering the size of required memory when ana-
lyzing large program models in the save-time analysis profile,
it is possible that albeit incremental matchers should be the
fastest, its large memory consumption could be a problem. In
such cases, local search based approaches could still provide
benefits over visitor-based solutions for execution time.

To sum up, we believe we have demonstrated three out-
comes of this evaluation:

1) Generic model implementations, such as EMF, may
substitute manually optimized, specific model imple-
mentations, as their 2 − 3 times increased memory
consumption might be acceptable.

2) Generic solutions require additional memory to execute
up to a factor of 5 and an additional increased initial-
ization time. However, this additional resource consump-
tion seems acceptable for a large set of problems based
on the evaluation.

3) The run time of the analysis itself using generic model
query implementations is orders of magnitude faster than
manually coded visitor queries.

V. THREATS TO VALIDITY

We identified several validity threats that can affect the
construct, internal and external validity of our results.

Low construct validity may threaten our results of various
usage profiles, as results do not include the time required
to update the indexes and Rete networks on model changes.
However, based on previous measurement results related to
EMF-INCQUERY [17] we believe that such slowdowns are
negligible in most cases.

We tried to mitigate internal validity threats by comparing
measurements changing only one measurement parameter at
a time. For example, the EMF implementation of the Java
ASG allows to differentiate between the changes caused by
different internal model representations by comparing the dif-
ferent model implementations using the same search algorithm
first, then comparing the EMF-based visitor to generic pattern
matching solutions.

Considering external validity, the generalizability of our
results largely depend on whether the selected program queries
and models are representative for general applications. The
queries were selected prior to the projects and scenarios. These
refactorings were marked important by project partners and
were selected to cover several aspects of transformations.

The selected open-source projects differ in size and charac-
teristics – including computational intensive programs, appli-
cations with heavy network and file access and with graphical
user interface. Furthermore, projects were selected from the
testbed of the Columbus Java static analyzer and ASG builder
program, where the aim was to cover a wide range of Java
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Fig. 7: Execution Time over Models

language constructs. However, considering projects from dif-
ferent programming languages additional evaluation may be
needed to validate whether the results still hold.

Another issue is the selection of model query tools. Al-
though there are several other tools available, based on results
of more than 10 years of research in efficient graph pattern
matching techniques we believe, other pattern matcher tools
would provide similar results to either our local search or
incremental measurements.

Altogether, our results were similar for all the models and
queries, so we believe our results will generalize well to other
program queries and models, until the memory requirements
of indexing or Rete building are met.

VI. RELATED WORK

Program queries are a common use case for modeling and
model transformation technologies, including transformation
tool contests. The program refactoring case of GraBaTs Tool
Contest 2009 [19] and the program understanding case of
Transformation Tool Contest 2011 [20] both rely on program
query implementation followed by some transformation rules.
However, as the different submitted solutions store their mod-
els differently and use different algorithms, comparing the
results from different approaches is problematic.

A series of refactoring operations were defined as graph
transformation rules by Mens et al. [21], and they were also
implemented for both the Fujaba Tool Suite and the AGG
graph transformation tools. Although the paper presents that
graph transformations are useful as an efficient description
of refactoring operations, no performance measurements were
included. The Fujaba Tool Suite was also used to find design
pattern applications [22]. As a Java model representation, the
abstract syntax tree of the used parser generator was used, and
the performance of the implemented program queries were
also evaluated. However, because of the age of the measure-
ments, they are hard to compare with current technologies.
The Java Model Parser and Printer (JaMoPP) project [23]
provides a different EMF metamodel for Java programs. It
was created to directly open and edit Java source files using
EMF based techniques, and the changes were written back
to the original source code. On the other hand, the EMF

model of the JaMoPP project does not support any existing
model query or refactoring approaches, every transformation
is to be reimplemented to execute it over the JaMoPP models.
The EMF Smell and EMF Refactor projects [24] offer to
find design smells and execute refactorings over EMF models
based on the graph pattern formalism. As Java programs can
be translated into EMF models, this also allows the definition
and execution of program queries. However, there are no
performance evaluations available for this tool.

As a distinguishing feature from the above mentioned re-
lated works, we have compared the performance characteristics
of hand-coded and model-based query approaches.

Several tools exist for a related purpose, finding coding
problems in Java programs, such as the PMD checker [25], or
the FrontEndART CodeAnalyzer [26], which is built on the top
of the Columbus ASG. These applications can be integrated
into IDEs as plug-ins, and can be extended with searches
implemented in Java code or in a higher level language, such
as XPath queries in PMD. Furthermore, several approaches
allow defining program queries using logical programming,
such as JTransformer [27] using Prolog clauses, the SOUL
approach [28] relying on logic metaprogramming, while Cod-
eQuest [29] is based on Datalog. However, none of these
include a comparison with hand-coded query approaches. The
DECOR methodology [30] provides a high-level domain-
specific language to evaluate program queries. It was evaluated
on 11 open-source projects, however, performance results are
hard to compare with our approach as the only listed execution
time was of the much larger Eclipse project.

An important benefit of our approach is the ability to
select the query evaluation strategy based on the required
usage profile. Additionally, it is possible to re-use the existing
program query implementations while using a high-level,
graph pattern-based implementation for new queries. As a
perspective, the model-based infrastructure allows defining and
evaluating model queries on-the-fly.

VII. CONCLUSION

We evaluated different query approaches to locate anti-
patterns for refactoring Java programs. In a traditional setup,
an optimized Abstract Semantic Graph was built by the
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state-of-the-art static code analysis tool called Columbus, and
processed by hand-coded visitor queries. In contrast, an EMF
representation was built for the same program model, which
offers various advantages from a tooling perspective. Fur-
thermore, anti-patterns were identified by generic, declarative
queries evaluated with an incremental and a local-search based
strategy.

Our experiments carried out on 17 open source Java projects
of different size and complexity demonstrate that encoding
ASG as an EMF model results in a factor of 2-3 increase
in memory usage and model load, while advanced generic
model queries provided better run time compared to hand-
coded visitors with 2-3 orders of magnitude, with an increased
memory consumption of an order of magnitude.

To sum up, we emphasize the expressiveness and con-
cise formalism of pattern matching solutions (like EMF-
INCQUERY) over hand-coded approaches. They offer quick
implementation and an easier way to experiment with queries;
on the other hand, depending on the usage profile, their
performance is comparable even on 500 000 lines of code.
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