Derived Features for EMF by
Integrating Advanced Model Queries*

Istvan Rath, Abel Hegediis, Daniel Varro

Budapest University of Technology and Economics,
Department of Measurement and Information Systems,
1117 Budapest, Magyar tudoésok krt. 2.
{rath,hegedusa,varro}@mit.bme.hu

Abstract. When designing complex domain-specific languages, meta-
models are frequently enriched with derived features that correspond to
attribute values or references (edges) representing computed informa-
tion in the model. In the popular Eclipse Modeling Framework, these
are typically implemented as imperative Java code.

In the paper, we propose to integrate the EMF-INCQUERY model query
framework to the Ecore metamodeling infrastructure in order to facilitate
the efficient and automated (re-)computation of derived attributes and
references over EMF models. Such an integration allows to define derived
features using an expressive graph-based model query language [I], and
offers high performance and scalability thanks to the incremental evalu-
ation technique of EMF-INCQUERY [2]. In addition, our approach offers
to automate two typical associated challenges of EMF tools: (1) values of
derived features are immediately recalculated upon model changes and
(2) notifications are sent automatically to other EMF model elements to
report changes in derived features.

1 Introduction

The design of complex domain-specific languages (e.g. in the automotive or
avionics domains) frequently necessitate the use of advanced metamodeling tech-
niques. Metamodels are complemented with well-formedness constraints, which
enable the validation of the consistency of instance models with respect to such
constraints, thus allowing to spot design flaws early in the development process.
Derived features, which correspond to attribute values or references (edges) that
represent computed information in the model, also proved to be useful in com-
plex metamodeling scenarios. For instance, they frequently serve as auxiliary
(helper) functions when implementing model simulators, and they also allow to
compact the storage of the model.

In the popular Eclipse Modeling Framework (EMF), these derived features
are most often implemented as user-defined algoritms computed by imperative

* This work was partially supported by the CERTIMOT (ERC _HU-09-01-2010-0003)
project, the grant TAMOP (4.2.2.B-10/1-2010-0009) and the Janos Bolyai Scholar-
ship.

Java code. Unfortunately, (1) most existing techniques re-calculate values of
derived features in EMF models on-demand (i.e. when corresponding getters
are called), which hinders integration into user interfaces where changes in the
values of derived features should immediately be reflected. Furthermore, (2) it
is challenging to properly implement notification propagation between (a chain
of) derived features upon value changes, which is necessary when components or
model elements are required to depend upon a derived feature. Finally, (3) as the
calculation of derived features is always started from scratch (not taking previous
computations and changes into account), it is also challenging to implement
complex queries in Java in a way that does not severely impact the overall
performance.

The advanced model query framework EMF-INCQUERY has proved to be
efficient in the incremental re-validation of well-formedness constraints over large
models [2] scaling up to millions of elements!. Its expressive, declarative graph-
based query language offers high level of reuse in queries [I]. In the paper, we
propose to seamlessly integrate the EMF-INCQUERY framework to the Ecore
metamodeling infrastructure, in order to facilitate the efficient and automated
computation of derived attributes and references over EMF models.

Our proposed approach, which is fully implemented and documented?, offers
to automate the entire workflow of developing derived features in EMF. In the
approach, (1) derived features are defined using an expressive graph-based model
query language and are calculated by an algorithm that (2) listens to all incoming
notifications that impact on the computation, (2) issues outgoing notifications
when the value of the derived feature changes, (3) keeps an up-to-date cache
that is refreshed based on incoming notifications and used for computing out-
going notification. Finally, (4) since outgoing notifications may cause incoming
notifications, the algorithm also stabilizes such notification loops.

In the rest of the paper, Section [2] provides a brief overview on derived fea-
tures in EMF models. Then, we propose to use a graph based model query
language to define derived features for EMF in Section [3} Section [4] provides a
detailed architecture and core algorithms to synthesize notifications for derived
features based upon incremental query evaluation. Additional issues for seam-
less integration to the EMF infrastructure are discussed in Section [p| Finally,
Section [6] overviews related work and Section [7] concludes our paper.

2 Derived Features in EMF

Derived features in EMF models represent information that can be calculated
from other model elements and typically represent an aggregate view of the
model. Essentially, we distinguish between derived attributes and derived refer-

! The current paper does not include performance specific contributions to the EMF-
INCQUERY framework, we kindly refer the reader to http://viatra.inf.mit.bme.
hu/performance for additional details.

