
Iterative Generation of Diverse Models
for Testing Specifications of DSL Tools

No Author Given

No Institute Given

Abstract. The validation of modeling tools of custom domain-specific
languages (DSLs) frequently relies upon an automatically generated set
of models as a test suite. While many software testing approaches recom-
mend that this test suite should be diverse, model diversity has not been
studied systematically for graph models. In the paper, we propose diver-
sity metrics for a single model as well as a set of models by exploiting the
powerful abstraction technique of neighborhood shapes. Furthermore, we
propose an iterative model generation technique to synthesize a diverse
set of models where each model is taken from a different equivalence class
as defined by neighborhood shapes. We evaluate our diversity metrics in
the context of mutation testing for an industrial DSL and compare our
model generation technique with a model generator based on Alloy which
uses symmetry breaking predicates to enforce model diversity.

1 Introduction

Motivation. Domain-Specific Language (DSL) based modeling tools are gain-
ing an increasing role in the software development processes. Advanced DSL
frameworks such as Xtext, or Sirius built on top of model management frame-
works such as Eclipse Modeling Framework (EMF) [38] significantly improve
productivity by automating the production of rich editor features (e.g. syntax
highlighting, auto-completion, etc.) to enhance modeling for domain experts.

Modelling environments may provide validation for the system under design
from an early stage of development with efficient tool support for checking well-
formedness (WF) constraints and design rules over large model instances of the
DSL using tools like Eclipse OCL [27] or graph queries [42]. Model generation
techniques [18,40,21,36] are able to automatically provide a range of solution
candidates for allocation problems [21], model refactoring or context generation
[24]. Finally, models can be are processed by query-based transformations or
code generators to automatically synthesize source code or other artifacts.

The design of complex DSLs tools is a challenging task. As the complexity of
DSL tools increases, special attention is needed to validate the modeling tools
themselves (e.g. for tool qualification purposes) to ensure that WF constraints
and the preconditions of model transformation and code generation functionality
[5,36,34] are correctly implemented in the tool.
Problem Statement. There are many approaches aiming to address the test-
ing of DSL tools (or transformations) [8,2,43] which necessitate the automated



synthesis of graph models to serve as test inputs. Many best practices of testing
(such as equivalence partitioning [28], mutation testing [20]) recommends the
synthesis of diverse graph models where any pairs of models are structurally
different from each other to achieve high coverage or a diverse solution space.

However, while software diversity is a widely studied [6], existing diversity
metrics for graph models are much less elaborate [44]. Model comparison tech-
niques [39] frequently rely upon the existence of node identifiers, which can easily
lead to many isomorphic models. Moreover, checking graph isomorphism is com-
putationally very costly. Therefore practical solutions tend to use approximate
techniques to achieve certain diversity by random sampling [19], incremental gen-
eration [21,36], or using symmetry breaking predicates [40]. Unlike equivalence
partitions which capture diversity of inputs in a customizable way for testing
traditional software, a similar diversity concept is still missing for graph models.

Contribution. In this paper, we propose diversity metrics to characterize a
single model and a set of models. For that purpose, we innovatively reuse neigh-
borhood graph shapes [30], which provide a fine-grained typing for each object
based on the structure (e.g. incoming and outgoing edges) of its neighborhood.
Moreover, we propose an iterative model generation technique to automatically
synthesize a diverse set of models for a DSL where each model is taken from a
different equivalence class wrt. graph shapes as an equivalence relation.

We evaluate our diversity metrics and model generator in the context of
mutation-based testing [25] of WF constraints in an industrial DSL tool. We
evaluate and compare the mutation score and our diversity metrics of test suites
obtained by (1) an Alloy based model generator (using symmetry breaking pred-
icates to ensure diversity), (2) an iterative graph solver based generator using
neighborhood shapes, and (3) from real models created by humans. Our finding
is that a diverse set of models derived by along different neighborhood shapes
is has better mutation score and also a better score wrt. our diversity metrics.
Furthermore, based on a test suite with 4850 models, we found that high score
in our diversity metrics would likely mean high mutation score which indicates
that our metrics may be good predictors in practice for testing.

Added Value. Up to our best knowledge, our paper is one of the first studies
on (software) model diversity. From a testing perspective, our diversity metrics
provide a stronger characterization of a test suite of models than traditional
metamodel coverage which is used in many research papers. Furthermore, model
generators using on neighborhood graph shapes (that keep models only if they
are surely non-isomorphic) provide increased diversity compared to symmetry
breaking predicates (which exclude models if they are surely isomorphic).

2 Preliminaries

Core modeling concepts and testing challenges of DSL tools will be illustrated
in the context of Yakindu Statecharts [46], which is an industrial DSL for devel-
oping reactive, event-driven systems using statecharts captured in a combined



Pseudostate

Vertex RegionTransition

StatechartEntry State

RegularState CompositeElement

ChoiceExit FinalState

[0..*] vertices

[0..*] regions[1..1] target[0..*] incomingTransitions

[0..1] source[0..*] outgoingTransitions

Fig. 1: Metamodel extract from Yakindu state machines

graphical and textual syntax. Yakindu simultaneously supports validation of
well-formedness (WF) constraints and code generation from statechart models.

2.1 Metamodels and instance models

Metamodels define the main concepts, relations and attributes of a domain to
specify the basic graph structure of models. A simplified metamodel for Yakindu
state machines is illustrated in Figure 1 using the popular Eclipse Modeling
Framework (EMF) [38] is used for domain modeling. A state machine consists
of Regions, which in turn contain states (called Vertexes) and Transitions.
An abstract state Vertex is further refined into RegularStates (like State or
FinalState) and PseudoStates (like Entry, Exit or Choice).

