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Abstract. The generation of sample instance models of Domain-Specific
Language (DSL) specifications has become an active research line due to
its increasing industrial relevance for engineering complex modeling tools
by using large metamodels and complex well-formedness constraints.
However, the synthesis of large, well-formed and realistic models is still a
major challenge. In this paper, we propose an iterative process for gener-
ating valid instance models by calling existing logic solvers as black-box
components using various approximations of metamodels and constraints
to improve overall scalability. (1) First, we apply enhanced metamodel
pruning and partial instance models to reduce the complexity of model
generation subtasks and the retrieved partial solutions initiated in each
step. (2) Then we propose an (over-)approximation technique for well-
formedness constraints in order to interpret and evaluate them on partial
(pruned) metamodels. (3) Finally, we define a workflow that incremen-
tally generates a sequence of instance models by refining and extending
partial models in multiple steps, where each step is an independent call
to the underlying solver (the Alloy Analyzer in our experiments).
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1 Introduction

Motivation The generation of sample instance models of Domain-Specific Lan-
guage (DSL) specifications has become an active research line due to its increas-
ing industrial relevance for engineering complex modeling tools by using large
metamodels (MM) and complex well-formedness (WF) constraints [25]. Such in-
stance models derived as representative examples [2] and counterexamples [18,32]
may serve as test cases or performance benchmarks for DSL modeling tools,
model transformations or code generators [4]. Existing approaches dominantly
use either a logic solver or a rule-based instance generator in the background.
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Problem statement Model finding using logic solvers [16] (like SMT or SAT-
solvers) is an effective technique (1) to identify inconsistencies of a DSL specifi-
cation or (2) to generate well-formed sample instances of a DSL. This approach
handles complex global WF constraints which necessitates to access and query
several model elements during evaluation. Model generation for graph struc-
tures needs to satisfy complex structural global constraints (which is typical
characteristic for DSLs), which restricts the direct use of logical numerical and
constraint solvers despite the existence of various encodings of graph structures
into logic formulae. As the metamodel of an industrial DSL may contain hun-
dreds of model elements, any realistic instance model should be of similar size.
Unfortunately, this cannot currently be achieved by a single direct call to the
underlying solver [17,32], thus existing logic based model generators fail to scale.
Furthermore, logic solvers tend to retrieve simple unrealistic models consisting
of unconnected islands of model fragments and many isolated nodes, which is
problematic in an industrial setting.

Rule-based instance generators [4, 13, 33] are effective in generating larger
model instances by independent modifications to the model by randomly apply-
ing mutation rules. Such a rule-based approach offers better scalability for com-
plex DSLs. These approaches may incorporate local WF constraints which can
be evaluated in the context of a single model element (or within its 1-context).
However, they fail to handle global WF constraints which require to access and
navigate along a complex network of model elements. Since constraint evaluation
is typically the final step of the generation process, the synthesized models may
violate several WF constraints of the DSL in an industrial setting.

Contribution The long term objective of our research is to synthesize large,
well-formed and realistic models. In this paper, we propose an iterative process
for incrementally generating valid instance models by calling existing logic solvers
as black-box components using various abstractions and approximations to im-
prove overall scalability. (1) First, we apply enhanced metamodel pruning [33]
and partial instance models [32] to reduce the complexity of model generation
subtasks and the retrieved partial solutions initiated in each step. (2) Then we
propose an (over-)approximation technique for well-formedness constraints in or-
der to interpret and evaluate them on partial (pruned) metamodels. (3) Finally,
we define a workflow that incrementally generates a sequence of instance models
by refining and extending partial models in multiple steps, where each step is an
independent call to the underlying solver. We carried out experiments using the
state-of-the-art Alloy Analyzer [16] to assess the scalability of our approach.

Added value Our approach increases the size of generated models by carefully
controlling the information fed into and retrieved back from logic solvers in
each step via abstractions. Each generated model (1) increases in size by only
a handful number of elements, (2) satisfies all WF constraints (on a certain
level of abstraction), and (3) it is realistic in the sense that each model is a
single component (and not disconnected islands). The incremental derivation
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Fig. 1. Example Yakindu statechart with synchronisations.

of the result set provides graceful degradation, i.e. if the back-end solver fails
to synthesize models of size N (due to timeout), all previous model instances
are still available. From a practical viewpoint, the DSL engineer can influence
or assist the instance generation process by selecting the important fragment of
the analyzed metamodel (so called effective metamodel [4]). This is also common
practice for testing model transformations or code generators.