Znttp://viatra.inf.mit.bme.hu/incquery/examples/derivedfeatures

http://viatra.inf.mit.bme.hu/performance
http://viatra.inf.mit.bme.hu/performance
http://viatra.inf.mit.bme.hu/incquery/examples/derivedfeatures

school B school r <<derived>> |astyear]
0.1 = name : EString 0.1 _ J 0-1
o _address : EString - years H vear
[<<derived>> | © numberOfTeachers : Elnt | school 0.%| o startingDate : EInt
school 0.1
0.1 year
<<derived>> ’
0‘[] CCOL”SES teacherswithMostCourses|0.*] g teach'er's each 0.* | schoolClasses
ourse nomeroomieacher
e -———
= subject : Estring | ° teacher H Teacher — o H schoolClass
= weight : EInt courses 0.1 = name : EString o —
homeroomedclass
0. schoolClass |0+1f schoolClass
courses 0.1 0.*|students

H student

Fig. 1. The metamodel of the Schools domain

ences (representing “virtual” connections between model elements). In our ex-
ample, both are represented graphically by the derived stereotype in Figure

In the current paper, we illustrate our approach on a simple demonstration
domain of Schools (encoded in EMF’s Ecore language as illustrated in Figure[1))
that manage Courses involving Teachers, and enroll their students assigned to
Years and SchoolClasses. The metamodel contains simple EAttributes (like e.g.
name of a Teacher or the startingDate of the school Year) and regular EReferences
such as the school of a Teacher. More importantly for the sake of this paper, it
also contains three derived features:

— numberOfTeachers is a derived attribute of School representing a counter for
the total number of Teachers belonging to the School as represented by the
corresponding school EReference;

— lastYear is a derived reference from School to Year, and points to the last
academic Year stored in the model, which can be calculated from the start-
ingDate of all Years;

— teachersWithMostCourses represent the busiest teachers of the School, i.e.
those who teach the most courses.

Derived features in EMF are not maintained explicitly in instance models, but
calculated on-demand by hand-written code. These calculations are frequently
supported by ad-hoc Java implementations integrated directly into the EMF
model representation, which significantly reduces the portability and compati-
bility of the metamodel.

Unfortunately, developers may encounter additional key challenges when aim-
ing to use derived features in EMF models:

— Performance. Depending on the complexity of the semantics of derived
features, their evaluation may impose a severe performance impact (since

complex calculations and extensive model traversal may be necessary for ex-
ecution). Note that this scalability issue is especially important when derived
feature values need to be re-evaluated many times and will affect all other
software layers using the model code, including the user interface, model
transformations, well-formedness validators etc.

— Notifications. Due to the difficulty of propagating notifications for derived
features, derived features are typically re-evaluated on demand. This may
also manifest as model changes not (properly) triggering user interface up-
dates. Note that EMF defines the notifications for derived features as well,
however, it is the programmer’s responsibility to create notifications. Since
the values of derived features are usually not cached, proper notifications
including the old values (e.g. setting a single value or removing from a list)
are hard to implement. Furthermore, notifications of one derived feature may
cause new notifications, leading to notification loops, the programmer must
ensure that these are stabilized in order to avoid infinite loops.

Our proposal, namely, the integration of an advanced model query frame-
work EMF-INCQUERY provides a solution for all of these challenges using a
high-level graph-based query language for defining derived value calculations.
As the performance characteristics of the EMF-INCQUERY engine have been
shown to be agnostic of query complexity and model size 2], derived features of
complex semantics and inter-dependencies can be used without severe evalua-
tion performance degradation. Additionally the update propagation mechanism
of EMF-INCQUERY (using delta monitors [3]) will be connected to the EMF No-
tification layer so that the application software components are automatically
kept up-to-date about the value changes of derived features.

3 Definition of Derived Features as Model Queries

We now propose to use the graph pattern based model query language of EMF-
INCQUERY as the specification language for derived features of EMF models.
Therefore a brief introduction to this query language is provided first, followed
by a detailed description on how this general purpose query language is adapted
to specify derived features.

3.1 Model queries by graph patterns: an overview

Graph patterns [4] are an expressive formalism used for various purposes in
model-driven development, such as defining declarative model transformation
rules, capturing general-purpose model queries including model validation con-
straints, or defining the behavioral semantics of dynamic domain-specific lan-
guages. A graph pattern (GP) represents conditions (or constraints) that have
to be fulfilled by a part of the instance model. A basic graph pattern consists
of structural constraints prescribing the existence of nodes and edges of a given
type, as well as expressions to define attribute constraints. A negative application

condition (NAC) defines cases when the original pattern is not valid (even if all
other constraints are met), in the form of a negative sub-pattern. A match of
a graph pattern is a group of model elements that have the exact same config-
uration as the pattern, satisfying all the constraints (except for NACs, which
must not be satisfied). The complete query language of the EMF-INCQUERY
framework is described in [I], while several examples will be given below.

