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ABSTRACT
Many testing and benchmarking scenarios in software and systems
engineering depend on the systematic generation of graph models.
For instance, tool qualification necessitated by safety standards
would require a large set of consistent (well-formed or malformed)
instance models specific to a domain. However, automatically gen-
erating consistent graph models which comply with a metamodel
and satisfy all well-formedness constraints of industrial domains is
a significant challenge. Existing solutions which map graph models
into first-order logic specification to use back-end logic solvers (like
Alloy or Z3) have severe scalability issues. In the paper, we propose
a graph solver framework for the automated generation of consis-
tent domain-specific instance models which operates directly over
graphs by combining advanced techniques such as refinement of
partial models, shape analysis, incremental graph query evaluation,
and rule-based design space exploration to provide a more efficient
guidance. Our initial performance evaluation carried out in four
domains demonstrates that our approach is able to generate models
which are 1-2 orders of magnitude larger (with 500 to 6000 objects!)
compared to mapping-based approaches natively using Alloy.
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1 INTRODUCTION
Motivation. The automated generation of graph models has re-
cently become a key approach in various application areas of soft-
ware and systems engineering. Representing objects and pointers as
graphs in object-oriented programs, automatically generated mod-
els may serve as complex test stubs [1, 2]. Auto-generated graphs
help the testing and benchmarking of graph databases [3] since
obtaining real graphs from business use cases is often difficult to
due to protection of intellectual property rights. Automated synthe-
sis of prototypical test contexts [4] aims to systematically derive
previously unanticipated contexts in the form of graph models for
the assurance of smart cyber-physical systems (CPS).

Similarly, inmany design and verification tools used for engineer-
ing complex CPSs, system models are also represented internally
as graphs, and model generators may be used for validating, test-
ing or benchmarking such design tools [5–8]. As a main practical
motivation for this scenario, while tool qualification of design and
verification tools are necessitated by safety standards (like DO-
178C [9], or ISO 26262 [10]), tool qualification is extremely costly
due to the lack of effective best practices for validating the tools
themselves. Considering tool qualification as a long-term objec-
tive, our approach will be illustrated in the context of an industrial
domain-specific modeling tool (Yakindu Statecharts), but it could
be adapted to many other practical scenarios above.

In [11], four desirable properties are stated as key challenges
for graph model generators used in such scenarios. A set of auto-
generated graphs should ideally be (1) consistent, i.e. each graph
should satisfy all well-formedness (WF) constraints, (2) diverse,
i.e. each pairs of graphs should be structurally distant from each
other, (3) scalable, i.e. the size of models are exponentially growing,
and (4) realistic, i.e. auto-generated graphs cannot be distinguished
from real models created by engineers by using advanced graph
metrics [3, 12, 13]. For instance, characteristics (1,2) are essential
in a functional testing scenario, while properties (3,4) are crucial
for benchmarking and stress testing.

However, real models created by engineers are dominantly con-
sistent (see [11] for a statistical analysis) according to the correct-
by-construction principle (e.g. commits are disallowed when test
cases fail or constraints are violated). Similarly, auto-generated
graphs violating a single WF constraint but satisfying all the others
are frequently necessitated for testing purposes. Moreover, random
generation of graphs is unable to guarantee consistency, i.e. many
WF constraints will be violated. This way, the synthesis of consistent
graphs is a prerequisite of both realistic and diverse graph models .

Problem Statement. This paper aims to automatically gener-
ate well-formed graph models of a specification defined by (1) a
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metamodel (graph schema), (2) a set of well-formedness (WF) con-
straints expressed in first-order graph logic with transitive closure
and optionally (3) an initial model fragment. Existing approaches
like [14–20] map the instance generation problem of consistent
graph models into logic solvers such as Alloy [21, 22], SMT-solvers
[23], SAT-solvers or constraint solvers when the efficiency of graph
model generation depends on the scalability and performance of
back-end logic solvers, which primarily excel in finding inconsis-
tencies in complex specifications. However, the generation models
as a side-effect of the proof construction is much less efficient.

In fact, these solvers guarantee neither scalability [24] nor diver-
sity [25] when they need to generate well-formed graph instances of
a specification – regardless of how smart themapping is from a high-
level graph model to the underlying logic solver. From a practical
perspective, while the specification of complex industrial modeling
tools may contain hundreds of classes (in their metamodel) and WF
constraints, no existing model generation technique could derive a
consistent graph that contains at least one object from each class.

Contribution.We propose a novel automatic generation tech-
nique to derive consistent domain-specific graph models for speci-
fications by exploiting and innovatively combining a multitude of
advanced graph-based and core SAT-solving techniques.

(1) We formulate model generation as a refinement of partial
models [26, 27] where initial abstract model fragments are
gradually refined and concretized during exploration.

(2) We provide partial model refinement rules as decision and unit
propagation steps by following core SAT-solving techniques.

(3) We use incremental graph query evaluation of the VIATRA
engine [28] to efficiently evaluate violations of constraints
over partial models during model generation [27].

(4) We integrate shape analysis as state encoding [29–31] for
graphs to efficiently detect if two partial models should be
treated as equivalent during exploration.

(5) We exploit rule-based design space exploration [32] to drive
the generation process directly over graph shapes using an ob-
jective function approximating the distance from a solution.

(6) We evaluate the scalability of our approach using 6 tests sets
of four domains (including industrial DSLs) and compare its
performance with the well-known Alloy Analyzer [21].