Formally [34,35], a metamodel defines a vocabulary of type and relation sym-
bols Σ = {C1, . . . , Cn, R1, . . . , Rm} where a unary predicate symbol Ci is defined
for each EClass, and a binary predicate symbol Rj is derived for each EReference.
For space considerations, we omit the precise handling of attributes from this
paper, which could be introduced accordingly.

An instance model can be represented as a logic structure M = 〈ObjM , IM 〉
where ObjM is the finite set of objects (the size of the model is |M | = |ObjM |),
and IM provides interpretation for all predicate symbols in Σ as follows:

– the interpretation of a unary predicate symbol Ci is defined in accordance
with the types of the EMF model: IM (Ci) : ObjM → {1, 0}

– the interpretation of a binary predicate symbol Rj is defined in accordance
withe the links in the EMF model: IM (Rj) : ObjM ×ObjM → {1, 0}

A metamodel also specifies extra structural constraints. First, each object
has a single direct type, i.e. for all object o there is a single non-abstract class
CD which may, in turn, have supertypes such as CS(o) ⇔ [CS supertype of CD].
Then, the multiplicity of structural features can be limited with upper and lower
bounds: “lower..upper”. Then two parallel references of opposite direction can be
defined as inverses: a pair of references forw and back are inverse of each other
if forw(o, t)⇔ back(t, o). Finally, the EMF instance models are arranged into a
strict containment hierarchy, which is a directed tree along relations marked in
the metamodel as containment (see e.g. regions or vertices in the metamodel).



Fig. 2: Example instance models (as directed graphs)

[[C(v)]]MZ := IM (C)(Z(v)) [[ϕ1 ∧ ϕ2]]MZ := [[ϕ1]]MZ ∧ [[ϕ2]]MZ
[[R(v1, v2)]]MZ := IM (R)(Z(v1), Z(v2)) [[ϕ1 ∨ ϕ2]]MZ := [[ϕ1]]MZ ∨ [[ϕ2]]MZ
[[v1 = v2]]MZ := Z(v1) = Z(v2) [[¬ϕ]]MZ := ¬[[ϕ]]MZ

[[∀v : ϕ]]MZ :=
∧

x∈ObjM
[[ϕ]]MZ,v 7→x [[∃v : ϕ]]MZ :=

∨
x∈ObjM

[[ϕ]]MZ,v 7→x

Fig. 3: Inductive semantics of graph predicates

Example 1. Figure 2 shows graph representations of three instance models. In
M1 there are two States (s1 and s2), which are connected to a loop via Transitions
t2 and t3. The initial state is marked by a Transition t1 from an entry e1 to
state s1. M2 describes a similar statechart with three states in loop (s3, s4 and
s5 connected via t5, t6 and t7). Finally, in M3 there are two main differences:
there is an incoming Transition t11 to an Entry state (e3), and there is a
State s7 that does not have outgoing transition. While all these M1 and M2
are non-isomorphic, later we illustrate why they are not diverse.

2.2 Well-formedness Constraints as Logic Formulae

In many industrial modeling tools, WF constraints are captured either by OCL
constraints [27] or graph patterns (GP) [22,42] where the latter captures struc-
tural conditions over an instance model as paths in a graph. To have a unified
and precise handling of evaluating WF constraints, we use a tool-independent
logic representation (which was influenced by [31,35,34]) that covers the key
features of concrete graph pattern languages and a first-order fragment of OCL.

Syntax. A graph predicate is a first order logic predicate ϕ(v1, . . . vn) over (ob-
ject) variables which can be inductively constructed (see Figure 3) by using class
and relation predicates C(v) and R(v1, v2), equality check =, standard first order
logic connectives ¬, ∨, ∧, and quantifiers ∃ and ∀.

Semantics. A graph predicate ϕ(v1, . . . , vn) can be evaluated on model M along
a variable binding Z : {v1, . . . , vn} → ObjM from variables to objects in M . The



truth value of ϕ can be evaluated over model M along the mapping Z (denoted

by [[ϕ(v1, . . . , vn)]]
M
Z ) in accordance with the semantic rules defined in Figure 3.

If there is a variable binding Z where the predicate ϕ is evaluated to 1 over
M is often called a pattern match, formally [[ϕ]]

M
Z = 1. Otherwise, if there are

no bindings Z to satisfy a predicate, i.e. [[ϕ]]
M
Z = 0 for all Z, then the predicate

ϕ is evaluated to 0 over M . Graph query engines like [42,7] can retrieve (one
or all) matches of a graph predicate over a model. When using graph patterns
for validating WF constraints, a match of a pattern usually denotes a violation,
thus the corresponding graph formula needs to capture the erroneous case.

2.3 Motivation: Mutation testing of DSL tools

A code generator would normally assume that the input models are well-formed,
i.e. all WF constraints are validated prior to calling the code generator. However,
there is no guarantee that the WF constraints actually checked by the DSL tool
are exactly the same as the ones required by the code generator. For instance,
if the validation forgets to check a subclause of a WF constraint, then runtime
errors may occur during code generation. Moreover, the precondition of the
transformation rule may also contain errors. For that purpose, WF constraints
and model transformations of DSL tools can be systematically tested.

A popular approach for testing DSL tools is mutation testing [25,37] which
aims to reveal missing or extra predicates by (1) deriving a set of mutants (e.g.
WF constraints in our case) by applying a set of mutation operators. Then (2)
the test suite is executed for both the original and the mutant programs, and (3)
their output are compared. (4) A mutant is killed by a test if different output is
produced for the two cases (i.e. different match set). (5) The mutation score of a
test suite is calculated as the ratio of mutants killed by some tests wrt. the total
number of mutants. A test suite with better mutation score is preferred [20].