3.2 Derived features as model queries

Sample derived features First, we demonstrate on an example how the graph pat-
tern teachersWithMostCourses(S, T) (Figure|2) can be used to express the calcula-
tion of the derived EReference teachersWithMostCourses (connecting School and
Teacher in Figure , that is, to identify those teachers who have the maximum
number of Course instances assigned (through the Teachers.courses reference).

pattern teacherWithMostCourses (S, T)=

{

School.teachers(S,T);

neg pattern moreCourses(S,T) = {
Teacher.courses(T,C) # N;
School.teachers (S,T2);
Teacher.courses(T2,C2) # M;
check(M > N);

¥

}

teachersWithMostCourses(S,T)

teachers courses #N
|S:School |—>| T:Teacher H—Pl :Course |

I_ NEG courses I #M
Teachers TZTeacherH—’l :Course
check (M > N)

O O ONO U WN -

-

Fig. 2. Model query to define teachersWithMostCourses in graphical and textual syntax

This model query formulated as a graph pattern has two parameters: S and
T, denoting the source and the target end of the derived EReference. The query
defines the designated set of teachers by combining a NAC and cardinality con-
straints. It expresses that a teacher T belongs to this set if and only if there
is no other teacher T2 whose number of courses M (calculated by counting the
number of elements connected along the courses reference) would be larger than
the number of courses N (counted as before) of teacher T. The right side of
Figure |2| shows the corresponding textual syntax.

Model queries for derived features numberOfTeachers and lastYear are de-
fined similarly in Figure [3] The definition of the latter contains some additional
interesting language elements.

— The modifier shareable prescribes that different (but type consistent) pattern
variables are allowed to be bound to the same model elements (e.g. D1 and
D2 can be bound to the same date element).

— Y =/= Y2 checks that the two model elements bound to variables Y and Y2
are different.

— Using the find keyword, graph patterns are allowed to reuse other graph pat-
terns. Therefore, if a derived feature is defined as a model query by a corre-
sponding graph pattern, this derived feature can be reused in other queries,

W e

pattern lastYear(S,Y)= {
find years(S,Y);
neg shareable pattern laterYear(S,Y)= {

pattern numberOfTeachers(S,N)= find years(S,Y);
{ find startingDateOfYear (Y,D1);
} find startingDateOfYear (Y2,D2);

check (D1 < D2);

1

2

3

4

5
School.teachers(S,T) # N; 6 find years(S,Y2);

7

8

9 Y =/= Y2;
0

10 } }

Fig. 3. Model queries for numberOfTeachers and lastYear

and thus, in other derived features. In fact, we will discuss in Section [5] that
even legacy derived features (defined by Java code) can participate in such
usage with appropriate notification mechanisms.

Derived features can be defined as model queries using the graph pattern
based language of EMF-INCQUERY if the following three well-formedness rules
are met by corresponding query definitions:

1. Fach graph pattern should have exactly two parameters. In case of derived
attributes, the first parameter denotes the corresponding EClass of the at-
tribute, while the second parameter denotes the value of the parameter itself
(see numberOfTeachers). In case of derived references, the first parameter
denotes the source (i.e. the container EClass) while the second parameter
denotes the target of the EReference.

2. First parameter: always input. General model queries allow the same pattern
to be used with either input or output parameters (i.e. parameter bindings
can be carried out at execution time), in case of derived features, the first
parameter (referring to the container) should always be an input parameter,
which is a bound to a type-compliant contextual EMF object (e.g. S is bound
in all three graph patterns above). This restriction is conceptually equivalent
to the context element of an OCL constraint.

3. Restrictions on result set. In case of a derived features with explicit lower and
upper bounds (e.g. 1..* or 0..1), the result set of the model query should com-
ply with these restrictions. While upper bounds can be enforced by omitting
results, the violation of lower bound is logged only as warnings.

In the actual query language, rules 1 and 2 are can be satisfied either by
using exactly two query parameters, or by using pattern annotations for multi-
parameter queries that explicitly specify which of the parameters is the context
and which one will correspond to the target (or value). Furthermore, the adher-
ence to all three rules are checked at editing time by a built-in query language
validator in the EMF-INCQUERY tooling. In summary, the modular nature of
the EMF-INCQUERY language aims to allow the language engineer to construct
a library of cross-referencing queries without copy-paste reuse.

4 From Incremental Query Evaluation to Notifications
for Derived Features

In this section, we outline how the incremental query features of the EMF-
INCQUERY framework are integrated to notification-based applications in trans-
parent way, by mapping changes of the results sets to notification objects for
derived features. We present an architectural overview and an algorithm to carry
out this mapping.