Added Value. To our best knowledge, our framework is one of
the first attempts to automatically generate consistent models by
operating natively over (typed and attributed) graphs. Moreover,
according to our scalability experiments, it is capable of generating
consistent graph models of 1-2 orders of magnitude larger (with 500-
6000 nodes) compared to models derived by Alloy and the generated
model suite is also more diverse [24]. As such, our graph solver can
serve as a back-end where Alloy was used previously for model
generation purposes in testing and benchmarking scenarios.

2 MODELING PRELIMINARIES
Our model generation technique will be illustrated by automatically
generating test inputs for Yakindu Statecharts Tools [33], which
is an industrial integrated modeling framework for developing
reactive, event-driven systems. First, we give a brief introduction to
the formal definition of partial models using a three-valued logic,
which will drive the automated generation of consistent models.

2.1 Metamodels
A domain-specific (modeling) language (DSL) is typically defined by
a metamodel and a set of well-formedness constraints. A metamodel
defines the main concepts and relations in a domain, and specifies
the basic graph structure of the models, and WF constraints further
restrict valid models of the language by defining additional design
rules. In this paper, the Eclipse Modeling Framework (EMF) [34] is
used for domain modeling, which is a de facto industrial standard.

Pseudostate

Vertex RegionTransition

StatechartEntry Synchronization State

RegularState CompositeElement

[0..*] vertices

[0..*] regions[1..1] target[0..*] incomingTransitions

[0..1] source[0..*] outgoingTransitions

Figure 1: Metamodel of Yakindu statecharts

Example 2.1. A metamodel extracted from Yakindu is illustrated
in Figure 1. A Statechart consists of Regions, which in turn contain
Vertexes and Transitions. An abstract state Vertex is further refined
into RegularStates (like State) and PseudoStates like Entry and
Synchronization states. The source and target states of a transition
are identified by the source and target references.

To reason about the consistency of DSLs, a formal algebraic spec-
ification is frequently created [19, 27, 35–38]. We briefly revisit the
notation of [27] to provide a precise background for our model gen-
eration approach (but for space consideration, we omit the detailed
handling of attributes, which could be introduced accordingly).

Formally, a metamodel defines a vocabulary Σ = {C1, . . . ,Cn ,
exist ,R1, . . . ,Rm ,∼} with unary predicate symbols Ci (1 ≤ i ≤ n)
defined for each EClass, and binary predicate symbols Rj (1 ≤ j ≤
m) for each EReference. To represent abstract (partial) models, a
unary exist predicate is introduced to denote the existence of an
object in a given model, while ∼ denotes an equivalence relation
over objects.

2.2 Partial Models
Partial models (PM) were introduced in [35, 38] to represent un-
certain (possible) elements in instance models where one partial
model represents a range of possible instance models. In this pa-
per, 3-valued logic [39] is used to explicitly represent unspecified
or unknown properties of models with a third 1/2 truth value (be-
sides 1 and 0 which stand for true and false) in accordance with
[11, 27, 31]. A partial model is represented as a 3-valued logic struc-
ture P = ⟨ObjP ,IP ⟩ of Σ, where ObjP is the finite set of individuals
in the model (i.e. the objects), and IP provides a 3-valued interpre-
tation for all constants in Id and predicate symbols in Σ.
Type Predicates. IP is a 3-valued interpretation of each class sym-
bol Ci in Σ: IP (Ci ) : ObjP → {1, 0, 1/2}: 1, 0 and 1/2 means that it is
true, false or unspecified if an object is an instance of a class Ci .
Reference Predicates. IP gives a 3-valued interpretation to each
reference symbolRj in Σ:IP (Rj ) : ObjP × ObjP → {1, 0, 1/2}, where
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Figure 2: Sample partial models with uncertain elements and their refinement

1, 0 and 1/2 means that it is true, false or unspecified if there is a
reference Rj between two objects.
Existence Predicate. IP gives a 3-valued interpretation for the
existence predicate IP (exist ) : ObjP → {1, 0, 1/2}, where 1 values
represent an object that must be, 1/2 value represents objects that
may be included in a model.
Equivalence Predicate. IP gives a 3-valued interpretation to the
∼ relation between the objects IP (∼) : ObjP × ObjP → {1, 0, 1/2}.
An uncertain 1/2 value relation between two objects means that
those object may be equal and can potentially be merged. On the
other hand, uncertain equivalence of a single object (with itself)
implies that it may represent multiple separate objects.

Example 2.2. Four partial models are illustrated in Figure 2. As a
notation guide, (1) the truth value of a type predicate is denoted by
labels on nodes, where missing labels are treated as 0 values, while
(2) reference predicate values 1 and 1/2 are represented by edges
with solid and dashed lines (respectively), while missing edges
between two objects represent 0 values for a predicate, (3) existence
predicate values 1 and 1/2 are represented by nodes with solid and
dashed borders, respectively, while objects with 0 existence values
are simply not depicted. Finally, (4) uncertain 1/2 equivalences are
marked by dashed line with an ∼ symbol. Otherwise, each node
represents a single, unique object (i.e. for all object o: [[o ∼ o]] = 1
and for all different objects o1 and o2: [[o1 ∼ o2]] = 0).

In P0 (on the left side of Figure 2), object r is of type Region but
not of type State: [[Region(r )]]P0 = 1 and [[State(r )]]P0 = 0. In case
of object new, all type predicate are 1/2, which means that the object
may represent any type of objects. In P0 there is a certain vertices
reference between r and s and r and e , and a possible reference
between r and new or as a self-loop of new. Nodes r ,e and s represent
objects that must exist, and new represent possible objects which
may exist or they might be removed later from the model. Node
new may also represent multiple objects (note the self-loop edge ∼),
which can later be refined into multiple distinct model elements.