Structure of the Report Next, Section 2 introduces some preliminaries for
formalizing metamodels, constraints and partial snaptshots. Our approach is
presented in Section 3 followed by an initial experimental evaluation in Section 4.
Related work is assessed in Section 5 while Section 6 concludes our paper.

2 Preliminaries

In this section we present an overview of model generation with logic solvers with
a running case study of Yakindu statecharts. Yakindu Statecharts Tools [37] is
an industrial integrated modeling environment developed by Itemis AG for the
specification and development of reactive, event-driven systems based on the con-
cept of statecharts captured in combined graphical and textual syntax. Yakindu
simultaneously supports static validation of well-formedness constraints as well
as simulation of (and code generation from) statechart models. A sample stat-
echart is illustrated in Figure 1. Yakindu provides two types of synchronization
mechanisms: explicit synchronization nodes (marked as black rectangles) and
event-based synchronization (i.e. raising and consuming events).

Validation is crucial for domain-specific modelling tools to detect conceptual
design flaws early and ensure that malformed models does not processed by
tooling. Therefore missing validation rules are considered as bugs of the editor.
While Yakindu is a stable modeling tool, it is still surprisingly easy to develop
model instances as corner cases which satisfy all (implemented) well-formedness
constraints of the language but crashes the simulator or code generator due to
synchronization issues. One of such problems is depicted in Figure 1 where (1)
after 5 seconds a (2) timeout event raised in region timer, but (3) it cannot be
accepted in state wait in the simulator and in the generated code.



Our goal is to systematically synthesize such model instances by using logic
solvers in the background by mapping DSL specifications to a logic problem
[17,32]. Such model generation approach usually takes three inputs: (1) a meta-
model of the domain (Section 2.1), (2) a set of well-formedness constraints of
the language (Section 2.2), and optionally (3) a partial snapshot (Section 2.3)
serving as an initial seed which generated models need to contain.

2.1 Domain Metamodel

Metamodels define the main concepts, relations and attributes of the target do-
main to specify the basic structure of the models. In this paper, the Eclipse
Modeling Framework (EMF) is used for domain modeling, which is dominantly
used in many industrial DSL tools and modeling environments. The main con-
cepts are illustrated using Yakindu state graph metamodel [37] in Figure 2.
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Fig. 2. Metamodel extract from Yakindu state machines

A state machine consists of Regions, which in turn contain states (called
Vertexes) and Transitions. An abstract state Vertex is further refined into Regu-
larStates (like State) and PseudoStates like Entry and Synchronization states. Note
that we intentionally kept the generalization hierarchy unchanged and simplified
the original metamodel only by removing some elements. Metamodel elements
are mapped to a set of logic relations as defined in [17,32]:

– Classes (CLS): In EMF, EClasses can be instantiated to EObjects, where
the set of objects of a model is denoted by objects . Additionally, the meta-
model can specify finite types with predefined set of enum = {l1, . . . , ln}
literals by EEnums. For both classes and enums, if an o is an instance of a
type C it is denoted as C(o).

– References (REF): EReferences between classes S and T capture a binary
relation R(S, T ) of the metamodel. When two objects o and t are in a relation
R, an EReference is instantiated leading from o to t denoted as R(o, t).

– Attributes (ATT): EAttributes enrich a class C with values of predefined
primitive types like integers, strings, etc by binary relations A(C, V ). If an
object o stores a value v as attribute A it is denoted as A(o, v).



Further structural restrictions implied by a metamodel (and formalized in
[32]) include (1) Generalization (GEN) which expresses that a more specific
(child) class has every structural feature of the more general (parent) class, (2)
Type compliance (TC) that requires that for any relation R(o, t), its source
and target objects o and t need to have compliant types, (3) Abstract (ABS):
If a class is defined as abstract, it is not allowed to have direct instances, (4)
Multiplicity (MUL) of structural features can be limited with upper and lower
bound in the form of “lower..upper” and (5) Inverse (INV), which states that
two parallel references of opposite direction always occur in pairs. EMF instance
models are arranged into a strict containment hierarchy, which is a directed
tree along relations marked in the metamodel as containment (e.g. regions or
vertices).

