
Springer Nature 2021 LATEX template

Integration test generation for state-based components in the

Gamma framework

Bence Graics1*, Vince Molnár1† and István Majzik1†

1Department of Measurement and Information Systems, Budapest University of
Technology and Economics, Magyar Tudósok körútja 2. Building I, Wing E, Floor IV,

Room IE444, Budapest, H-1117, Hungary.

*Corresponding author(s). E-mail(s): graics@mit.bme.hu;
Contributing authors: molnarv@mit.bme.hu; majzik@mit.bme.hu;

†These authors contributed equally to this work.

Abstract

Nowadays, the design of complex reactive systems, e.g., control systems in the railway and aerospace
industries, is generally based on the integration of components. Components (subsystems) may come
from various parties and operate according to different execution and interaction semantics. Ana-
lyzing the joint behavior of such integrated components is a tedious task. This paper introduces a
model-based approach in our Gamma Statechart Composition Framework for integration test gener-
ation on the basis of collaborating state-based models. Test generation is supported by test coverage
criteria and the automatic transformation of composite models into different model checker back-
ends. The diagnostic traces returned by the model checkers are automatically mapped into test cases.
As novelty, our tool is based on precise composition semantics (synchronous and asynchronous) and
relies on model queries to support the modular and flexible specification of element coverage accord-
ing to various model-based criteria: dataflow, component interactions and static model elements. The
tool utilizes model reduction and slicing techniques during the transformations to ease test gener-
ation complexity using query-dependent model processing. We demonstrate the applicability of our
tool on three industrial subsystems, including an aerospace (NASA) and two railway applications.

Keywords: model-based integration testing, modular coverage criteria, model checkers, integrated MBT tool

1 Introduction

Model-based systems engineering (MBSE) and
component-based systems engineering (CBSE) [1–
6] are getting more prevalent in the design of
complex reactive systems, e.g., critical control sys-
tems in the railway and aerospace industries. The
design of such systems is increasingly based on
the integration of components defined in high-level
modeling languages preferably with automatically
generated implementation. The components may

come from various sources, creating a loosely
coupled distributed architecture.

In different subsystems, various execution and
interaction semantics may be used, e.g., asyn-
chronous communication based on immutable
messages stored in message queues or synchronous
communication using sampled signals. Such char-
acteristics encumber the integration process as
precise hierarchical integration according to differ-
ent composition semantics is poorly supported by

1

Springer Nature 2021 LATEX template

2 Integration test generation for state-based components in the Gamma framework

present-day tools [7]. The lack of formally defined
execution and interaction modes also hinders the
precise verification of the resulting system. Thus,
system integrators generally have to rely on their
intuition and test the integrated system based on
typical system use cases (commonly provided by
domain experts), which may be informal, incom-
plete and obtained in an ad hoc way.

Systematic analysis could be supported by
employing model-based testing (MBT) meth-
ods [8], which can generate tests relying on dif-
ferent techniques and systematically provide the
coverage of structural or behavioral criteria in
the model, e.g., state, transition or interaction
coverage [9]. In addition, formal methods (e.g.,
model checking) based solutions can also prove the
unreachability of test targets. However, it is hard
to find an MBT tool that supports integration
test generation according to various and mixed
composition semantics [7]. Furthermore, the con-
figuration and the introduction of new test criteria
are generally cumbersome or not supported.

Thus, MBT approaches and tools aiming to
aid the systematic integration testing of reactive
components should support (i) the well-defined
integration of components (potentially created in
different tools) according to different execution
and interaction semantics, (ii) precisely defined,
various test criteria for structural model elements,
component behavior (interactions) and dataflow,
and (iii) efficient test generation algorithms in
terms of execution time and the size of generated
test sets (test optimization). As a solution, we pro-
pose an approach in the context of the open-source
Gamma Statechart Composition Framework.

Our Gamma Statechart Composition Frame-
work1 [10] is an integrated modeling toolset
supporting the semantically well-founded compo-
sition and analysis of heterogeneous statechart
components. At its core, it provides a composi-
tion language supporting the hierarchical mixed-
semantics interconnection of components [11].
Gamma supports system-level formal verification
and validation (V&V) by mapping statechart and
composition models into analysis formalisms of
various model checkers and back-annotating the
results to an abstract trace language.

1Additional information about the framework and the source
code can be found at http://gamma.inf.mit.bme.hu/ and https:
//github.com/ftsrg/gamma/.

This paper presents a self-contained auto-
matic MBT solution in the Gamma framework by
extending its general component integration and
verification functionalities [10, 11]. By building on
Gamma, our test generation approach utilizes the
formally defined and hierarchical mixed-semantics
composition of heterogeneous state-based compo-
nents (potentially with time-dependent behavior).
It also utilizes the integrated model checker back-
ends of Gamma to generate diagnostic traces that
are automatically mapped into test cases.

In the following, we will use the term “Gamma
test generator tool” (or “tool” in short) to refer
to the new test generator application presented
in this paper and use the term “Gamma frame-
work” or simply “Gamma” or “framework” when
we refer to all the functionalities that Gamma as
an integrated modeling toolset can offer (and the
test generator tool builds on).

As novelty, in our tool we introduced the fol-
lowing features to aid the model-based systematic
integration testing of reactive components.

• By building on and extending coverage crite-
ria presented in the literature, for integration
testing we introduced, formally defined and
implemented dataflow-based, structural (model
element-based) and behavior-based (interac-
tional) coverage criteria in the context of inter-
connected state-based models. Based on these
criteria, the generated tests can detect faults
in component implementations (e.g., missing
implementation of transitions), interaction of
components, and improper variable definitions
and uses in composite system implementations.

• The tool supports the configuration of coverage
criteria: coverable elements can be specified and
adjusted by users in flexible ways, facilitating
testing focus on specific system parts (compo-
nents). As a key aspect, the tool utilizes model
queries for specifying coverage criteria and their
automatic mapping into formal (model check-
ing) properties. Model queries are extensible,
allowing the easy customization of available and
the introduction of new criteria. As queries are
defined in the form of graph patterns, they
facilitate the high-level, declarative specifica-
tion and automatic exploration of non-trivial
interrelations between model elements.

• To improve the efficiency of test generation,
the tool applies generic and criterion-dependent

http://gamma.inf.mit.bme.hu/
https://github.com/ftsrg/gamma/
https://github.com/ftsrg/gamma/

Springer Nature 2021 LATEX template

Integration test generation for state-based components in the Gamma framework 3

model reduction and slicing techniques, rely-
ing on model queries in the exploration of
removable model elements.

• The tool integrates multiple model checker back-
ends (selectable target formal models) that
complement each other in supporting various
model types and composition semantics. We
provide practical experiences regarding time-
efficiency of test generation on real-world prob-
lems, and evaluate the advantages of different
supported formal target models (providing hints
for selection) and model processing methods.

With respect to the state-of-the-art, these
contributions can be considered partly incremen-
tal (like model queries, reductions and slicing),
and partly based on well-known methods (like
test case generation using model checkers). How-
ever, to the best of our knowledge, there is no
open-source tool that is based on mixed for-
mal composition semantics, supports configurable
interaction-oriented test criteria, and implements
efficiency-improving techniques seamlessly in a
single modeling framework – together with source
code generation and formal verification that are
also supported by Gamma.

In terms of MBT, the initial Gamma versions
presented in [10] and [11] supported only uncon-
figurable simple structural (state- and transition-
based) test criteria without providing (the more
complex and cumbersome) interaction and inter-
component dataflow coverage. The efficient imple-
mentation of test generation based on these new
criteria required the new model query based app-
roach as well as model reduction and slicing.

Although we present these solutions in our
Gamma tool, the contributions regarding the test
coverage criteria, model queries and model pro-
cessing techniques are general (build on graph
languages) and could be applied in other MBT
approaches and integrated into other tools, too.

The rest of the paper is structured as fol-
lows. Section 2 overviews component integration
and verification in the Gamma framework, which
serve as a basis for our test generation app-
roach presented in Sect. 3. Section 4 formally
defines the supported test coverage criteria and
overviews how composite models are annotated
and properties are generated to specify coverable
test targets. Section 5 presents the processing
of annotated composite models, properties and

resulting abstract test cases during test gener-
ation. Section 6 introduces the versatility and
efficiency of our tool by generating tests accord-
ing to different coverage criteria for industrial
subsystems, including a NASA-related aerospace
application and two railway-related subsystems.
Section 7 covers related work. Finally, Sect. 8 con-
cludes the paper and presents possible directions
for future work.

2 Component integration and
verification in Gamma

This section overviews the general workflow
according to which components can be integrated
and verified in Gamma,2 serving as a basis for our
test generation approach detailed in later sections.
We introduce the workflow in the context of a sim-
plified elevator system first presented in [9]. The
components of the system are modeled in Yakindu
(see Fig. 1) comprising a cabin controller that
can initiate the movement of the elevator cabin
up and down in accordance with external com-
mands (Cabin.up and Cabin.down events) and
control the cabin door controller to open or close
(Door.open and Door.close events) the cabin door.

Fig. 1 Cabin controller and cabin door controller models
of the elevator system.

The workflow builds on a model transforma-
tion chain depicted in Fig. 2, which illustrates the
input and output models of these model transfor-
mations as well as the languages in which they
are defined, and the relations between them. The
modeling languages are as follows.

2Even though, the Gamma framework currently supports
statechart models as input, its modeling language family sup-
ports the integration of other formalisms, e.g., we are working
on integrating activity diagrams [12].

Springer Nature 2021 LATEX template

4 Integration test generation for state-based components in the Gamma framework

• The Gamma Statechart Language (GSL)
is a UML/SysML-based statechart language
supporting different semantic variants of state-
charts.

• The Gamma Composition Language
(GCL) is a composition language for the for-
mal hierarchical composition of state-based
components according to multiple execution
and interaction semantics.

• The Gamma Genmodel Language (GGL)
is a configuration language for configuring
model transformations.

• The Gamma Property Language (GPL) is
a property language supporting the definition of
CTL* [13] properties and thus, the formal spec-
ification of requirements regarding (composite)
component behavior.

• The Gamma Trace Language (GTL) is a
high-level specification language for execution
traces of (composite) components.

The following sections present the consecutive
steps (identified with numbers in the overview
figure) of the general component integration
and verification workflow in the Gamma frame-
work. Note that the sections include only high-
level descriptions of the functionalities; for more
detailed descriptions, we direct the reader to the
Appendix and [11].

Optionally, statechart models defined in
supported modeling tools (front-ends) can be
imported into Gamma (Sect. 2.1), which can be
integrated according to well-defined execution and
interaction semantics (Sect. 2.2). The resulting
composite model is processed and transformed
into the input formalisms of integrated model
checker back-ends (Sect. 2.3). The model checker
back-ends provide witnesses (diagnostic traces)
based on specified properties, which are back-
annotated, resulting in abstract traces (Sect. 2.4)
In transition to the subsequent sections, Sect. 3
introduces the general ideas on how our test gen-
eration approach extends the general integration
and verification workflow to derive coverage-based
test sets for composite model implementations.

2.1 Importing external component
models (optional)

The import of an external component model, i.e.,
a statechart created in an external modeling tool,

is realized by executing a model transformation
that maps this model into a GSL statechart. Cur-
rently, the import of Yakindu3 and MagicDraw4

models are supported, but the integration of other
UML/SysML tools would be only a technological
challenge. GSL serves as a common representation
language for component statecharts and supports
different statechart semantics by means of anno-
tations: conflict resolution between transitions of
different hierarchy levels (top-down or bottom-up
execution) and the definition of potential priorities
between transitions with the same source (nonde-
terministic choice, priority in the order of defini-
tion or priority based on explicit integer values).
Validation also takes place on Gamma statecharts
by evaluating well-formedness constraints.

The GSL models generated from the cabin con-
troller and cabin door controller Yakindu models
are presented in a textual format in Figs. 16 and 17
in the Appendix, respectively.

2.2 Integrating component models

Gamma statecharts, which may be derived from
external statechart models (see Step 1) or defined
directly in GSL, can be hierarchically integrated
according to various precise execution and inter-
action semantics in GCL to create synchronous
or asynchronous systems; the resulting composite
models are validated against well-formedness con-
straints. In synchronous systems, communication
is based on signal transmission and sampling, and
can be modeled using the synchronous-reactive
and cascade composition modes. In asynchronous
systems, communication is based on the delivery
(dispatch and reception) of immutable messages,
supported by the asynchronous-reactive composi-
tion mode. The introduction and formal semantics
of these composition modes can be found in [11];
here we include a summary of their properties.

• Synchronous-reactive composite models repre-
sent a coherent unit consisting of strongly
coupled components, which are executed con-
currently in a lockstep fashion and communicate
in a synchronous manner using signals.

• The cascade composition mode is a variant of
the synchronous-reactive mode: components in
a cascade model are executed in a sequential

3https://www.itemis.com/en/yakindu/state-machine/
4https://www.nomagic.com/products/magicdraw/

https://www.itemis.com/en/yakindu/state-machine/
https://www.nomagic.com/products/magicdraw/

Springer Nature 2021 LATEX template

Integration test generation for state-based components in the Gamma framework 5

G
am

m
a

Statech
art

Lan
gu

age

Gamma
statechart

Gamma
statechart

V
alid

atio
n G
am

m
a

C
o

m
p

o
sitio

n

Lan
gu

age

GCL model

G
am

m
a Trace

Lan
gu

age

Abstract test
cases

G
e

n
eral-p

u
rp

o
se

p
ro

gram
m

in
g lan

gu
age

System
implementation

Test suite
implementation

Execu
tio

n

Statechart language
(frontend)

Engineering
statechart

Statechart language
(frontend)

Engineering
statechart

Property

Property

··Analysis
model

Analysis language
(backend)

Property

Property

Analysis language
(backend)

··Analysis
model

G
am

m
a

(Param
etric)

P
ro

p
erty

Lan
gu

age

Property

Property

··„Annotated” GCL model

„Reduced” GCL model

G
am

m
a

G
e

n
o

m
d

el
Lan

gu
age

Coverage
criteria

2

1

3

4

5

Fig. 2 Model transformation chains and modeling languages of the test generation approach in the Gamma framework.
Rectangles represent models: solid borders represent atomic models, whereas dashed borders represent composite models.
Dotted rectangles represent a set of models belonging together for fulfilling a more general purpose. Rectangles with moder-
ately rounded corners represent modeling languages. Rectangles with extensively rounded corners represent functionalities
closely related to the usability of a language. Solid lines without a base symbol represent model transformations. Solid lines
with a diamond symbol represent model composition. Dashed lines represent the ability of execution: the source artifact is
capable of executing the target artifact. Black color in lines represents relations to the general integration and verification
workflow whereas grey represents relations to the test generation approach (extensions to the original workflow).

manner. Contained components can be consid-
ered as a set of filters applied sequentially to
derive an output from an input.

• Asynchronous-reactive composite models repre-
sent a collection of independently (parallelly)
running components. There is no guarantee on
the execution time or the execution frequency of
such components, thus, they communicate with
queued (persistent) messages.

Synchronous-reactive and cascade composition
modes provide deterministic behavior and thus,
such models are a suitable target for formal
verification. However, asynchronous-reactive mod-
els are inherently nondeterministic with potential
interleavings and thus can generally pose a great
challenge for model checkers [14, 15]. Nevertheless,
Gamma supports them as distributed systems fre-
quently follow such semantics and the modeling
and code generation functionalities of the frame-
work can be of use to practitioners even when
formal verification is not expected.

The GSL models of our elevator exam-
ple generated in Step 1 can be integrated in

GCL to create synchronous-reactive, cascade or
asynchronous-reactive composite models using a
textual syntax presented in Fig. 18 (Appendix).

2.3 Processing composite models

Model checkers can carry out exhaustive analysis
on a formal (analysis) model based on a for-
mal property and determine if the property holds
while potentially providing a diagnostic trace as
proof [16]. Gamma facilitates deriving both the
analysis model and the property using automated
model transformations.

To derive analysis models, the composite mod-
els created in Step 2 are preprocessed and trans-
formed into the input languages of integrated
model checker back-ends. The transformation can
be configured in GGL in a textual format.

For example, the following snippet specifies
that the Elevator composite model is to be trans-
formed into the input formalism of UPPAAL.� �

component : Elevator
language : UPPAAL� �

Springer Nature 2021 LATEX template

6 Integration test generation for state-based components in the Gamma framework

Gamma facilitates the specification of CTL*
properties in GPL using a textual syntax. GPL
supports referencing certain elements of the com-
posite model, i.e., states, variables, events and
event parameters as well as transitions annotated
with an identifier. Note that whether the speci-
fied properties can actually be checked depends
on the selected model checker back-end as most
model checkers support only a subset of CTL* as
an input property language.

In the elevator example, we can specify two
properties for the cabin door controller to check
the execution of the transitions between the Open
and Closed and the Closed and Open states. Note
that a transition can be referred to in GPL if it is
assigned an annotation specifying an identifier.� �

@("Covering the transition going from state
’Open’ to ’Closed’ in the ’main’ region")

E F (var main_open__main_closed)
@("Covering the transition going from state
Closed’ to ’Open’ in the ’main’ region")

E F (var main_closed__main_open)� �
Both the composite model and the properties

are automatically transformed into the input lan-
guages of the selected model checker back-ends in
accordance with the internal components and the
characteristics of the used composition modes. To
reduce the state space of the model, the transfor-
mations exploit optimization techniques based on
variables that store resettable or transient data.

Resettable variables are reset to the default
value of their type at the beginning of the execu-
tion of the statechart component, which is useful
to limit the validity of a variable value to a sin-
gle execution turn (step). Transient variables are
reset to the default value of their type at the end of
the execution of the statechart component (before
entering a permanent system state), which is use-
ful in the case of (temporary) auxiliary variables
holding no information in permanent states. These
options can be set using the @Resettable and
@Transient variable annotations either manually
(by the user) in the GSL model or by specific pre-
processing steps, e.g., for boolean variables created
for transitions annotated with an identifier.

