
BPMN to BPEL case study solution in VIATRA 2

Gábor Bergmann and́Akos Horv́ath

Budapest University of Technology and Economics,
Department of Measurement and Information Systems,

H-1117 Magyar tud́osok krt. 2, Budapest, Hungary
{bergmann, ahorvath}@mit.bme.hu

1 Introduction

Automated model transformations play an important role in modern model-driven sys-
tem engineering in order to query, derive and manipulate large, industrial models. Since
such transformations are frequently integrated to design environments, they need to
provide short reaction time to support software engineers.

Graph transformation(GT) [1] based tools have been frequently used for specifying
and executing complex model transformations. In GT tools,graph patternscapture
structural conditions and type constraints in a compact visual way. At execution time,
these conditions need to be evaluated bygraph pattern matching, which aims to retrieve
one or all matches of a given pattern to execute a transformation rule.

The objective of the VIATRA 2 (VIsual Automated model TRAnsformations [2])
is to support the entire life-cycle, i.e. the specification, design, execution, validation
and maintenance of model transformations defined by a combination Abstract State
Machine (ASM) and graph transformation rule.

Model description V IATRA 2 uses the VPM metamodeling approach [3] for describ-
ing modeling languages and models. The main reason for selecting VPM instead of
a MOF-based metamodeling approach is that VPM supports arbitrary metalevels in
the model space. As a direct consequence, models taken from conceptually different
domains (and/or technological spaces) can be easily integrated into the VPM model
space. The flexibility of VPM is demonstrated by a large number of already existing
model importers accepting the models of different BPM formalisms, UML models of
various tools, XSD descriptions, and EMF models.

Transformation description.Specification of model transformations in VIATRA 2 com-
bines visual rule and patternbased paradigm of graph transformation (GT) [1] and the
very general, high-level formal paradigm of abstract state machines (ASM) [4] into
a single framework for capturing transformations within and between modeling lan-
guages.

Transformation Execution.Transformations are primarily executed within the frame-
work by using the VIATRA 2 interpreter. For pattern matching both (i)local search
based pattern matching(LS) and (ii) incremental pattern matching (INC) are avail-
able. This feature provides the transformation designer additonal opportunities to fine



tune the transformation either for faster exeuction (INC) or lower memory consumption
(LS).

The rest of the paper is structured as follows. Sec. 2 gives an overview of the trans-
formation presented in this paper, while Sec. 3 highlights the interesting parts of our
implementation and finally Sec. 4 concludes the paper.

2 Overview of the Approach

The model transformation presented in this paper is a solution to the BPMN to BPEL [5]
case study of the GraBaTs 2009 [6] tool contest. Both BPEL [7] and BPMN [8] are
business process / workflow definition languages with high industrial relevance. While
BPEL relies on a strict nested block structure to define its control flow, BPMN basically
uses freeform sequence flow edges between its flow objects. This key difference is the
main hurdle of the transformation problem.

The implemented workflow of the BPMN to BPEL transformation is summarized
in Fig. 1.

Fig. 1.Overview of the BPMN to BPEL transformation

Input Our approach supports two different input formats: (i) the XML format defined
in the case study (depicted by a green cylinder) and (ii) its corresponding EMF [9]
based version. As an experimental feature of the VIATRA 2 framework the importer for
the EMF format was (mostly) automatically generated based on its ecore files. For the
XML version we have hand coded a simple parser that translates the XML file to its
corresponding EMF model and uses the generated importer for the actual work.



TransformationThe transformation itself is implemented as a VIATRA 2 transformation
program. It consists of 44 graph patterns and 27 ASM rules in approx. 700 lines of code
and detailed in Sec.3.

Export Finally, to generate the BPEL source code we relied on the Eclipse BPEL
project [10]. We adopted its EMF model and used our exporter generator to create the
exporter that builds an EMF-based BPEL model from its VIATRA 2 model space repre-
sentation. As for source code generation, the Eclipse BPEL project serializes its EMF
models to BPEL files automatically.

3 Solution

3.1 Overview

We have implemented a partial solution for the BPMN to BPEL transformation prob-
lem. Our approach conceptually follows the Structured Activity-based Translation de-
scribed in Section 4.1 of [11]. This translation procedure involves identifying compo-
nents of the BPMN graph that adhere to the strict block structure of the BPEL control
flow. Identified components are repeatedlyfoldedinto single nodes so that larger com-
ponents incorporating them are more easily recognized. If the BPMN model consists
solely of BPEL-stlye blocks, the entire process is eventually folded into a single com-
plex activity node, preceded by a Start Event and followed by an End Event. However,
not all BPMN models are built this way, thus great care must be taken to enforce the
neccessary conditions of well-structured components.

The transformation consist of two phases: (i) identifying well-structured compo-
nents of the BPMN workflow through iterated folding as described above, and (ii)
building a BPEL process model based on the identified and folded components. Our
implementation is currently capable of identifying, folding, and translating the follow-
ing well-structured components:

– Linear sequences of regular flow objects, referred to assequence components. Tasks,
intermediate events and folded components are considered regular here, while gate-
ways are excluded.