An instance model M is an instance of a metamodel Meta (denoted with
M |= Meta) if all the corresponding constraints above are satisfied, i.e. Meta =
CLS ∧ REF ∧ · · · ∧MUL ∧ INV [32]. Therefore a model generation task for a
given size s and a metamodel Meta can be solved as logic problem, where the
solver creates an interpretation for all class predicates, all reference and attribute
relations over the set of objects = {o1, . . . , os} and sets of enum literals, which
satisfies all structural constraints.

2.2 Well-formedness Constraints

Structural well-formedness (WF) constraints (aka design rules or consistency
rules) complement metamodels with additional restrictions that have to be sat-
isfied by a valid instance model (in our case, statechart model). Such constraints
are frequently defined by graph patterns [36] or OCL invariants [27]. To abstract
from the actual constraint language, we assume in the paper that WF constraints
are defined in first order logic. Given a set WF of well-formedness constraints,
a model M is called valid if M |= Meta ∧WF .

Example The Yakindu documentation states several constraints for statecharts
including the following ones regulating the use of synchronization states. (Ab-
breviated names of classes and references are used as predicates).

Φ1 Source states of a synchronization have to be contained in different regions!
∀syn, s1, s2, t1, t2, r1, r2 :
(Synchron(syn) ∧ outgoing(s1, t1) ∧ outgoing(s2, t2) ∧ target(t1, syn)∧
target(t2, syn) ∧ vertices(r1, s1) ∧ vertices(r2, s2) ∧ s1 6= s2)⇒ r1 6= r2

Φ2 Source states of a synchronization are contained in the same parent state!
∀syn, s1, s2, t1, t2, r1, r2∃p :
(Synchron(syn) ∧ outgoing(s1, t1) ∧ outgoing(s2, t2) ∧ target(t1, syn)∧
target(t2, syn) ∧ vertices(r1, s1) ∧ vertices(r2, s2) ∧ s1 6= s2)
⇒ (regions(p, r1) ∧ regions(p, r2))

Φ3 Target states of a synchronization have to be contained in different regions!
∀syn, s1, s2, t1, t2, r1, r2 :
(Synchron(syn) ∧ incoming(s1, t1) ∧ incoming(s2, t2) ∧ source(t1, syn)∧
source(t2, syn) ∧ vertices(r1, s1) ∧ vertices(r2, s2) ∧ s1 6= s2)⇒ r1 6= r2



Φ4 Target states of a synchronization are contained in the same parent state!
∀syn, s1, s2, t1, t2, r1, r2∃p :
(Synchron(syn) ∧ incoming(s1, t1) ∧ incoming(s2, t2) ∧ source(t1, syn)∧
source(t2, syn) ∧ vertices(r1, s1) ∧ vertices(r2, s2) ∧ s1 6= s2)
⇒ (regions(p, r1) ∧ regions(p, r2))

Φ5 A synchronization shall have at least two incoming or outgoing transitions!
∀syn : Synchron(syn)⇒ ∃t1, t2 : t1 6= t2 ∧ (
(incoming(t1, syn)∧incoming(t2, syn))∨(outgoing(t1, syn)∧outgoing(t2, syn)))

2.3 Partial Snapshots

Partial Snapshots (PS) specify required instance model fragments of a meta-
model [32]. A partial snapshot is a model constructed from the same classes
and relations as a valid instance model. Formally, a PS satisfies the constraints
CLS , GEN , REF and TC , but it possibly violates ABS , ATT , MUL and INV ,
which means that even abstract classes can be instantiated, and multiplicity
constraints, the inverse relation of references and containment hierarchy rules
might be violated. If a PS is a partial snapshot of a metamodel it is denoted
by PS |=P Meta.A model M contains a partial snapshot PS (denoted with
M |= PS) if there is a morphism m : PS →M (composed of a pair of morphisms
objectsPS → objectsM and referencesPS → referencesM for mapping objects and
references) which satisfies the following constraints for each o1, o2 ∈ objectsPS :

1. m is injective: o1 6= o2 ⇒ m(o1) 6= m(o2)
2. For each class C the mapping preserves the type: C(o1)⇒ C(m(o1))
3. For each reference R the mapping preserves the source and the target of the

reference: R(o1, o2)⇒ R(m(o1),m(o2))
4. For each attribute A the mapping preserves the attribute value v and the

location: A(o1, v)⇒ A(m(o1), v)

A partial snapshot can be generalized from a regular (fully specified) instance
model by relaxing specific properties identified by the DSL developer [32] to guide
testing in practical cases. In the current paper, we create partial snapshots by
iteratively reusing the instance models generated in a previous run to achieve
incremental model generation (see Section 3.3).