The transformation of GPL properties into
the property languages of model checkers is car-
ried out based on the traceability links defined
in the composite model transformation, as in this
context, only the identifiers of the target model
elements are required.

2.4 Executing model checking and
back-annotation

As a key feature, Gamma offers multiple model
checker back-ends to complement each other and
facilitate efficient verification of different mod-
els and properties. Currently, UPPAAL5 [17] and
Theta6 [18] are integrated as back-ends, but the
possibility of integrating additional model check-
ers is allowed by the framework.

Gamma supports the tuning of the model
checking process, e.g., the specification of search
strategies, such as breadth-first search or depth-
first search, or the selection of abstraction tech-
niques. The framework also provides generally
well-functioning default settings for the back-ends.
Model checking itself is viewed as a black-box
process with the generated analysis models and
properties as inputs and diagnostic traces as out-
puts. Diagnostic traces specify the steps (active
states and output events of the model in response
to input events coming from the environment)
that lead to the satisfaction of a certain property
in case the property is satisfiable. Model checkers
can also prove that certain properties are impos-
sible to satisfy, which can be essential information
during verification. The diagnostic traces are auto-
matically back-annotated and abstract execution
traces are created in GTL in a textual format7

based on the traceability links defined in the
corresponding composite model transformation.

The snippet in Fig. 19 in the Appendix
describes GTL execution traces derived on the
basis of E F (var main open main closed) and E
F (var main closed main open) GPL properties.

3 Test generation in Gamma

Our test generation approach offers structural,
dataflow and behavior-related coverage based
automatic test generation for interconnected
state-based components, focusing on interactions
specified by the system model. The generated
tests can detect faults in automatically generated
or manually created component implementations
(e.g., missing state and transition implementa-
tions as well as improper variable definitions and

5http://www.uppaal.org/
6http://theta.inf.mit.bme.hu/
7The framework also supports the visualization of GTL

execution traces using PlantUML.

http://www.uppaal.org/
http://theta.inf.mit.bme.hu/

Springer Nature 2021 LATEX template

Integration test generation for state-based components in the Gamma framework 7

uses), composite system implementations (e.g.,
interactions between components) and in the inte-
gration of the execution platform (e.g., communi-
cation libraries, middlewares).

As a general idea, in a testing context, an
execution trace for a composite model derived dur-
ing formal verification can be considered as an
abstract test case for the property based on which
it is generated, representing a test target. Thus,
with the goal of generating tests while building
on the functionalities of the Gamma framework,
we can control model checkers in a way that they
generate execution traces (abstract test cases)
to cover test targets specified as formal proper-
ties [19]. In this context, we use Gamma’s trace
language as an abstract test language and also
refer to it as Gamma Test Language (GTL).

Such an abstract test case defined in GTL
can be customized to concrete test environments
according to various aspects [20]. For example, if
one wants to consider only outputs in response to
incoming inputs during testing (e.g., because the
implementation realizes a different internal struc-
ture) then internal state assertions can be easily
discarded from the abstract test cases. Gamma
currently supports Java as an execution envi-
ronment and JUnit8 as a test environment, but
additional environments could also be integrated.
The framework provides a flexible reflective Java
API for state-based implementations designed
for simulation. The API supports the input of
scheduling calls and input events from the envi-
ronment in addition to retrieving raised output
events, variable values and state configurations of
the underlying implementations to show internal
state. For the flexible and precise simulation of
time, a virtual timer implementation supporting
multiple interfaces is generated. As an example,
the snippet in Fig. 20 in the Appendix describes
the JUnit class derived from ClosedOpenTrace
defined in Fig. 19. Further information on GTL
and the Java API can be found in [21].

Our test generation approach extends
Gamma’s general component integration and
verification workflow to support a self-contained
test generation workflow for state-based systems
(see Fig. 2) using the precise semantics composite
models as reference specifications. The steps of
the test generation workflow are as follows.

8https://junit.org/

1. The composite model is manually designed
in GCL by (hierarchically) integrating GSL
statechart components (manually created, or
imported from the integrated modeling front-
ends – Step 1 in Fig. 2) according to the various
supported composition semantics (Step 2). The
models are validated both at statechart and
composite component level.

2. Optionally, based on the resulting composite
model, formal verification using model checkers
(Steps 3 and 4) and code generation can be
carried out in an automated way.

3. As the first test generation specific step, test
targets for the composite model are specified,
including the manual specification and configu-
ration of selectable test coverage criteria (e.g.,
filtering model elements for testing).

4. As an automated series of steps, the tool
(a) maps these high-level test targets to formal

properties,
(b) processes the input composite model in

accordance with the selected test targets
(model annotation) and reduction tech-
niques, derives analysis models, and

(c) uses the integrated model checker back-ends
in an optimized way to generate execution
paths in the generated analysis models for
the coverage of these test targets (see grey
elements in Fig. 2), deriving abstract tests.

5. The derived abstract tests then (after potential
optimizations) are automatically concretized to
execution environments (Step 5).

The test generation features (detailed in sub-
sequent sections) supporting Steps 3 and 4 of the
test generation workflow incorporate

• configurable coverage criteria and automated
model annotation techniques to enable the
explicit formulation of test targets in compos-
ite models and the mapping of these targets
into formal reachability properties (detailed in
Sect. 4), and

• model reduction and model slicing algorithms
based on model queries to reduce the composite
model and assist model checking in addition to
optimization techniques in the abstract test gen-
eration process (detailed in Sect. 5) to decrease
both the time of the generation process and the
size of the generated test sets.

https://junit.org/

Springer Nature 2021 LATEX template

8 Integration test generation for state-based components in the Gamma framework

Fig. 3 Graphical user interface (GUI) of Gamma.

This way, all Gamma functionalities inherently
become available for test generation in the work-
flow, i.e., the import of external models, their
mix-and-match composition according to precise
composition semantics in addition to the deriva-
tion of concrete test cases potentially to multiple
environments. Conversely, the generated tests can
also be used to validate the sequence of internal
model transformations as well as code generators
of Gamma by demonstrating semantic equivalence
between model and code for the examined traces.

Figure 3 depicts how the Gamma GUI (inte-
grated into Eclipse) can be used to generate
state-covering test sets (see COID.ggen file in the
text editor) targeting a statechart component (see
COID.gcd) in a composite model.

4 Coverage criteria and their
mapping into test targets

This section presents the coverage criteria of our
test generation approach and the related model
annotation and property generation techniques
facilitating the explicit formulation of test targets.
Section 4.1 formalizes the built-in test cover-
age criteria in the context of composite models.
Section 4.2 overviews the semantic-independent
injection of auxiliary fragments (annotations) into
composite models according to the selected cov-
erage criteria, enabling the explicit formulation of
test targets. Section 4.3 presents the generation
of formal reachability (temporal logic) properties,
specifying the coverage of the annotated elements.

4.1 Specification of coverage criteria

With our approach, we aim to facilitate flexible
and modular test generation according to multiple
aspects relevant in the context of reactive systems

and support the following coverage criteria that
are grouped into three different classes:

• structural coverage criteria include state, tran-
sition, transition-pair (incoming and outgoing
transition pairs for states) [22] and out-event
coverage,

• behavior-based coverage criteria include
interaction coverage [9], that is, the sending and
the reception/processing of an event between
two communicating components according to
configurable combinations, and

• dataflow-based coverage criteria [23] include
the coverage of execution paths between the
definition (def) and the use/reading (use) of
variables within a single component and also
between communicating components.

Test coverage criteria for composite models can
be specified in two ways: (i) predefined criteria
can be configured using the GGL-based approach,
or (ii) custom structural criteria can be specified
based on model queries using the parametric prop-
erty language of Gamma (GPPL-based approach).

GGL-based criterion specification

In the GGL-based approach, the coverage crite-
ria are specified in a configuration file. In this
file (see Fig. 4), the composite model is speci-
fied first, which is followed by a keyword denoting
the selected predefined coverage criterion. In order
to reduce the number of unnecessary tests, the
criteria can be configured by specifying compo-
nents (both composite and atomic components
are supported) that must be included or excluded
from the composite model (include and exclude
keywords). The approach supports further adjust-
ments based on relevant model elements of certain
criteria. Note that all these configuration pos-
sibilities are defined precisely in Sect. 4.1.2. In
every case where model elements are included
or excluded, inclusion has a higher priority than
exclusion. In case no inclusion or exclusion is
explicitly specified, every element (component,
port, state, transition or variable) in the composite
model is considered for test generation.

GPPL-based criterion specification

To support the custom specification of test cov-
erage criteria in a declarative way, we introduce
the Gamma Parametric Property Language

Springer Nature 2021 LATEX template

Integration test generation for state-based components in the Gamma framework 9

� �
component : gclModel
[state / transition / transition-pair / out-event /
interaction / dataflow / interaction-dataflow]-coverage {
include : [includedComponent, otherIncludedComponent]
exclude : [excludedComponent]
// Only for transition, transition-pair and interaction

coverage
transition-include : [atomic.aTransition]
transition-exclude : [atomic.anotherTransition]
// Only for out-event, interaction and interaction-

dataflow coverage
port-include : [atomic.includedPort]
port-exclude : [atomic.excludedPort]
// Only for interaction coverage
sender-coverage-criterion : [events /

states-and-events / every-interaction]
receiver-coverage-criterion : [events /

states-and-events / every-interaction]
state-include : [atomic.aState]
state-exclude : [atomic.anotherState]
// Only for dataflow and interaction-dataflow coverage
coverage-criterion: [all-def / all-c-use /

all-p-use / all-use]
// Only for dataflow coverage
variable-include : [atomic.aVariable]
variable-exclude : [atomic.anotherVariable]

}� �
Fig. 4 Textual syntax to specify coverage criteria in GGL.

(GPPL) that extends GPL with model queries,
supporting the specification of model element sets
with arbitrary interconnections (i.e., coverable ele-
ments) independently of concrete composite mod-
els. Based on such queries, the language supports
the definition of parameterized GPL expressions
where the parameters refer to model elements
(e.g., states or transitions) specified by model
queries. This way, as the queries in the case of
concrete composite models provide sets of model
elements, the parameterized GPL expressions are
instantiated, deriving concrete GPL properties.

GPPL currently expects model queries to be
defined as graph patterns in a custom query lan-
guage (see Fig. 5) and supports the specification
of interconnections between states and transitions.
Nevertheless, experienced users, who have willing-
ness to use the open internal APIs of Gamma,
may also apply the generic query language of
VIATRA (see Sect. 4.2.2 for details), this way uti-
lizing greater flexibility and expressive power for
query definitions.

In the query language, a pattern definition has
an identifier (name), followed by parameter dec-
larations of type State or Transition (elements
targeted for coverage). Interconnections between
the parameters can be specified in the pattern
body (constraints are in an And-relation). Cur-
rently, for state parameters, the language supports

� �
pattern errorStates(s : State) {
s.name matches ".*Error" // Regex for name

}
pattern transitionsToLoopTransition(

t1 : Transition, t2 : Transition) {
t1.source.name matches ".*Error" // Regex
t1.source != t1.target // Non-loop
t1.target = t2.source // Connecting t1-t2
t2.source = t2.target // Loop transition

}
E F s // Covering error states
E F t1 // Covering transitions leaving an error state and

entering a state with a loop transition� �
Fig. 5 Syntax for specifying coverage criteria in GPPL.

referencing their name attribute (of type string).
For transition parameters, source and target ref-
erences are supported, which behave as state
references, i.e., their name attribute can be ref-
erenced. Such references can be compared using
equality and inequality operators, and strings can
be matched against regular expressions (matches
keyword). These constructs enable the specifi-
cation of complex criteria describing, e.g., the
coverage of states with specific names and loop or
non-loop transitions.

Building on these patterns, parameterized
GPL expressions can be defined in which pat-
tern parameters of states and transitions may be
used instead of concrete state and transition ref-
erences. During test generation, unique concrete
GPL expressions (duplications are filtered) are
generated from these expressions by replacing the
state and transition parameters with correspond-
ing elements from the bound composite model,
serving as test targets.

Compared to the GGL-based approach, GPPL
specifications are independent of any (testable)
composite models and support a more flexible way
to specify coverage criteria. The language also
allows for potential modularization methods and
easy addition of future extensions.

4.1.1 Formal concepts of coverage
criteria

In order to facilitate the formal specification of
the proposed coverage criteria, we introduce the
following concepts related to the coverage of model
elements in composite models.

An atomic (statechart) component in a com-
posite model with unique index i is denoted Ai =
(Si, Ii, Oi, Ti) where

Springer Nature 2021 LATEX template

10 Integration test generation for state-based components in the Gamma framework

• Si = {si,0, · · · , si,m} denotes the finite set of
states of the atomic component with initial state
si,0.

• Pi = {pi,1, · · · , pi,q} denotes the finite set of
pseudostates (entry, choice and merge states) of
the atomic component.

• Ni = Si ∪ Pi denotes the finite set of nodes
(states and pseudostates) of the atomic compo-
nent.

• Ii = {ii,1, · · · , ii,k} denotes the finite set of
input events of the atomic component.

• Oi = {oi,1, · · · , oi,l} denotes the finite set of
output events of the atomic component.

• Ti = {ti,1, · · · , ti,n} denotes the finite set of
transitions of the atomic component where
ti,j = (li,j , ei,j) ∈ Ni ×Ni, that is, a transition
has a source state li,j ∈ Ni and a target state
ei,j ∈ Ni.

• Ei : Ti → 2Ii denotes the input events (inde-
pendently) triggering a certain transition.

• Ri : (Ti ∪ S) → 2Oi denotes the output events
raised by a certain transition or state (entry and
exit actions).

A composite model as the composition of
atomic components A1, · · · , An is denoted M =
(S, T) where

• S ⊆ S1×· · ·×Sn denotes the finite set of poten-
tial composite states of the composite model
where the initial state is s0 = (s1,0, · · · , sn,0).

• T ⊆ τ1 × · · · × τn denotes the finite set of
potential composite transitions of the compos-
ite model where either τi,j = ti,j = (li,j , ei,j) :
li,j , ei,j ∈ Si (atomic transition) or τi,j =
(ti,k, pi,k, · · · , pi,l−1, ti,l, pi,l, · · · , pi,m−1, ti,m) :
li,k, ei,m ∈ Si,∀ti,l, k < l ≤ m : ei,l = pi,l, li,l =
pi,l−1 (a series of atomic transitions connected
via pseudostates). From an abstract point of
view, the series of atomic transitions τi,j is
identified by its endpoints (li,k, ei,m).

An interaction point between two model ele-
ments (sender and receiver) of Ai and Aj where
the output of Ai is connected to the input of
Aj (with a channel) is denoted (di,k, tj,l) where
di,k ∈ (Si ∪ Ti), tj,l ∈ Tj if Ej(tj,l) ⊆ Ri(di,k).

A valid execution trace of a composite model
M is a finite alternating sequence of com-
posite states and composite transitions start-
ing from the initial state denoted X =
(s0, t1, s1, · · · , tj , sj , · · · , tm, sm) where ∀0 < j ≤

m : sj ∈ S, tj ∈ T and ∀τi,l = (li,l, ei,l) ∈ tj : li,l ∈
sj−1, ei,l ∈ sj (an atomic or composite transition
of a component leaves a stable state and enters a
stable state).

• An execution trace covers state si,k ∈ Si of
atomic component Ai if ∃j : si,k ∈ sj .

• An execution trace covers transition ti,k ∈ Ti
of atomic component Ai if ∃j : ti,k ∈ tj (the
transition is atomic or an element of a series of
transitions connected via pseudostates).

• An execution trace covers input event ii,k ∈ Ii
of atomic component Ai if it covers at least one
ti,j ∈ Ti transition where ii,k ∈ Ei(ti,j).

• An execution trace covers output event oi,k ∈
Oi of atomic component Ai if it covers at least
one ti,j ∈ Ti transition or si,j ∈ Si state where
oi,k ∈ Ri(ti,j) or oi,k ∈ Ri(si,j).

• An execution trace covers interaction point
(di,k, tj,l) between Ai and Aj via interaction
(oi,k, ij,l) : oi,k ∈ Ri(di,k), ij,l ∈ Ej(tj,l) if it
covers transition di,k ∈ Ti or state di,k ∈ Si as
well as transition tj,l ∈ Tj such that di,k ∈ tp or
di,k ∈ sp and tj,l ∈ tq, p ≤ q.

4.1.2 Formal definition of coverage
criteria

The formal definitions of the proposed coverage
criteria based on the introduced concepts con-
sidering execution traces as test traces are the
following. Although these definitions build on con-
cepts already presented in the literature, e.g., [9,
22, 23], the formalization of these coverage crite-
ria in the context of collaborating (interconnected)
state-based components is a novel contribution
that precisely defines the (non-trivial) test targets
supported by Gamma, but could also be reused in
other integration test generation approaches.

State coverage

In the case of state coverage, for every atomic com-
ponent Ai, every state si,j ∈ Si is covered by at
least one valid test trace.

Transition coverage

In the case of transition coverage, for every atomic
component Ai, every transition ti,j ∈ Ti is cov-
ered by at least one valid test trace. In this
case, transitions considered or ignored can also be

Springer Nature 2021 LATEX template

Integration test generation for state-based components in the Gamma framework 11

included or excluded using the transition-include
and transition-exclude keywords.

Transition-pair coverage

In the case of transition-pair coverage, for every
atomic component Ai, every transition pair ti,j =
(li,j , ei,j), ti,k = (li,k, ei,k) ∈ Ti where ei,j =
li,k : ei,j , li,k ∈ Si, i.e., incoming and outgoing
transition pairs of every potential state, is cov-
ered by at least one valid test trace. Similarly to
transition coverage, individual transitions can be
included and excluded using the transition-include
and transition-exclude keywords.

Out-event coverage

In the case of out-event coverage criteria, for every
atomic component Ai, every output event oi,j ∈
Oi is covered by at least one valid test trace. In this
case, individual ports can be included or excluded
via which event raisings are considered or ignored
(port-include and port-exclude keywords).