2.3 Refinement and Concretization of PMs
During model generation, the level of uncertainty will gradually be
reduced by refinements deriving partial models that represent more
concrete instance models. In a refinement step, properties with 1/2

values can be refined to either 0 or 1 which imposes an information
ordering relationX ⊑ Y where eitherX = 1/2 andY is refined to 1 or

0, or values of X and Y remain equal: X ⊑ Y := (X = 1/2) ∨ (X = Y ).
A refinement is defined as a function ref : ObjP → 2ObjQ which
maps each object of a partial model P to a set of objects in the
refined partial model Q . A refinement respects the information
ordering of type, reference, equivalence and existence predicates
for each p1,p2 ∈ ObjP and q1 ∈ ref (p1), q2 ∈ ref (p2):

• for each class Ci : [[Ci (p1)]]P ⊑ [[Ci (q1)]]Q .
• for each reference Rj : [[Rj (p1,p2)]]P ⊑ [[Rj (q1,q2)]]Q

• [[p1 ∼ p2]]
P ⊑ [[q1 ∼ q2]]

Q

• [[exist (p1)]]P ⊑ [[exist (q1)]]Q , and if [[exist (p)]]P = 1 then
ref (p) is not empty

Refinement from partial model P to Q is denoted by P ⊑ Q .
If a 3-valued partial model P only contains 1 and 0 values, and

there are no ∼ relations between different objects (i.e. all equivalent
nodes are merged), then P represents a traditional instance model.
A concretization defines a trivial refinement to a 2-valued fully
defined concrete model by rewriting all 1/2 type, reference and exist
predicates values to 0, and rewriting all 1/2 equivalence predicate to
0 between different objects, and to 1 on the same object.

Example 2.3. Figure 2 illustrates two refinement steps from P0
to P2. In P1 object new is split into two different objects: new and
t of P1, where [[new ∼ new]]P0 = 1/2 is refined to [[new ∼ t]]P1 = 0,
[[t ∼ t]]P1 = 1 and [[new ∼ new]]P1 = 1/2. Additionally, [[exist (new)]]P0
= 1/2 is refined to [[exist (t)]]P1 = 1, and [[Transition(new)]]P0 = 1/2

is refined to [[Transition(t)]]P1 = 1, thus creating a new Transition
object t , while all other 1/2 type predicates are refined to 0. Finally,
source predicates are refined to 1 with e as target, and to 0 with all
other objects as target.

In step P1 to P2, possible target predicates are refined to 1 with
s as target object, and to 0 with e and new as target objects. Note
that refinement step P1 ⊑ P2 will illustrate the decision rule while
P2 ⊑ P3 will illustrate the unit propagation rule later in section 3.1.
P3 is a concretization of P2, which is also a refinement P2 ⊑ P3.

2.4 Defining constraints over PMs
In many industrial modeling tools, domain-specific WF constraints
are captured either by standard OCL constraints [40] or by graph
patterns (GP) [28, 41]. A graph pattern captures complex structural
conditions over an instance model. In order to have a unified and
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[[C(v)]]PZ :=IP (C)(Z (v))
[[R(v1,v2)]]PZ :=IP (R)(Z (v1),Z (v2))
[[exist(v)]]PZ :=IP (exist)(Z (v))
[[v1 ∼ v2]]

P
Z :=IP (∼)(Z (v1),Z (v2))

[[φ1 ∧ φ2]]
P
Z :=min([[φ1]]PZ , [[φ2]]

P
Z )

[[φ1 ∨ φ2]]
P
Z :=max([[φ1]]PZ , [[φ2]]

P
Z )

[[¬φ]]PZ :=1 − [[φ]]PZ
[[∃v : φ]]PZ :=max{[[exist (x) ∧ φ]]PZ ,v 7→x : x ∈ ObjP }
[[∀v : φ]]PZ :=min{[[¬exist (x) ∨ φ]]PZ ,v 7→x : x ∈ ObjP }

[[φ+(v1,v2)]]
P
Z :=[[φ(v1,v2) ∨ (∃m : φ(v1,m) ∧ φ+(m,v2))]]

P
Z

Figure 3: Semantics of graph logic expressions

semantically precise handling of evaluating graph patterns con-
straints for regular and partial models, we use a first-order graph
logic formalism with transitive closure that covers the key features
of several concrete graph pattern languages. This semantics was
introduced in [27] being influenced by [31].

Syntax. A graph pattern is a first order logic predicate with
transitive closure φ(v1, . . . ,vn ) over (object) variables. A graph
predicate φ can be inductively constructed by using object variable
symbols (v1,v2, . . .), atomic predicates (C(v), R(v1,v2), v1 ∼ v2),
standard logic connectives (¬, ∨, ∧), logic quantifiers (∃ and ∀), and
transitive closure over binary predicates denoted as φ+(v1,v2).

Semantics. A predicate φ(v1, . . . ,vn ) can be evaluated on par-
tial model P along a variable binding Z , which is a mapping Z :
{v1, . . . ,vn } → ObjP from variables to objects in M . The truth
value of φ can be evaluated over a partial model P and Z (denoted
by [[φ(v1, . . . ,vn )]]PZ ) in accordance with the semantic rules defined
in Figure 3. Note thatmin andmax takes the numeric minimum
and maximum values of 0, 1/2 and 1, and the rules follow 3-valued
interpretation of standard logic formulae as defined in [27, 31]. A
variable binding Z where the predicate φ is evaluated to 1 over P is
called a pattern match, formally [[φ]]PZ = 1.

