
Integration Test Generation and Formal Verification
for Distributed Controllers

Bence Graics, István Majzik
Budapest University of Technology and Economics,

Department of Measurement and Information Systems
Budapest, Hungary

Email: {graics, majzik}@mit.bme.hu

Abstract—Software-intensive distributed controllers are be-
coming increasingly prevalent, among others, also in railway
interlocking systems (RIS). As such systems carry out critical
tasks, their systematic verification and testing are a must, which
can be supported by formal methods. This paper presents a
verification and testing approach for a distributed RIS subsystem
using hidden formal methods. The subsystem’s functional behav-
ior is modeled using statechart components defined in a high-level
UML-based modeling language, which are integrated according
to sound execution and interaction semantics defined by the RIS
protocol. The emergent model is automatically mapped into input
formalisms of model checker back-ends. Integration tests for the
system implementation are derived according to various model-
based coverage criteria using the model checker back-ends and
generated properties. The approach is implemented in our open
source Gamma Statechart Composition Framework.

Index Terms—MBSE, collaborating statecharts, hidden formal
methods, model checking, test generation, integrated tool suite

I. INTRODUCTION

Software-intensive programmable controllers are getting
more and more prevalent in critical infrastructure, e.g., in
railway interlocking systems (RIS). Such systems are generally
embedded into their dynamic environment and must coordinate
multiple subsystems/components to carry out complex tasks in
response to external commands or environmental changes.

The distributed nature of these systems encumbers their
design, necessitating precise means to describe the integration
of system components, including their execution and commu-
nication, in addition to their standalone behavior. Moreover,
as these systems carry out critical tasks, the automated formal
verification of their design and the testing of their implemen-
tation are a must in the development process.

Model-based and component-based systems engineering
(MBSE and CBSE) [1], [2] approaches promote the use of
reusable models and components based on high-level modeling
languages. However, they usually do not provide sophisticated
tool-centric means for the automated verification of the design
artifacts or the testing of the system implementation, either
due to informal model descriptions or the lack of sound and
efficient verification methods.

These issues are also prevalent in the railway domain: [3]
and [4] argue that the main barriers that hinder the wide adop-

This work was supported by the ÚNKP-22-3 New National Excellence
Program of the Ministry for Innovation and Technology.

tion of verification-oriented MBSE/CBSE approaches stem
from the lack of traceability and process integration between
the high-level models and verification back-ends.

This paper offers solutions to these shortcomings and
presents a verification and test generation approach (based on
hidden formal methods) for distributed controllers, adapted to
the design language and integration semantics of a specific
RIS design. The approach relies on the proprietary EXtended
State Machine Language (XSML) used in a railway project
to model the functional behavior of system components. The
models are transformed into the statechart language (GSL) [5]
of our Gamma Statechart Composition Framework [6], a
framework for the component-based design and verification
of reactive systems. The models are integrated in Gamma’s
composition language (GCL) [7] based on sound execution
and communication semantics in accordance with the system
specification. The composite model is then mapped into input
formalisms of model checker back-ends to support the exhaus-
tive verification of its behavior and generate integration tests
for the implementation based on various coverage criteria. The
mappings feature model reduction and slicing algorithms to
support industrial-scale systems.

Similar frameworks have been introduced in [8], [9] and
[10] for the verification of and test generation for component-
based reactive systems. However, these approaches rely on
commercial tools, hindering their extensibility, and do not pro-
vide flexibility in terms of integration semantics, contrary to
our approach building on the open source Gamma framework.

Our novel contributions are (1) the transformation of XSML
models into GSL, focusing on the languages’ characteristics,
(2) a new composition mode in GCL for the semantic-preserv-
ing integration of XSML components, and (3) the application
of our approach on a real-life distributed RIS subsystem under
development.

II. MAPPING XSML COMPONENTS INTO GSL

XSML is a textual statechart language reusing most ele-
ments of UML, e.g., it offers hierarchical states and transitions
for describing state-based behavior and variables for express-
ing memory. However, as it is designed to describe critical
functionalities, it aims for the easy interpretability of the
models and discards UML elements for complex transitions,
e.g., choice, merge, fork and join nodes, history states, as well

as entry and exit actions of states. Instead, it offers a powerful
action language to capture the handling of variables as well as
control flow (target states) in transitions. It also refines UML’s
operational semantics to eliminate nondeterminism in regard
to transitions and orthogonal regions by introducing priorities
and thus, a sequential execution of these elements.