Fault model and detection. As a fault model, we consider omission faults in WF
constraints of DSL tools where some subconstraints are not actually checked. In
our fault model, a WF constraint is given in a conjunctive normal form ϕe = ϕ1∧
· · · ∧ϕk, all unbound variables are quantified existentially (∃), and may refer to
other predicates specified in the same form. Note that his format is equivalent to
first order logic, and does not reduce the range of supported graph predicates. We
assume that in a faulty predicate (a mutant) the developer may forget to check
one of the predicates ϕi (Constraint Omission, CO), i.e. [ϕ1∧ . . .∧ϕi∧ . . .∧ϕk] is
rewritten to [ϕ1∧· · ·∧ϕi−1∧ϕi+1∧· · ·∧ϕk], or may forgot a negation (Negation
Omission), i.e. [ϕ1∧ . . .∧ (¬ϕi)∧ . . .∧ϕk] is rewritten to [ϕ1∧ . . .∧ϕi∧ . . .∧ϕk].

Given an instance model M , we assume that both [[ϕe]]
M

and [[ϕf ]]
M

can be
evaluated separately by the DSL tool. Now a test model M detects a fault if there
is a variable binding Z, where the two evaluations differ, i.e. [[ϕe]]

M
Z 6= [[ϕf ]]

M
Z .

Example 2. Two WF constraints checked by the Yakindu environment can be
captured by graph predicates as follows:



– ϕ : incomingToEntry(E) := ∃T : Entry(E) ∧ target(T,E)
– φ : noOutgoingFromEntry(E) := Entry(E) ∧ ¬(∃T : source(T,E))

According to our fault model, we can derive two mutants for incomingToEntry
as predicates ϕf1 := Entry(E) and ϕf2 := ∃t : target(T,E).

Constraints ϕ and φ are satisfied in model M1 and M2 as the corresponding
graph predicates have no matches, thus [[ϕ]]

M1

Z = 0 and [[φ]]
M1

Z = 0. As a test
model, both M1 and M2 is able to detect the same omission fault both for ϕf1

as [[ϕf1 ]]
M1 = 1 (with E 7→ e1 and E 7→ e2) and similarly ϕf2 (with s1 and s3).

However, M3 is unable to kill mutant ϕf1 as (ϕ had a match E 7→ e3 which
remains in ϕf1), but able to detect others.

3 Model Diversity Metrics for Testing DSL Tools

As a general best practice in testing, a good test suite should be diverse, but
the interpretation of diversity may differ. For example, equivalence partitioning
[28] partitions the input space of a program into equivalence classes based on
observable output, and then select the different test cases of a test suite from
different execution classes to achieve a diverse test suite. However, while software
diversity has been studied extensively [6], model diversity is much less covered.

In existing approaches [11,12,43,33,9,8] for testing DSL and transformation
tools, a test suite should provide full metamodel coverage [45], and it should also
guarantee that any pairs of models in the test suite are non-isomorphic [19,40].
In [44], the diversity of a model Mi is defined as the number of (direct) types
used from its MM , i.e. Mi is more diverse than Mj if more types of MM are used
in Mi than in Mj . Furthermore, a model generator Gen deriving a set of models
{Mi} is diverse if there is a designated distance between each pairs of models
Mi and Mj : dist(Mi,Mj) > D, but no concrete distance function is proposed.

Below, we propose diversity metrics for a single model, for pairs of models
and for a set of models based on neighborhood shapes [30], a formal concept
known from the state space exploration of graph transformation systems [29].
Our diversity metrics generalize both metamodel coverage and (graph) isomor-
phism tests, which are derived as two extremes of the proposed metric, and thus
it defines a finer grained equivalence partitioning technique for graph models.

3.1 Neighborhood shapes of graphs

A neighborhood Nbhi describes the local properties of an object in a graph model
for a range of size i ∈ N [30]. The set of neighborhood descriptors are defined
recursively with the set of class and reference symbols Σ:

– For range i = 0, Nbh0 is a subset of class symbols: Nbh0 ⊆ 2{C1,...,Cn}

– A neighbor Ref i for i > 0 is defined by a reference symbol and a neighbor-
hood: Ref i ⊆ {R1, . . . , Rm} ×Nbhi−1.

– For a range i > 0 neighborhood Nbhi is defined by a previous neighborhood
and two sets of neighbor descriptors (for incoming and outgoing references
separately): Nbhi ⊆ Nbhi−1 × 2Ref i × 2Ref i .



Shaping function nbhi : ObjM → Nbhi maps each object in a model M to a

neighborhood with range i: (1) if i = 0, then nbh0(o) = {C|[[C(o)]]
M

= 1}; (2) if
i > 0, then nbhi(o) = 〈nbhi−1(o), in, out〉, where

in = {〈R, n〉|∃o′ ∈ ObjM : [[R(o′, o)]]
M ∧ n = nbhi−1(o′)}

out = {〈R, n〉|∃o′ ∈ ObjM : [[R(o, o′)]]
M ∧ n = nbhi−1(o′)}

A (graph) shape of a model M for range i (denoted as Si(M)) is a set of
neighborhood descriptors of the model: Si(M) = {x|∃o ∈ ObjM : nbhi(o) = x}.
We will use the size of a shape |Si(M)| which is the number of shapes used in
M . After calculating the neighborhood for each object, each neighborhood is
represented as a node in the graph shape. Moreover, if there exist at least one
link between objects in two different neighborhoods, the corresponding nodes in
the shape will be connected by an edge. Informally, a node in the graph shape
can be interpreted as a rich type graph where the original metamodel classes are
split into multiple node types based on their potential neighborhood.

Example 3. We illustrate the concept of graph shapes for model M1. For range
0, objects are mapped to class names as neighborhood descriptors:

– nbh0(e) = {Entry, PseudoState, Vertex}
– nbh0(t1) = nbh0(t2) = nbh0(t3) = {Transition}
– nbh0(s1) = nbh0(s2) = {State, RegularState, Vertex}

For range 1, objects with different incoming or outgoing types are further split,
e.g. the neighborhood of t1 is different from that of t2 and t3 as it is connected
to an Entry along a source reference, while the source of t2 and t3 are States.