Graph predicates are frequently used for defining complex struc-
tural WF constraints and validation rules [28]. In such a case, a
predicate match denotes a constraint violation, thus the correspond-
ing graph formula needs to capture the erroneous cases, and a
match detect a violation of a WF constraint. Therefore, a set of WF
predicates {φWF

1 , . . . ,φ
WF
n } defines a theorem of valid models T ,

where T = {¬φWF
1 , . . . ,¬φ

WF
n }. WF predicates of T are derived

from two sources: the metamodel defines the basic structure, and
additional validation constraints of a domain can be defined by
using OCL [40] or graph patterns [28].

There are structural constraints imposed by the underlying graph
representation. In case of EMF metamodels, such constraints in-
clude (1) Type Hierarchy (TH) which expresses that a more specific
(child) class has every structural feature of the more general (parent)
class, (2) Type Compliance (TC) that requires that for any relation
R(o, t), its source and target objects o and t need to have compliant
types, (3) Abstract (ABS): If a class is defined as abstract, it is not
allowed to have direct instances, (4)Multiplicity (MUL) of structural
features can be limited with upper and lower bound in the form
of “lower..upper” and (5) Inverse (INV), which states that two paral-
lel references of opposite direction always occur in pairs. Finally

noOutgoing(e) :=
Entry(e) ∧ ¬∃t1, t2, e1, s :
source(t1, e1) ∧ target(t2, s)
∧e ∼ e1 ∧ t1 ∼ t2

Figure 4: Sample statechart WF constraint as graph query

instance models in EMF are expected to be arranged into a (6) Con-
tainment (CON) hierarchy, which is a directed tree along relations
marked in the metamodel as containment (e.g. regions or vertices).
Since a formalization of these structural restrictions as WF con-
straints is provided in [19], the graph predicate language of Figure 3
can uniformly be used for both kinds of structural constraints.

Example 2.4. The Yakindu documentation states several con-
straints for statecharts that can be formalized as graph predicates
[24]. For instance, constraint noOutgoing(e) in Figure 4 (depicted as
a graph pattern and a graph predicate) detects an entry state e with-
out an outgoing transition. The explicit use of equality constraints
e ∼ e1 and t1 ∼ t2 is responsible for performing a natural join op-
eration over the edges as predicates. As a result, the same formula
can be evaluated with both 2-valued and 3-valued interpretation.

2.5 Approximating constraints over PMs
WhileWF constraints can be directly evaluated on concrete instance
models, checking the correctness of a partial model is a challenging
task, because one partial model may represent multiple concretiza-
tions. A constraintφ can be evaluated on a partial modelP using the
3-valued logic and open-world semantics by a constraint rewriting
technique [27] which over- and under-approximates the results:

• Under-Approximation: If [[φ]]P = 1 in a partial model P ,
then [[φ]]Q = 1 in any partial model Q where P ⊑ Q .

• Over-Approximation If [[φ]]Q = 1 in a partial model Q ,
then [[φ]]P ≥ 1/2 in a partial model P where P ⊑ Q .

Using these properties, we define a monotonous derivation se-
quence of valid partial models which (1) starts from the most ab-
stract partial model where all constraints are evaluated to 1/2, which
partial model (2) is gradually refined into more and more concrete
partial models (with less number of predicates evaluating to 1/2).
Refinement steps are continued until a concretized graph model
of a designated scope eventually satisfies all WF constraints with
2-valued interpretation. During these refinement steps, special care
needs to be taken to handle two situations:

• False negatives are partial models P which do not violate
an under-approximated (must) constraint, i.e. [[φ]]P ≤ 1/2,
but they can never be concretized into a valid instance model
with [[φ]]Q = 0where P ⊑ Q . These sequences are dead ends,
and ideally, they should be detected as early as possible.

• False positives are partial models P which violate an over-
approximated (may) constraint, i.e. [[φ]]P ≥ 1/2, but they
can be further refined into partial model [[φ]]Q = 0 where
P ⊑ Q . These sequences might be postponed during model
generation, but they may eventually lead to a concrete model
that satisfies all WF constraints, thus they should be kept.
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Our graph generation approachwill derive instancemodels along
refinements. As such, partial models will gradually become more
and more concrete after each refinement step which implies that
checking WF constraints on partial models also becomes more
precise. The practical benefit compared to consecutive calls to back-
end solvers [24] is that the complex model finding problem can be
divided into a sequence of small decisions while WF constraints
can be checked (approximately) on intermediate solutions.

3 AUTOMATED GRAPH GENERATION
In this paper, we propose a general and automated graph model
generation approach which takes a domain specified by (I1) a vo-
cabulary Σ defined by a metamodel, and (I2) a theorem T defined
by a set of well-formedness constraints {¬φWF

1 , . . . ,¬φ
WF
n }, and

(I3) a search scope (i.e. minimal and maximal number of nodes in
a solution graph) and (O) generates a consistent (valid) concrete
graph model G |= T as output.

The model generation framework gradually refines partial mod-
els by rule-based design space exploration (DSE) [32] into a well-
formed instancemodel which complies to themetamodel and allWF
constraints are satisfied, if such a concrete model exists within the
given search scope. During exploration, our framework simultane-
ously operates on (concrete) instance models and WF constraints as
well as (abstract) partial models and approximated WF constraints
introduced in section 2 by applying refinement rules. Refinement
rules are defined as graph transformation rules [27, 42] manipulat-
ing directly over partial models with 3-valued interpretations by
concertizing a single atomic uncertain 1/2 value in each step.