Listing 1 presents an excerpt of one of the RIS components,
called ObjectHandler, defined in XSML. The excerpt describes
a state where the component waits for the confirmation
message of a certain request. The waiting can end in an
expected confirmation (entering CmdConfirm) or a fallback to
a previous state (WaitTS1Req) via transitions due to an invalid
message or a timeout while managing variables (potentially
through functions) and dispatching messages via ports.� �
// Integer variables with different bitlengths
U8 SessionID;
U32 TimestampObj1, TimestampVk1;
...
state WaitTS2Req {
// Timeout based on a parameter value
timeout after (TimeConfirmationTimeout) {
change WaitTS1Req;
}
// Transition triggered by a Rigel message
event Rigel msg [msg.MsgType == MsgType.RigelMsgReqTs2]

from PortIn {
// Effects described in an action language
if (SessionID != msg.SessionId)
change CmdConfirm; // Potential target state

else {
var Rigel ansTs1Msg = ProcessReqTs2(// Function call
TimestampVk1, TimestampObj1, SessionID);

send ansTs1Msg to PortOut; // Message dispatch
change WaitTS1Req; // Potential target state

}
}
}� �

Listing 1: Excerpt from the ObjectHandler XSML model.

The XSML-GSL model transformation must handle two
characteristics of XSML besides the straightforward mapping
of most model elements, e.g., regions, states and variables:

1) Selecting target states in transitions: In XSML, a single
syntactic structure (if-else branches) is used to process
an event, specifying not only the actions but also differ-
ent target states (change statements) depending on the
conditional branches; in contrast to GSL, where each
transition shall have only a single, fixed target state.

2) Introducing priorities: In XSML, priorities of transitions
and orthogonal regions are used to ensure deterministic
behavior, which have to be represented in GSL.

Listing 2 illustrates how the transformation handles target
state selection during event processing. First, a transition trig-
gered by the corresponding event is introduced, which enters a
choice state. This transition executes the corresponding actions
while setting auxiliary boolean variables (toWaitTS1Req and
toCmdConfirm) that identify the corresponding target states.
From the choice state, a set of transitions is used, where
each transition enters a proper target state depending on the
values of the auxiliary variables referenced from their guard
expressions. Note that this mapping retains the atomicity of
transitions due to the semantics of choice states in GSL [5].

Introducing priorities to transitions and orthogonal regions
is based on so-called semantic variation points offered by
GSL, which – among others – support adjusting

• the execution of actions in orthogonal regions of com-
posite states, which can be sequential, i.e., in the order
of the declaration of regions, unordered, i.e, any region
permutation is considered valid, and parallel, i.e., actions
in orthogonal regions can interleave in any way; and,

• priority between enabled transitions leaving the same
state – the absence of priority leads to nondeterministic
choices between enabled transitions during execution.

With respect to the operational semantics of XSML, the
transformation applies the sequential execution of orthogonal
regions and transitions prioritized according to their order of
definition (“earlier” defined transitions have a higher priority).� �
// Auxiliary boolean variables for target state selection
var toWaitTS1Req, toCmdConfirm : boolean
..
// Choice state for target state selection
choice WaitTS2Req_
..
// Selecting target states: single transition
transition from WaitTS2Req to WaitTS2Req_ when

PortIn.msg [PortIn.msg::Value.MsgType ==
MsgType::RigelMsgReqTs2] / {

if (SessionID != PortIn.msg::Value.SessionId)
toCmdConfirm := true; // Setting target state
else {
var ansTs1Msg : Rigel := ProcessReqTs2(// Function call

TimestampVk1, TimestampObj1, SessionID);
raise PortOut.message(ansTs1Msg);
toWaitTS1Req := true; // Setting target state
}

}
// Selecting target states: set of transitions
transition from WaitTS2Req_ to WaitTS1Req [toWaitTS1Req]
transition from WaitTS2Req_ to CmdConfirm [toCmdConfirm]� �
Listing 2: GSL elements derived from the transition triggered
by a Rigel message in Listing 1.