3 Incremental Model Generation by Approximations

Despite the precise definition of logic formulae for our statechart language us-
ing existing mappings [32], a major practical drawback is that a direct (single
step) model generation using Z3 or Alloy as back-end solver only terminates
for very small model sizes. If we aim to improve scalability by omitting certain
constraints, the synthesized models are no longer well-formed thus they cannot
be fed into Yakindu as sample models.

To increase the size of synthesized models while still keeping them well-
formed, we propose an incremental model generation approach (Section 3.3) by
iterative calls to backend solvers exploiting two enabling techniques of meta-
model pruning (Section 3.1) and constraint approximation (Section 3.2).
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Fig. 3. Metamodel pruning with overapproximation

3.1 Metamodel Pruning

Metamodel pruning [13, 33] takes a metamodel Meta as input and derives a
simplified (pruned) metamodel MetaP as output by removing some EClasses,
EReferences and EAttributes. When removing a class from a metamodel, we
need to remove all subclasses, all attributes and incoming or outgoing references
to obtain a consistent pruned metamodel. Formally, we may iteratively remove
certain predicates from Meta by pruning as follows:

– EReference: if R(S, T ) ∈Meta then R(S, T ) 6∈MetaP ;

– EAttributes: if A(C, V ) ∈Meta then A(C, V ) 6∈MetaP ;

– EClasses: if C ∈ Meta and sub(C, Sub) 6∈ MetaP and A(C, V ) 6∈ MetaP
and R(C, T ) 6∈MetaP and R(S,C) 6∈MetaP then C 6∈MetaP ;

Example We prune our statechart metamodel in two phases (see the slices in
Figure 2): classes Trigger, Guard and Action are omitted together with incoming
references (Stage II), and then classes Transition, Pseudostate, Entry and Syn-
chronization are removed (Stage I).

By using metamodel pruning, we first aim to generate valid instance models
for the pruned metamodel and then extend them to valid instance models of the
original larger metamodel. For that purpose, we exploit a property we call the
overapproximation property of metamodel pruning (see Figure 3), which ensures
that if there exist a valid instance model M for a metamodel Meta (formally,
M |= Meta) then there exists a valid instance model MP for the pruned meta-
model MetaP (formally, MP |= MetaP ) such that MP is a partial snapshot of M
(MP ⊆M). Consequently, if a model generation problem is unsatisfiable for the
pruned metamodel, then it remains unsatisfiable for the larger metamodel. How-
ever, we may derive a pruned instance model MP which cannot be completed in
the full metamodel Meta, which is called a false positive.

Example The statechart model in the middle of Figure 3 corresponds to the
pruned metamodel after Stage II. In our example, it can be extended by adding
transitions and entry states to the model illustrated in the right side of Figure 3,
which now corresponds to the pruned metamodel of Stage I.
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3.2 Constraint Pruning and Approximation

When removing certain metamodel elements by pruning, related structural con-
straints (such as multiplicity, inverse, etc.) can be automatically removed, which
trivially fulfills the overapproximation property. However, the treatment of ad-
ditional well- formedness constraints needs special care since simple automated
removal would significantly increase the rate of false positives in a later phase of
model generation to such an extent that no intermediate models can be extended
to a valid final model.

Based on some first-order logic representation of the constraints (derived
e.g. in accordance with [32]), we propose to maintain approximated versions of
constraint sets during metamodel pruning. In order to investigate the interre-
lations of constraints, we assume that logical consequences of a constraint set
can be derived manually by experts or automatically by theorem provers [21].
The actual derivation approach falls outside the scope of the current paper.
Given a DSL specification with a metamodel Meta and a set of WF constraints
WF = {Φ1, . . . , Φn}, let Φ be a formula derived as a theorem WF ` Φ.

Now an overapproximation of formula Φ over metamodel Meta for a pruned
metamodel MetaP is a formula ΦP such that (1) Φ⇒ ΦP , (2) ΦP contains sym-
bols only from MetaP . The details of approximation are illustrated in Figure 4
where R denotes a relation symbol derived for class or reference predicates in
accordance with the metamodel. While more precise approximations can possi-
bly be defined in the future, the current approximation is logically correct as if a
model generation problem is unsatisfiable for an approximated set of constraints
(over the pruned metamodel) then it remains unsatisfiable for the original set of
constraints.