Interaction coverage

In the case of interaction coverage, interaction
points are covered according to adjustable options.
The options for senders and receivers (sender- and
receiver-coverage-criterion) can be specified inde-
pendently and in an arbitrary combination. The
options are the following (from a more coarse-
grained to a finer representation of interactions):

• events – every port-event combination in a
component is covered (sending or reception
according to the role of the component in the
interaction),

• states-and-events – every port-event combina-
tion in every state is covered,

• every-interaction – every interaction in a com-
ponent is covered.

The formalized coverage criteria regarding
interaction points from the sender’s point of view
are as follows. For every Ai and Aj atomic compo-
nent where output oi,k ∈ Oi is in interaction with
(via a channel) input ij,l ∈ Ij ,
• events – every oi,k ∈ Oi is covered by at least

one valid test trace via at least one (oi,k, ij,l)
interaction;

• states-and-events – every (di, tj,l) interaction
point is covered by at least one valid test trace
where di ∈ (Si ∪

⋃̇
Ti) such that ti,o ∈ qi

and ti,p ∈ qi where qi ∈
⋃̇
Ti iff li,o = li,p :

li,o, li,p ∈ Si, and Ei(ti,o) = Ei(ti,p) (transitions
with the same state source and triggers are not
distinguished);

• every-interaction – every (di,k, tj,l) interaction
point coverable via (oi,k, ij,l) is covered by at
least one valid test trace.

The coverage criteria regarding interaction
points from the receiver’s point of view are very
similar to that of the sender. For every Ai and Aj

atomic component where output oi,k ∈ Oi is in
interaction with input ij,l ∈ Ij ,
• events – every ij,l ∈ Ij is covered by at least

one valid test trace via at least one (oi,k, ij,l)
interaction;

• states-and-events – every (di,k, rj) interaction
point is covered by at least one valid test trace
where rj ∈

⋃̇
Tj such that tj,o ∈ qj and tj,p ∈ qj

where qj ∈
⋃̇
Tj iff lj,o = lj,p : lj,o, lj,p ∈ Sj and

Ej(tj,o) = Ej(tj,p) (transitions with the same
state source and triggers are not distinguished);

• every-interaction – every (di,k, tj,l) interaction
point coverable via (oi,k, ij,l) is covered by at
least one valid test trace.

The independence of sender and receiver
options overall results in 3 × 3 = 9 selectable
system-level interaction coverage criteria. Ports,
states and transitions can also be specified in the
context of which interaction sendings and recep-
tions are considered (port-, state- and transition-
include, transition-exclude).

In order to demonstrate the difference between
the various options, consider the Door.close event
in the elevator example from the cabin controller’s
(that is, the sender’s) point of view. In the case of
events criterion, the coverage of this event is suffi-
cient regardless of the raising transition (or state
in other models), that is, any of the transitions
raising this event, the one leaving Idle, or entering
TravellingDown or TravellingUp can be covered.
In the case of every-interaction, every aforemen-
tioned transition must be covered. States-and-
events is similar to every-interaction, however,
transitions leaving the same state and triggered
by the same event are not distinguished. Thus,
if state Idle had other outgoing transitions trig-
gered by Door.close, covering at least one of them
would be sufficient. The coverage criteria from the
receiver’s point of view are analogous to that of

Springer Nature 2021 LATEX template

12 Integration test generation for state-based components in the Gamma framework

the sender with the exception that only transi-
tions can participate in the reception/processing
of events, states cannot.

Dataflow coverage

In the case of dataflow coverage, we distinguish
between internal dataflow in a single atomic com-
ponent Ai and interaction dataflow between Ai

and Aj atomic components where parameterized
output oi,k ∈ Oi is connected to parameterized
input ij,l ∈ Ij . The only difference is that in
the case of internal dataflow, variable declarations
are considered, whereas in the case of interac-
tion dataflow, parameter declarations (which can
be considered as write-read variables from the
senders and receiver’s point of view) of sent and
received events are considered as the target of the
definition and use statements.

The coverage criteria build on the following
concepts:

• def d denotes the definition of the d (parameter
or variable) declaration (by assigning a value to
it) in the context of a transition (denoted by
def (d, ti,k) where ti,k ∈ Ti) or the entry/exit
action of a state (denoted by def (d, si,l) where
si,l ∈ Si).

• use d denotes the use of the d declaration in
the context of a transition denoted by use (d,
ti,k) (where ti,k ∈ Ti for internal and ti,k ∈
Tj for interaction dataflow), or the entry/exit
action of a state denoted by use (d, si,l) (where
si,l ∈ Si for internal and si,l ∈ Sj for interac-
tion dataflow). A declaration can be used in a
predicate (for a decision), denoted by p-use d,
or in a computation (for a definition), denoted
by c-use d.

• A def-clear d path denotes a computation
path without defining the d declaration, that
is, the P = (sv, tv+1, sv+1, · · · , tw, sw) sub-
sequence of a valid execution trace X =
(s0, t1, s1, · · · , tj , sj , · · · , tm, sm) where 0 ≤ v <
m and v < w ≤ m, and @ def (d, ti,k) or def (d,
sj,l) where ti,k or sj,l is covered by P .

– A P def-clear d path starts from a def d state-
ment if ∃ def (d, si,k) where si,k ∈ sv−1 or
def (d, tj,l) where tj,l ∈ tv.

– A P def-clear d path covers the use d state-
ment if ∃ use (d, si,k) where si,k is covered by
P or use (d, tj,l) where tj,l is covered by P .

The tool supports the following options for
dataflow coverage criteria:

• all-def – for every d declaration, starting from
every def d statement, at least one use d state-
ment (if exists) is covered by at least one
def-clear d path;

• all-c-use/all-p-use – for every d declaration,
starting from every def d statement, every c-use
d/p-use d statement is covered by at least one
def-clear d path;

• all-use – for every d declaration, starting from
every def d statement, every use d statement is
covered by at least one def-clear d path.

In the case of this coverage criteria, variables
(internal dataflow) or ports (interaction dataflow)
can be specified in the context of which the def
and use statements are considered (port- and
variable-include, variable-exclude).

4.2 Annotating composite models

In order to support the coverage criteria speci-
fied in Sect. 4.1, the composite model is processed
(Sect. 4.2.1) and prepared to serve as a basis for
the formulation of test targets (Sect. 4.2.2).

4.2.1 Annotating model elements

The composite model gets annotated in a (from
a composition semantics point of view) semantic-
independent way, that is, where necessary, auxil-
iary elements are inserted into the model accord-
ing to the selected coverage criteria (see Sect. A2
in the Appendix for details). These auxiliary ele-
ments enable the explicit formulation of model
element coverage, i.e., the coverage of transitions,
declaration definitions and uses (dataflow) as well
as behavior-related concepts, such as interactions.

The merit of these annotation methods is that
they are independent of the composition mode
(execution and interaction semantics) used in the
composite model and work both in asynchronous
and synchronous Gamma models. This trait also
holds for interactions: the different characteristics
of component interactions in different composi-
tion modes can be ignored during annotation as
the presented solution (sending/receiving identi-
fiers in event parameters) is universal and works in
synchronous-reactive, cascade and asynchronous-
reactive models. The characteristics of the compo-
sition modes are handled by the transformations

Springer Nature 2021 LATEX template

Integration test generation for state-based components in the Gamma framework 13

� �
pattern interactions(sender : RaiseEventAction, outPort :

Port, event : Event, inPort : Port, rec : Transition) {
// Events raised by transitions
find eventRaisesOfTrans(sender, outPort, event, inPort);
find transitionTriggers(rec, inPort, event);

} or {
// Events raised by entry actions
find eventRaisesOfEntryActions(sender, ...);
find transitionTriggers(rec, inPort, event);

} or {
// Events raised by exit actions
find eventRaisesOfExitActions(sender, ...);
find transitionTriggers(rec, inPort, event);

}� �
Fig. 6 VIATRA graph pattern specifying interaction
points between potential senders and receivers.

deriving analysis models (see Sect. 5.2) accord-
ing to the corresponding execution and interac-
tion semantics. Consequently, different test cases
(generated for the used composition mode) are
generated even when the atomic components and
selected coverage criteria are identical.

4.2.2 Exploring elements for annotation

As a key aspect, the approach utilizes model
queries for the specification and automatic explo-
ration of model elements for annotation. Model
queries are defined in the query language of
VIATRA9 [24], which facilitates the high-level,
declarative description of complex interrelations
between model elements in the form of graph pat-
terns. Queries are treated as input for the anno-
tation process, making the process configurable
and easily extensible with additional criteria. The
snippet in Fig. 6 describes a graph pattern speci-
fying interaction points between potential senders
and receivers connected via channels.

Model elements expected to be returned by
model queries are defined in the parameter list
of the graph pattern. In the case of interactions,
the action that raises the event (sender), the port
of the atomic component via which the event is
raised (outPort), the raised event (event), the port
of the atomic component via which the event is
received (inPort), and the transition triggered by
the event (rec) are returned. The interconnections
of these elements are specified in the pattern body,
which consists of three disjunctive blocks, that is,
the result set of the query will be the union of the
result sets of these three blocks. In a single block,

9https://eclipse.org/viatra/

the specifications are in an And-relation, that is,
every specification (reused pattern in the example)
must hold in the result set.

The first block describes interconnections orig-
inating from the event raise actions of transitions
(by reusing auxiliary patterns), whereas the other
two blocks cover events raised by entry and exit
actions of states. In the first block, pattern event-
RaisesOfTrans specifies events (event) raised by
a transition action via a certain port (outPort)
of an atomic component connected via channels
to the receiving port (inPort) of another atomic
component. Pattern transitionTriggers specifies
transitions triggered by events (event) of the ports
(inPort) specified by the eventRaisesOfTrans pat-
tern. The blocks for entry and exit actions are
analogous to the first block, the only difference is
the first reused pattern.

4.3 Generating properties

With the composite model being annotated, the
next step is to automatically generate properties
in GPL according to criteria selected in GGL
or GPPL, describing the coverage of the anno-
tated elements (injected auxiliary elements) serv-
ing as test targets [19]. Generally, GPL supports
the definition of arbitrary CTL* expressions in
the context of the (annotated) composite model,
although, only a small subset of the language is
used during test generation. Nevertheless, GPL
has an important role in the framework in pro-
viding a common language for property definition
and their mapping into the different property
languages of integrated model checker back-ends.

During test generation, every GPL property
describes a reachability criterion, using the E
(exists) quantifier and F (eventually) temporal
operator pair, describing in CTL* that “there
exists a path, along which, eventually“ a certain
property (the coverage of a test target) holds.
In order to facilitate understandability, com-
ments are automatically generated and assigned
to properties, describing the coverable criteria in
a human-readable way.

State and out-event coverage

In the case of state and out-event coverage, the
state and event elements of the components are
explicitly referred to (using the naming convention
applied in the transformation to the model checker

https://eclipse.org/viatra/

Springer Nature 2021 LATEX template

14 Integration test generation for state-based components in the Gamma framework

input) in the generated properties using the state
and out-event keywords, respectively.� �

@("Covering state ’Open’ in region ’main’ of ’
cabinDoorControl’")

E F (state cabinDoorControl.main.Open)
@("Covering out event ’close’ of port ’Door’ of ’

cabinControl’")
E F (out-event cabinControl.Door.close)� �

Transition coverage

In the case of transition coverage, the injected
auxiliary boolean variables (i.e., their state where
they are set to true) are referred to from the gener-
ated properties using the var keyword. Note that
variable identifiers must be unique, and thus, they
may be hard to interpret, which can be mitigated
by comments linking the referred variable to the
coverable transition.� �

@("Covering the transition between states
’Open’ and ’Closed’ in the ’main’ region of ’

cabinDoorControl’")
E F (var cabinDoorControl.main_open__main_closed)� �

Transition-pair coverage

In the case of transition-pair coverage, the two
integer variables generated for states with incom-
ing and outgoing transitions are referred to in the
generated properties. The previousId and actu-
alId variables are specified to contain the identi-
fiers of every incoming and outgoing transition of
the specific state, in every possible combination.� �

@("Covering the transition pair between
states ’TravellingUp’ and ’Idle’ (id 1)
and loop transition of state ’Idle’ (id
2) in region ’main’ of ’cabinControl’")

E F (var cabinControl.main_previousId == 1
and var cabinControl.main_actualId == 2)� �

Interaction coverage

In the case of interaction coverage, the two integer
variables generated for regions containing receiver
transitions are referred to in the generated proper-
ties. The senderId variable is specified to contain
a potential sender identifier, and the receiverId
variable is specified to contain a receiver iden-
tifier in accordance with the interaction points
identified by using model queries. Note the auto-
matically generated comments as the manual link-
ing of identifiers to the interaction participants is
cumbersome for humans.

� �
@("Covering the interaction between the
’open’ raising action of the loop
transition of state ’Idle’ (id 3) of
’cabinControl’ and the transition between
the ’Closed’ and ’Open’ states (id 4) of
’cabinDoorControl’")

E F (var cabinDoorControl.senderId == 3
and var cabinDoorControl.receiverId == 4)� �

Dataflow coverage

In the case of dataflow coverage (both for internal
and interaction dataflow), the integer variables
generated for use d statements are referred to
in the generated properties: for each included d
variable, for each def d statement, “at least one”
or “every” use d statement is specified to be
covered by a def-clear d path according to the
selected coverage criterion. In the case of inter-
action dataflow, the possible dataflow through
interactions are explored using the model query
presented in Fig. 6. Note that below only all-use
statements are described; the approach is identi-
cal for c-use/p-use statements and differ only in
selecting ids for use d variables.� �

@("All-def: from every def d statement, at least one
use d statement is covered by at least one def-
clear d path")

E F (var useD == 1 or ... or var useD == n)
@("All-use: from every def d statement, every use d

statement is covered by at least one def-clear d
path")

E F (var useD == 1) ...
E F (var useD == n)� �

5 Model processing

After annotating models and generating proper-
ties according to the selected coverage criteria (see
Sect. 4), composite models are further processed
by (i) executing model reduction and slicing algo-
rithms (Sect. 5.1) to reduce their state space, and
(ii) transforming composite models into analy-
sis models (Sect. 5.2) to enable model checking
for the coverage of test targets (abstract test
generation process). During and after abstract
test generation, optimizations based on the gen-
erated abstract tests are carried out (Sect. 5.3) to
decrease the time of the process as well as the size
of the resulting test sets. Note that these transfor-
mation techniques are not test generation specific
and have been integrated into the general Gamma
workflow, too.

Springer Nature 2021 LATEX template

Integration test generation for state-based components in the Gamma framework 15

5.1 Model reduction & model slicing

The goal of both model reduction and model slic-
ing is to remove “unnecessary” elements from
the composite models in order to speed up the
model checking (and thus, the end-to-end test
generation) process. The difference is that model
reduction (Sect. 5.1.1) is general and ignores
potential verifiable properties whereas model slic-
ing (Sect. 5.1.2) is carried out on the basis of
verifiable properties (and thus, the selected cover-
age criteria) and removes model elements that are
unnecessary in a concrete model checking run.

5.1.1 Model reduction

Model reduction depends only on the underly-
ing model and removes unused and inoperative
elements from the statechart models, such as
unused variables and events, unfireable transi-
tions, unreachable states and removable regions.
The definition of these concepts are as follows.

• A variable is unused, if there is no definition
or use statement in the statechart model that
refers to it.

• An event is unused, if there is no transition trig-
gered by it (input event) or there is no raise
event action of a transition or state that raises
it (output event) in the statechart model.

• A transition is unfireable, if (i) it is triggered
by an input event that cannot be received by
the statechart model (e.g., due to the lack of
channels, detailed in a graph pattern presented
in Fig. 7) or (ii) its guard evaluates to constant
false (e.g., due to a model parameter value).

• A state is unreachable, if it has no incoming
transitions.

• A region is removable, if it (i) contains no states
or (ii) contains a single entry node and a single
simple (non-composite) state without entry or
exit actions with an empty transition between
the entry node and the state.

The specification and exploration of such ele-
ments are supported by model queries. For exam-
ple, unfireable transitions and unreachable states
are explored using the declarative graph patterns
specified in Figs. 7 and 8.

A transition is specified unfireable by the graph
pattern (see Fig. 7) if it is triggered by an event
(reused transitionTriggers pattern in the body of

� �
pattern unfireableTransitions(transition : Transition) {
find transitionTriggers(transition, port, event);
neg find triggerableTransitions(transition, port, event);

}
pattern transitionTriggers(transition : Transition, port :

Port, event : Event) {
Transition.trigger(transition, trigger);
find binaryTriggerToTrigger+(trigger, descendantTrigger);
...

}
pattern binaryTriggerToTrigger(parent : BinaryTrigger,

child : Trigger) {
BinaryTrigger.leftOperand(parent, child);
...

} or {
BinaryTrigger.rightOperand(parent, child);
...

}� �
Fig. 7 VIATRA graph patterns specifying conditions for
unfireable transitions.

the unfireableTransitions pattern) that the con-
taining atomic component cannot receive due to
the absence of event raise actions in connected
components or the absence of connections alto-
gether (negated use of the triggerableTransition
pattern in the body). As transitions can be trig-
gered by a combination of events, the transition-
Triggers pattern specifies events that can trigger
a transition by using the transitive closure con-
struct with the binaryTriggerToTrigger pattern
(note the + operator in the pattern call) to iterate
through potential intermediate binary triggers.

A state is specified unreachable by the graph
pattern (see Fig. 8) if there is no transition in the
model (negated use of the transition pattern is the
body of the unreachableState pattern) that enters
the particular state.

Graph patterns are tailored to the declara-
tive definition of interconnections between ele-
ments, and thus, are less suitable for interpreting
arithmetic and boolean expressions. Nevertheless,
such a function would prove beneficial in fil-
tering unnecessary results from the result sets,
e.g., by checking the argument list of raise event
actions and transition guards to filter out impos-
sible interaction points. To this end, we employ
postprocessing on the returned result sets using
imperative code for expression interpretation.