III. INTEGRATING XSML COMPONENTS

Similarly to standalone statecharts, XSML also aims for a
deterministic behavior at the level of component integration.
Accordingly, it defines deterministic execution and communi-
cation semantics for integrated (composite) components that
feature (1) the sequential execution of contained components
and (2) their communication using immutable messages stored
in prioritized message queues. Consequently, GCL must pro-
vide a composition mode that conforms to these characteristics
and thus, we introduce the new scheduled asynchronous-
reactive composition mode as previously introduced compo-
sition modes feature parallel execution with message-based
communication (asynchronous-reactive) or signal-based com-
munication (cascade and synchronous-reactive) [7].

The examined RIS subsystem represents the realization
of the so-called Rigel protocol and comprises three compo-
nents, namely controlCenter, dispatcher and objectHandler.
Listing 3 describes the RIS subsystem model integrated in
GCL using the scheduled asynchronous-reactive composition
mode. The model has an integer parameter (Timeout) and
two ports (ControlPortIn, ControlPortOut) for the transmission

of input and output messages defined in the Rigel interface.
The model contains the above-mentioned standalone statechart
components (the objectHandler also has a Timeout parameter)
derived from XSML models whose ports are connected using
channels to enable internal communication. Moreover, the
control ports of the controlCenter component are bound to
the external ports of the system.

The new composition mode supports a cycle-based execu-
tion mode in which components are executed sequentially.
The execution order is defined in an execution list (execute
keyword). A component can be referenced multiple times
in the execution list, allowing its multiple execution in a
single cycle. Regarding communication, the components in-
teract using immutable messages stored in prioritized message
queues. Such message queues can be defined using asyn-
chronous adapter [7] models (ControlCenter, Dispatcher and
ObjectHandler) that adapt statechart models to message-based
communication. A message queue has the following fixed
attributes: (1) stored message types, (2) priority, (3) capacity
and (4) the handling of incoming messages in case the queue is
full (discard the incoming or the oldest stored message). When
selecting a message for processing, one is always retrieved
from the highest priority non-empty queue.� �
scheduled-async RIS(Timeout : integer) [
// System ports visible from the environment
port ControlPortIn : requires Rigel
port ControlPortOut : provides Rigel
] {
// Contained components of the RIS
component controlCenter : ControlCenter
component dispatcher : Dispatcher
component objectHandler : ObjectHandler(Timeout)
// Binding the control center ports to the system ports
bind ControlPortIn -> controlCenter.ControlPortIn
bind ControlPortOut -> controlCenter.ControlPortOut
// Channels for the inter-component communication
channel [controlCenter.PortOut] -o)- [dispatcher.

ControlCenterPortIn]
channel [dispatcher.ControlCenterPortOut] -o)- [

controlCenter.PortIn]
channel [dispatcher.ObjectHandlerPortOut] -o)- [

objectHandler.DispatcherPortIn]
channel [objectHandler.DispatcherPortOut] -o)- [

dispatcher.ObjectHandlerPortIn]
// Scheduling order of components
execute controlCenter, dispatcher, objectHandler
}� �
Listing 3: RIS model integrated in GCL using the scheduled
asynchronous-reactive composition mode.

IV. FORMAL VERIFICATION

The complete GCL model is mapped into low-level analysis
models via a sequence of internal automated model transfor-
mations that take into account the composition mode. The
analysis models can be verified with respect to manually
defined properties using model checker back-ends integrated
to Gamma. The results, i.e., whether the property holds in
the model and potentially a diagnostic trace as proof, are
automatically back-annotated to the source GCL model. Cur-
rently, UPPAAL, Theta and Spin are supported as back-ends,
which are tailored to handling different models, e.g., UPPAAL
supports timed behavior, Theta supports abstraction-based

symbolic techniques, and Spin excels at checking parallel
behavior. They also support different property specification
languages, e.g., UPPAAL supports a restricted CTL, Theta
supports reachability, and Spin supports LTL [11], providing
a good portfolio for model checking.