Example Based on the set of WF constraints {Φ1, Φ2, Φ3, Φ4, Φ5} defined in
Section 2.2, a prover can derive the following formula as a theorem over the
metamodel of Stage II: Φsyncout ∨ Φsyncin, where Φ1, Φ5 |= Φsyncout ∨ Φsyncin.
The generated theorem Φsyncout (and Φsyncin) restricts the number of outgoing
(ingoing) transitions from (to) a synchronization as follows:

Φsyncout = ∀syn∃t1, t2, s1, r1, r2, p : Synchron(syn)⇒
(outgoing(syn, t1) ∧ target(t1, s1) ∧ outgoing(syn, t2) ∧ target(t2, s2) ∧ s1 6= s2∧
vertices(r1, s1) ∧ vertices(r2, s2) ∧ r1 6= r2 ∧ regions(p, r1) ∧ regions(p, r2))



The variables and relations approximated in this phase are underlined: in
Stage I the generation is restricted to the model by omitting transitions. The
result of overapproximation states that if a model contains a synchronization,
then needs to contain at least two regions:

ΦO
syncout ∨ ΦO

syncin = ∀syn∃s1, r1, r2, p : Synchron(syn)⇒
(s1 6= s2∧vertices(r1, s1)∧vertices(r2, s2)∧r1 6= r2∧regions(p, r1)∧regions(p, r2))

Applying the approximation rules of Figure 4 directly on {Φ1, Φ5} would lead
to ΦO

1 : true and ΦO
5 : true. These constraints are too coarse overapproximations

providing no useful information to the model generator at this phase.

3.3 Incremental Model Generation by Iterative Solver Calls

By using metamodel pruning, we first aim to generate valid instance models for
the pruned metamodel, which is a simplified problem for the underlying logic
solver. Instance models of increasing size will be gradually generated by using
valid models of the pruned metamodel as partial snapshots (i.e. initial seeds) for
generating instances for a larger metamodel. Therefore, an incremental model
generation task is also given with a target size s and a target metamodel Meta,
but with an additional partial snapshot MP . MP is a valid instance of pruned
metamodel MetaP . MP has sP number of objects (sP ≤ s).

From a logic perspective, the partial snapshot defines a partial interpretation
of relations for model generation, which may simplify the task of the solver com-
pared to using fully uninterpreted relations. In order to exploit this additional
information, the relations in the logic problem are partitioned into two sets of
interpreted and uninterpreted symbols. objectsP = {o1, . . . , osP } are the objects
in the partial snapshot. The extra objects to be generated in this step are de-
noted by objectsN = {osP+1, . . . , os}. The relations are partitioned according to
the following rules:

– Classes (CLS): Each class predicate C(o) in Meta is separated into two:
a fully interpreted CO(o) predicate for the objects in the partial snap-
shot objectsP , and an uninterpreted CN (o) for the newly generated objects
objectsN . Therefore an object o is instance of a class C in the generated
model if CO(o) ∨ CN (o) is satisfied. If the class is not in the pruned meta-
model (C 6∈ MetaP ) then CO(o) is to be omitted, and if no new elements
are created from a class then CN (o) can be omitted.

– References (REF): Each reference predicate R(o, t) is separated into four
categories: a fully interpreted ROO(o, t) between the objects of the partial
snapshot (objectsP ), an uninterpreted RNN (o, t) between the objects of the
newly created objects (objectsN ), and two additional uninterpreted relations
RON (o, t) and RNO(o, t) connecting the elements of the partial snapshot
with the newly created elements (relations over objectsO × objectsN and
objectsN × objectsO respectively). Therefore a reference R(o, t) exists in the
generated model if ROO(o, t) ∨ RNN (o, t) ∨ RNO(o, t) ∨ RON (o, t). If the
relation is not in the pruned metamodel (R 6∈ MetaP ) then ROO(o, t) can
be omitted, and if no new elements are created from a class then RNN (o, t),
RNO(o, t) and RON (o, t) can also be omitted.
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Fig. 5. Model generation iterations

– Attributes (ATT): Attribute predicates are separated into a fully inter-
preted AO(o, v) for the objects in the partial snapshots objectsP , and an
uninterpreted relation AN (o, v) for the newly created elements objectsN . An
object o has an attribute value v (A(o, v)) if AO(o, v) ∨ AN (o, v). Attribute
predicates are treated as reference predicates for omission.

