
Towards a Two Layered Verification Approach for
Compiled Graph Transformation

Ákos Horv́ath

Budapest University of Technology and Economics,
Department of Measurement and Information Systems,

1117 Budapest, Magyar Tudósok krt. 2.
ahorvath@mit.bme.hu

1 Introduction

As model driven software development (MDSD) is being applied more and more in the
safety critical (SC) and dependable system development processes there is an increasing
need for verified model transformations to guarantee certain semantic properties to hold
after their execution. For instance, when transforming UML models into Petri nets, the
results of a formal analysis can be invalidated by erroneous model transformations when
the system developer cannot easily distinguish whether an error is in the design or in
the transformation.

In this paper we introduce our vision for verifying property preservation of graph
transformation systems with a two layered approach.

2 Overview of the Approach

Fig 1 gives an overview of our com-

Fig. 1.Overview of the approach

mon model transformation process. The
model transformation (XForm rules) is
specified by a number of graph trans-
formation rules. The GT rules are spec-
ified with respect to the metamodels of
the source and the target metamodel.
From these rule specifications, a com-
piled transformation (compiled XForm)
is generated (see in [1]). The automat-

ically derived compiledXForm transformation transforms a source model into a target
model.

Our goal is to verify property preservation for the compiled transformation, meaning
that, if a certain property holds in the source model after executing the transformation it
will also hold in the target model. To achieve this we separated the verification process
into two steps.

– First, we plan to apply shape analysis [2] on theXForm rules to summarize the
behavior of a statement on an infinite set of possible rundown states of the GT
rules. Shape analysis concerns the problem of determiningshape invariantsfor



programs that perform destructive updates on dynamically allocated storage. This
way correctness of transformation rules applied toanymodel of the specified type
can be verified (the concrete instances of the metamodels are irrelevant for the
proof).

– Then, as the result of the shape analysis is based on the assumption that the GT
rule specification are ”executed” semantically correct, in the second step we fo-
cus on the correctness check of the compiled GT rules. As the correctness of the
generated compiled code depends on the correctness of the generator itself, that is
usually a complex software components which cannot be verified easily. We use an
alternative assurance approach, in which the generator is extended with formal pro-
gram specification to enable Hoare-style [3] safety analysis for each individually
generated GT rule. The crucial step in this approach is to extend the generator to
produce all required annotations without compromising the assurance provided by
the subsequent verification phase.

2.1 Analysis of Model Transformation Specification

Shape analysis:In our approach we plan to use the TVLA [4] (Three-Valued-Logic An-
alyzer), a system for automatically generating a static (shape) analysis implementation
from the operational semantics ofXForm rules. The small-step structural operational
semantics is written in a meta-language based on first-order predicate logic with transi-
tive closure. The main idea is that program states are represented as logical structures
and the program transition system is defined using first order logical formulas. TVLA
automatically generates the abstract semantics, and, for each program point, produces
an abstract representation of the program states at that point. TVLA relies on a fun-
damental abstraction operation for converting a potentially unbounded structure into a
bounded 3-valued structure (logic). 3-valued logic extends boolean logic by introducing
a third value 1/2 denoting values that may be 0 or 1. A 3-valued logical structure can be
used as an abstraction of a larger 2-valued logical structure. This is achieved by allow-
ing an abstract state (i.e., a 3-valued logical structure) to include summary nodes, i.e.,
individuals that correspond to one or more individuals in a concrete state represented
by that abstract state.

Our initial examples with the TVLA system shows that the mapping of the meta-
model to the TVLA is a key problem for efficient shape analysis generation.

2.2 Analysis of Model Transformation Implementation

Hoare-style platform specific code analyzers:Hoare logic is a formal system to provide
a set of logical rules in order to reason about the correctness of computer programs with
the rigour of mathematical logic. The central feature of Hoare logic is theHoare triple.
A triple describes how the execution of a piece of code changes the state of the compu-
tation. A Hoare triple is of the form{P}C {Q} where P, Q and C areprecondition, post-
conditionandcommand, respectively. Based on the concept of pre-/postcondition intro-
duced in the Hoare triple,design by contract[5] (DBC or programming by contract)
prescribes that software designers should define precise verifiable interface specifica-
tions (pre/postconditions) for software components based upon the theory of abstract



data types and the concept of a business contract. This means thatcontractsprovides
semantics to formally describe the behavior of a program module, removing potential
ambiguity with regard to the module implementation.

Tools built upon the DBC methodology include the logic of predicate calculus and
Dijkstra’s weakest precondition calculations. We focused our studies on two of the most
widely used frameworks: the (i)Spec#[6] programming system having developed at
Microsoft Research to extend C# with formally verifiably method contracts in the form
of pre-/postconditions as well as object invariants, and the (ii)KeY [7] formal software
development system built upon a semi-automated prover over the Java Dynamic Logic
(JavaDL) calculus (with support to Java Modeling Language (JML)) which covers the
complete Java Card language, and additionally supports some Java SE features such as
multi-dimensional arrays and dynamic object creation.

Both approaches look promising but our initial experiments show that none of them
provide efficient support for: (i) dynamic casting of complex data structures (e.g., ar-
rays), (ii) effective handling of nested loop invariants, (iii) contracts for library functions
and finally (iv) user-friendly feedback from proof obligations.

3 Conclusion and Future Work

We have presented an ongoing work how graph transformations can be verified with
a combination of shape analysis (with TVLA) and static code analyzer (e.g., Spec#,
KeY). In the current state of our research, we have studied the boundaries of Hoare-
style static code analyzers with respect to complex object navigation (as being the core
of transformation implementation). It resulted in state space explosion in case of com-
mon implementations of GT rules and have to be further studied to achieve analyzable
implementation.

As for the future, we plan to finish formalizing GT rules in 3-valued logic to achieve
feasible shape analyze results and adapt the model logic described in [8] to capture
properties of graph models.

References

1. Balogh, A., Varŕo, G., Varŕo, D., Pataricza, A.: Compiling model transformations to EJB3-
specific transformer plugins. (April 2006) 1288–1295

2. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3–valued logic. In: Sympo-
sium on Principles of Programming Languages, ACM Press (1999) 105–118

3. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM12(10)
(1969) 576–580

4. Lev-Ami, T., Manevich, R., Sagiv, S.: Tvla: A system for generating abstract interpreters. In
Jacquart, R., ed.: IFIP Congress Topical Sessions, Kluwer (August 2004) 367–376

5. Meyer, B.: Applying “design by contract”. Object-Oriented Systems and Applications25(10)
(October 1994) 40–51

6. Spec#: The Spec# programming systemhttp://research.microsoft.com/specsharp/.
7. The KeY Project: Integrated deductive software designhttp://www.key-project.org/.
8. Boneva I.B. and Rensink A. and Kurban M.E. and Bauer, J.: Graph abstraction and abstract

graph transformation. Technical Report TR-CTIT-07-50, University of Twente (2007)