In order to support the exhaustive verification of industrial-
scale systems, the transformations feature several model re-
duction and slicing algorithms to reduce the state space of
models under verification. The model reduction algorithms,
which are independent of the verifiable properties and applied
on the model in itself, reduce the following model elements:

• unused variables and input events with their parameters;
• unfireable transitions, e.g., due to the lack of triggering

events or guards evaluating to constant false;
• unreachable states and regions without a functionality,

e.g., with a single simple state without entry/exit actions.
Model slicing is conducted depending on the verifiable

properties and reduce the following model elements:
• unreferenced enumeration literals;
• unreferenced variables and input events with their param-

eters that do not influence internal behavior.

V. TEST GENERATION

Test generation based on the complete GCL model utilizes
the verification functionalities presented in Sect. IV. As a
general idea, in a testing context, a diagnostic trace for a GCL
model derived during formal verification can be considered as
an abstract test case for the property based on which it is
generated, representing a test target. Thus, with the goal of
generating tests, we control model checkers in a way that they
generate diagnostic traces (abstract test cases) to cover test
targets specified as formal properties (trap properties) [12].
These abstract test cases then can be customized to different
execution environments, e.g., Java and C.

Test targets can be specified based on the following
model element based (structural), behavior- (interactional) and
dataflow-based coverage criteria:

• output event, state, transition and transition-pair (pairs
of transitions entering and leaving a certain state);

• sending (event raise) and receiving/processing (transition
triggered by the event) of an event between two commu-
nicating components;

• execution paths between the definition (def) and the
use/reading (use) of variables within standalone compo-
nents and also between communicating components.

The generated tests can be used to detect faults in component
implementations (e.g., missing implementation of transitions),
interaction of components, and improper variable definitions
and uses in system implementations.

Test targets are defined in terms of reachability properties,
which are trivial only in the case of output events and
states as these model elements can be directly referenced
from properties. In other cases, the GCL model has to be
annotated to enable describing the coverage of these criteria.
Accordingly, transition and variable def-use coverage criteria

necessitate the injection of boolean variables indicating their
coverage, whereas transition-pair and interaction coverage
criteria require the injection of integer variables that store
the ID of the covered elements. As the number of coverable
elements can be large, the approach supports the customization
of criteria, allowing the inclusion/exclusion of components and
relevant model elements, e.g., states, transitions and ports.

In order to make test generation more efficient in terms of
time and the size of the generated test set, the approach utilizes
two optimization algorithms. After generating a new abstract
test case, the first algorithm iterates through the still uncovered
test targets and checks whether the test case also covers some
of them [12]; such test targets get discarded. After cover-
ing each test target, the second algorithm is applied, which
searches for test cases in the test set that are prefixes of other
test cases [13]. Note that such test cases can exist even when
the first algorithm is applied due to the nondeterministic order
of processing test targets. Such test cases do not contribute to
the coverage of additional criteria, and thus, can be discarded
to further reduce the generated test set.

VI. EVALUATION

We evaluated the feasibility of our test generation approach
on the integrated RIS model, focusing on test generation time
and the size of the generated test set with test optimization
in the case of full state, transition and interaction coverage.
The RIS model altogether has 22 regions, 38 states, 118
transitions, 10 variables and 13 clock variables. We set a 5ms
timeout parameter value for the model and used UPPAAL as
this back-end could manage the features of the RIS the most
efficiently in terms of execution time. Table I contains the
measurement results. We generated tests five times for each
coverage criterion; the time-related values in the table are
represented in seconds and refer to the median of these results
(the test size related values do not change in different runs).