For example, in the case of the interactions
pattern presented in Fig. 6, interconnections that
can definitely not result in valid interactions can
be discarded by interpreting the guards of receiver
transitions, and thus, reducing unnecessary model
checking efforts during test generation. The tool

Springer Nature 2021 LATEX template

16 Integration test generation for state-based components in the Gamma framework

� �
pattern transition(source: StateNode, target: StateNode) {
Transition.source(transition, source);
Transition.target(transition, target);

}
pattern unreachableState(state : State) {
neg find transition(_, state);

}� �
Fig. 8 VIATRA graph patterns specifying conditions for
unreachable states.

does just that: in the case of parameterized events,
the argument list of the sender is checked, and
the guard of the potential receiver transition is
evaluated with the corresponding values using
imperative code. The specific interconnection is
discarded if the guard evaluates to false. Simi-
larly, in the case of unfireable transitions (Fig. 7),
the result set is further extended by interpret-
ing their guards using imperative code: transitions
whose guards evaluate to constant false, e.g., due
to parameter values, are also specified unfireable.

In general, model queries facilitate the incre-
mental and thus, rapid evaluation of changes in
the underlying model, e.g., in VIATRA, the effects
in result sets caused by removing model elements
can be evaluated in almost zero time. This trait
can prove profitable during the iterative explo-
ration and retrieval of removable regions and
unreachable states after removing transitions as
the removal of elements affects the result set of
other model queries.

5.1.2 Model slicing

Model slicing depends on properties to remove
elements ignorable in a concrete model checking
run. The technique removes unnecessary written-
only variable declarations and variable definitions
along with potentially unnecessary output events
and event raisings. The definitions of the concepts
are as follows.

• A written-only variable declaration is unnec-
essary, if there is no use statement in the
statechart model or variable reference in the
verifiable properties that refers to it.

• A variable definition is unnecessary, if it defines
an unnecessary written-only variable.

• An output event is unnecessary, if there is no
transition in connected statechart models that
are triggered by it or out-event reference in the
verifiable properties that refers to it.

� �
pattern writtenOnlyVariables(var : VariableDeclaration) {
find writtenVariables(var);
neg find readVariables(var);

}
pattern writtenVariables(var : VariableDeclaration) {
find lhsOfAssignments(ref);
ReferenceExpression.declaration(ref, var);

}
pattern readVariables(var : VariableDeclaration) {
neg find lhsOfAssignments(ref);
ReferenceExpression.declaration(ref, var);

}
pattern lhsOfAssignments(ref : ReferenceExpression) {
AssignmentStatement.lhs(ass, ref);

}
pattern referenecesInProperties(v : VariableDeclaration) {
find expressionsInProperties(exp);
ReferenceExpression.declaration(exp, v);

}
pattern unnecessaryVariables(var : VariableDeclaration) {
find writtenOnlyVariables(var);
neg find referenecesInProperties(var);

}� �
Fig. 9 VIATRA graph patterns specifying conditions for
slicing.

• An event raising is unnecessary, if it raises an
unnecessary output event.

As a special setting, a system output event
(that is an output event led out of the system
model) can be specified unnecessary explicitly
before the test generation procedure (in the gen-
model configuration file) if output event references
in the generated tests are not required. Note that
this can be undesirable in most cases, hence the
necessity for the explicit specification.

Model slicing utilizes graph patterns in a sim-
ilar way as model reduction in order to explore
“unnecessary” elements in the composite model;
the difference is that these graph patterns also
take the generated properties into account.

For example, a variable declaration in a state-
chart model is specified written-only by the graph
pattern (see Fig. 9) if it is written by an assign-
ment statement (specified by the writtenVariables
pattern), but never referred to in other expressions
(negated use of readVariables). Variables referred
to in properties (variablesInProperties) are spec-
ified by reusing the expressionsInProperties pat-
tern, which explores all contained expressions
inside property specifications using transitive clo-
sure constructs; from these expressions, variable
references are selected. Unnecessary variables are
written-only variables that are not referred to
in properties (unnecessaryVariables). Unnecessary
output events are specified in a very similar way.

Springer Nature 2021 LATEX template

Integration test generation for state-based components in the Gamma framework 17

In the elevator example, if we explicitly
specify the coverage of the transition between
states Open and Closed with the property E F
(var cabinDoorControl.main open main closed),
the boolean variable generated for the other
transition with name main closed main open is
considered an unnecessary written-only variable
whose value is irrelevant in the concrete model
checking run, and thus, gets removed from the
model during slicing.

In general, the above examples in model reduc-
tion and slicing highlight the expressive power of
model queries and graph patterns: the negated
reuse of declarative patterns and the transitive
closure constructs support the exploration of ele-
ments (possibly via the iterative application of
different graph patterns) to which certain condi-
tions do not hold, e.g., a certain event via a port
is never received or there is no transition entering
a certain state. The exploration of such intercon-
nections may require the traversal of the entire
model, which, in this way, is automatically taken
care of by the query engine in an efficient way.

By removing unnecessary transitions, states,
regions and variables, model reduction and model
slicing can significantly reduce the state space of
the resulting model, and thus, the time needed for
model checking runs and test generation in total.
The results are presented in Sect. 6.

5.2 Transforming models into target
models for test generation

Gamma currently allows deriving three funda-
mentally different target (analysis) model types
from composite models to complement each other
and support different types of inputs (models
with different characteristics, e.g., timed and non-
timed models) as well as different composition
modes. The following paragraphs overview the DU
– direct UPPAAL timed automata model, the DX
– direct XSTS model and the XU – XSTS-based
UPPAAL timed automata model transformations.

DU models are derived by directly mapping
composite models into the timed automata for-
malism of UPPAAL [25]. The resulting model
forms a network of automata, where atomic com-
ponents (modeled as separate automata) commu-
nicate via shared variables and synchronization
constructs supported by the language. System
execution is conducted by auxiliary scheduler

automata, controlling the execution of instanti-
ated components. Currently, this is the only trans-
formation in Gamma supporting asynchronous
models.

In the DX transformation, the composite
model is mapped into a transition system for-
malism, namely the eXtended Symbolic Transition
System (XSTS) [26], supported by Theta. XSTS
is an analysis language with low-level constructs
that serves as a common representation of compos-
ite models, facilitating the integration of various
model checker back-ends into the framework. An
XSTS model consists of a set of variables that
describe the state of the system (including interac-
tions between components) and a set of transitions
specifying possible changes from one system state
to another. Transitions can use atomic actions,
such as assignment actions or assume actions
(assumptions that must hold in order to execute
specific action branches), which can be reused
to construct composite actions, such as sequen-
tial actions (blocks) or deterministic (if-else) and
nondeterministic choices.

XU models are derived by transforming com-
posite models into an XSTS model in the same
way as in the DX transformation, which is then
mapped into the timed automata formalism of
UPPAAL. In contrast to DU models that are
based on control locations and resemble the struc-
ture of statecharts, these models can be considered
as control flow automata (CFA) [27] where loca-
tions are used to describe the logical structure of
transitions (contained actions) and do not hold
explicit information about the state of the system.

Even though the structure of the derived target
models is fundamentally different, their behav-
ior fully conforms to the formal semantics of the
Gamma languages in terms of atomic compo-
nent behavior (GSL semantics), interactions (GCL
semantics) and timed behavior (GSL and GCL
semantics). The formalized Gamma semantics is
published in [11]. The transformation rules of
mapping Gamma models into semantically equiv-
alent UPPAAL automata are presented in [25]
while documentation of XSTS can be found in [26];
the detailed descriptions of the target analysis lan-
guages and the model transformations are out of
the scope of this paper.

Utilizing the traits of these different target
model types, Gamma can support the modeling

Springer Nature 2021 LATEX template

18 Integration test generation for state-based components in the Gamma framework

and verification of high-level collaborating state-
charts with fundamentally different constructs
and methods in a flexible way as different model
types and composition modes may be best handled
with different analysis models (timed automata,
transition systems and CFA) as well as model
checkers and techniques, i.e., UPPAAL using
explicit-state techniques and Theta with CEGAR-
based abstraction techniques. The extensive eval-
uation of the tool’s verification capabilities, con-
sidering the above aspects, is presented in Sect. 6.

5.3 Optimizing abstract test
generation

The tool employs two optimization algorithms to
reduce the test generation time and the number of
generated tests during abstract test generation.

After generating a new abstract test case, the
first algorithm iterates through the still unchecked
properties and checks whether the test case also
covers some test requirements specified by the
remaining properties [19]. Such properties get dis-
carded (they are not examined in later model
checking runs) as the test requirements, the cover-
age of which they specify, are already covered by
the specific generated test case.

After checking every property, the second algo-
rithm is applied, which searches for test cases in
the generated test set that are prefixes of other
test cases [28, 29]. Note that such test cases can
exist even when the first algorithm is applied as
the order in which the properties are checked
is random. Such test cases do not contribute to
the coverage of additional criteria (all covered
elements are also covered by other test cases),
and thus, can be discarded to further reduce the
generated test set. Altogether, these algorithms
are lightweight even though they can significantly
decrease the generation time as well as the num-
ber of generated test cases in most circumstances
(see Sect. 6 for results).

Note that the outcome of the first optimiza-
tion algorithm depends on the order of checking
the properties. In turn, the effects of the sec-
ond algorithm is always deterministic given a set
of test cases, i.e., multiple executions return the
same resulting test set if the model checker always
returns the same traces.

6 Practical experiences

This section presents practical experiences about
our Gamma test generator tool. Section 6.1
demonstrates the usability of the tool from a
users’ point of view in the context of practi-
cal examples from the industry. Then, building
on the models and configurations introduced in
Sect. 6.1, Sect. 6.2 presents more detailed results
about the test generation process and evaluates
its efficiency considering the different composition
modes, built-in model processing and optimization
techniques (model reduction, slicing and test opti-
mization) as well as analysis models and model
checkers. Section 6.3 presents conclusions and
threats to validity with respect to our evaluations.

6.1 Evaluation of tool usability

We have examined related work (see Sect. 7)
for models on which we could demonstrate the
usability of our tool but encountered difficulties:
the used models are either (i) small in size, (ii)
method-specific (constructed for their approach in
an ad hoc way) or (iii) commercial models not
published in their entirety. These findings corre-
late with the conclusion of [19], according to which
there is a lack of documented empirical experience
with model checker based testing, hindering the
selection of preferred techniques for given test sce-
narios. For example, [30] presents a survey regard-
ing the scalability of model checker based solutions
and comes to promising conclusions, but a later
study [31] shows that the considered applications
have some particularities, questioning the repre-
sentativeness of the results. Nevertheless, we could
select a single component that was used in multi-
ple works but in its case neither integration testing
nor the effects of our model reduction techniques
could be presented besides the effects of our model
checker algorithm choice (we overview the results
in Sect. 6.2.3). Consequently, we evaluate our tool
on three system models (previously unused in
related work) received from our industrial part-
ners Prolan and NASA, while also making them
publicly available.

In the following, this section presents test gen-
eration in our tool from a users’ point of view
for three system models, namely the signaller
subsystem (Sect. 6.1.1), the simple space mission
(Sect. 6.1.2) and the railway path locking topology

Springer Nature 2021 LATEX template

Integration test generation for state-based components in the Gamma framework 19

Table 1 Number of states, transitions and variables
(including timeout variables) in the system models used
for evaluation.

#State #Transition #Variable

Signaller 26 97 5
Space mission 9 19 8
Railway path 110 407 61

(Sect. 6.1.3) models. Statistics of the models are
summarized in Table 1; for additional details, we
direct the reader to Sect. A3 of the Appendix.

To highlight the applicability of our tool in the
case of different system models and composition
modes, we specify relevant coverage criteria for
every examined system model and generate tests
using all supported analysis models while employ-
ing every possible model reduction and slicing as
well as test optimization technique. We present
test generation time (most efficient analysis model
and model checker result) in addition to the neces-
sary test steps after optimization for the coverage
of test targets in every composite model variant.

We jointly measure the process time for model
transformation and test generation and repeat the
measurements 1 + 5 times for each configuration
while not measuring the first execution to miti-
gate the potentially distorting effects of the JIT
compiler and then calculating median values.10 In
the experiment, there are no manual steps, the
whole workflow in Gamma is automatic. During
model checking, we use the default options both
for UPPAAL and Theta models.

Regarding results, we expect that the nonde-
terministic nature of asynchronous models with
potential interleavings (that are hard to test in
general) will pose a great challenge for our test
generation tool (that is, the UPPAAL model
checker back-end), which can result in very
long execution times or even the inability to
cover certain properties, e.g., due to too much
required memory. In turn, we do not expect that
synchronous-reactive and cascade models will pose
significant difficulties for our tool. We also expect
that the cascade models will be easier to man-
age due to the specified execution semantics and
employed modeling constructs.

10The measurements were run on the following configura-
tion: Intel Core (TM) i7-4700MQ @ 2.40GHz, DDR3 16GB
@ 1.6GHz, SSD 500GB.

6.1.1 Test generation for a
safety-critical signaller subsystem

The signaller subsystem comprises models
received from Prolan, an industrial partner
developing railway traffic control systems.11 The
subsystem builds on statechart components (i.e.,
two antivalence checkers and a signaller – see
Figs. 10 and 11) created in different modeling
tools with many interaction points among them,
providing a good target for interaction testing in
addition to all kinds of structural criteria. The
models were designed to be reusable in various
contexts, and thus, contain variability points,
providing reduction possibilities.12

The designers have requested the assess-
ment of various interaction semantics (architec-
tures) in terms of testing and thus, we cre-
ated three composite model variants in GCL
using the synchronous-reactive, cascade and the
asynchronous-reactive composition modes. The
composite model structure is the same in every
variant: the outputs of the antivalence checkers are
connected to the inputs of the signaller.

In this system model, we generate test sets
aiming at full state, transition, transition-pair,
out-event coverage as well as interaction cov-
erage between the antivalence checkers and the
signaller. Regarding interaction coverage, we cre-
ate a test setting where (i) both the sender and
receiver interaction coverage are set to events (E),
(ii) both are set to states-and-events (SE), (iii)
the sender interaction coverage is set to every-
interaction and the receiver interaction coverage
is set to events (EI-E) and (iv) where both are set
to every-interaction (EI).

Model transformation

Annotation for different coverage criteria is carried
out according to the rules presented in Sect. 4.2
and A2 in the Appendix. Reduction and slicing
are identical for every selected coverage criterion
and model variant.

In the signaller model, the reduction algorithm
removes the transition entering the Off state as
the trigger event toggle cannot be received via
the I port (as it is not connected anywhere). As

11https://www.prolan.hu/en/hirek/PRORIS-H
12The models and measurement results can be found at

https://github.com/ftsrg/gamma/tree/master/examples/hu.
bme.mit.gamma.railway.casestudy/model/COID.

https://www.prolan.hu/en/hirek/PRORIS-H
https://github.com/ftsrg/gamma/tree/master/examples/hu.bme.mit.gamma.railway.casestudy/model/COID
https://github.com/ftsrg/gamma/tree/master/examples/hu.bme.mit.gamma.railway.casestudy/model/COID

Springer Nature 2021 LATEX template

20 Integration test generation for state-based components in the Gamma framework

MagicDraw, 1-1 C:\Users\B\OneDrive - Schönherz Zoltán Kollégium\12.felev\prolan\PRORIS-H GA_ARFBK.mdzip mo_antivalchk_english 2020.12.01. 22:39:43

mo_antivalchk_englishstate machine mo_antivalchk] [

p = Invalid
t = Invalid
f = Invalid

entry /

_1To0
WithErrorStorage

p = Invalid
t = Invalid
f = Invalid

entry /

Error

p = Invalid
t = Invalid
f = Invalid

entry /

_0WithErrorStorage

p = Invalid
t = Invalid
f = Invalid

entry /

_0To1
WithErrorStorage

p = Invalid
t = Invalid
f = Invalid

entry /

_1WithErrorStorage

entry / p = 0
t = 0
f = 0

_0

entry / p = 0
t = 1
f = 0

_0To1

entry / p = 1
t = 1
f = 0

_1To0entry / p = 1
t = 1
f = 1

_1

 [h == 0 && l == 1]

 [h == 1 && l == 0]

 [h == 0 && l == 1 && !P_STORE]

 [h == 1 && l == 0]

 [h == 1 && l == 0 && !P_STORE]

 [h == 0 && l == 1]

 [h == 0 && l == 1] [h == 1 && l == 0]

 [h == 0 && l == 1 && P_STORE] [h == 1 && l == 0 && P_STORE]

 [h == 1 && l == 0]

 [(h == 0 && l == 0) || (h == 1 && l == 1) ||
h == Invalid || l == Invalid]

 [h == 0 && l == 1]

 [h == 1 && l == 0]

 [(h == 0 && l == 0) || (h == 1 && l == 1) ||
h == Invalid || l == Invalid]

 [(h == 0 && l == 0) || (h == 1 && l == 1) ||
h == Invalid || l == Invalid]

InputChange [(h == 1 && l == 0) ||
(h == 0 && l == 1)]

 [(h == 0 && l == 0) || (h == 1 && l == 1) ||
h == Invalid || l == Invalid]

InputChange [(h == 1 && l == 0) ||
(h == 0 && l == 1)]

 [h == 1 && l == 0] Timeout

 [(h == 0 && l == 0) || (h == 1 && l == 1) ||
h == Invalid || l == Invalid]

InputChange

 [h == 0 && l == 1]

InputChange

Timeout

 [h == 0 && l == 1]
 [h == 1 && l == 0]

Timeout

 [h == 0 && l == 1]

Timeout

InputChange [(h == 1 && l == 0) ||
(h == 0 && l == 1)]

InputChange [(h == 1 && l == 0) ||
(h == 0 && l == 1)]

InputChange [(h == 1 && l == 0) ||
(h == 0 && l == 1)]

InputChange InputChange

Fig. 10 Antivalence checker statechart model.