The level of incrementality is still unfortunately limited from an important
aspect. The background solvers typically provide no direct control over the si-
multaneous creation of new elements, i.e. we cannot provide domain- specific
hints to the solver when the creation of an object always depends on the cre-
ation or existence of another object. This can still cause issues when a multitude
of WF constraints are defined.

Example In our running example, the instance models are generated in four
steps, which is illustrated in Figure 5. First, initial seeds are generated for the
state hierarchy (M1 over Meta1), which are extended in the second step to
model M2 with the same metamodel elements. Then the metamodel is extended
to Meta2, and the transitions and the initial states are added to model M3.
Finally, triggers, guards and actions can be added to the model to obtain M4.

4 Measurements

In order to assess the effectiveness of incremental model generation using con-
straint approximation for synthesizing well-formed instance models for domain-
specific languages, we conducted some initial experiments using the Alloy Ana-
lyzer as background solver. We were interested in the following questions:

– Is incremental model generation with metamodel pruning and constraint
approximation effective in increasing the size of models, the success rate or
decreasing the runtime of the solver?



– Is incremental model generation still effective if metamodel pruning or con-
straint approximation is excluded?

Configurations We conducted measurements on two versions of the Yakindu
statechart metamodel: Phase 1 and Phase 2 (see Figure 2). The pruned meta-
model of Phase 1 (MM1 ) contains 8 classes and 2 references, and no well-
formedness constraints by default. The metamodel of Phase 2 (MM2 ) contains
10 classes, 4 references and 8 constraints (including the 5 WF constraints listed
in the paper and 3 more for restricting entry states).

– As a base configuration, the Alloy Analyzer is executed separately for the
two problems with 1 minute timeout. We record two cases: the largest model
derived and a slightly larger model size where timeout was observed.

– Next, we run the solver incrementally with an initial model of size N and
an increment of size K denoted as N +K in Figure 6 without constraint
approximation but with metamodel pruning. Moreover, instance models
derived for Phase 1 are used as partial snapshots for Phase 2.

– Then we run the solver incrementally with constraint approximation but
without metamodel pruning. For that purpose, the constraint set for
Phase 1 constains two approximated constraints: (1) Each region has a state
where the entry state will point, and (2) There are orthogonal states in
the model. Again, instance models derived for Phase 1 are used as partial
snapshots for Phase 2, but the full metamodel is considered in Phase 2.

– Finally we configure the solver for full incrementally with constraint approx-
imation and metamodel pruning by reusing instances of Phase 1 as partial
snapshots in Phase 2.

Measurement setup Each model generation task was executed on the DSL
presented in this paper 5 times using the Alloy Analyzer (with SAT4j- solver),
then the median of the execution times was calculated. The measures are exe-
cuted with one minute timeout on an average personal computer1. We measure
the runtime of model generation, the model size denoting the maximal number
of elements the derived model may contain, and the success rate denoting the
percentage of cases when a well-formed model was derived, which satisfies all
WF constraints within the given search scope.

Measurement results Results of our measurements are summarized in Fig-
ure 6. We summarize our observations below.

– Base: For MM1 , Alloy was able to generate models with up to 60 objects.
As there are no constraints at this level, many synchronizations are created
(about half of the objects were synchronization and with only 5-10 states).

1 CPU: Intel Core-i5-m310M, MEM: 16GB but the back-end solver can use 4GB only,
OS: Windows 10 Pro, Reasoner: Alloy Analyzer 4.2 with sat4j



MM1 MM2

#CLS:X #REF:Y #WF:Z #CLS:X #REF:Y #WF:Z

8 2 0 + 2 10 4 8

Incre- 

mental

MM 

Pruning

Constraint

Approx Runtime (ms)

Model 

size (#)

Success 

rate (%) Runtime (ms)

Model 

size (#)

Success 

rate (%)

Base No No No 18349 60 100% 39040 12 0%

Timeout 70 N/A Timeout 16 N/A

W/o Prune Yes No Yes 7327 + 11176 50+50 100% Timeout 16 N/A

W/o Approx Yes Yes No 12600+34804 50+50 100% 230 + 183465 20+30 0%

Full Yes Yes Yes 7327 + 11176 50+50 100% 1644 + 44362 20+30 100%

Fig. 6. Measurement results

Over 60 objects, the runtime grows rapidly as the SAT solver runs out of the
maximal 4 GB memory. For MM2 , Alloy was unable to create any models
that satisfies all of the constraints as the search scope turned out to be too
small to create valid models with synchronizations.