Refinement rules are grouped into two categories: (1) Decision
rules are derived from Σ to reduce the number of valid concretiza-
tions of a partial model (i.e. new information is added) while (2)
Unit propagation rules are derived from T to propagate the con-
sequences of previous decisions in order to simplify a solution
candidate without excluding potential solutions.

Model generation is initiated from an initial partial model pro-
vided as input by an engineer, or from themost abstract partial model
where all predicates are unknown, i.e. (1) there is a single (abstract)
objectObjP = {new}; (2) exist (new) = 1/2 and new ∼ new = 1/2 thus
this object may represent multiple possible objects of the concrete
models; (3) for all class predicate Ci : Ci (new) = 1/2; and (4) for all
reference predicates Rj : Rj (new, new) = 1/2.

3.1 Decision Rules
Decision rules (see Figure 5) define various refinements to con-
cretize information in partial models to construct possible solutions.
They are derived from the vocabulary Σ of the metamodel, where
each predicate symbol Ci and Rj represents a Class and Reference.
In general, decision rules are responsible for (1) introducing new
objects by splitting the abstract new object or (2) rewriting an 1/2

value to 1 as detailed by (the scheme of) four decision rule classes.
• Rule addRoot(C) selects a non-abstract class C (see the pre-
condition in the left hand side) if no other roots have been
created (denoted by NEG) to ensure that the model has a
single root (as required by EMF). Its effect (prescribed by the
right hand side) is to split the initial new object by creating
a new root as an instance of C, which acts as a root element

for the containment hierarchy and all self-loop references
on new are extended to both objects.

• Rule addChild(CP ,RC ,CC ) selects an existing parent object
of type CP , the new object with a non-abstract type CC ,
and a containment reference RC from parent to new. Upon
execution, it splits new into a new object child of type CC
connected to parent via RC , thus unfolding a new object
along the containment hierarchy. During the unfolding step,
all outgoing Ri , incoming Rj and loop Rk references of new
are extended (copied) to child.

• Finally, two rules addType(C) and addReference(R) refine un-
certain 1/2 classes and references in the partial model. In the
latter case, the rule requires that the types of the endpoints
are already fixed appropriately.

Example 3.1. The refinement step P0 ⊑ P1 in Figure 2 introduces
a new object t by applying the decision rule addChild (of Figure 5),
which changes 1/2 values of transition(t) and source(t, e) to 1.

3.2 Unit Propagation Rules
Unit propagation rules are responsible for refining unspecified ele-
ments in a partial model without excluding any valid solution to
simplify the partial model propagating the consequences of pre-
viously applied decision rules. Unit propagation rules are applied
repeatedly right after a decision rule is applied. They are derived
from the structural constraints (1)-(6) introduced in section 2.4. In
general, unit propagation rules rewrite 1/2 elements to 0 (or 1) if a
1 (or 0) value would contradict to a constraint. Figure 6 illustrates
(the scheme of) unit propagation rules used in this paper.

• Type hierarchy (TH) is maintained by two rules: propTH+(C,Cs )
propagates a positive (1) type predicate of C to a supertype
Cs ; propTH−(C′,C) rewrites a 1/2 type predicate value to 0
for type C if the object already has an incompatible type C′

where C and C′ do not have a common subclass (all classes
are considered to be subclasses of themselves).

• Type compliance (TC) is checked by two rules: propTCFrom (C,R)
and propTCTo (R,C). Both rules remove possible references
if the types of the reference end-points are incompatible.

• Rule propMULUpper (R) checks the upper multiplicity (MUL)
of a reference, and removes all possible additional links if
the upper limit is reached.

• The Inverse (INV) structural constraint is checked two rules:
propINV+(R,RI ) and propINV−(R,RI )which set a R predicate
value to 1 or 0 if an inverse RI value is already set.

• To ensure Containment hierarchy (CON), first decision rules
enforce that each non-root object has a parent. Then, ad-
ditional possible incoming containment references are re-
moved by unit propagation rule propCON2Parent (R,RC ).
Finally, propCONLoop (R) removes possible reference predi-
cates that would create a loop in the containment hierarchy.

Decision and unit propagation rules are in close analogy with the
DLL62 algorithm of traditional SAT-solvers [43]: values of variables
are graph elements in our case (instead of Boolean values), com-
plex graph predicates are evaluated (instead of conjunctive normal
formulae), and the state space of graphs needs to be continuously
stored during exploration (instead of a search tree).
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addRoot(C)
C: non-abstract

copy all Rj

new 
C≥½

other

NEG

Rj

 ~ 

root 
C=1

new 
C≥½

Rj

Rj

Rj

 ~ 

Rj

addChild(CP ,RC ,CC )
CC : non-abstract,

RC : containment from CP to CC
copy all Ri and Rj

addType(C)
C: non-abstract

o 
C=½

o 
C=1

addReference(R)
R: non-containment

Figure 5: Decision rules for graph model generation

propTH+(C,Cs )
CS : supertype of C

propTH−(C′,C)
C′ and C has

has no common
non-abstract subtype

propTCFrom (C,R)
R is from C

propTCTo (R,C)
R is to C

propMULUpper (R)
R is to C

propINV+(R,RI )
R is inverse of RI

propINV−(R,RI )
R is inverse of RI

propCON2Parent (R,RC )
R and RC : containments

propCONLoop (R)
R: containment

Figure 6: Unit propagation rules for graph model generation

Example 3.2. Refinement step P1 ⊑ P2 is a result of a decision rule
addChild to set the 1/2 value of target(t, s) to 1 followed by a unit
propagation rule propMULUpper (target) which aims to prevent the
partial model from violating an upper multiplicity constraint by
setting 1/2 values of target(t, e) and target(t, new) to 0 as a direct
consequence of the previous decision rule.