Fig. 11 Signaller statechart model.

a result, the Off state becomes unreachable, and
also gets removed along with its outgoing transi-
tion. The slicing algorithm removes the RS COID,
released, timerSet, offCount and toggleCount vari-
ables as they are unused or unnecessary written-
only variables that are not referred to in the
generated properties. In the antivalence checker
model, the reduction algorithm removes the tran-
sitions leaving the bottommost choice state and
entering the 0 and 1 states as their guards
evaluate to constant false due to the !P STORE
subexpression (recall that P STORE is set to
true). All in all, one state, 12 transitions and five
variables get removed from the system models.

Table 2 Median test generation time (left) and the
number of steps (right) in the test sets generated for the
signaller subsystem model applying every possible model
reduction, slicing and test optimization technique.

Median generation time (s)/#Generated steps
Criterion Sync Casc Async

State 3.5/25 3.9/21 189.6/21
Transition 27.4/128 28.6/128 1914.5*/128
Transition-pair 281.6/184 294.1/177 */*
Out-event 2.0/5 1.1/4 170.1/4
Interaction-E 1.6/8 1.1/6 166.2*/6
Interaction-SE 29.0/33 15.4/27 1945.3*/27
Interaction-EI-E 15.7/33 8.4/21 1013.3*/21
Interaction-EI 28.6/37 15.2/27 1890.6*/27

Test generation

Table 2 presents the median generation time
and number of generated steps for each speci-
fied coverage criterion (Criterion) in the case of
the synchronous-reactive (Sync), cascade (Casc)
and asynchronous-reactive (Async) composite
model variants using the analysis model with
the best result. As can be seen, our tool can
manage synchronous-reactive and cascade vari-
ants relatively well as the greatest test generation
time is under 295 seconds (cascade variant with
transition-pair coverage) while for state, out-event
and interaction – E coverage (least resource-
intensive criteria) the process finishes under 4
seconds. In turn, in the asynchronous-reactive
variant, UPPAAL can return traces to properties

Springer Nature 2021 LATEX template

Integration test generation for state-based components in the Gamma framework 21

proven satisfiable in the cascade and synchronous-
reactive variants. However, according to our initial
expectations, for properties proven unsatisfiable
in the other variants (and for all properties in
the case of the transition-pair criterion), UPPAAL
cannot provide proof and throws an out of memory
exception after 250 seconds; hence the * symbol
next to certain values as they include time only
for the covered properties. Either these properties
are indeed unsatisfiable (which we consider plau-
sible based on the results of the other variants)
or trace generation is too resource-intensive with
such execution and interaction semantics. The size
of the generated test sets according to different
coverage criteria range from below 10 (out-event
and interaction – E), to between 20 and 40 (state,
interaction – SE/EI-E/EI) and finally, to between
120 and 190 (transition, transition-pair).

As for the manageability of different coverage
criteria, as expectable, the data show that test
generation for criteria not requiring extra auxil-
iary elements during annotation, i.e., state and
out-event, require the least resources. Next, inter-
action coverage criteria, in the order of E, EI-E,
SE and E (from coarse-grained to more refined
criteria) are getting harder to manage – there is
an order of magnitude decrease in performance
compared to the previous criteria. Note that SE
and E results are very similar due to the fact that
they specify the coverage of the same elements
apart from the outgoing transitions of state Tar-
getReleaseTimerRunning in the signaller model
(note that in the antivalence checker model, every
state has a single outgoing transition). Finally,
transition and transition-pair criteria require the
most injected auxiliary elements and thus, are
generally the hardest to manage: the results in
the case of transition coverage are close to that
of the interaction – E criterion; however, in the
case of transition-pair, there is another order of
magnitude decrease in the performance.

6.1.2 Test generation for a simple
space mission

The simple space mission model comes from the
aerospace domain and was initially proposed by
NASA in the context of the OpenMBEE13 frame-
work, a common model repository initiative. The

13https://www.openmbee.org/

Fig. 12 Ground station statechart model with inlined
activity diagrams.

original SysML models were created in Magic-
Draw in the form of statecharts and activity
diagrams which we manually mapped into the
GSL and GCL languages of Gamma in [11]. At
first glance, the resulting models (see Figs. 12
and 13) do not seem to have a large state space
due to the few control locations, but the several
timeouts, variable definitions and uses (incremen-
tation, decrementation and guard expressions)
can pose a significant challenge for model check-
ers (especially for symbolic model checking tech-
niques). Therefore, this model is a good target for
dataflow testing.14

In the simple space mission model, we generate
test sets aiming at (i) all-def (a more coarse-
grained testing) and (ii) all-use (a finer testing)
internal dataflow coverage within the ground sta-
tion and the spacecraft components.

Model transformation

As in the previous system model, reduction and
slicing phases are identical for every selected cov-
erage criterion and composite model variant in the
simple space mission model, too. Our reduction
and slicing algorithms do not find any reducible
elements in this model so the preprocessing pro-
cedure includes only the annotation phase with
substantive results: integer variables are created in

14The models and measurement results can be found at
https://github.com/ftsrg/gamma/tree/master/examples/hu.
bme.mit.jpl.spacemission.casestudy.

https://www.openmbee.org/
https://github.com/ftsrg/gamma/tree/master/examples/hu.bme.mit.jpl.spacemission.casestudy
https://github.com/ftsrg/gamma/tree/master/examples/hu.bme.mit.jpl.spacemission.casestudy

Springer Nature 2021 LATEX template

22 Integration test generation for state-based components in the Gamma framework

Fig. 13 Spacecraft statechart model with inlined activity diagrams.

the spacecraft model (as the ground station model
operates only with timeouts). An excerpt of the
annotated spacecraft model is shown in Fig. 22 in
the Appendix.

Test generation

Table 3 presents the median generation time and
number of generated steps for the all-def and
all-use dataflow test set for the simple space
mission model. The results show that our tool
can handle the synchronous-reactive and cascade
variants as test generation finished at most in
50 seconds in every case (the slowest being the
synchronous-reactive variant with all-use coverage
– in accordance with our expectations). In turn,
similarly to the signaller subsystem, UPPAAL can
return traces in the asynchronous-reactive variant
only for properties proven satisfiable in the cas-
cade and synchronous-reactive variants. In these
models, the out of memory exception comes after

Table 3 Median test generation time (left) and the
number of steps (right) in the test sets generated for the
simple space mission model applying every possible
model reduction, slicing and test optimization technique.

Median generation time (s)/#Generated steps
Criterion Sync Casc Async

All-def 10.7/138 5.4/137 271.5*/137
All-use 49.2/947 46.7/949 2913.3*/949

around 350 seconds; hence the * symbol next to
the values. The size of the generated test sets are
rather large compared to the other examined sys-
tem models with around 140 and 950 steps for the
all-def and all-use criteria.

In general, the difference between the all-def
and all-use criteria is the generated properties: in
the case of all-def, at least one def-use pair has to
be covered for each variable whereas all-use spec-
ifies the coverage of every potential def-use pair.
The latter can result in several unsatisfiable prop-
erties, highly increasing model checking time and
the size of the generated test set as depicted in
the table: model checking time increases between
five- and tenfold due to the greater number of
properties and the number of generated steps
increases around sevenfold. Nevertheless, in the
synchronous-reactive and cascade variants, testing
according to the finer all-use criterion still remains

Signaller
SD

T

B

Turnout
L

E
RB

Fig. 14 Schematic descriptions with ports and the direc-
tion of communication for the signaller and the turnout
components.

Springer Nature 2021 LATEX template

Integration test generation for state-based components in the Gamma framework 23

Railway path
locking

Main signaller Reverse signaller

Rs. & Ms. Rs. & Ms.

Turnout Turnout

Turnout

Fig. 15 Railway path locking topology consisting of sig-
naller and turnout components.

manageable, a characteristic which is expected to
hold in every model where the model checker can
explore the entire state space (with, of course,
increased generation time) as these two criteria
result in the same model (annotations).

6.1.3 Test generation for a distributed
railway path locking topology

The railway path locking topology consists of man-
ually created models based on specifications from
Prolan. The system comprises two kinds of com-
ponents (see Fig. 14) designed to function in
multiple roles, which can be set with the com-
bination of port connections (in a topology) and
certain parameters. The size of the investigated
topology (see Fig. 15) is rather large to handle
with trivial methods and is a good target for
our reduction and slicing techniques to remove
parts of the system unrelated (unnecessary) to the
selected component roles. Moreover, this topology
is a good context to demonstrate the practicabil-
ity of our approach when targeting the behavior of
a single component in a complex system and thus,
we aim at transition and transition-pair coverage
in this model.15

In the railway path locking topology, we gener-
ate test sets aiming at (i) transition (more coarse-
grained testing) and (ii) transition-pair coverage
(finer testing) for the third signaller component
counted from the left (with role reverse & main –
R&M). We selected this component for coverage
as it has a more “complex” role in this topology
than the first two signallers and communicates via
all its neighboring ports (contrary to the turnouts
and other R&M signaller) which overall can result
in more transitions (a greater state space) to cover.

15The models and measurement results can be
found at https://github.com/ftsrg/gamma/tree/master/
examples/hu.bme.mit.gamma.railway.casestudy/model/
RailwayPathLocking.

Model transformation

In the annotation phase, a resettable boolean vari-
able is created for every coverable transition in the
selected R&M signaller component in the case of
transition coverage, and a pair of integer variables
(previousId and actualId) is created for each state
with at least one incoming and an outgoing tran-
sition (see Sect. 4.2 and A2 in the Appendix for
details).

Similarly to the previous system models, the
reduction and slicing phases are identical for every
selected coverage criterion and composite model
variant. The model reduction and slicing algo-
rithms find 296 removable transitions, 31 remov-
able regions, 143 removable states and 37 remov-
able variables in every composite model variant.
As indicated by the number of removed elements,
the signaller and turnout models are actually pre-
pared to serve in different roles, most of which
can prove unnecessary in concrete topologies and
should be removed to facilitate model checking.

Test generation

Table 4 presents the median generation time
and number of generated steps for the tran-
sition and transition-pair coverage test set for
the synchronous-reactive and cascade compos-
ite variants of the railway path locking topology
model – our tool cannot generate tests for the
asynchronous-reactive model variant. The data
show that both test generation time and the size
of the generated test set remain manageable with
30 seconds and 20 steps being the greatest values
for this model (synchronous-reactive variant with
transition-pair coverage) – a result made possible
by the model reduction and slicing techniques.

In general, as highlighted in the table, the
modeling constructs describing the execution of
incoming-outgoing transition pairs can greatly
increase the state space compared to the use of
single resettable boolean variables: the increase

Table 4 Median test generation time (left) and the
number of steps (right) in the test sets generated for the
railway path locking topology model applying every
possible model reduction, slicing and test optimization
technique.

Median generation time (s)/#Generated steps
Criterion Sync Casc

Transition 15.2/18 5.2/6
Transition-pair 29.6/20 14.5/9

https://github.com/ftsrg/gamma/tree/master/examples/hu.bme.mit.gamma.railway.casestudy/model/RailwayPathLocking
https://github.com/ftsrg/gamma/tree/master/examples/hu.bme.mit.gamma.railway.casestudy/model/RailwayPathLocking
https://github.com/ftsrg/gamma/tree/master/examples/hu.bme.mit.gamma.railway.casestudy/model/RailwayPathLocking

Springer Nature 2021 LATEX template

24 Integration test generation for state-based components in the Gamma framework

is between two- and threefold depending on the
model variant. Consequently, we can expect that
with the increased number of states, testing
according to a transition-pair criterion would scale
far worse than for transition coverage and in
general, any other supported criterion.

6.2 Evaluation of model processing
and optimization techniques

This section presents a more thorough,
technology-oriented evaluation of our Gamma
test generator tool based on the models and
coverage criteria defined in the previous section.
It focuses on the effects of the model processing
and annotation techniques as well as the traits
of the different composition modes besides the
supported analysis models and model checker
back-ends. In order to drive the evaluation, we
formulated the following questions (Q) that we
aim to answer based on an extensive measurement
campaign and our previous experiences.

1. How do model processing techniques (model
reduction, slicing and test optimization) affect
test generation time, and independently, model
mapping and model checking time?

2. How do different composition modes (execution
and interaction semantics) affect test genera-
tion time? Can the tool handle asynchronous-
reactive composite models?

3. How do different model checking configurations
(analysis models and model checker back-ends
using different techniques) affect test genera-
tion time?

Every question focuses on test generation time
as the main problem of model checker-based test-
ing is considered to be performance [19] and
thus, we evaluate our test generation approach in
this regard. To highlight the applicability of dif-
ferent analysis models and model checkers and
demonstrate the cost and efficiency of our model
annotation and optimization algorithms, we orga-
nize our measurement campaign according to the
following points.

• We select two coverage criteria, a more coarse-
grained one and a finer one of the same “cri-
terion family” for the models presented in
Sect. 6.1.

• We define transformation configurations that
differ in the composition modes (synchronous-
reactive, cascade and asynchronous) and analy-
sis models (DU, DX and XU).

• We extend these configurations by adding an
option whether model reduction and slicing are
employed.

• We extend these configurations by adding an
option whether test optimization is employed.

Contrary to Sect. 6.1, we independently mea-
sure time for model transformation and test gen-
eration in each configuration and repeat the mea-
surements 1+5 times. We also present the number
of generated properties (test targets) and actually
satisfiable properties as well as the necessary steps
for their coverage in different composite model
variants with and without test optimization.

After carrying out the measurements, we found
out that the trends and conclusions were simi-
lar for the more coarse-grained and the finer test
coverage criteria of the same criterion family in
the particular system models. Thus, the rest of
the section presents detailed measurement results
only for the finer (more resource-intensive) criteria
and includes only high-level findings and statistics
(e.g., median values) for the more coarse-grained
criteria. Nevertheless, the detailed measurement
results for the more coarse-grained criteria can
also be found in the aforementioned public repos-
itory.

Signaller subsystem

In the case of the signaller subsystem, we selected
the interaction – EI-E and EI coverage criteria for
further evaluation as the models provide a good
basis for examining the traits of our interaction
coverage techniques.

Table 5 presents the median time to trans-
form the composite model variants (synchronous-
reactive, cascade and asynchronous-reactive) tar-
geting EI interaction coverage into a DU, DX and
XU model (M), with or without employing reduc-
tion and slicing techniques (R&S). Recall that
currently only the DU transformation supports
asynchronous models, hence the empty fields in
the lines of DX and XU (and also in the case of
other system models in subsequent sections).

During annotation, the model queries iden-
tify altogether 27 interaction points in the case
of the EI-E criterion between the two antivalence

Springer Nature 2021 LATEX template

Integration test generation for state-based components in the Gamma framework 25

Table 5 Median time (ms) to map the signaller
subsystem models into analysis models.

Median transformation time (ms)
M R&S Sync Casc Async

DU
7 557 549 585
3 612 620 631

DX
7 1368 1289 –
3 1196 1205 –

XU
7 1432 1373 –
3 1292 1259 –

checkers and the signaller in all composite model
variants, which would be 45 without interpreting
the guards of the receiver transitions. In the case
of EI coverage, 49 potential interaction points are
identified in all composite model variants, which
would be 90 without guard interpretation.

The model checkers exhibit that 11 interac-
tion points for the EI-E criterion and 15 for EI
coverage can be covered in every model variant.

Table 6 presents the median generation time
and number of generated steps in the case of
the EI interaction criterion, based on the DU,
DX and XU models (M) generated with or
without employing the reduction and slicing algo-
rithms (R&S) or the test optimization algo-
rithms (T). As discussed previously, UPPAAL can
return traces in the asynchronous-reactive variant
only for properties proven satisfiable in the cas-
cade and synchronous-reactive variant. Moreover,
in unreduced models, Theta cannot return traces
for most properties before running out of memory,
hence the lack of the rows for DX in the tables.

Simple space mission

In the case of the simple space mission, we provide
further examination for the all-def and all-use
coverage criteria.

In the annotation phase, the model queries
identify altogether five definition statements and
13 use statements. In the case of the all-def cri-
terion, five properties are generated (one for each
definition), which increases to 23 (one for each
def-use pair) in the case of the all-use criterion.

Table 7 presents the median time to transform
the composite model variants targeting all-use
dataflow coverage into analysis models.

The model checker back-ends exhibit that in
the case of the all-def criterion, four out of five
properties can be satisfied (a def-use path for
recharging is not coverable) whereas in the case

Table 6 Median time (s) to generate (top) and the
number of steps (bottom) in the every interaction
coverage test set for the signaller subsystem composite
model variants.

Median generation time (s)
M R&S T Sync Casc Async

DU
7

7 80.0 36.9 –
3 77.5 35.4 –

3
7 32.7 17.9 1991.1*
3 28.0 14.6 1890.0*

DX 3
7 359.8 284.0 –
3 308.8 205.4 –

XU
7

7 296.1 30.7 –
3 228.7 28.4 –

3
7 224.4 16.1 –
3 199.8 13.5 –

#Generated steps
T Sync Casc Async

7 77 60 60
3 37 27 27

∆ 52% 55% 55%

of the all-use criterion, 13 out of the 23 properties
can be satisfied in every composite model variant.

Table 8 presents the median generation time
and number of generated steps for the all-use
dataflow criterion in the case of the different com-
posite model variants. As discussed previously,
UPPAAL can return traces in the asynchronous-
reactive variant only for properties proven sat-
isfiable in the cascade and synchronous-reactive
variant. Moreover, the large number of incremen-
tations and decrementations in the models poses a
challenge too great for the symbolic techniques of
Theta as it cannot return results for most of the
properties before running out of memory, hence
the lack of the DX rows in the table.

Railway path locking topology

In the case of the railway path locking topology, we
further examine the transition and transition-pair
coverage criteria.

Table 7 Median time (ms) to map the simple space
mission models into analysis models.