4.1 Incremental evaluation of queries

The key to efficient evaluation and change notification for derived features is
the incremental graph pattern matching infrastructure of the EMF-INCQUERY
framework (introduced in [3]). The internal architecture is shown in Figure
The input for the incremental
graph pattern matching process is the
EMF instance model and its notifica- P ———
tion API. Callback functions can be model
registered through this API for in-
stance model elements that receive
notification objects (e.g. ADD, RE-
MOVE, SET etc.) when an elementary
manipulation operation is carried out.
Based on a query specification, Intermediate
EMF-INCQUERY constructs a Rete N
rule evaluation network [3] tl}at pro- o ...
cesses the contents of the instance nodes monitor

model to produce the query result
Generated query
components

at its output node. Query results are
Query engine

Input = Model contents + EMF notifications

RETE network

then post-processed by auto-generated
query components to provide a type-
safe access layer for easy integration
into applications. This Rete network
remains in operation as long as the
query is needed: it continues to re-
ceive elementary change notifications
and propagates them to produce query
result deltas through its delta monitor facility, which are used to incrementally
update the query result. These deltas can also be processed externally, which is
a key feature for the integration of derived features (Section .

By this approach, the query results (i.e. the match sets of graph patterns) are
continuously maintained as an in-memory cache, and can be retrieved directly.
Even though this imposes a slight performance overhead on model manipulation,
and a memory cost proportional to the cache size (approx. the size of match
sets), EMF-INCQUERY can evaluate very complex queries over large instance

Output = Query results + Query result deltas

Fig. 4. The EMF-INCQUERY architecture

models very efficiently. These special performance characteristics [2] address the
scalability challenge (Section [2) as long as enough memory is available, as they
allow EMF-INCQUERY-based derived features to be evaluated incrementally,
even for complex queries over large instance models.

4.2 Integration architecture

To support derived features, the outputs of the EMF-INCQUERY engine are to
be integrated into the EMF model access layer at two points: (1) query results are
provided in the getter functions of derived features, and (2) query result deltas
are processed to generate EMF Notification objects that are passed through the
standard EMF API so that application code can process them transparently.
The overall architecture of our approach is shown in Figure [5

Application []

Initialization +
Model
manipulation

Delta
monitors

Generated Query

Components
3

current
value

EMF model reference +
Change notifications

Fig. 5. Overview of the integration architecture

The application accesses both the model and the query results through the
standard EMF model access layer — hence, no modification of application source
code is necessary. In the background, as a novel component type, derived feature
handlers are attached to the EMF model plugin that integrate the generated
query components (pattern matchers). This approach follows the official EMF
guidelines of implementing derived features and is identical to how ad-hoc Java
code, or OCL expression evaluators are integrated.

When an EMF application intends to read a derived feature (B1), the current
value is provided by the corresponding derived feature handler (B2) by simply
retrieving the value from the cache of the related query. When the application
modifies the EMF model (A1), this change is propagated to the generated query
components of EMF-INCQUERY along notifications (A2), which may update the
delta monitors of the derived features (A3). Changes of derived features may in
turn trigger further changes in the results sets of other derived features (A4).

Tllustrative ezample Figure [f]illustrates a detailed elaboration EMF-INCQUERY
feature handlers, which process elementary model manipulation notifications to
update, and generate notifications for derived features. The figure corresponds
to a case where the user created a new Teacher for a School through the Edi-
tor which is essentially a School.getTeachers().add(teacher) method call on the
Model. During the add method, the School EObject sends an ADD notification
to the Notification Manager, which will notify the EMF-INCQUERY Query Engine
about the model modification. The Query Engine updates the match sets of each
query and registers the match events in the Deltamonitor. Once it’s finished with
updating the Rete network, it invokes the callback method of each IncqueryFea-
tureHandler. Each handler has a Deltamonitor from which it retrieves the found
and lost match events since the last callback to processes them. During the
processing, the handler may send notifications of its own that are propagated to
listeners. Anytime the derived feature value is retrieved from the model (e.g. get-
NumberOfTeachers), the handler is accessed for the current value of the feature,
which is returned directly.

Editor

add(teacher) -
notify

2 |

e | Notification Manager |
notification(ADD, School.teachers, teacher)

getNumberOfTeachers()

notification(SET, 3
School.numberOfteachers, notify
old value = N, new value = N + 1)

IncqueryFeatureHandler 4@m1 Query Engine

processMatches() lostMatches.add(), foundMatches.add()

foundMatches, lostMatches
EMF-IncQuery % Deltamonitor ‘

EMF getValue()

Fig. 6. Elaboration of the execution

4.3 From changes of match sets to notifications

We now explain the notification processing and propagation procedure in algo-
rithmic detail. For the sake of simplicity, we introduce an auxiliary discriminator
variable Kind whose value represents three distinct cases:

— SINGLE and MANY correspond to derived references of target multiplicity 1
and *, respectively (lastYear and teachersWithMostCourses in Figure [3));

— COUNTER corresponds to the simplified case where a value of the derived
attribute is defined as the match set size of a query (see numberOfTeachers
in Figure (3.