– nbh1(t1) = 〈{Transition}, ∅, {〈source, {Entry, PseudoState, Vertex}〉,
〈target, {State, RegularState, Vertex}〉

– nbh1(t2) = 〈{Transition}, ∅, {〈source, {State, RegularState, Vertex}〉,
〈target, {State, RegularState, Vertex}〉 = nbh1(t3)

For range 2, each object of M1 would be mapped to a unique element. In
Figure 4, the neighborhood shapes of models M1, M2, and M3 for range 1,
are represented in a visual notation adapted from [30,31] (without additional
annotations e.g. multiplicities or predicates used for verification purposes). The
trace of the concrete graph nodes to neighbourhood is illustrated on the right.
For instance, e1 and e2 in M1 and M2 Entries are both mapped to the same
neighbourhood n1, while e3 can be distinguished from them as it has incoming
reference from a transition, thus creating a different neighbourhood n5.

Properties of graph shapes The theoretical foundations of graph shapes [30,31]
prove several key semantic properties which are exploited in this paper:

P1 There are only a finite number of graph shapes in a certain range, and a
smaller range reduces the number of graph shapes, i.e. |Si(M)| ≤ |Si+1(M)|.

P2 |Si(Mj)|+ |Si(Mk)| ≥ |Si(Mj ∪Mk)| ≥ |Si(Mj)| and |Si(Mk)|.



o nbh1(o)

e1− 2 n1
e3 n5

s1− 6 n3
s7 n7

t1, 4, 11 n2
t2, 3, 5− 8, 10 n4

t9 n6

Fig. 4: Sample neighborhood shapes of M1, M2 and M3

3.2 Metrics for model diversity

We define two metrics for model diversity based upon neighborhood shapes.
Internal diversity captures the diversity of a single model, i.e. it can be evalu-
ated individually for each and every generated model. As neighborhood shapes
introduce extra subtypes for objects, this model diversity metric measures the
number of neighborhood types used in the model with respect to the size of the
model. External diversity captures the distance between pairs of models. Infor-
mally, this diversity distance between two models will be proportional to the
number of different neighborhoods covered in one model but not the other, i.e.
the number of model elements that fall into a different equivalence class.

Definition 1 (Internal model diversity). For a range i of neighborhood
shapes for model M , the internal diversity of M is the number of shapes wrt. the
size of the model: dinti (M) = |Si(M)|/|M |.

The range of this internal diversity metric dinti (M) is [0..1], and a model M
with dint1 (M) = 1 (and |M | ≥ |MM |) guarantees full metamodel coverage [45],
i.e. it surely contains all elements from a metamodel as types. As such, it is
an appropriate diversity metric for a model in the sense of [44]. Furthermore,
given a specific range i, the number of potential neighborhood shapes within
that range is finite, but it grows superexponentially. Therefore, for a small range
i, one can derive a model Mj with dinti (Mj) = 1, but for larger models Mk (with
|Mk| > |Mj |) we will likely have dinti (Mj) ≥ dinti (Mk). However, due to the rapid
growth of the number of shapes for increasing range i, for most practical cases,
dinti (Mj) will converge to 1 if Mj is sufficiently diverse.

Definition 2 (External model diversity). Given a range i of neighborhood
shapes, the external diversity of models Mj and Mk is the number of shapes
contained exclusively in Mj or Mk but not in the other, formally, dexti (Mj ,Mk) =
|Si(Mj)⊕ Si(Mk)| where ⊕ denotes the symmetric difference of two sets.

External model diversity allows to compare two models. One can show that
this metric is a (pseudo)-distance in the mathematical sense [3], and thus, it can
serve as a diversity metric for a model generator in accordance with [44].



Definition 3 (Pseudo-distance). A function d : M ×M → R is called a
(pseudo-)distance, if it satisfies the following properties:

– d is non-negative: d(Mj ,Mk) ≥ 0
– d is symmetric d(Mj ,Mk) = d(Mk,Mj)
– if Mj and Mk are isomorphic, then d(Mj ,Mk) = 0
– triangle inequality: d(Mj ,Ml) ≤ d(Mk,Mj) + d(Mj ,Ml)

Corollary 1. External model diversity dexti (Mj ,Mk) is a (pseudo-)distance be-
tween models Mj and Mk for any i.

During model generation, we will exclude a model Mk if dexti (Mj ,Mk) = 0 for
a previously defined model Mj , but it does not imply that they are isomorphic.
Thus our definition allows to avoid graph isomorphism checks between Mj and
Mk which have high computation complexity. Note that external diversity is
a dual of symmetry breaking predicates [40] used in the Alloy Analyzer where
d(Mj ,Mk) = 0 implies that Mj and Mk are isomorphic (and not vice versa).

Definition 4 (Coverage of model set). Given a range i of neighborhood
shapes and a set of models MS = {M1, . . . ,Mk}, the coverage of this model set
is defined as covi〈MS〉 = |Si(M1) ∪ · · · ∪ Si(Mk)|.

The coverage of a model set is not normalised, but its value monotonously
grows for any range i by adding new models. Thus it corresponds to our expec-
tation that adding a new test case to a test suite should increase its coverage.

Example 4. Let us calculate the different diversity metrics for M1, M2 and M3 of
Figure 2. For range 1, they have the shapes illustrated in Figure 4. The internal
diversity of those models are dint1 (M1) = 4/6, dint1 (M2) = 4/8 and dint1 (M3) =
6/7, thus M3 is the most diverse model among them. As M1 and M2 has the same
shape, the distance between them is dext1 (M1,M2) = 0. The distance between
M1 and M3 is dext1 (M1,M3) = 4 as M1 has 1 different neighbourhoods (n1), and
M3 has 3 (n5, n6 and n7). The set coverage of M1, M2 and M3 is 7 altogether,
as they have 7 different neighbourhoods (n1 to n7).