– W/o approx Alloy was able to generate models with 100 elements in two
steps where each iterative step had comparable runtime. However, since no
constraints are considered for MM1 , Alloyed failed to extend partial snap-
shots of MM1 to well-formed models for MM2 (success rate: 0%, although
for this specific case, we executed over 100 runs of the solver due to the
unexpectedly low success rate). Furthermore, we had to reduce the scope of
search to 20 and 30 new elements with types taken from MM2 \MM1 due
to timeouts.

– W/o prune When metamodel pruning was excluded but approximated con-
straints were included for MM1 , model generation succeeded for 100 ele-
ments, but extending them to models of MM2 failed (as in this case, new
elements could take any elements from MM2 )

– Full With incremental model generation by combining metamodel pruning
and constraint approximation, we were able to generate well-formed models
for both MM1 and MM2 , which was the only successful case for the latter.

Analysis of results While we used a reasonably sized statechart metamodel ex-
tracted from a real modeling tool (including everything to model state machines,
but excluding imports and namespacing), we avoid drawing generic conclusions
for the exact scalability of our results. Instead, we summarize some negative
results which are hardly specific to the chosen example:

– Mapping a model generation problem to Alloy and running the Alloy Ana-
lyzer in itself will likely fail to derive useful results for practical metamod-
els, especially, in the presence of complex well-formedness constraints. Our
observation is that many objects need to be created at the same time in
consistent way, which cannot be efficiently handled by the underlying solver
(either the scope is too small or out-of-memory). Altogether, the Alloy An-
alyzer was more effective in finding consistent model instance than proving
that a problem is inconsistent, thus there are no solutions.



Logic Uncertain Rule-Based Iterative
Solvers Models Generators Solver Call

In
p
u
ts

Partial Snapshot + ++ - +
Effective Metamodel - - + +

Local Constraints + - + +
Global Constraints + - - +

O
u
tp

u
ts

Metamodel-compliant + + + +
Well-formed + - - +

Diverse - - + ?
Scalable - - ++ +/-

Decidability - + + - (graceful degradation)
Table 1. Comparison of related approaches

– An incremental approach with metamodel pruning but without constraint
approximation will increase the overall size of the derived models, but the
false positive rate would quickly increase.

– An incremental approach without metamodel pruning but with constraint
approximation will likely have the same pitfalls as the original Alloy case:
either the scope of search will become insufficient, or we run out of memory.

– Combining incremental model generation with metamodel pruning and con-
straint approximation is promising as a concept as it significantly improved
wrt. the baseline case. But the underlying solver was still not sufficiently
powerful to guarantee scalability for complex industrial cases.

5 Related Work

We compared our solution with existing model generation techniques with re-
spect to the characteristics of inputs and output results in Table 1. As for inputs,
the model generation can be (1) initiated from a partial snapshot, (2) focused on
an effective metamodel. Additionally, an approach may support (3) local and (4)
global constraints well-formedness constraints: a local constraint accesses only
the attributes and the outgoing references of an object, while a global constraint
specifies a complex structural pattern. Local constraints are frequently attached
to objects (e.g. in UML class diagrams), while global constraints are widely used
in domain-specific modeling languages. As outputs, the generated models may
(i) be metamodel-compliant (ii) satisfy all well-formedness constraints of the
language. When generated models are intended to be used as test cases, some
approaches may guarantee a certain level of coverage or (iii) diversity. We con-
sider a technique (iv) scalable if there is no hard limit on the model size (as
demonstrated in the respective papers). Finally, a model generation approach
may be (v) decidable which always terminates with a result. Our comparison
excludes approaches like which do not guarantee metamodel- compliance of gen-
erated instance models.



Logic Solver Approaches Several approaches map a model generation prob-
lem (captured by a metamodel, partial snapshots, and a set of WF constraints)
into a logic problem, which are solved by underlying SAT/SMT-solvers. Com-
plete frameworks with standalone specification languages include Formula [17]
(which uses Z3 SMT- solver [26]), Alloy [16] (which relies on SAT solvers like
Sat4j [23]) and Clafer [2] (using backend reasoners like Alloy).