— More complex derived feature kinds with an arbitrary, deterministic iteration
algorithm can also be handled by the approach.

The main part of our derived feature handler algorithm is an event loop that
is called by the EMF-INCQUERY query engine each time the underlying Rete
network is updated as a result of some model manipulation (see Algorithm .

Algorithm 1 Main event loop

1: let S < Source, F + Feature, DM < DeltaMonitor, k < Kind > Input variables
2: let (k = SINGLE)?iV < null : (k = COUNTER)?iV « 0: iV + 0 > Internal value init
3: let pU < null, N < 0 > Global variables
4: function EVENTLOOP
5: let pU <+ null
6: let found < ProcessFouNDMATcHES(D M.matchFoundEvents) > Processing found events
7 let DM.matchFoundEvents < DM.matchFoundEvents \ found > Removing events
8: let lost < prRocEssLosTMATcCHES(DM.matchLostEvents) > Processing lost events
9: let DM.matchLostevents <— DM.matchLostevents \ lost > Removing events
10: if partialUpdate # null then > Stored value not yet used, handle partial match event
11: let N < N N notification(SET, null, pU)
12: let iV < pU > Updating value
13: end if
14: while N # 0 do > Notification sending loop
15: let n < N[0]
16: let N« N\n
17: S.eNotify(n) > Sending notification through source
18: end while

19: end function

The algorithm is initialized with the following input variables (line [I]): (1)
the EObject Source whose derived feature is handled; (2) the derived Feature;
(3) the DeltaMonitor for the query matcher; and (4) the previously mentioned
discriminator value Kind. Each handler stores an internal value for the feature,
initialized in line [2] depending on Kind. Finally, the handler uses two global
variables: pU for storing partial events and the set N of unsent notifications.

The event loop starts from line] it first resets the partial event store, then
processes matches found since the last execution of the loop (line@. These events
are supplied by the delta monitor of the query and removed after processing is
finished. Similarly, the matches lost since the last execution are also processed
(line |8) and removed after. When a derived feature with SINGLE kind is used
and only a match-found event occurs without a match-lost event, an additional
processing step is required to handle the partial event (line. This occurs when
the query did not lose any matches since the last event loop, but a new match
is found. This translates to a notification representing the setting of the feature
value from null to pU (line . Finally, if there are any unsent notifications
(line, the first notification n in the list NV is sent through the Source EObject.
By separating the notification sending from the calculation of the derived feature
value, the notification loop is stabilized, since new notifications caused by n are
simply added to the list IV, which will be depleted after all, if causal circularity
between the definitions of derived features is avoided.

New matches The handling of match-found events is detailed in Algorithm [2}
The PROCESSFOUNDMATCHES function iterates through the match-found events
(line [3)), and extracts the target object from the event (line , if the source
EObject of the event equals Source. Depending on the Kind of the feature, a
notification is created and the internal value is updated (line m for COUNTER and
line [12| for MANY). For SINGLE kind features, the target object is stored for later
usage (line [10). Finally, the list of processed events is returned.

Algorithm 2 Processing match-found events

1: function pProcEsFouNDMATCHES(events)

2 let P+ 0
3 for all e € events do
4 if e.source = S then
5: let target < e.target > Extracting feature target from event
6: if k = couNTER then
7 let N < N N notification(SET,iV,iV + 1)
8 let iV +— iV +1 > Updating value of repeating algorithm
9 else if k = sINGLE then
10: let pU < target > Storing value for later processing
11: else if £ = MANY then
12: let N < N N notification(ADD, null, target)
13: let iV « iV N target > Updating value
14: end if
15: end if
16: let P+ PnNe
17: end for
18: return P

19: end function

Lost matches The handling of match-lost events is similar to the processing of
match-found events, see Algorithm [3] The PROCESSLOSTMATCHES function it-
erates through the match-lost events (line , and extracts the target object from
the event (line [5)), if the source EObject of the event equals Source. Depending
on the Kind of the feature, a notification is created and the internal value is
updated (line |7 for COUNTER and line [14] for MANY). For SINGLE kind features,
the stored value of pU is used for creating the notification (line . Finally, the
list of processed events is returned at the end of the function.

Summary In summary, the combined pattern matching and notification process-
ing process ensures that EMF-INCQUERY-based derived features behave exactly
as normal features of EMF instance models. This addresses the final, integration-
related challenge of Section7 by ensuring that user interfaces, model validators
etc. can safely depend on such derived features, without on-demand querying.