4 Iterative Generation of Diverse Models

Now we aim at generating a diverse set of models MS = {M1,M2, . . . ,Mk} for
a given metamodel MM (and potentially, a set of constraints WF ). Our ap-
proach (see Figure 5) intentionally reuses several components as building blocks
obtained from existing research results aiming to derive consistent graph models.
First, model generation is an iterative process where previous solutions serve as
further constraints [36]. Second, it repeatedly calls a back-end graph solver [1]
to automatically derive consistent instance models which satisfy WF .

As a key conceptual novelty, we enforce the structural diversity of models
during the generation process using neighborhood shapes at different stages.
Most importantly, if the shape Si(Mk) of a new instance model Mn obtained



Fig. 5: Generation of diverse models

as a candidate solution is identical to the shape Si(Mj) for a previously derived
model Mj for a predefined (input) neighborhood range i, the solution candidate
is discarded, and iterative generation continues towards a new candidate.

Internally, our tool operates over partial models [32,35] where instance models
are derived along a refinement calculus [44]. The shapes of intermediate (par-
tial) models found during model generation are continuously being computed.
As such, they may help guide the search process of model generation by giving
preference to refine (partial) model candidates that likely result in a different
graph shape. Furthermore, this extra bookkeeping also pays off once a model
candidate is found since comparing two neighborhood shapes is fast (conceptu-
ally similar to lexicographical ordering). However, our concepts could be adapted
to postprocess the output of other (black-box) model generator tools.

Example 5. As an illustration of the iterative generation of diverse models, let
us imagine that model M1 (in Figure 2) is retrieved first by a model generator.
Shape S2(M1) is then calculated (see Figure 4), and since there are no other
models with the same shape, M1 is stored as a solution. If the model generator
retrieves M2 as the next solution candidate, it turns out that S2(M2) = S2(M1),
thusM2 is excluded. Next, if modelM3 is generated, it will be stored as a solution
since S2(M3) 6= S2(M2). Note that we intentionally omitted the internal search
procedure of the model generator to focus on the use of neighborhood shapes.

Finally, it is worth highlighting that graph shapes are conceptually different
from other approaches aiming to achieve diversity. Approaches relying upon
object identifiers (like [39]) may classify two graphs which are isomorphic to
be different. Sampling-based approaches [19] attempt to derive non-isomorphic
models on a statistical basis, but there is no formal guarantee that two models
are non-isomorphic. The Alloy Analyzer [40] uses symmetry breaking predicates
as sufficient conditions of isomorphism (i.e. two models are surely isomorphic).
Graph shapes provide a necessary condition for isomorphism i.e. if a two non-
isomorphic models have identical shape, one of them is dissolved.

5 Evaluation

In this section, we provide an empirical evaluation of our diversity metrics and
model generation technique to address the following research questions:



RQ1: How effective is our technique in creating diverse models for testing?
RQ2: How effective is our technique in creating diverse test suites?
RQ3: Is there correlation between diversity metrics and mutation score?

Target Domain. In order to answer those questions, we executed model gener-
ation campaigns on a DSL extracted from Yakindu Statecharts (as proposed in
[36]). We used the partial metamodel describing the state hierarchy and tran-
sitions of statecharts (illustrated in Figure 1, containing 12 classes and 6 refer-
ences). Additionally, we formalized 10 WF constraints regulating the transitions
as graph predicates, based on the built-in validation of Yakindu.

For mutation testing, we used a constraint or negation omission operator (CO
and NO) to inject an error to the original WF constraint in every possible way,
which yielded 51 mutants from the original 10 constraints (but some mutants
may never have matches). We checked both the original and mutated versions
of the constraints for each instance model, and a model kills a mutant if there
is a difference in the match set of the two constraints. The mutation score for a
test suite (i.e. a set of models) is the total number of mutants killed that way.

Compared approaches. Our test input models were taken from three different
sources. First, we generated models with our iterative approach using a graph
solver (GS) with different neighborhoods for ranges 1 to 3 (r=1,r=2 and r=3).

Next, we generated models for the same DSL using Alloy[40], a well-known
SAT-based relational model finder. For representing EMF metamodels we used
traditional encoding techniques [10,34]. To enforce model diversity, Alloy was
configured with three different setups for symmetry breaking predicates: s=0,
s=10 and s=20 (default value). For greater values the tool produced the same
set of models. We used the latest 4.2 build for Alloy with the default Sat4j [23]
as back-end solver. All other configuration options were set to default.

Finally, we included 1250 manually created statechart models in our anal-
ysis (marked by Human). The models were created by students as solutions
for similar (but not identical) statechart modeling homework assignments [44]
representing real models which were not prepared for testing purposes.

Measurement setup. To address RQ1-RQ3, we created a two-step measure-
ment setup. In Step I. a set of instance models is generated with all GS and
Alloy configurations. Each tool in each configuration generated a sequence of
30 instance models produced by subsequent solver calls, and each sequence is
repeated 20 times (so 1800 models are generated for both GS and Alloy). In
case of Alloy, we prevented the deterministic run of the solver to enable statisti-
cal analysis. The model generators was to create metamodel-compliant instances
compliant with the structural constraints of subsection 2.1 but ignoring the WF
constraints. The target model size is set to 30 objects as Alloy did not scale with
increasing size. The size of Human models ranges from 50 to 200 objects.

In Step II., we evaluate and the mutation score for all the models (and for
the entire sequence) by comparing results for the mutant and original predicates
and record which mutant was killed by a model. We also calculate our diversity



(a) Mutation Score and Internal Diversity

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7A
ve

ra
ge

 D
is

ta
n

ce
 

Range of Neighbourhoods

Alloy;s=0 Alloy;s=10 Alloy;s=20 (def)

GS;r=1 GS;r=2 GS;r=3

(b) External Diversity

Fig. 6: Mutation Scores and Diversity properties of models sets

metrics for a neighborhood range where no more equivalence classes are produced
by shapes (which turned out to be r = 7 in our case study). We calculated the
internal diversity of each model, the external diversity (distance) between pairs
of models in each model sequence, and the coverage of each model sequence.