There are several approaches aiming to validate standardized engineering
models enriched with OCL constraints [14] by relying upon different back-end
logic-based approaches such as constraint logic programming [6,8,9], SAT-based
model finders (like Alloy) [1,7,22,34,35], first-order logic [3], constructive query
containment [28], higher-order logic [5, 15], or rewriting logics [10].

Partial snapshots and WF constraints can be uniformly represented as con-
straints [32], but metamodel pruning is not typical. Growing models are sup-
ported in [19] for a limited set of constraints. Scalability of all these approaches
are limited to small models / counter-examples. Furthermore, these approaches
are either a priori bounded (where the search space needs to be restricted ex-
plicitly) or they have decidability issues.

The main difference of our current approach is its iterative derivation of mod-
els and the approximative handling of metamodels and constraints. However, our
approach is independent from the actual mapping of constraints to logic formu-
lae, thus it could potentially be integrated with most of the above techniques.

Uncertain Models Partial models are also similarity to uncertain models,
which offer a rich specification language [12,29] amenable to analysis. Uncertain
models provide a more expressive language compared to partial snapshots but
without handling additional WF constraints. Such models document semantic
variation points generically by annotations on a regular instance model, which
are gradually resolved during the generation of concrete models. An uncertain
model is more complex (or informative) than a concrete one, thus an a priori
upper bound exists for the derivation, which is not an assumption in our case.

Potential concrete models compliant with an uncertain model can synthesized
by the Alloy Analyzer [31], or refined by graph transformation rules [30]. Each
concrete model is derived in a single step, thus their approach is not iterative like
ours. Scalability analysis is omitted from the respective papers, but refinement
of uncertain models is always decidable.

Rule-based Instance Generators A different class of model generators relies
on rule-based synthesis driven by randomized, statistical or metamodel coverage
information for testing purposes [4,13]. Some approaches support the calculation
of effective metamodels [33], but partial snapshots are excluded from input spec-
ifications. Moreover, WF constraints are restricted to local constraints evaluated
on individual objects while global constraints of a DSL are not supported. On
the positive side, these approaches guarantee the diversity of models and scale
well in practice.



Iterative approaches. An iterative approach is proposed specifically for
allocation problems in [20] based on Formula. Models are generated in two steps
to increase diversity of results. First, non-isomorphic submodels are created only
from an effective metamodel fragment. Diversity between submodels is achieved
by a problem-specific symmetry-breaking predicate [11] which ensures that no
isomorphic model is generated twice. In the second step the algorithm completes
the different submodels according to the full model, but constraints are only
checked at the very final stage. This is a key difference in our approach where an
approximation of constraints is checked at each step, which reduces the number of
inconsistent intermediate models. An iterative, counter-example guided synthesis
is proposed for higher-order logic formulae in [24], but the size of derived models
is fixed.

6 Conclusion and Future Work

The validation of DSL tools frequently necessitates the synthesis of well-formed
and realistic instance models, which satisfy the language specification. In the
paper, we proposed an incremental model generation approach which (1) itera-
tively calls black- box logic solvers to guarantee well-formedness by (2) feeding
instance models obtained in a previous step as partial snapshots (compulsory
model fragments) to a subsequent phase to limit the number of new elements,
and using (3) various approximations of metamodels and constraints. Our initial
experiments show that significantly larger model instances can be generated with
the same solvers using such an incremental approach especially in the presence
of complex well-formedness constraints.

However, part of our experimental results are negative in the sense that the
proposed iterative approach is still not scalable to derive large model instances of
complex industrial languages due to restrictions of the underlying Alloy Analyzer
and the SAT solver libraries. We believe that dedicated decision procedures and
heuristics for graph models would be beneficial in the long run to improve the
performance of model generation.

As future work, we aim to generate a structurally diverse set of test cases by
enumerating different possible extensions of a partial snapshot in each iteration
step. Additionally, we plan to check other underlying solvers and further approx-
imations and strategies for deriving relevant formulae as logical consequences of
constraints. And finally, we will investigate if the metamodel partitions and the
iteration steps can be automatically created, thus creating a (semi-)automated
process with improved DSL-specific heuristics.
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