5 Integration Issues with EMF Tooling

5.1 Integration with Ecore

In the prototype implementation of our proposal, we integrated our approach to
the EMF Tooling by a code generator that supports the automatic generation

Algorithm 3 Processing match-lost events

1: function procEssLosTMATCHES(events)

2 let P+ 0
3 for all e € events do
4 if e.source = S then
5: let target < e.target > Extracting feature target from event
6: if k = cOUNTER then
7: let N < N N notification(SET,iV,iV — 1)
8 let 1V <1V -1 > Updating value of repeating algorithm
9: else if k = siNGLE then
10: let N < N N notification(SET, target, pU) > Using stored value
11: let iV « target > Updating value
12: let pU <+ null > Resetting stored value
13: else if kK = MaNY then
14: let N < N N notification(REMOV E, target, null)
15: let 4V < iV \ target > Updating value
16: end if
17: end if
18: let P+ PnNe
19: end for
20: return P

21: end function

of integration code for our components (EMF-INCQUERY derived feature han-
dlers). The input of the code generator is a simple generator model (referencing
the EMF genmodel for the domain) that crosslinks derived features with EMF-
INCQUERY query specifications (which are stored as EMF models thanks to the
Xtext2-based tooling).

teachersWithMostCoursesHandler = IncqueryFeatureHelper.createHandler(
this,
SchoolIncqDerivedPackage.Literals.SCHOOL TEACHERS_WITH _MOST_COURSES,
TeacherWithMostCoursesMatcher.FACTORY,
"School™,
"Teacher”,
FeatureKind.MANY REFERENCE);

* f[@generated NOT

*)

public EList<Teacher> getTeachersWithMostCourses() {

if(teachersWithMostCoursesHandler != null) {
Collection<Object> temp = teachersWithMostCoursesHandler.getManyReferenceValue();
return new UnmodifiableEList<Teacher>(this,
SchoolIncgDerivedPackage.Literals.SCHOOL TEACHERS WITH MOST COURSES,
temp.size(), temp.toArray());
} else {
return new UnmodifiableEList<Teacher>(this,
SchoolIncqDerivedPackage.Literals.SCHOOL TEACHERS WITH MOST_COURSES,
@, null);

Fig. 7. Sample generated code for derived feature handler instantiation and getter

The generated integration code (Figure @ consists of (a) the instantiation
of derived feature handlers (in the constructor of EObjects), which ensures that

their lifecycle is tied to the hosts, to enable their garbage collection together
with the instance model itself; (b) getter implementations that delegate calls to
the appropriate function of the feature handler object, and wrap the result in
unmodifiable ELists to ensure that any attempt to write to derived features will
result in a runtime exception.

5.2 Integration with legacy Java code for derived features

In practice, a complete refactoring of an EMF-based tool to exclusively use
EMF-INCQUERY-based derived features might not be realistic. Hence, we im-
plemented an additional derived feature adapter (Figure as a lightweight add-
on component for EMF model plugins, which can be used to augment existing
derived feature implementations (regardless of whether Java or OCL is used).

Editor
add(teacher) N l

@ notify

1 _ 7)

(2)
Notification Manager
notification(ADD, School.teachers, teacher,
N (2)

(e) 3
notification(SET, School.numberOfteachers, 6
EMF old value = N, new value = N + 1)

school.getNumberOfTeachers()

refreshDerivedFeature()
Legacy adapter

Fig. 8. Derived feature handlers

The basic concept motivated by a suggestion in the Eclipse FAQ? is analogous
to the previous discussion. The language engineer can add a few lines of Java code
to the generated EMF model plugin: these derived feature adapters attach lis-
teners (through the EMF Notification API) to the (explicitly specified) features
a derived feature depends on, and receive notifications when model changes are
registered (steps 1-2-3 in Figure . These notification objects are then processed
and converted into new notification objects for the derived feature, propagating
through the manager to application code (steps 4-5-6-7 in Figure .

This approach has additional key advantages: (1) notification support can be
added — with a small implementation effort — to “legacy” derived features, without
having to re-write them in EMF-INCQUERY; (2) queries specified in EMF-
INCQUERY (whether for derived features, or on-the-fly validation purposes, or
within model transformations) can reference derived features seamlessly.

3 http://wiki.eclipse.org/EMF/Recipes#Recipe: _Derived_Attribute_Notifier

http://wiki.eclipse.org/EMF/Recipes#Recipe:_Derived_Attribute_Notifier

6 Related Work

Model queries over EMF. There are several technologies for providing declarative
model queries over EMF, e.g. EMF Model Query 2 [5] and EMF Search [6]. Other
graph pattern based techniques like [7I8] have been successfully applied in an
EMF context. But none of these support incremental evaluation, therefore they
cannot be used for integrating derived features in the way we proposed.