RQ1: Measurement Results and Analysis Figure 6a shows the distribution of
the number of mutants killed by at least one model from a model sequence (left
box plot), and the distribution of internal diversity (right box plot). For killing
mutants, GS was the best performer (regardless of the r range): most models
found 36-41 mutants out of 51. On the other hand, Alloy performance varied
based on the value of symmetry: for s=0, most models found 9-15 mutants (with
a large number of positive outliers that found several errors). For s=10, the
average is increased over 20, but the number of positive outliers simultaneously
dropped. Finally, in default settings (s=20) Alloy generated similar models,
and found only a low number of mutants. We also measured the efficiency of
killing mutants by Human, which was between GS and Alloy. None of the
the instance models could find more than 41 mutants, which suggests that those
mutants cannot be detected at all by metamodel-compliant instances.

The right side of Figure 6a presents the internal diversity of models measured
as shape nodes/graph nodes (for fixpoint range 7). The result are similar: the
diversity was high with low variance in GS with slight differences between ranges.
In case of Alloy, the diversity is similarly affected by the symmetry value:
s=0 produced low average diversity, but a high number of positive outliers.
With s=10, the average diversity increased with decreasing number of positive
outliers. And finally, with the default s=20 value the average diversity was low.
The internal diversity of Human models are between GS and Alloy.

Figure 6b illustrates the average distance between all model pairs generated
in the same sequence (vertical axis) for range 7. The distribution of external
diversity also shows similar characteristics as Figure 6a: GS provided high di-
versity for all ranges (56 out of the maximum 60), while the diversity between
models generated by Alloy varied based on the symmetry value.

As a summary, our model generation technique consistently outperformed
Alloy wrt. both the diversity metrics and mutation score for individual models.



15

20

25

30

35

40

45

0 5 10 15 20 25 30

# 
M

u
ta

n
ts

 K
ill

ed

# of Models

Alloy;s=0 Alloy;s=10 Alloy;s=20 (def)

GS;r=1 GS;r=2 GS;r=3

(a) Mutation score for model sequence

0

50

100

150

200

0 10 20 30

# 
o

f 
Sh

ap
e 

N
o

d
es

Alloy;s=0

0

50

100

150

200

0 10 20 30

# 
o

f 
Sh

ap
e 

N
o

d
es

Alloy;s=10

0

50

100

150

200

0 10 20 30

# 
o

f 
Sh

ap
e 

N
o

d
es

Alloy;s=20 (def)

0

200

400

600

800

0 10 20 30

# 
o

f 
Sh

ap
e 

N
o

d
es

Graph Solver;r=1

r0 r1 r2 r3 r4 r5

(b) Model set coverage

Fig. 7: Mutation score and set coverage for model sequences

RQ2: Measurement Results and Analysis Figure 7a shows the number of killed
mutants (vertical axis) by an increasing set of models (with 1 to 30 elements;
horizontal axis) generated by GS or Alloy. The diagram shows the median of
20 generation runs to exclude the outliers. GS found a large amount of mutants
in the first model, and the number of killed mutants (36-37) increased to 41
by the 17th model, which after no further mutants has been found. Again, our
measurement showed little difference between ranges r=1, 2 and 3. For Alloy,
the result highly depends on the symmetry value: for s=0 it found a large amount
of mutants, but the value saturated early. Next, for s=10, the first model found
significantly less mutants, but the number increased rapidly in the for the first
5 models, but altogether, less mutants were killed than for s=0. Finally, the
default configuration (s=20) found the least number of mutants.

In Figure 7b, the average coverage of the model sets is calculated (vertical
axis) for increasing model sets (horizontal axis). The neighborhood shapes are
calculated for r = 0 to 5, which after no significant difference is shown. Again,
configurations of symmetry breaking predicates resulted in different characteris-
tics for Alloy. However, the number of shape nodes investigated by the test set
was significantly higher in case of GS(791 vs. 200 equivalence classes) regardless
of the range, and it was monotonously increasing by adding new models.

Altogether, both mutation score and equivalence class coverage of a model
sequence was much better for our model generator approach compared to Alloy.

RQ3: Analysis of Results Figure 8 illustrates the correlation between mutation
score (horizontal axis) and internal diversity (vertical axis) for all generated
and human models in all configurations. Considering all models (1800 Alloy,
1800 GS, 1250 Human), mutation score and internal diversity shows a high
correlation of 0.95 – while the correlation was low (0.12) for only Human models.



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45

D
iv

er
si

ty
 

# Of Mutants Killed

Alloy;s=0

Alloy;s=10

Alloy;s=20 (def)

GS;r=1

GS;r=2

GS;r=3

Human

Fig. 8: Model diversity and mutation score correlation

Our initial investigation suggests that a high internal diversity will provide
good mutation score, thus our metrics can potentially be good predictors in a
testing context, but we cannot generalize to full statistical correlation.

Threats to Validity and Limitations. We evaluated more than 4850 test inputs
in our measurement, but all models were taken from a single domain of Yakindu
statecharts with a dedicated set of WF constraints. However, our model gener-
ation approach did not used any special property of the metamodel or the WF
constraints, thus we believe that similar results would be obtained for other do-
mains. For mutation operations, we checked only omission of predicates, as extra
constraints could easily yield infeasible predicates due to inconsistency with the
metamodel, thus further reducing the number of mutants that can be killed.