– Fork/Join parallelism of regular nodes, referred to as aflow component.
– Decision/Merge branching of regular flow objects, referred to as aswitch compo-

nent.
– Three different flavors of looping regular nodes, referred to aswhile, repeat, repeat-

while components.

One notable divergence from the algorithm presented in [11] is using theIf ac-
tivity of BPEL 2.0 instead of aSwitch. More importantly, there is a difference in the
handling of nested sequence components. To achieve better readability of the resulting
BPEL model, it is recommended to avoid the nesting of sequences. The original solution
achieves this by folding only so-called maximal sequence components, no extension of
which is a sequence component itself. Due to the folding of other types of compo-
nents, however, a sequence component that was previously considered maximal may



become prefixable / postfixable by newly created substitute tasks, and therefore nested
sequences may still appear in the output. Our approach does restrict sequence folding
to maximal sequence components, but flattens the hierarchy of folded sequences during
the translation to BPEL instead.

3.2 Program structure

The transformation program achieving these goals consists of the following notable
parts:

– Entry point and main control of the program, to initialize the trace model and invoke
first the folding, then the actual transformation rules.

– Patterns that identify foldable components corresponding to one of the structured
activites of BPEL. At least one complex pattern is needed for each component type,
as well as and some auxiliary patterns to help enforcing the criteria associated with
the component type.

– Rules for each structured component type to fold an individual identified compo-
nent into a singlesubstitute task, and weave the newly created node back into the
BPMN workflow.

– A folding control rule to supervise the behaviour described in the previous two
bullets.

– Rules translating a completely folded, well-structured BPMN model into a BPEL
model. The translation is fairly straightforward, and carried out in top-down fash-
ion. A separate translation rule is required for each regular BPMN flow object type,
and for the substitute tasks of each structured activity component type.

– Patterns to direct these rules in the top-down traversal of the modified BPMN
model.

Fig. 2. Simplified trace meta-
model

The transformation makes use of a trace model.
The first role of the trace model is to contain the sub-
stitute tasks representing folded componenents of
BPMN, and to maintain the mapping between these
representative nodes and the original constituents of
the component. The second role of the trace model
is to establish correspondence between the source
BPMN processes and the target BPEL processes;
while this mapping is not strictly needed during the
runtime of the transformation, it may be useful after-
wards. While not implemented, this aspect of trace
information could be extended to provide deep trace-
ability between BPEL contructs and elements of the
folded BPMN process. A simplified version of the
trace metamodel is depicted in Figure 2.

3.3 Missing features

While our solution is useful to showcase VIATRA 2, it is not meant to be a feature-
complete product. Naturally, there are several shortcomings. Most importantly, only



the first algorithm presented in [11] is implemented, and therefore only those BPMN
models can be transformed that consist of well-structured components corresponding
to BPEL activies. For the sake of simplicity, we have also omitted folding support for
one kind of Decision/Merge construct, the event-basedpick component. In either case,
the transformation reports that it was unable to fold a specific BPMN process.

As the explicit focus of the case study was the transformation of workflowstruc-
ture as opposed to condition, event and task mappings, our solution merely copies the
ID of tasks. Edge guards are also ignored, except on branches of a switch component.
Conditional branches, however, are supposed to be ordered; as the input format speci-
fication of the case study does not clearly indicate this ordering, our solution makes no
guarantees on correctly preserving the condition evaluation order.

It is also important to point out that no reverse transformation was implemented.

4 Conclusion

In the current paper we have presented our VIATRA 2 based implementation for the
BPMN-to-BPEL case study [5]. Due to the lack of resources we implemented only a
partial solution. However, we believe that the complete implementation is possible in
the VIATRA 2framework if sufficient time is invested into the implementation.

References

1. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Handbook on Graph Grammars
and Computing by Graph Transformation. Volume 2: Applications, Languages and Tools.
World Scientific (1999)

2. VIATRA2 Framework: An eclipse GMT subproject (http://www.eclipse.org/gmt/)
3. Varró, D., Pataricza, A.: VPM: A visual, precise and multilevel metamodeling framework

for describing mathematical domains and UML. Journal of Software and Systems Modeling
2(3) (October 2003) 187–210

4. Börger, E., Sẗark, R.: Abstract State Machines. A method for High-Level System Design and
Analysis. Springer-Verlag (2003)

5. Marlon Dumas: Case study: Bpmn to bpel model transformation, grabats 2009 (2009)
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/cases/grabats2009sy%
nthesis.pdf.

6. GraBaTs - Graph-Based Tools: The Contest: official website (2009)http://is.tm.tue.
nl/staff/pvgorp/events/grabats2009.

7. OASIS Standard: Web Services Business Process Execution Language version 2.0. (2007)
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf.

8. OMG Specification: Business Process Modeling Notation version 1.2. (2009)http://www.
omg.org/spec/BPMN/1.2.

9. The Eclipse Modeling Framework project: http://www.eclipse.org/emf/
10. Moser, S., Chmielewski, M.: The eclipse BPEL project, http://www.eclipse.org/bpel/
11. Ouyang, C., van der Aalst, W.M., Dumas, M., ter Hofstede, A.H.: From Busi-

ness Process Models to Process-oriented Software Systems: The BPMN to BPEL Way.
http://eprints.qut.edu.au/5266/ (2006)