OCL evaluation approaches. OCL [9] is a standardized navigation-based query
language, applicable over a range of modeling formalisms. Taking advantage of
the expressive features and wide-spread adoption of OCL, the project Eclipse
OCL provides a powerful query interface that evaluates OCL expressions over
EMF models. However, backwards navigation along references in EMF can still
have low performance [2], which may influence the performance of OCL evalua-
tion without additional support.

Aiming at incremental evaluation, the impact analysis (IA) approach for
OCL constraints [I0] is functionally similar to our approach (but conceptually
different in terms of underlying incremental algorithm) in using change notifi-
cations to identify constraints that should be re-evaluated, although it does not
cache partial matches. An added feature of our approach is to automatically
provide notifications for derived features (which could be — but currently is not
— implemented for OCL tools). As future work, we aim to compare TA and our
approach and even combine the benefits of our current implementation with the
benefits of existing OCL-based solutions.

Cabot et al. [II] present an approach for incremental runtime validation of
OCL constraints and uses promising optimizations, however, it works only on
boolean constraints, and as such it is less expressive than our technique.

An interesting model validator over UML models [I2] incrementally re-eval-
uates constraint instances whenever they are affected by changes, however the
approach is only applicable in environments where read-only access to the model
can be easily recorded, unlike EMF. Additionally, the approach is tailored for
model validation, general-purpose model querying is not viable.

Balsters [13] presents an approach for defining database views in UML models
as derived classes using OCL. The derived classes in this case are the result set of
queries, which is similar to the match sets provided by EMF-INCQUERY. Note,
that while the OCL approach does not offer incrementality, an EMF-INCQUERY
based approach would.

Derived features. There are several approaches that make extensive use of de-
rived features or provide additional support for their usage.

The PROGRES language [14] allows the rule-based programming of graph
rewriting systems. It uses derived attributes for encoding node properties con-
cerning aspects of dynamic semantics. The language includes support for defining
how these derived attributes are calculated, and also uses functional attribute
dependencies that would allow similar implementation as described in Section
However, PROGRES has not been adapted to EMF up to our best knowledge.

The FUJABA [I5] tool suite also supports derived edges by path expressions in
a non-incremental way.

In [16] Diskin describes a theoretical model synchronization framework that
uses derived references for propagating changes between corresponding models.
The derived attributes defined in the framework are queries, similarly to our
approach, although algebraic and not incrementally updated.

Scheidgen [I7] presents a MOF tool that allows the definition of derived
features using OCL. It handles derived attributes and operations as custom code
provided by the user and redirects calls using reflection, thus incrementality is
not supported.

JastEMF [I8] is a semantics-integrated metamodeling approach for EMF.
It uses derived features as side-effect free operations (i.e. queries) and refers to
them as the static semantics of the model. Therefore, our query-based approach
could be integrated with JastEMF without problems.

ConceptBase.cc [19] is a database system for metamodeling and method en-
gineering. It allows the definition of active rules that react to events and can
update the database or call external routines. Using this functionality, it would
be possible to create derived features in models that are updated incrementally
based on the data stored in the ConceptBase.cc database. On the other hand,
this framework has not been applied in an EMF context.

In a previous tool paper of ours [20], we give an architectural overview of the
entire EMF-INCQUERY tool where derived features are listed as one of the new
features of the tool. The current paper provides all the technical details on using
incremental queries for derived features in EMF.

7 Conclusion

We proposed to seamlessly integrate the EMF-INCQUERY framework to the
EMF infrastructure in order to facilitate the efficient and automated computa-
tion of derived attributes and references over EMF models by advanced model
queries. Our approach (1) allows to define derived features using an expressive
graph-based model query language, (2) offers high performance and scalability
thanks to the incremental evaluation technique of EMF-INCQUERY [2], and (3)
automatically provides notifications to and from derived features which has to
be implemented manually in an EMF application.

Future work. Our current research directions include the application of query-
based derived features for handling soft interconnections in EMF models and for
managing virtual EMF objects derived from query result sets. Furthermore, the
EMF-INCQUERY framework is under active development, with derived feature
support being only one of its many capabilities.