Median transformation time (ms)
M R&S Sync Casc Async

DU
7 331 406 473
3 382 402 517

DX
7 181 184 –
3 237 244 –

XU
7 202 201 –
3 257 269 –

Springer Nature 2021 LATEX template

26 Integration test generation for state-based components in the Gamma framework

Table 8 Median time (s) to generate (top) and the
number of steps (bottom) in the all-use coverage test set
for the simple space mission composite model variants.

Median generation time (s)
M T Sync Casc Async

DU
7 305.4 256.3 3142.0*
3 282.6 235.3 2912.8*

XU
7 57.6 53.0 –
3 48.8 46.3 –

#Generated steps
T Sync Casc Async

7 1621 1608 1608
3 947 949 949

∆ 42% 41% 41%

In the case of the transition coverage criterion,
the model queries identify six coverable transitions
whereas in the case of the transition-pair cover-
age criterion, five input-output transition pairs are
explored related to two different states in every
composite model variant.

Table 9 presents the median time to transform
the composite model variants targeting transition-
pair coverage into analysis models.

The model checkers exhibit that in the case of
transition coverage, five out of the six transitions
whereas in the case of transition-pair coverage,
three out of the five transition-pairs can be covered
in the synchronous-reactive and cascade variants.
UPPAAL cannot return any traces due to out of
memory exceptions in the asynchronous-reactive
variant, hence the missing column.

Table 10 presents the median generation time
and number of generated steps for the transition-
pair criterion in the case of the different model
variants. Note that without employing reduction
and slicing, the model checkers cannot return any
results and UPPAAL cannot return any results
in the case of the asynchronous-reactive model
either, so values for these are not presented in
the tables. Moreover, in the case of transition-pair
coverage, Theta cannot return results for most
properties before running out of memory and there
is a great variance in time for the remaining ones,
hence the lack of the DX rows in Table 10.

6.2.1 Addressing Q-1

The results show that the presented model pro-
cessing techniques have a significant impact on
both the model mapping and model checking time
and thus, on the entire test generation process.

Table 9 Median time (ms) to map the railway path
locking topology models into analysis models.

Median transformation time (ms)
M R&S Sync Casc Async

DU
7 906 814 1097
3 567 541 1304

DX
7 6437 6304 –
3 1000 985 –

XU
7 6589 6534 –
3 1036 1013 –

As for model mapping, the effects of the reduc-
tion and slicing algorithms can be examined
according to whether there are removable elements
in the underlying model or not. The algorithms
impose a little overhead (a median of 27.2%) when
there are no removable elements in the system
model as presented in Table 7 (simple space mis-
sion model). In turn, when the model contains
removable elements, these algorithms hardly have
any negative effect, the overhead is minimal at
worst (a median of 9.9% in the case of DU configu-
rations in the signaller subsystem and 18.9% in the
case of the asynchronous DU configuration in the
railway path locking topology), and in some cases
can significantly speed up the transformation pro-
cess since they decrease the number of elements
that need to be mapped as shown in Table 5 (a
median of 9.1% gain for DX and XU configura-
tions) and especially in Table 9 (a median of 84.3%
gain for all configurations). It is worth noting that
in certain configurations, the gain can be as high
as sixfold in this last case.

As for model checking, the model reduction
and slicing algorithms decrease the necessary gen-
eration time in each configuration. Depending on
the model, the gain can be significant, ranging

Table 10 Median time (s) to generate (top) and the
number of steps (bottom) in the transition-pair
coverage test set for the railway path locking topology
composite model variants.

Median generation time (s)
M T Sync Casc

DU
7 34.7 15.9
3 29.0 14.0

XU
7 241.4 66.7
3 236.6 65.3

#Generated steps
T Sync Casc

7 36 14
3 20 9

∆ 44% 36%

Springer Nature 2021 LATEX template

Integration test generation for state-based components in the Gamma framework 27

from 12.6% to 63.9% with a median of 52.5% in
the signaller subsystem (considering data also for
the more coarse-grained interaction criterion in
addition to Table 6), and there are also models
where model checking is not even possible without
such optimization techniques (railway path locking
topology – Table 10). In general, we can conclude
that the effects of the model reduction and slic-
ing algorithms highly depend on the size of the
underlying models as well as their characteristics
and use in a certain structure, as these are the
factors that determine the number of removable
elements. Even though, Q-1 focuses on generation
time, we also made observations on memory con-
sumption, which strongly correlated with model
checking time. Regarding memory consumption in
the case of different composition modes, the gen-
eral results were very similar to that of the case
studies in [11].

As for the abstract test optimization algo-
rithms, we can also conclude that their employ-
ment decrease generation time in each configu-
ration. The greatest median gain can be seen in
Table 6 (14.2%) and in the case of transition cov-
erage in the railway path locking topology (24.9%
– data is available in the repository) – in the other
cases, the median gains range between 7% and
10%. However, note that these results are median
values, and the time-decreasing effect of the first
test optimization algorithm highly depends on the
order of the properties to be satisfied, which was
random in these runs (recall that the decrease in
test size is deterministic due to the second algo-
rithm). A possible future direction in improving
these algorithms could be determining an ade-
quate property order. Furthermore, regarding the
concrete models of our case study, we must note
that in cases where there is no optimization pos-
sibility in the test set, these algorithms will just
increase execution time with no gain.

In conclusion, we can state that we have ini-
tial evidence that our model processing techniques
are gainful according to multiple aspects and their
employment can highly facilitate the entire test
generation process.

6.2.2 Addressing Q-2

In general, we could expect that test generation
time in the case of different composition modes

highly depends on the traits of the resulting tar-
get (analysis) models. By comparing results for
synchronous-reactive and cascade models, we can
conclude that test generation for cascade models
compared to synchronous-reactive models is faster
in almost every configuration. This is the result of
the modeling constructs used to describe concur-
rent behavior in the analysis models: synchronous-
reactive models contain twice as many variables
for modeling the supported lockstep-like execution
and inter-component communication compared
to cascade models. As a result, communication
between components in cascade models requires
fewer steps (execution turns).

In some cases, the difference in test generation
time between model variants is rather little (see
the XU results in Table 8 – the median gain for
cascade models range between 5% and 10%) and
there are cases with a difference as high as fifteen-
fold (see the XU results in Table 6). Accordingly, if
one wants to choose an easy to verify, determinis-
tic composition semantics (which must, of course,
conform to the semantics of the implementation)
it is best to go with the cascade composition mode.

Model checking of asynchronous behavior is
generally more cumbersome than synchronous
behavior, which is reflected by the results for
the asynchronous-reactive composition mode. Test
generation without the reduction and slicing algo-
rithms cannot be carried out by UPPAAL in any
of the used models as the state space of the
unreduced asynchronous-reactive model variants
is too large for it to handle. Even when using
these reduction techniques, test generation time
for satisfiable properties is around two orders of
magnitude higher than in the case of synchronous-
reactive models in the signaller subsystem (see
Table 6) whereas the difference is around one order
of magnitude in the case of the simple space mis-
sion model (see Table 8). Nevertheless, the test
optimization algorithm can mitigate this a little
by decreasing test generation time by around 10%.
We must also state that the entire state space
could not be explored by any of the asynchronous-
reactive model variants, which was demonstrated
by the inability of UPPAAL to return traces for
possibly uncoverable elements. These problems
could be mitigated by examining and introduc-
ing execution constraints regarding the behavior
of asynchronous components.

Springer Nature 2021 LATEX template

28 Integration test generation for state-based components in the Gamma framework

6.2.3 Addressing Q-3

Our model transformations and integrated model
checker back-ends support various kinds of anal-
ysis models and verification algorithms. The DU
transformation derives timed automata models
that are explored with the explicit-state UPPAAL
model checker whereas DX and XU mappings
derive transition system models verified by Theta
(using CEGAR-based symbolic techniques) and
UPPAAL. UPPAAL also provides efficient algo-
rithms for handling timed behavior. Our expec-
tations were that UPPAAL would perform better
at trace generation than Theta due to its explicit
state-techniques whereas Theta would have an
advantage at proving the unreachability of proper-
ties, as similar conclusions were drawn in [30]. We
can say our expectations were proven to be true.

The DU configuration performs generally well
on every system model and composite variant. It
provides the best results on the signaller subsys-
tem (see Table 6) and the railway path locking
topology (see Table 10). The difference can be par-
ticularly significant compared to other configura-
tions in the case of the synchronous-reactive vari-
ants: advantages range from around threefold to
even sixfold in some cases. In addition, this is the
only configuration supporting the asynchronous-
reactive composition mode, although, with some-
what poor results. However, we expect that other
model checkers might perform better on such
models and will work on this aspect in the future.

The DX configuration is always the slowest on
every system model (that Theta can handle) if we
consider end-to-end test generation, which is gen-
erally explicable with the traits of the resulting
models and the functioning of the Theta model
checker: the transitions of the statechart models
have many considerably large guard expressions
(monolithic expressions), which are difficult to
handle by its current algorithms (more specifically
the underlying SMT-solvers). We also know that
the algorithms for deriving concrete traces from
the abstracted models in Theta are not optimal.
Accordingly, there are configurations in the case of
every system model that Theta cannot handle. We
aim to mitigate these problems by introducing a
postprocessing step on the monolithic expressions,
disassembling them into smaller parts while intro-
ducing control locations to store which parts of

the original expressions have been processed. How-
ever, based on subresults (not shown in the tables)
we noticed that Theta performed reasonably bet-
ter than UPPAAL at proving the unreachability
of properties in some cases, which is not surpris-
ing based on the characteristics of the used model
checker algorithms. Nevertheless, as can be seen,
these gains could not make up for time lost during
checking reachable properties.

The XU configuration performs rather well in
general and has a significant advantage over DU
on the simple state mission model (its advan-
tage is around fivefold – Table 8) and DX in
every case. In other cases, this configuration has
a disadvantage compared to DU on synchronous-
reactive models and performs similarly or slightly
better on cascade models than its DU counter-
part (see Tables 6 and 10). In general, we can
conclude that this XU configuration is sensitive
to the doubled number of variables introduced for
the lockstep-like execution.

In addition to the three selected system mod-
els, we carried out measurements on a commercial
statechart component called Flight Guidance Sys-
tem first presented in [30], which measures the
state of an aircraft (position, speed, and altitude)
and generates commands to minimize the devia-
tion between the measured and desired state. The
model variant we defined in GSL has 43 indepen-
dent input events controlling 42 transitions and 49
states in 25 orthogonal regions related to specific
operational modes that process events indepen-
dently of each other without using any variables.
We aimed at full transition coverage with DU, DX
and XU models. UPPAAL could not handle the
large state space caused by the great number of
input events: an out of memory error was thrown
after around 30 seconds both on DU and XU
models. In turn, Theta could generate the entire
transition covering test set spending a few seconds
on each property, proving the utility of symbolic
techniques in the case of such abstractable models
and the relevance of Theta in our tool.

To conclude, the results show the versatil-
ity the various analysis models and integrated
model checkers add to the test generation app-
roach. The different target models of UPPAAL
function well on models with moderate size and
are generally good for returning traces for reach-
able properties. The results of Theta are poorer
in general due to its difficulties when returning

Springer Nature 2021 LATEX template

Integration test generation for state-based components in the Gamma framework 29

concrete traces; however it has generally good
results for abstractable models and proving the
unreachability of properties, and thus, can be a
good choice when we expect many unreachable
properties, serving as a good complementation to
UPPAAL.

6.3 Conclusion and threats to
validity

In conclusion, the results highlight the merits of
the multiple supported optimization algorithms,
integrated model checker back-ends and analysis
models. The reduction, slicing and test optimiza-
tion algorithms can significantly speed up the
generation process with little to no cost, and the
different supported formalisms and model checker
back-ends excel at handling different model types,
test criteria and property sets, bringing a large
amount of flexibility into the approach and
Gamma in general. The tool performs well in the
case of synchronous-reactive and cascade model
variants with coarse-grained and finer test crite-
ria, too; however, performance issues emerge in the
case of the asynchronous-reactive variant. These
issues could be addressed by introducing prag-
matic constraints and support for asynchronous
models in the DX and XU transformations and
integrating algorithms tailored to asynchronous
behavior into Theta (see Sect. 8).

Subject to threat to validity, we can high-
light the following aspects. First, we constructed
the simple space mission model manually based
on semi-formal graphical descriptions, while tak-
ing into account the characteristics of the Gamma
languages. This approach resulted in a model tai-
lored to the modeling languages of the framework,
potentially distorting the results compared to fully
automatic mappings. Next, we evaluated our tool
in the context of a limited set of (three) system
models. Also, the resulting test sets could be opti-
mized in every model as there were always traces
that were prefixes to others. Thus, our optimiza-
tion algorithms in most cases could significantly
speed up the generation process, which could not
happen with unoptimizable test sets. Moreover,
the effects of the first test optimization algorithm
highly depend on the order of the verifiable prop-
erties and thus, executions with different property
orderings can substantially differ. Finally, the tool

generates tests using a series of complex auto-
mated model transformations in Gamma: poten-
tial implementation flaws in the transformations
can result in semantically incorrect analysis mod-
els, distorting the results. Nevertheless, all gen-
erated tests passed, demonstrating the semantic
equivalence of the derived analysis models and
implementation for the examined traces (including
time-dependent behavior) and showing the good
quality of the model transformations in general.

7 Related work

This section presents MBT approaches and tools
that target (i) state-based models and build on
(ii) model checkers and test coverage criteria as
these are the key aspects of the testable sys-
tems and our test generation approach in Gamma.
Accordingly, we exclude approaches that target
different model types, test selection criteria and
technologies [32–34] as well as solutions where
test generation characteristics are not presented in
detail. Although our solution targets integration
testing, we also include works focusing on stan-
dalone reactive components (i.e., single statechart
models). We organize related work in accordance
with the supported coverage criteria, that is, we
present solutions for logical, model element-based
and behavior-based coverage criteria.

7.1 Solutions for logical condition
coverage criteria

Authors in [35] present a method for the auto-
matic generation of test cases to cover structural
or logical coverage criteria (e.g., modified con-
dition and decision – MC/DC) for standalone
transition systems. The solution supports analyz-
ing SCR and RSML requirement specifications or
Java source code (front-end languages). Similarly
to ours, the method uses multiple model check-
ers (Spin and SMV) and automatically generated
LTL properties to cover paths in the models.

In [36], a tool-supported approach (Com-
pleteTest) is presented to analyze software written
in the Function Block Diagram (FBD) language.
The approach supports logical coverage criteria
(e.g., MC/DC) while mapping FBDs into the
timed automata formalism of UPPAAL to gener-
ate tests automatically. The results show that the

Springer Nature 2021 LATEX template

30 Integration test generation for state-based components in the Gamma framework

approach scales well for the examined FBDs and
is applicable in industrial practice.

In [37], the AutoMOTGen tool suite is pre-
sented, which supports the automatic mapping of
Simulink/Stateflow models into the SAL (Sym-
bolic Analysis Laboratory) framework and the
model checking based generation of test cases
based on various logical coverage criteria (e.g.,
MC/DC). The authors give a comparative study
with a random input-based test generation tool
and conclude that model checking-based tech-
niques can complement the random techniques.

7.2 Solutions for model
element-based criteria

AGEDIS [38] is an MBT tool suite for component-
based distributed systems integrating model and
test suite editors, test case simulation and debug-
ging tools, a test coverage analysis and defect
analysis tools as well as report generators. Test
models can be defined in the form of UML class
diagrams, state machine diagrams and object dia-
grams (to specify the SUT initial state). The test
generator builds on the TGV engine [39] and
supports state and transition coverage.

Smartesting CertifyIt [40] is also an MBT tool
suite integrating editors for requirements defini-
tion and traceability, test adapter and test models.
Test models comprise UML class diagrams (to
describe data), state machines and object dia-
grams (initial states of executions) and BPMN
notations. Tests can be generated using the Cer-
tifyIt Model Checker, supporting state, transition
and transition-pair coverage.

Authors in [41] present an approach for com-
bining explicit-state, symbolic-state and bounded
model checkers in the SAL framework by building
on results presented in [30] to generate efficient
test sets based on standalone Stateflow models.
Tests are efficient in terms of both generation and
execution, and are generated by iterated exten-
sions of previously retrieved paths. The authors
compare the usability of these model checking
techniques and propose efficient algorithms for
combining the strengths of different model check-
ers for state and transition coverage in state-based
models; a promising technique that our approach
could also benefit from in the future.

In [42], authors focus on generating test cases
from standalone statechart models to achieve state

and transition coverage by translating them into
the SMV language and using the NuSMV model
checker. They also propose a test optimization
technique similar to ours based on finding prefixes.

In [43], authors focus on deriving test cases
from standalone statecharts to achieve various
coverage criteria. Similarly to our approach, they
introduce control-flow (e.g., MC/DC, state and
transition) and dataflow coverage criteria and
adapt them to statecharts. They map statecharts
and coverage criteria into the input language of
the SMV model checker.

7.3 Solutions for behavior-based
criteria

In [44], the Component Interaction Testing project
is introduced supporting an object-oriented mod-
eling language (ObjectState) with formal seman-
tics based on the LTS formalism to define interac-
tion coverage criteria between state-based models.
Algorithms reducing state space explosion for test
generation are also presented and rely on the
iterative expansion of partial test cases and the
abstraction of interactions between components
(while environmental interactions are kept).

Authors in [45] aim at the testing of ser-
vice choreographies using model-based integration
testing techniques. The Message Choreography
Models (MCM), which describe communication
protocols between services, are transformed into
Event-B models and used as input for their in-
house ProB model checker to generate, e.g., event-
and transition-covering test suites. They also pro-
pose a test reduction algorithm based on every
possible combination of test cases that selects the
optimal one according to their specified objectives.

7.4 Novel capabilities and
evaluation aspects in our work

Our approach focuses on the generation of inte-
gration tests for reactive components utilizing the
multiple composition semantics and model check-
ers of the Gamma framework. In the literature,
several MBT approaches were proposed for model
checker based test generation; many of these
use multiple back-ends with various techniques
(explicit-state, symbolic, bounded) – a solution

Springer Nature 2021 LATEX template

Integration test generation for state-based components in the Gamma framework 31

our approach also relies on. Some test optimiza-
tion techniques were also presented in terms of
generation time and size similar to ours.