As a preprocessing step, decision and propagation rules are de-
rived. Moreover, under-approximated (must) predicates are synthe-
sized from graph predicates in accordance with [27] to detect unre-
solvable WF constraints early in a partial solution.

3.3 Exploration
During exploration (see Figure 7), refinement rules are repeatedly
applied driven by an objective function and a rule selection strategy.
As such, the size of partial models is continuously growing up to the
designated scope, while the number of uncertainties and constraint
violations in these partial models are decreasing to ensure that the
process converges to consistent instance models. Now we discuss
the steps of the model generation process.

(1) After initializing the search with an initial partial model,
an unexplored decision rule is selected and applied to derive a new
(refined) partial model along a partial model refinement step (sec-
tion 2.3). The role of these refinement rules is in direct analogy
with the decision steps in SAT solvers.

(2) After executing a decision rule, our framework executes all
possible unit propagation rules on the partial solution to propagate
the consequence of the decision, thus further refining the partial
model. This step is again in direct analogy with SAT solvers, but it
is carried out by incremental, change-driven model transformation
rules [44] to improve efficiency.

(3) To prevent traversing the same (graph) state twice, a state
code is calculated and stored for the new partial model by using
graph isomorphism checks over graph shapes [30]. Graph shapes
abstract from node identities, but they efficiently identify if two
graphs can be distinguished by the neighborhood (i.e. incoming
and outgoing edges) of a node.

(4) Had the new state been already explored, the partial model
is dropped and a new refinement rule is applied (1).
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Figure 7: Exploration strategy for automated model generation

(5) If a new partial model is reached, then our framework checks
if it satisfies all under-approximated (must) constraints by partial
evaluation of these constraints [27] using an incremental graph
query engine [28]. If an under-approximated constraint is violated
by the partial model then an inconsistency is detected, thus the
partial model can never be refined into a well-formed instance
model so it can be dropped (1).

(6) Next the partial model is concretized into an instance model by
removing all uncertainties and all the original WF constraints are
checked on this candidate model by the incremental graph query
engine to detect inconsistencies. If no violations are found, then
the instance model is stored as a solution, and the exploration may
terminate (if designated model scope is reached) or continue to find
other solutions (1). Note that checking the original WF constraints
on a concretized model guarantees the correctness of our solver.

(7) Finally, our framework approximates the distance for a solu-
tion by an objective function, adds the current partial model to the
exploration path and continues refinement from with new unex-
plored decision refinement. For each partial model, this objective
function is calculated as the sum of constraint violations and the
number of missing objects wrt. a designated size.

For selecting the next match where a decision rule is to be ap-
plied, we use a combined exploration strategy with best-first search
heuristic, backtracking, backjumping and random restarts in an ad-
vanced design space exploration framework [32]. The search selects
the best candidate wrt. the objective function, then it randomly
fires (with uniform distribution) an enabled decision rule, subse-
quently, it fires all possible unit propagation rules. If no further
decision rules can be applied, then it backtracks to continue along
the previous partial model candidate. At each step, the exploration
may backjump to the best model candidate found so far during
the exploration. Finally, the search is occasionally restarted from
a randomly chosen intermediate model candidate. Such a random
restart is a common technique in SAT-solvers to avoid local optima.

Our framework operates directly over graph models and the
exploration itself is driven on such a high-level. Thus, it combines
the advantages of multiple advanced graph-based techniques with
core SAT-solving techniques to tackle the scalability problems of
existing mapping-based approaches:

• The approximated and the original of WF constraints are
efficiently evaluated over partial models (in (5) and (6.B))
using incremental graph query evaluation techniques [28].

• Refinement rules are divided into decision (1) and unit propa-
gation rules (2) as facilitated by core SAT-solving algorithms.

• Isomorphic states are detected during exploration (3) by
combining shape analysis techniques [30, 31].

• Our framework has full control over the graph generation
process (1,7) via rule-based DSE techniques [32].

3.4 Soundness and Completeness
Starting from the abstract initial model, our decision rules guaran-
tee the completeness of graph model generation [11], i.e. any con-
crete graph can possibly be derived within a bounded scope: Rule
addRoot can derive any root objects, addChild is responsible for
deriving new elements along the containment tree, addType can
assign any types to an object while addReference can build any
graphs by adding edges. However, efficient strategies are needed to
initiate the execution of decision rules in proper order.

The soundness of graph model generation is guaranteed by check-
ing all WF constraints on each generated candidate graph instance.
As such we obtain at least the same guarantee as provided by Alloy,
namely, if a consistent graph model exists within a given scope
then our approach will derive it.

If no well-formed models are found within a given scope then
Alloy provides no further details (stating that the problem may be
inconsistent). In contrast, if the search is terminated in our approach
with no valid refinements (i.e. all branches of the state space are
closed) then the specification is surely inconsistent. This is primarily
ensured by the fact that if an under-approximated predicate φ has
a match in a partial solution it cannot be refined to a valid model.
Furthermore, we guarantee that any well-formed model (of a larger
scope) can only be derived by refining existing partial models at
the edge of the search horizon, i.e. our approach can incrementally
continue exploration for a larger scope.