The results show that as the coverage criterion for testing
gets finer, the number of test targets, generated tests and
contained cycles increases; apart from one case concerning
interaction coverage due to the large number of uncoverable
interactions. In addition, the average generation time for a
single test target also increases due to the complexity of
injected annotations (auxiliary variables). Nevertheless, the re-
sults show the approach is feasible for industrial-scale models,

State Transition Interaction
#Test targets 38 118 387

#Generated tests 4 26 22
#Cycles in tests 30 230 240

ΣT (s) 243 950 5377
T (s) 6.4 8.1 13.9

TABLE I: The number of test targets, generated tests and
cycles in the generated tests, as well as the median joint test
generation time and average test generation time for a single
test target in seconds for full state, transition and interaction
coverage in the integrated RIS model.

as every test target for every criterion could be handled in less
than 14 seconds on average without any complication, e.g., a
timeout or out of memory error in the process.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a formal verification and model-
based integration test generation approach for distributed con-
trollers, adapted to a real-life RIS subsystem. The adaptation
necessitated the mapping of the XSML design language and its
semantics into the internal languages of the Gamma framework
and also the introduction of a new composition mode. Based
on these extensions, automated formal verification and cus-
tomizable test generation are supported for RIS design models.
Our evaluation demonstrated the feasibility of the approach on
an existing distributed RIS subsystem using different coverage
criteria for test generation.

Subject to future work, we plan to extend the approach to
support additional execution and communication modes during
component integration, e.g., introduce shared global message
queues for components, to aid engineers in experimenting with
different integration semantics.

REFERENCES

[1] A. Childs, J. Greenwald, G. Jung, M. Hoosier, and J. Hatcliff, “Calm and
Cadena: Metamodeling for component-based product-line development,”
Computer, vol. 39, no. 2, pp. 42–50, 2006.

[2] J. Sztipanovits, T. Bapty, S. Neema, L. Howard, and E. Jackson,
OpenMETA: A Model- and Component-Based Design Tool Chain for
Cyber-Physical Systems. Berlin, H.: Springer, 2014, pp. 235–248.

[3] A. Ferrari, F. Mazzanti, D. Basile, and M. H. ter Beek, “Systematic
evaluation and usability analysis of formal methods tools for railway
signaling system design,” IEEE Transactions on Software Engineering,
vol. 48, no. 11, pp. 4675–4691, 2022.

[4] G. Lukács and T. Bartha, “Formal modeling and verification of the
functionality of electronic urban railway control systems through a case
study,” Urban Rail Transit, vol. 8, 11 2022.

[5] B. Graics, “Documentation of the Gamma Statechart Composition
Framework v0.9,” Budapest Univ. of Technology and Economics, Tech.
Rep., 2016, https://tinyurl.com/yeywrkd6.

[6] V. Molnár, B. Graics, A. Vörös, I. Majzik, and D. Varró, “The Gamma
Statechart Composition Framework,” in 40th International Conference
on Software Engineering (ICSE). Gothenburg, Sweden: ACM, 2018,
p. 113–116.

[7] B. Graics, V. Molnár, A. Vörös, I. Majzik, and D. Varró, “Mixed-
semantics composition of statecharts for the component-based design
of reactive systems,” Software and Systems Modeling, vol. 19, p.
1483–1517, 2020.

[8] S. Mohalik, A. A. Gadkari, A. Yeolekar, K. Shashidhar, and S. Ramesh,
“Automatic test case generation from Simulink/Stateflow models using
model checking,” Softw. Test. Verif. Reliab., vol. 24, pp. 155–180, 2014.

[9] A. Hartman and K. Nagin, “The AGEDIS tools for model based testing,”
ACM Sigsoft Software Engineering Notes, vol. 29, 07 2004.

[10] G. Hamon, L. de Moura, and J. Rushby, “Generating efficient test sets
with a model checker,” in Proceedings of the Second International
Conference on Software Engineering and Formal Methods (SEFM), 01
2004, pp. 261–270.

[11] E. A. Emerson and J. Y. Halpern, ““Sometimes” and “not never”
revisited: On branching versus linear time temporal logic,” J. ACM,
vol. 33, no. 1, p. 151–178, Jan. 1986.

[12] G. Fraser, F. Wotawa, and P. E. Ammann, “Testing with model checkers:
a survey,” Software Testing, Verification and Reliability, vol. 19, no. 3,
pp. 215–261, 2009.

[13] R. Dorofeeva, K. El-Fakih, S. Maag, A. Cavalli, and N. Yevtushenko,
“Experimental evaluation of FSM-based testing methods,” in Third IEEE
International Conference on Software Engineering and Formal Methods
(SEFM’05), 2005, pp. 23–32.