Nevertheless, we did not find any research in
the literature focusing on the (mix-and-match)
integration of components according to different
composition semantics: the examined approaches
either target standalone components or a sin-
gle composition mode supporting only a single
front-end language. Moreover, they do not con-
sider the effects of possible model preprocessings
(reductions) and test target configurations.

In our work, we aimed to make contributions
in these aspects. In our evaluation, we examined
various systems with different traits integrated
according to different composition semantics and
investigated the effects in terms of test generation
time and the size of generated test sets. We also
examined the effects of our model reduction tech-
niques and test target configuration capabilities.

8 Conclusion and future work

This paper introduced an MBT approach in the
Gamma Statechart Composition Framework for
heterogeneous state-based components integrated
according to various execution and interaction
semantics. The test generator tool provides a mul-
titude of configurable and extensible structural,
dataflow- and behavior-based coverage criteria for
integration testing based on model queries and uti-
lizes integrated model checker back-ends for test
generation. Results show that the approach and
tool are applicable on synchronous models from
industrial practice. The supported analysis models
of different model checkers are suited to differ-
ent behaviors, complementing each other and the
model reduction, model slicing and test optimiza-
tion algorithms provide significant gains during
the process with close to zero cost. Nevertheless,
the verification of asynchronous models poses a
great challenge for the tool, which could be mit-
igated by introducing pragmatic restrictions on
their behavior.

For future work, we plan to change the query
language of GPPL to that of VIATRA to increase
its expressive power. We also plan to improve the
verification of asynchronous models based on the
approach presented in [46] and introduce tech-
niques tailored to such behavior into the Theta
model checker back-end, e.g., saturation [47]. In

addition, we aim to integrate SysMLv2 [48] into
the framework to aid industrial parties in the
semantically sound composition and analysis of
system models.

Acknowledgement This work was partially supported

by the ÚNKP-20-3 New National Excellence Program of the

Ministry for Innovation and Technology.

Data availability All data generated or analyzed during

this study are included in this article and the public repository

https://github.com/ftsrg/gamma.

Conflict of interest All authors declare that they have

no conflicts of interest.

References

[1] George T Heineman and William T Coun-
cill. Component-based software engineering.
Putting the Pieces Together, Addison Wesley,
2001.

[2] Janos Sztipanovits, Ted Bapty, Sandeep
Neema, Larry Howard, and Ethan Jackson.
OpenMETA: A model- and component-based
design tool chain for cyber-physical systems.
In Saddek Bensalem, Yassine Lakhneck, and
Axel Legay, editors, From Programs to Sys-
tems. The Systems perspective in Computing,
pages 235–248. Springer, 2014.

[3] Ananda Basu, Bensalem Bensalem, Marius
Bozga, Jacques Combaz, Mohamad Jaber,
Thanh-Hung Nguyen, and Joseph Sifakis.
Rigorous component-based system design
using the BIP framework. IEEE Software,
28(3):41–48, May 2011.

[4] Saddek Bensalem, Marius Bozga, Axel Legay,
Thanh-Hung Nguyen, Joseph Sifakis, and
Rongjie Yan. Component-based verification
using incremental design and invariants. Soft-
ware and System Modeling, 15(2):427–451,
2016.

[5] Adam Childs, Jesse Greenwald, Georg Jung,
Matthew Hoosier, and John Hatcliff. CALM
and Cadena: Metamodeling for component-
based product-line development. IEEE Com-
puter, 39(2):42–50, 2006.

[6] X. Ke, K. Sierszecki, and C. Angelov.
COMDES-II: A component-based framework

https://github.com/ftsrg/gamma

Springer Nature 2021 LATEX template

32 Integration test generation for state-based components in the Gamma framework

for generative development of distributed
real-time control systems. In 13th IEEE
International Conference on Embedded and
Real-Time Computing Systems and Applica-
tions (RTCSA), pages 199–208, Aug 2007.

[7] Wenbin Li, Franck Le Gall, and Naum Spas-
eski. A survey on model-based testing tools
for test case generation. In Vladimir Itsykson,
Andre Scedrov, and Victor Zakharov, edi-
tors, Tools and Methods of Program Analysis,
pages 77–89, Cham, 2018. Springer Interna-
tional Publishing.

[8] Axel Belinfante, Lars Frantzen, and Chris-
tian Schallhart. Tools for test case gen-
eration. In Manfred Broy, Bengt Jonsson,
Joost-Pieter Katoen, Martin Leucker, and
Alexander Pretschner, editors, Model-Based
Testing of Reactive Systems, pages 391–438.
Springer, 2005.

[9] Francesca Saglietti and Florin Pinte. Auto-
mated unit and integration testing for
component-based software systems. In Pro-
ceedings of the International Workshop on
Security and Dependability for Resource Con-
strained Embedded Systems, pages 1–6, 2010.

[10] Vince Molnár, Bence Graics, András Vörös,
István Majzik, and Dániel Varró. The
Gamma Statechart Composition Framework.
In 40th International Conference on Software
Engineering (ICSE), pages 113–116, Gothen-
burg, Sweden, 2018. ACM.

[11] Bence Graics, Vince Molnár, András Vörös,
István Majzik, and Dániel Varró. Mixed-
semantics composition of statecharts for the
component-based design of reactive systems.
Software and Systems Modeling, 19(6):1483–
1517, 2020.

[12] Ármin Zavada. Formal modeling and verifi-
cation of process models in component-based
reactive systems. Technical report, Budapest
Univ. of Technology and Economics, Dept.
of Measurement and Information Systems,
2021.

[13] E. Allen Emerson and Joseph Y. Halpern.
“Sometimes” and “not never” revisited: On

branching versus linear time temporal logic.
J. ACM, 33(1):151–178, January 1986.

[14] Gianfranco Ciardo and Radu Siminiceanu.
Structural symbolic CTL model checking of
asynchronous systems. In Warren A. Hunt
and Fabio Somenzi, editors, Computer Aided
Verification, pages 40–53. Springer, 2003.

[15] Gianfranco Ciardo, Gerald Lüttgen, and
Radu Siminiceanu. Efficient symbolic state-
space construction for asynchronous systems.
In Mogens Nielsen and Dan Simpson, editors,
Application and Theory of Petri Nets 2000,
pages 103–122. Springer, 2000.

[16] Edmund M. Clarke, Thomas A. Henzinger,
and Helmut Veith. Introduction to Model
Checking, pages 1–26. Springer, Cham, 2018.

[17] Gerd Behrmann, Alexandre David,
Kim Guldstrand Larsen, John H̊akansson,
Paul Pettersson, Wang Yi, and Martijn Hen-
driks. Uppaal 4.0. In Proceedings of the
3rd International Conference on the Quan-
titative Evaluation of Systems, QEST ’06,
page 125–126, USA, 2006. IEEE Computer
Society.

[18] Tamás Tóth, Ákos Hajdu, András Vörös,
Zoltán Micskei, and István Majzik. Theta:
a framework for abstraction refinement-based
model checking. In Daryl Stewart and
Georg Weissenbacher, editors, Proceedings
of the 17th Conference on Formal Methods
in Computer-Aided Design, pages 176–179,
2017.

[19] Gordon Fraser, Franz Wotawa, and Paul E.
Ammann. Testing with model checkers: a
survey. Software Testing, Verification and
Reliability, 19(3):215–261, 2009.

[20] Mark Utting and Bruno Legeard. Practi-
cal Model-Based Testing: A Tools Approach.
Elsevier, 01 2007.

[21] Bence Graics. Documentation of the
Gamma Statechart Composition Framework
v2.0. Technical report, Budapest Univ. of
Technology and Economics, Dept. of Mea-
surement and Information Systems, 2018.

Springer Nature 2021 LATEX template

Integration test generation for state-based components in the Gamma framework 33

https://tinyurl.com/2xxyujtf.

[22] Yasir Dawood Salman, Nor Laily Hashim,
Mawarny Md Rejab, Rohaida Romli, and
Haslina Mohd. Coverage criteria for test case
generation using UML state chart diagram.
AIP Conference Proceedings, 1891(1):020125,
2017.

[23] Sandra Rapps and Elaine Weyuker. Selecting
software test data using data flow infor-
mation. IEEE Transactions on Software
Engineering, SE-11(4):367– 375, 05 1985.

[24] Dániel Varró, Gábor Bergmann, Ábel
Hegedüs, Ákos Horváth, István Ráth, and
Zoltán Ujhelyi. Road to a reactive and incre-
mental model transformation platform: three
generations of the VIATRA framework. Soft-
ware & Systems Modeling, 15(3):609–629,
2016.

[25] Bence Graics. Documentation of the
Gamma Statechart Composition Framework
v0.9. Technical report, Budapest Univ. of
Technology and Economics, Dept. of Mea-
surement and Information Systems, 2016.
https://tinyurl.com/yeywrkd6.

[26] Milán Mondok. Extended symbolic transi-
tion systems: an intermediate language for
the formal verification of engineering mod-
els. Technical report, Budapest Univ. of
Technology and Economics, Dept. of Mea-
surement and Information Systems, 2020.
http://tdk.bme.hu/VIK/DownloadPaper/Ki-
terjesztett-szimbolikus-tranzicios.

[27] Tim Lange, Martin R Neuhauber, and
Thomas Noll. IC3 software model checking
on control flow automata. In Formal Methods
in Computer-Aided Design (FMCAD), pages
97–104. IEEE, 2015.

[28] T.S. Chow. Testing software design modeled
by finite-state machines. IEEE Transactions
on Software Engineering, SE-4(3):178–187,
1978.

[29] R. Dorofeeva, K. El-Fakih, S. Maag, A.R.
Cavalli, and N. Yevtushenko. Experimen-
tal evaluation of FSM-based testing methods.

In Third IEEE International Conference on
Software Engineering and Formal Methods
(SEFM’05), pages 23–32, 2005.

[30] Mats P. E. Heimdahl, Sanjai Rayadurgam,
Willem Visser, George Devaraj, and Jimin
Gao. Auto-generating test sequences using
model checkers: A case study. In Alexandre
Petrenko and Andreas Ulrich, editors, Formal
Approaches to Software Testing, pages 42–59.
Springer, 2004.

[31] M.P.E. Heimdahl, D. George, and R. Weber.
Specification test coverage adequacy criteria
= specification test generation inadequacy
criteria. In Eighth IEEE International Sym-
posium on High Assurance Systems Engineer-
ing, Proceedings., pages 178–186, 2004.

[32] Mark Utting, Alexander Pretschner, and
Bruno Legeard. A taxonomy of model-based
testing approaches. Software testing, verifi-
cation and reliability, 22(5):297–312, 2012.

[33] Muhammad Shafique and Yvan Labiche. A
systematic review of state-based test tools.
International Journal on Software Tools for
Technology Transfer, 17(1):59–76, 2015.

[34] Havva Gulay Gurbuz and Bedir Tekinerdo-
gan. Model-based testing for software safety:
a systematic mapping study. Software Qual-
ity Journal, 26(4):1327–1372, 2018.

[35] Sanjai Rayadurgam and Mats Per Erik Heim-
dahl. Coverage based test-case generation
using model checkers. In Proceedings. Eighth
Annual IEEE International Conference and
Workshop On the Engineering of Computer-
Based Systems-ECBS, pages 83–91. IEEE,
2001.

[36] Eduard P. Enoiu, Adnan Čaušević,
Thomas J. Ostrand, Elaine J. Weyuker,
Daniel Sundmark, and Paul Pettersson.
Automated test generation using model
checking: an industrial evaluation. Inter-
national Journal on Software Tools for
Technology Transfer, 18(3):335–353, 2016.

[37] Swarup Mohalik, Ambar A. Gadkari,
A. Yeolekar, K. Shashidhar, and S. Ramesh.

Springer Nature 2021 LATEX template

34 Integration test generation for state-based components in the Gamma framework

Automatic test case generation from
Simulink/Stateflow models using model
checking. Softw. Test. Verif. Reliab.,
24:155–180, 2014.

[38] Alan Hartman and Kenneth Nagin. The
AGEDIS tools for model based testing. ACM
Sigsoft Software Engineering Notes, 29, 07
2004.

[39] Thierry Jéron and Pierre Morel. Test gen-
eration derived from model-checking. In
International Conference on Computer Aided
Verification, pages 108–122. Springer, 1999.

[40] Bruno Legeard and Arnaud Bouzy. Smartest-
ing CertifyIt: Model-based testing for enter-
prise it. In 2013 IEEE Sixth International
Conference on Software Testing, Verification
and Validation, pages 391–397, 2013.

[41] Grégoire Hamon, Leonardo de Moura, and
John Rushby. Generating efficient test sets
with a model checker. In Proceedings of the
Second International Conference on Software
Engineering and Formal Methods (SEFM),
pages 261–270, 01 2004.

[42] M. Kadono, T. Tsuchiya, and T. Kikuno.
Using the NuSMV model checker for test
generation from statecharts. In 15th IEEE
Pacific Rim International Symposium on
Dependable Computing, pages 37–42, 2009.

[43] Hyoung Hong, Insup Lee, and Oleg Sokolsky.
Automatic test generation from statecharts
using model checking. Technical Reports (No.
MS-CIS-01-07), 10 2001.

[44] Wayne Liu and P Dasiewicz. Component
interaction testing using model-checking. In
Canadian Conference on Electrical and Com-
puter Engineering Conference Proceedings
(Cat. No. 01TH8555), volume 1, pages 41–46.
IEEE, 2001.

[45] Sebastian Wieczorek, Vitaly Kozyura,
Andreas Roth, Michael Leuschel, Jens
Bendisposto, Daniel Plagge, and Ina Schiefer-
decker. Applying model checking to generate
model-based integration tests from choreog-
raphy models. In Manuel Núñez, Paul Baker,

and Mercedes G. Merayo, editors, Testing
of Software and Communication Systems,
pages 179–194. Springer, 2009.

[46] Benedek Horváth, Bence Graics, Ákos Hajdu,
Zoltán Micskei, Vince Molnár, István Ráth,
Luigi Andolfato, Ivan Gomes, and Robert
Karban. Model Checking as a Service:
Towards pragmatic hidden formal methods.
In Proceedings of the 23rd ACM/IEEE Inter-
national Conference on Model Driven Engi-
neering Languages and Systems: Compan-
ion Proceedings, MODELS, pages 1–5. ACM,
2020.

[47] Vince Molnár and István Majzik. Satu-
ration enhanced with conditional locality:
application to Petri Nets. In International
Conference on Applications and Theory of
Petri Nets and Concurrency, pages 342–361.
Springer, 2019.

[48] Systems Modeling Language Version 2
(SysMLv2). Standard, Object Management
Group (OMG), December 2020.

Appendix

The Appendix contains additional information
about the modeling languages of the Gamma
framework, the annotation process of composite
models during test generation and composite sys-
tem models on which the experimental evaluation
of the test generation approach was carried out.

A1 Gamma modeling languages

This section details the Gamma Statechart
Language, Gamma Composition Language and
Gamma Trace Language.

A1.1 Gamma Statechart Language

The Gamma Statechart Language (GSL) serves
as a common representation language for compo-
nent statecharts and supports different statechart
semantics by means of annotations. GSL, like
every Gamma language, organizes models into
packages and supports their import using a rel-
ative path, e.g., interfaces, serving as realizable
communicational contracts. In GSL models, anno-
tations can be used to specify conflict resolution

Springer Nature 2021 LATEX template

Integration test generation for state-based components in the Gamma framework 35

between transitions (@RegionSchedule) and pri-
ority between transitions with the same source
(@TransitionPriority) to represent the behavior
of the original Yakindu models. In addition, ports
are defined as interaction points via which the
component can communicate with its environ-
ment. Finally, variable declarations (with poten-
tial annotations, detailed in Sect. 2.3), regions
with state nodes and transitions are defined.

A1.2 Gamma Composition Language

In the Gamma Composition Language (GCL), the
definition of composite models in different com-
position modes differ only in a single keyword
(sync, cascade or async); the definition of ports
(they are identical to statechart ports), contained
component instances, port bindings and internal
channels are identical in each composition mode.
Therefore, users can tailor the integration and

� �
package cabincontrol
import "Interface/Interface.gcd" // Importing interfaces

for ports (relative path)
@RegionSchedule = bottom-up // Conflict resolution between

hierarchy levels
@TransitionPriority = order-based // Priority between

transitions with the same source
statechart CabinControl [
// Ports via which events can be sent and received
port Door : provides Door
port Cabin : requires Cabin

] {
// Variable declarations
var isDoorClosed : boolean
// Regions and contained state nodes
region main {
initial Entry
state TravellingDown
state Idle
state TravellingUp
choice Choice1
choice Choice2

}
// Transitions
transition from Entry to Idle
transition from Idle to Idle when Cabin.close /
raise Door.close;isDoorClosed := true;

transition from Idle to Idle when Cabin.open /
raise Door.open; isDoorClosed := false;

transition from Idle to Choice1 when Cabin.up_
transition from Idle to Choice2 when Cabin.down
transition from TravellingDown to Idle when Cabin.stop
transition from TravellingUp to Idle when Cabin.stop
transition from Choice1 to TravellingUp [isDoorClosed]
transition from Choice1 to TravellingUp [else] /
raise Door.close; isDoorClosed := true;

transition from Choice2 to TravellingDown [isDoorClosed]
transition from Choice2 to TravellingDown [else] /
raise Door.close; isDoorClosed := true;

}� �
Fig. 16 GSL cabin controller of the elevator system.

� �
... // Package and annotation definitions as well as

interface import
statechart CabinDoorControl [
port Door : requires Door

] {
region main {
initial Entry
state Open
state Closed

}
transition from Entry to Closed
@(main_closed__main_open) // Id annotation
transition from Closed to Open when Door.open
@(main_open__main_closed) // Id annotation
transition from Open to Closed when Door.close

}� �
Fig. 17 GSL cabin door controller of the elevator system.