Acknowledgements. We would like to thank E.D. Willink for his suggestions on
improving the paper and the anonymous reviewers for their helpful comments.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Bergmann, G., Ujhelyi, Z., Rath, 1., Varr6, D.: A Graph Query Language for EMF
models. In: Proc. of ICMT’11. Volume 6707., Springer (2011) 167-182)
Bergmann, G., Horvath, A., Rath, I., Varro, D., Balogh, A., Balogh, Z., Okros,
A.: Incremental Evaluation of Model Queries over EMF Models. In: MODELS’10.
Volume 6395 of LNCS., Springer (2010) 76-90

Rath, I., Bergmann, G., Okros, A., Varro, D.: Live model transformations driven by
incremental pattern matching. In: Theory and Practice of Model Transformations.
Volume 5063 /2008 of Lecture Notes in Computer Science., Springer (2008) 107-121
Varr6, D., Balogh, A.: The Model Transformation Language of the VIATRA2
Framework. Science of Computer Programming 68(3) (October 2007) 214-234
The Eclipse Project: EMF Model Query 2. http://wiki.eclipse.org/EMF/
Query2.

The Eclipse Project: EMFT Search. http://www.eclipse.org/modeling/emft/
?project=search.

Biermann, E., Ermel, C., Taentzer, G.: Precise Semantics of EMF Model Trans-
formations by Graph Transformation. In: MoDELS ’08, Springer (2008) 53—67
Giese, H., Hildebrandt, S., Seibel, A.: Improved flexibility and scalability by inter-
preting story diagrams. In: Proceedings of GT-VMT 2009. Volume 18., ECEASST
(2009)

The Object Management Group: Object Constraint Language, v2.3.1. (Jan 2012)
http://www.omg.org/spec/0CL/2.3.1/.

Uhl, A., Goldschmidt, T., Holzleitner, M.: Using an OCL impact analysis algorithm
for view-based textual modelling. ECEASST 44 (2011)

Cabot, J., Teniente, E.: Incremental integrity checking of UML/OCL conceptual
schemas. J. Syst. Softw. 82(9) (2009) 1459-1478

Groher, I., Reder, A., Egyed, A.: Incremental consistency checking of dynamic
constraints. In: FASE 2009. Volume 6013 of LNCS., Springer (2010) 203-217
Balsters, H.: Modelling database views with derived classes in the UML/OCL-
framework. In Stevens, P., Whittle, J., Booch, G., eds.: «<UML» 2003 - The Uni-
fied Modeling Language. Modeling Languages and Applications. Volume 2863 of
Lecture Notes in Computer Science. Springer Berlin / Heidelberg (2003) 295-309
Schiirr, A.: Introduction to PROGRESS, an attribute graph grammar based specifi-
cation language. In Nagl, M., ed.: Graph-Theoretic Concepts in Computer Science.
Volume 411 of LNCS. Springer Berlin / Heidelberg (1990) 151-165

Nickel, U., Niere, J., Ziindorf, A.: The FUJABA environment. In: Proc. ICSE
2000. (2000) 742-745

Diskin, Z.: Model synchronization: Mappings, tiles, and categories. In Fernan-
des, J., Lammel, R., Visser, J., Saraiva, J., eds.: Generative and Transformational
Techniques in Software Engineering III. Volume 6491 of LNCS. Springer (2011)
Scheidgen, M.: On implementing MOF 2.0—mnew features for modelling language
abstractions (2005)

Biirger, C., Karol, S., Wende, C., Afmann, U.: Reference attribute grammars for
metamodel semantics. In Malloy, B., Staab, S., van den Brand, M., eds.: Software
Language Engineering. Volume 6563 of LNCS. Springer Berlin / Heidelberg (2011)
Jeusfeld, M.A., Jarke, M., Mylopoulos, J.: Metamodeling for Method Engineering.
The MIT Press (2009)

Bergmann, G., Hegediis, A., Horvath, A., Rath, I., Ujhelyi, Z., Varr6, D.: Inte-
grating efficient model queries in state-of-the-art EMF tools. In: Proceedings of
the 50th International Conference, TOOLS 2012, Springer (2012) To appear.

http://wiki.eclipse.org/EMF/Query2
http://wiki.eclipse.org/EMF/Query2
http://www.eclipse.org/modeling/emft/?project=search
http://www.eclipse.org/modeling/emft/?project=search
http://www.omg.org/spec/OCL/2.3.1/

	Derived Features for EMF by Integrating Advanced Model Queries
	Introduction
	Derived Features in EMF
	Definition of Derived Features as Model Queries
	Model queries by graph patterns: an overview
	Derived features as model queries
	Sample derived features

	From Incremental Query Evaluation to Notifications for Derived Features
	Incremental evaluation of queries
	Integration architecture
	Illustrative example

	From changes of match sets to notifications
	New matches
	Lost matches
	Summary

	Integration Issues with EMF Tooling
	Integration with Ecore
	Integration with legacy Java code for derived features

	Related Work
	Model queries over EMF.
	OCL evaluation approaches.
	Derived features.

	Conclusion