3.5 Strengths and Limitations
Our approach operates on connected sparse graphs with edges as
relations (i.e. no edge identities and no parallel edges of a type) as
underlying data model, which is less expressive than full relational
algebra in case of Alloy. As a current technical limitation, our graph
generation approach is showcased for EMFmetamodels and models,
which are widely used in industrial modeling tools, but it could be
easily adapted to other graph formalisms. The expressive power of
graph predicates used for capturing WF constraints is equivalent
to first order logic with transitive closure over binary predicates.

Our solver efficiently handles complex structural graph con-
straints defined in first order logic with transitive closure. How-
ever, it includes only enumerations as attribute values but excludes
strings, integers, etc. Such attribute values could be handled in
the future by calling external solvers (e.g. SMT-solvers) during the
exploration or as a post-processing step.

While the decision procedure of our graph solver provides stronger
completeness guarantees than Alloy within a bounded scope, it
does not provide an unsatisfiable core (i.e. minimal contradictory
set of formulae) to highlight contradiction between WF constraints,
which is supported by many SAT and SMT-solvers.
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4 EXPERIMENTAL EVALUATION
We carried out an experimental evaluation of generating consistent
instance models to address the following research questions:
RQ1 How does our graph solver scale (in time and model size)

when generating consistent models of increasing size?
RQ2 How does our approach scale (in time and model size) com-

pared to the widely used model finder Alloy [21]?
RQ3 How do the different steps of the exploration influence per-

formance of the graph solver?
Selected DSLs for evaluation. As model generation for DSLs

still lacks systematically constructed performance benchmarks, we
evaluated our approach in the context of 6 test sets of four differ-
ent domains. First (1) a small File System (FS) example was taken
from the Alloy documentation [45]. Ecore, the meta-metamodeling
language of EMF [34], has been used as a case study by different ap-
proaches [14, 16, 19, 24, 46, 47] using Alloy as a background solver
for model generation purposes. Our measurements also cover two
DSLs that were developed in industrial projects, namely, (3) Yakindu
[33] and (4) Functional Architecture Model (FAM) developed for
avionics [48]. Due to their complexity, domains (3) and (4) are
split into two cases: we generate models first with only general
metamodel constraints (w/o WF ), and then in the presence of extra
WF constraints (with WF ). In addition to their direct practical rele-
vance, these DSLs have already been used in the context of model
generation in numerous papers [19, 24, 49] in the past.

Benchmarking setup. To measure scalability, we set up a time-
out of 3 minutes for each model generation run with increasing
model size. For each measurement point, model generation was ex-
ecuted 30 times and the median of the runs were taken. To account
for warm-up effects and memory handling of the Java 8 virtual
machine, we added an extra 20 runs before the actual measure-
ments and called the garbage collector explicitly between runs. As
a baseline of comparison, Alloy Analyzer V4.2 (the latest stable
version available at the Alloy download site) was used with two
underlying SAT solver libraries: Sat4J (default in Alloy) and Min-
iSAT (recommended by Alloy). All measurements were executed
on an average desktop computer1 with 12 GB heap size.

Experimental results. ForRQ1we evaluate the execution time
of our approach for the four domains by increasing the target model
size from 50 to 500 objects (with a step size of 50 new objects), and
measuring (in Figure 8a–Figure 8d) the total execution time. As a
key observation, our approach is able to generate consistent models
with 500 elements for all four domains within 10 seconds for FAM
and FS, within 40 seconds for Ecore and 3 minutes for Yakindu. As
a stress test, we also managed to generate even larger consistent
models (1000 objects for Yakindu, 7000 objects for FAM, 4750 objects
for FS and 2000 objects for Ecore, see Figure 8k) in 20 minutes (as a
median of 10 measurements).

ForRQ2, we compare model generation time of our Graph Solver
with Alloy for small model sizes (from 5 to 50 objects, step size of 5
new objects) for the 6 test cases. As a baseline, we use a state-of-the-
art EMF-to-Alloy mapping technique [16, 19, 24, 46, 47] and tool to
obtain Alloy specifications for the Yakindu, FAM and Ecore domains,
and the original Alloy specification is used for FS. According to the

1CPU: Intel Core-i5-m310M, MEM: 16GB, OS: Windows 10 Pro.

results (see Figure 8e–8j and Figure 8k), our approach scales much
better as it generates models 1-2 orders of magnitude larger than
Alloy could handle regardless of the back-end SAT solver which
only had little impact on scalability. This is in line with previous
measurements for Alloy in [19, 24]). Alloy dominantly ran out of
memory when mapping input specification into a SAT problem
which results in over 6 million variables and several million clauses
when aiming to generate a model with 40-90 objects.

Note that the Alloy Analyzer is not primarily targeted to generate
models but to check the consistency of a relational specification
within a given scope and synthesize small counterexamples. In
fact, Alloy had a smaller runtime for very small models, thus the
warm-up cost of our graph solver is higher. However, our graph
solver is able to generate much larger graph models even for all
four domains with similar consistency guarantees as Alloy.