Finally, although we detected a strong correlation between diversity and mu-
tation score with our test cases, this result cannot be generalized to statistical
causality, because the generated models were not random samples taken from
the universe of models. Thus additional investigations are needed to justify this
correlation, and we only state that if a model is generated by either GS or Alloy,
a higher diversity means a higher mutation score with high probability.

6 Related Work

Diverse models play a key role in testing model transformations and code genera-
tors. Mutation-based approaches [25,13,2] take existing models and make random
changes on them by applying mutation rules. A similar random model generator
is used for experimentation purposes in [4]. Other automated techniques [9,14]
generate models that only conform to the metamodel. While these techniques
scale well for larger models, there is no guarantee whether the mutated models
satisfy WF constraints.

There is a wide set of model generation techniques which provide certain
promises for test effectiveness. White-box approaches [2,8,16,17,33,34] rely on
the implementation of the transformation and dominantly use back-end logic
solvers, which lack scalability when deriving graph models.



Scalability and diversity of solver-based techniques can be improved by it-
eratively calling the underlying solver [21,36]. In each step a partial model is
extended with additional elements as a result of a solver call. Higher diversity is
achieved by avoiding the same partial solutions. As a downside, generation steps
need to be specified manually, and higher diversity can be achieved only if the
models are decomposable into separate well-defined partitions.

Black-box approaches [15,26,10,17] can only exploit the specification of the
language or the transformation, so they frequently rely upon contracts or model
fragments. As a common theme, these techniques may generate a set of simple
models, and while certain diversity can be achieved by using symmetry-breaking
predicates, they fail to scale for larger sizes. In fact, the effective diversity of
models is also questionable since corresponding safety standards prescribe much
stricter test coverage criteria for software certification and tool qualification than
those currently offered by existing model transformation testing approaches.

Based on the logic-based Formula solver, the approach of [19] applies stochas-
tic random sampling of output to achieve a diverse set of generated models by
taking exactly one element from each equivalence class defined by graph isomor-
phism, which can be too restrictive for coverage purposes. Stochastic simulation
is proposed for graph transformation systems in [41], where rule application is
stochastic (and not the properties of models), but fulfillment of WF constraints
can only be assured by a carefully constructed rule set.

7 Conclusion and Future Work

We proposed novel diversity metrics for models based on neighbourhood shapes
[30], which are true generalizations of metamodel coverage and graph isomor-
phism used in many research papers. Moreover, we presented a model generation
technique that to derive structurally diverse models by (i) calculating the shape
of the previous solutions, and (ii) feeding back to an existing generator to avoid
similar instances thus ensuring high diversity between the models.

We evaluated our approach in a mutation testing scenario for Yakindu Stat-
echarts, an industrial DSL tool. We compared the effectiveness (mutation score)
and the diversity metrics of different test suites derived by our approach and
an Alloy-based model generator. Our approach consistently outperformed the
Alloy-based generator for both a single model and the entire test suite. More-
over, we found high (internal) diversity values normally result in high mutation
score, thus highlighting the practical value of the proposed diversity metrics.

Conceptually, our approach can be adapted to an Alloy-based model gener-
ator by adding formulae obtained from previous shapes to the input specifica-
tion. However, our initial investigations revealed that such an approach does not
scale well with increasing model size. While Alloy has been used as a model gen-
erator for numerous testing scenarios of DSL tools and model transformations
[8,10,36,37,43], our measurements strongly indicate that it is not a justified choice
as (1) Alloy is very sensitive to configurations of symmetry breaking predicates
and (2) the diversity and mutation score of generated models is problematic.



References

1. Anonymous for double-blind version.
2. V. Aranega, J.-M. Mottu, A. Etien, T. Degueule, B. Baudry, and J.-L. Dekeyser.

Towards an automation of the mutation analysis dedicated to model transforma-
tion. Softw. Test., Verif. Reliab., 25(5-7):653–683, 2015.

3. A. Arkhangel’Skii and V. Fedorchuk. General topology I: basic concepts and con-
structions dimension theory, volume 17. Springer Science & Business Media, 2012.

4. E. Batot and H. Sahraoui. A generic framework for model-set selection for the
unification of testing and learning MDE tasks. In MODELS, pages 374–384, 2016.

5. B. Baudry, T. Dinh-Trong, J.-M. Mottu, D. Simmonds, R. France, S. Ghosh,
F. Fleurey, and Y. Le Traon. Model transformation testing challenges. In In-
tegration of Model Driven Development and Model Driven Testing, 2006.

6. B. Baudry, M. Monperrus, C. Mony, F. Chauvel, F. Fleurey, and S. Clarke. Di-
versify: Ecology-inspired software evolution for diversity emergence. In Software
Maintenance, Reengineering and Reverse Engineeringn, pages 395–398, 2014.

7. E. Biermann, K. Ehrig, C. Ermel, C. Köhler, and G. Taentzer. The EMF model
transformation framework. In AGTIVE, pages 566–567, 2007.

8. B. Bordbar and K. Anastasakis. Uml2alloy: A tool for lightweight modelling of
discrete event systems. In IADIS AC, pages 209–216, 2005.

9. E. Brottier, F. Fleurey, J. Steel, B. Baudry, and Y. Le Traon. Metamodel-based
Test Generation for Model Transformations: an Algorithm and a Tool. In 17th
International Symposium on Software Reliability Engineering, pages 85–94, 2006.

10. F. Büttner, M. Egea, J. Cabot, and M. Gogolla. Verification of ATL transforma-
tions using transformation models and model finders. In 14th International Conf.
on Formal Engineering Methods, pages 198–213, 2012.

11. J. Cabot, R. Clarisó, and D. Riera. UMLtoCSP: a tool for the formal verification of
UML/OCL models using constraint programming. In ASE, pages 547–548, 2007.

12. J. Cabot, R. Clariso, and D. Riera. Verification of UML/OCL class diagrams using
constraint programming. In ICSTW, pages 73–80, 2008.