� �
package elevator
import "Interface/Interface.gcd"
// Importing the Gamma statechart models
import "CabinControl/CabinControl.gcd"
import "DoorControl/CabinDoorControl.gcd"
// Synchronous-reactive, cascade or asynchronous-reactive

model according to the keyword
[sync / cascade / async] Elevator [
port Cabin : requires Cabin

] {
// Component instances of the system
component cabinControl : CabinControl
component cabinDoorControl : CabinDoorControl
// Binding system ports to ports of contained components
bind Cabin -> cabinControl.Cabin
// Channels for component communication
channel [cabinControl.Door] -o)- [cabinDoorControl.Door]

}� �
Fig. 18 GCL synchronous-reactive, cascade or asynchron-
ous-reactive composite model of the elevator system.

verification process according to their needs and
expectations about their system’s behavior.

In our elevator example, we define a compos-
ite model (Elevator) with a single port named
Cabin. We also define two component instances
cabinControl and cabinDoorControl of GSL state-
chart types CabinControl and CabinDoorControl
that define the behavior of the composite model.
The single system port is bound to port Cabin of
the cabinControl component, that is, every event
received via this system port is processed by cab-
inControl. Finally, the defined channel enables
event transmission between port Door of the
cabinControl component and port Door of the
cabinDoorControl component.

A1.3 Gamma Trace Language

The Gamma Trace Language is a high-level trace
language tailored to the characteristics of GCL

Springer Nature 2021 LATEX template

36 Integration test generation for state-based components in the Gamma framework

� �
// E F (var main_open__main_closed)
trace OpenClosedTrace of Elevator
step {
act {
reset

}
assert {
cabinControl.Idle
cabinDoorControl.Closed
!cabinControl.isDoorClosed
!cabinDoorControl.main_closed__main_open
!cabinDoorControl.main_open__main_closed

}
}
step {
act {
raise Cabin.open
schedule component

}
assert {
cabinControl.Idle
cabinDoorControl.Open
!cabinControl.isDoorClosed
cabinDoorControl.main_closed__main_open
!cabinDoorControl.main_open__main_closed

}
}
step {
act {
raise Cabin.down
schedule component

}
assert {
cabinControl.TravellingDown
cabinDoorControl.Closed
cabinControl.isDoorClosed
!cabinDoorControl.main_closed__main_open
cabinDoorControl.main_open__main_closed

}
}� �

semantics, supporting the description of execu-
tion traces for composite models. Such execution
traces formally describe the behavior of composite
models, that is, what states it goes into (state con-
figuration and variable values) and what events it
produces (asserts in short) in response to certain
inputs (acts) from the environment (input events,
time lapse and scheduling). GTL also supports the
specification of undesired behavior or the combi-
nation of different behaviors, i.e., the combination
(And, Or, Xor-relation) of undesired outputs or
variable values in specific states.

A2 Annotating composite models

The annotation of composite models (ignoring
excluded elements) takes place in accordance with
the selected coverage criteria as follows.

State and out-event coverage

In the case of state and out-event coverage, no
auxiliary elements are inserted into the model.

Transition coverage

In the case of transition coverage, a boolean
variable (marked resettable) is created for every
transition with a false initial value. Next, the
action list of every transition is extended with
an assignment action that sets the corresponding
variable to true. This way, the variable is true only
if the corresponding transition fires.

Transition-pair coverage

In the case of transition-pair coverage,

• a pair of integer variables (previousId and actu-
alId) is created for every state that has both
incoming and outgoing transitions;

• every transition entering or leaving such a state
is assigned a unique integer identifier;

• the action list of every incoming transition is
extended with an action that saves the identifier
of the transition in the actualId variable;

• the exit action list of each state is extended
with an action saving the value of the actualId
variable in the previousId variable;

� �
// E F (var main_closed__main_open)
trace ClosedOpenTrace of Elevator
step {
act {
reset

}
assert {
cabinControl.Idle
cabinDoorControl.Closed
!cabinControl.isDoorClosed
!cabinDoorControl.main_closed__main_open
!cabinDoorControl.main_open__main_closed

}
}
step {
act {
raise Cabin.open
schedule component

}
assert {
cabinControl.Idle
cabinDoorControl.Open
!cabinControl.isDoorClosed
cabinDoorControl.main_closed__main_open
!cabinDoorControl.main_open__main_closed

}
}
// Note that it is prefix of OpenClosedTrace� �
Fig. 19 GTL execution traces derived for the transition
coverage properties of the cabin door controller component
of the elevator system.

Springer Nature 2021 LATEX template

Integration test generation for state-based components in the Gamma framework 37

� �
public class ClosedOpenTrace {
// Generated implementation wrapped in a reflective API
private static ReflectiveElevator elevator;
@Before
public void init() {
elevator = new ReflectiveElevator();

}
public void step0() {
// Initializing the implementation
elevator.reset();
// Assert
assertTrue(elevator.getComponent("cabinControl")
.isStateActive("main", "Idle"));

assertTrue(elevator.getComponent("cabinDoorControl")
.isStateActive("main", "Closed"));

assertTrue(elevator.getComponent("cabinControl")
.checkValue("isDoorClosed", false));

}
@Test
public void finalStep() {
step0();
// Raising Cabin.open with no argument
elevator.raiseEvent("Cabin", "open", new Object[] {});
// Initiating an execution cycle
elevator.schedule();
// Assert
assertTrue(elevator.getComponent("cabinControl")
.isStateActive("main", "Idle"));

assertTrue(elevator.getComponent("cabinDoorControl")
.isStateActive("main","Open"));

assertTrue(elevator.getComponent("cabinControl")
.checkValue("isDoorClosed", false));

}
}� �
Fig. 20 JUnit test derived for the transition-covering test
set of cabin door controller of the elevator system.

• the action list of every outgoing transition is
extended with an action that saves the identifier
of the transition in the actualId variable.

Consequently, the values of the previousId and
actualId variables for a certain state are n and
m, only if the last activation and deactivation of
the state were executed by the incoming transition
with identifier n and the outgoing transition with
identifier m. Note that this approach supports the
correct handling of loop transitions.

Interaction coverage

In the case of interaction coverage,

• every event raise action (called sender in gen-
eral), that is, entry or exit action of a state or
action of a transition (this latter is called tran-
sition sender in general), is assigned an integer
identifier according to the specified sender-
coverage-criterion:

– events – senders interacting via the same
port-event combination in a component are

assigned the same identifier; in all other cases,
senders are assigned different identifiers;

– states-and-events – transition senders that 1)
interact via the same port-event combination
and 2) are contained by transitions leaving
the same state in a component, are assigned
the same identifier; in all other cases, senders
are assigned different identifiers;

– every-interaction – every sender is assigned a
unique identifier.

• every transition with a trigger (called receiver in
general) is assigned an integer identifier accord-
ing to the specified receiver-coverage-criterion:

– events – receivers triggered by the same
port-event combination in a component are
assigned the same identifier; in all other cases,
receivers are assigned different identifiers;

– states-and-events – receivers that 1) are trig-
gered by the same port-event combination,
and 2) leave the same state in a compo-
nent, are assigned the same identifier; in all
other cases, senders are assigned different
identifiers;

– every-interaction – every receiver is assigned
a unique identifier.

• the parameter list of every event declaration
raised by a sender is extended with an integer
parameter named senderId that will be respon-
sible for storing the identifier of the sender;

• the argument list of every sender is extended
with its identifier;

• in every atomic component containing receivers,
a pair of integer variables, named senderId and
receiverId (both marked resettable) are created
for each region that will be responsible for stor-
ing the identifier of the sender and receiver of
the last interaction in a particular region;

• the action list of every receiver transition is
extended with an action, saving the identifier
of the sender and receiver in the corresponding
variables.

Accordingly, the values of the senderId and
receiverId variables for a certain region are n and
m, only if the last interaction in that particu-
lar region took place between a sender of another
component with identifier n and a receiver tran-
sition of that certain region with identifier m.
Note that in a region, only one transition can
fire in a single execution turn and thus, these

Springer Nature 2021 LATEX template

38 Integration test generation for state-based components in the Gamma framework

variables cannot be overwritten. As an example,
Fig. 21 presents the annotated statechart models
of the elevator system during interaction coverage
after setting both receiver-coverage-criterion and
sender-coverage-criterion to every-interaction.

Dataflow coverage

In the case of internal dataflow coverage, an
integer variable is created for every considered
variable declaration (denoted by d). Furthermore,
a unique integer identifier is assigned to every vari-
able definition statement (def d), and an integer
variable (marked resettable) is created for every
declaration use (use d). An assignment statement
is inserted after each declaration definition state-
ment, saving the identifier of def d in d. Moreover,
an assignment statement is inserted into the cor-
responding action list after each declaration use,
saving the value of the corresponding d variable
in the corresponding use d variable (see an exam-
ple in Fig. 22). The difference in the case of
interaction dataflow coverage is that instead of
integer variable declarations, parameter declara-
tions of type integer (denoted by d) are created for
event declarations containing considered parame-
ter declarations, and unique integer identifiers are
assigned to every event raise action (def d); their

� �
statechart CabinControl [...] {
...
// Transitions with with raise event actions sending

their identifiers as arguments
transition from Choice1 to TravellingUp [else] /
raise Door.close(1); isDoorClosed:= true;

transition from Choice2 to TravellingDown [else] /
raise Door.close(2); isDoorClosed := true;

transition from Idle to Idle when Cabin.close /
raise Door.close(3); isDoorClosed := true;

transition from Idle to Idle when Cabin.open /
raise Door.open(4); isDoorClosed := false;

}
statechart CabinDoorControl [...] {
// Resettable variables for storing the ids of

interacting senders and receivers
@Resettable var senderId : integer
@Resettable var receiverId : integer
...
// Transitions extended with actions saving the ids of

the sender and receiver
transition from Closed to Open when Door.open /
senderId := Door.open::senderId; receiverId := 5;

transition from Open to Closed when Door.close /
senderId := Door.open::senderId; receiverId := 6;

}� �
Fig. 21 Annotated cabin controller and cabin door con-
troller models of the elevator system: both receiver-
coverage-criterion and sender-coverage-criterion are set to
every-interaction.

argument list also gets extended with their iden-
tifier (similarly to the approach presented in the
case of interaction coverage). This approach facil-
itates the identification of def-clear paths from
different declaration definition statements: in the
case of a d declaration, the integer variable of a
use d statement is n only if a def-clear d path
from def d with identifier n to use d is covered.
Note that this annotation method is independent
of the selected coverage criterion; the coverage cri-
terion affects only the generation of properties (see
Sect. 4.3).

A3 System models for evaluation

This section presents the system models on which
the evaluation of our test generation approach is
carried out.

A3.1 Signaller subsystem for railway
traffic control

The signaller subsystem consists of three atomic
statechart components: two identical antivalence
checkers and one signaller. The antivalence check-
ers (defined in MagicDraw, depicted in Fig. 10)
sample input signals (h and l, standing for high
and low) coming from the environment, poten-
tially handle inconsistencies and transfer the sig-
nals (t, f and p, standing for true, false and
previous, respectively) to the connected signaller.
The handling of inconsistency in input signals
can be set by a parameter (P STORE), which
turns error storage on or off – we set this param-
eter to true (this will eventuate a greater state
space during verification). The signaller (defined
in Yakindu, depicted in Fig. 11) sends signals to
the environment (ACTIVE and PASSIVE signals
sent via the O port) according to a well-defined
railway control protocol based on inputs coming
from the antivalence checkers via the I FT and
I CR ports. Both components rely on an external
timer component, responsible for sending time-
out signals after specified time intervals (timeout
triggers in the models).

A3.2 Simple space mission

The simple space mission system model comprises
two communicating statechart components among
which data transmission takes place: a ground sta-
tion (see Fig. 12) and a spacecraft (see Fig. 13).

Springer Nature 2021 LATEX template

Integration test generation for state-based components in the Gamma framework 39

The ground station receives control events from its
environment (start and shutdown) via its control
port, and can ping the spacecraft (ping event) to
initiate incoming data transmission. The compo-
nent has several timeouts to handle the absence
of incoming events. The spacecraft starts trans-
mitting data upon the reception of a ping event
in packets via the connection port (variable data
stores the number of remaining packets). Data
transmission for the spacecraft requires energy,
denoted by the battery variable. If the battery
goes too low, the spacecraft enters a recharging
state where energy is restored. Similarly to the
ground station, the spacecraft has timeouts to
measure time lapse and handle idleness.

As the original model was simulated using
the Cameo Simulation Toolkit16 with discrete
time steps, we can model the system with the
synchronous-reactive composition mode. In addi-
tion, we create a cascade and an asynchronous-
reactive variant to analyze the effects of different
interaction and communications semantics.

As an example, Fig. 22 shows and excerpt
of the annotated spacecraft model to support
all-def, all-c-use/all-p-use and all-use dataflow
coverage criteria according to the rules presented
in Section A2.

A3.3 Railway path locking topology

The railway path locking topology consists of two
kinds of component models, a signaller (a model
different from the one presented in the signaller
subsystem) and a turnout (see Fig. 14). Both kinds
of components have four ports. Communication
with the external control environment can be car-
ried out via port T of the signaller whereas the
D, S, E, L and R ports are used for commu-
nication among the components of the topology.
Via the B ports, the components can receive
data from lower-level objects (hardware-related
elements). The operation of every port is inde-
pendent of the others’ and thus, communication
is defined using orthogonal regions in both model
types. Altogether, the signaller model consists of
five orthogonal regions, 12 states, 41 transitions
and ten variables and has a parameter specifying
the role of the instantiated object (reverse, main

16https://nomagic.com/product-addons/
magicdraw-addons/cameo-simulation-toolkit

� �
statechart Spacecraft [
port connection : provides DataSource

] {
// Original variables
var battery : integer := 100
var recharging : boolean := false
var data : integer := 100
// Injected variables for declarations (d)
var def_battery : integer
var def_recharging : integer
var def_data : integer
// Injected variables for decl. uses (use-d)
@Resettable var use_battery_0 : integer
...
@Resettable var use_battery_8 : integer
@Resettable var use_recharging_0 : integer
@Resettable var use_data_0 : integer
// Timoeuts, regions and states
...
transition from WaitingPing to Transmitting
when connection.ping [recharging = false] /
use_recharging_0 := def_recharging;

transition from Sending to Sending when
timeout transmitTimeout [data > 1 and battery >= 40] /
use_data_0 := def_data; // p-use
use_battery_0 := def_battery; // p-use
data := data - 1; // Original def
use_data_1 := def_data; // c-use
def_data := 0; // After the use setting:
// assigning an id (0) to the data def
raise connection.data;

transition from Consuming to Consuming when
timeout consumeTimeout [battery >= 40] /
use_battery_1 := def_battery; // p-use
battery := battery - 1; // Original def
use_battery_2 := def_battery; // c-use
def_battery := 0; // After the use setting:
// assigning an id (0) to the battery def

...
}� �
Fig. 22 Excerpt of the annotated spacecraft model of the
simple space mission model for dataflow coverage criteria.

or reverse & main). The turnout model consists of
seven orthogonal regions, 23 states, 81 transitions
and seven variables and has a parameter specify-
ing its initial control setting (left or right, that is,
the L or the B port is “connected” to E internally).

The railway path locking topology (depicted in
Fig. 15) consists of a main signaller, a reverse
signaller and two reverse & main signallers with
turnouts in between them controlled in an ade-
quate state. The main signaller is set to be able to
communicate via its T port and initiate a railway
path locking until the rightmost signaller upon an
external railway path locking request and return
with the (positive or negative) response. Further-
more, every component can communicate via its
B port in addition to the D, S and E, L and R
ports connected to neighboring components. Sim-
ilarly to the signaller subsystem, the designers

https://nomagic.com/product-addons/magicdraw-addons/cameo-simulation-toolkit
https://nomagic.com/product-addons/magicdraw-addons/cameo-simulation-toolkit

Springer Nature 2021 LATEX template

40 Integration test generation for state-based components in the Gamma framework

aimed to investigate the effects of different compo-
sition semantics in terms of testing and thus, we
construct a synchronous-reactive, cascade and an
asynchronous-reactive composite model variant.

	Introduction
	Component integration and verification in Gamma
	Importing external component models (optional)
	Integrating component models
	Processing composite models
	Executing model checking and back-annotation

	Test generation in Gamma
	Coverage criteria and their mapping into test targets
	Specification of coverage criteria
	GGL-based criterion specification
	GPPL-based criterion specification

	Formal concepts of coverage criteria
	Formal definition of coverage criteria
	State coverage
	Transition coverage
	Transition-pair coverage
	Out-event coverage
	Interaction coverage
	Dataflow coverage

	Annotating composite models
	Annotating model elements
	Exploring elements for annotation

	Generating properties
	State and out-event coverage
	Transition coverage
	Transition-pair coverage
	Interaction coverage
	Dataflow coverage

	Model processing
	Model reduction & model slicing
	Model reduction
	Model slicing

	Transforming models into target models for test generation
	Optimizing abstract test generation

	Practical experiences
	Evaluation of tool usability
	Test generation for a safety-critical signaller subsystem
	Model transformation
	Test generation

	Test generation for a simple space mission
	Model transformation
	Test generation

	Test generation for a distributed railway path locking topology
	Model transformation
	Test generation

	Evaluation of model processing and optimization techniques
	Signaller subsystem
	Simple space mission
	Railway path locking topology

	Addressing Q-1
	Addressing Q-2
	Addressing Q-3

	Conclusion and threats to validity

	Related work
	Solutions for logical condition coverage criteria
	Solutions for model element-based criteria
	Solutions for behavior-based criteria
	Novel capabilities and evaluation aspects in our work

	Conclusion and future work
	State and out-event coverage
	Transition coverage
	Transition-pair coverage
	Interaction coverage
	Dataflow coverage