13. A. Darabos, A. Pataricza, and D. Varró. Towards testing the implementation of
graph transformations. In GTVMT, ENTCS. Elsevier, 2006.

14. K. Ehrig, J. M. Küster, and G. Taentzer. Generating instance models from meta
models. Softw. Syst. Model, 8(4):479–500, 2009.

15. F. Fleurey, B. Baudry, P.-A. Muller, and Y. Le Traon. Towards dependable model
transformations: Qualifying input test data. SoSyM, 2007.

16. C. A. Gonzalez and J. Cabot. Test data generation for model transformations
combining partition and constraint analysis. In ICMT, pages 25–41, 2014.

17. E. Guerra and M. Soeken. Specification-driven model transformation testing.
Softw. Syst. Model., 14(2):623–644, may 2015.

18. D. Jackson. Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol., 11(2):256–290, 2002.

19. E. K. Jackson, G. Simko, and J. Sztipanovits. Diversely enumerating system-level
architectures. In Int. Conf. on Embedded Software, page 11, 2013.

20. Y. Jia and M. Harman. An analysis and survey of the development of mutation
testing. IEEE transactions on software engineering, 37(5):649–678, 2011.

21. E. Kang, E. Jackson, and W. Schulte. An approach for effective design space
exploration. In Foundations of Computer Software., pages 33–54. 2011.

22. D. S. Kolovos, R. F. Paige, and F. A. C. Polack. On the evolution of OCL for
capturing structural constraints in modelling languages. In Rigorous Methods for
Software Construction and Analysis, pages 204–218. 2009.



23. D. Le Berre and A. Parrain. The Sat4j library. Journal on Satisfiability, Boolean
Modeling and Computation, 7:59–64, 2010.

24. Z. Micskei, Z. Szatmári, J. Oláh, and I. Majzik. A concept for testing robust-
ness and safety of the context-aware behaviour of autonomous systems. In KES-
AMSTA, volume 7327 of LNCS, pages 504–513. Springer, 2012.

25. J. Mottu, B. Baudry, and Y. L. Traon. Mutation analysis testing for model trans-
formations. In ECMDA-FA, volume 4066 of LNCS, pages 376–390. Springer, 2006.

26. J.-M. Mottu, S. S. Simula, J. Cadavid, and B. Baudry. Discovering model trans-
formation pre-conditions using automatically generated test models. In ISSRE,
pages 88–99. IEEE, nov 2015.

27. The Object Management Group. Object Constraint Language, v2.0, May 2006.
28. S. C. Reid. An empirical analysis of equivalence partitioning, boundary value

analysis and random testing. In Software Metrics Symposium, pages 64–73, 1997.
29. A. Rensink. Isomorphism checking in GROOVE. ECEASST, 1, 2006.
30. A. Rensink and D. Distefano. Abstract graph transformation. Electronic Notes in

Theoretical Computer Science, 157(1):39–59, 2006.
31. T. W. Reps, M. Sagiv, and R. Wilhelm. Static program analysis via 3-valued logic.

In International Conference on Computer Aided Verification, pages 15–30, 2004.
32. R. Salay, M. Famelis, and M. Chechik. Language independent refinement using

partial modeling. In FASE, volume 7212 of LNCS, pages 224–239. 2012.
33. J. Schonbock, G. Kappel, M. Wimmer, A. Kusel, W. Retschitzegger, and

W. Schwinger. TETRABox - a generic white-box testing framework for model
transformations. In APSEC, pages 75–82. IEEE, dec 2013.

34. O. Semeráth, A. Barta, A. Horváth, Z. Szatmári, and D. Varró. Formal validation
of domain-specific languages with derived features and well-formedness constraints.
Software and Systems Modeling, pages 1–36, 2015.

35. O. Semeráth and D. Varró. Graph constraint evaluation over partial models by
constraint rewriting. In ICMT, pages 138–154, 2017.

36. O. Semeráth, A. Vörös, and D. Varró. Iterative and incremental model generation
by logic solvers. In FASE, pages 87–103, 2016.

37. S. Sen, B. Baudry, and J. Mottu. Automatic model generation strategies for model
transformation testing. In ICMT, pages 148–164, 2009.

38. The Eclipse Project. Eclipse Modeling Framework. //www.eclipse.org/emf.
39. The Eclipse Project. EMF DiffMerge. wiki.eclipse.org/EMF_DiffMerge.
40. E. Torlak and D. Jackson. Kodkod: A relational model finder. In Tools and

Algorithms for the Construction and Analysis of Systems, pages 632–647. 2007.
41. P. Torrini, R. Heckel, and I. Ráth. Stochastic simulation of graph transformation

systems. In FASE, volume 6013 of LNCS, pages 154–157. Springer, 2010.
42. Z. Ujhelyi, G. Bergmann, Á. Hegedüs, Á. Horváth, B. Izsó, I. Ráth, Z. Szatmári,

and D. Varró. EMF-IncQuery: An integrated development environment for live
model queries. Science of Computer Programming, 98, 02/2015 2015.

43. A. Vallecillo, M. Gogolla, L. Burgueño, M. Wimmer, and L. Hamann. Formal
specification and testing of model transformations. In SFM, pages 399–437, 2012.

44. D. Varró, O. Semeráth, G. Szárnyas, and Ákos Horváth. Towards the automated
generation of consistent, diverse, scalable and realistic graph models. In Festschrift
in Memory of Hartmut Ehrig. Springer, 2017.

45. J. Wang, S.-K. Kim, and D. Carrington. Verifying metamodel coverage of model
transformations. In Software Engineering Conference, pages 10–pp, 2006.

46. Yakindu Statechart Tools. Yakindu. http://statecharts.org/.

//www.eclipse.org/emf
wiki.eclipse.org/EMF_DiffMerge
http://statecharts.org/

	Iterative Generation of Diverse Models  for Testing Specifications of DSL Tools