For RQ3, we also measured (in Figure 8a–Figure 8d) how much
time is spent in the different phases of model generation by our
graph solver (see Figure 7) such as initialization, partial model re-
finement, state encoding and exploration. The preprocessing phase
(1.5 seconds for FS, 4 seconds for Ecore, 2 seconds for FAM and 4
seconds for Yakindu) is a one-time penalty which is is proportional
to the complexity of the metamodel and the WF constraints, thus
we expect it to be negligible for model generation in case of other
domains. Refinement is the dominant phase in the Yakindu and FS
cases, while state encoding is dominant for Ecore. These results
show that future research should primarily improve on refinement
by providing a better transformation engine or refinement rules.

Quality of generated models. The quality of the generated
models can be investigated from different aspects. To ensure cor-
rectness, all WF constraints were checked on each generated graph
instance by using an external tool, the VIATRA graph query engine
[50]. To assess diversity when a sequence of models are generated
by the proposed graph solver (within similar scope), each model
is guaranteed to be non-isomorphic by the state codes (Step (4) in
Figure 7) or by a distance metric [51] in case of repeated calls to
the solver, which offers increased diversity compared to Alloy [51].
Systematically assessing the realistic nature of models is a more
complex task [13] which necessitates to obtain a large set of real
models authored by engineers. Our graph solver ensures that only
enumeration values can be isolated nodes in a graph otherwise all
graphs are connected by default, i.e. all regular nodes are arranged
into a containment hierarchy. In order to assure connectedness,
Alloy requires an extra constraint to capture this concept, thus
by default, our solution appears to be more realistic. In addition,
[11, 13] contain an in-depth investigation of realistic models for
the Yakindu domain. All generated models are available at [52].

Threats to validity. In order to strengthen internal validity, our
experiments include an extensive warm-up phase prior to the actual
measurements to decrease the fluctuation of runtime results caused
by the JVM (instead of the natural fluctuation of solver runtimes).
We used default setups for running Alloy and our graph solver, i.e.
no extra hints and performance optimizations were provided in
the two approaches. Domain-specific fine tunings may improve
scalability in some cases but it would simultaneously decrease the
general-purpose nature of these solvers.

To address external validity, our measurements cover 6 test cases
including 3 industrial domains (Ecore, Yakindu, FAM) with complex
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(a) Graph Solver: FAM
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(b) Graph Solver: Yakindu
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(c) Graph Solver: FS
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(d) Graph Solver: Ecore
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(e) Comparison: FAM w/o WF
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(f) Comparison: FAM with WF
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(g) Comparison: Yakindu w/o WF
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(h) Comparison: YakinduwithWF
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(i) Comparison: FS with WF
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(j) Comparison: Ecore with WF

Problem size Largest model (#Objects)

#Class #Ref #WF. Graph Solver Sat4J MiniSat

FAM+WF 9 15 23 6250 58 61
FAM-WF 9 15 15 7000 87 92
Yak+WF 10 6 25 1000 – –
Yak-WF 10 6 5 7250 86 90
FS 4 4 7 4750 87 89
Ecore 19 33 24 2000 38 41

(k) Comp.: Maximal model

Figure 8: Runtime comparison with increasing model size and distribution of generation time

structural WF constraints, thus our experimental scalability results
for our graph solver are likely generalizable to other domains of
similar size and complexity within the limitations of section 3.5. In
case of simple WF constraints, the difference between the perfor-
mance characteristics of Alloy and our graph solver may be smaller.
Since the performance of Alloy depends on the backend SAT-solver,
our measurements already included two state-of-the-art solvers
(SAT4J and MiniSAT). Thus the large scalability difference in the
size of generated models can likely be attributed to our graph solver.

Summary. Our graph solver provides a strong platform for gen-
erating consistent graph models which are 1-2 orders of magnitude
larger (with similar or higher quality) than derived by mapping
based approaches using Alloy with an underlying SAT-solver. Such
a difference in scalability can only partly be dedicated to our con-
ceptually different approach which combines several advanced
graph techniques to improve performance instead of fine-tuning a
mapping. However, it likely indicates fundamental shortcomings
of existing mapping based approaches. Based on in-depth profil-
ing we suspect that representing each potential edge between a
pair of nodes as a separate Boolean variable blows up the state
space for sparse graph with only linear number of edges. Moreover,
SAT-solvers have major problems in evaluating complex predicates
over larger graph models [11] where graph query evaluation was
particularly efficient [28].

Logic Uncertain Rule- Iterative Symbolic
Solvers Models Based

In
pu

ts Partial Snapshot + ++ - + -
Local Constraints + - + + +
Global Constraints + - - + +

O
ut
pu

ts

Metamodel + + + + +
Well-formed + - - + +

Scalable - - ++ +/- -
Decidability - + + - +/-

Table 1: Comparison of related approaches

5 RELATEDWORK
We compare our solutionwith existingmodel generation techniques
with respect to the characteristics of inputs and output results in
Table 1. As for inputs, the model generation can be (1) initiated
from a partial snapshot. Additionally, an approach may support (2)
local and (3) global constraints as WF constraints: a local constraint
accesses only the attributes and the outgoing references of an object,
while a global constraint specifies a complex structural pattern.
Local constraints are frequently attached to objects (e.g. in UML
class diagrams), while global constraints are widely used in DSLs. As
outputs, the generated models may (i) be metamodel-compliant (ii)
satisfy all well-formedness constraints of the language. We consider
a technique (iv) scalable if there is no hard limit on the model size (as
demonstrated in the respective papers). Finally, a model generation
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approach may be (v) decidable which always terminates with a
result. Our comparison excludes approaches like which do not
guarantee metamodel- compliance of generated instance models.

Logic Solver Approaches. Several approaches map a model
generation problem into a logic problem, which is solved by un-
derlying SAT/SMT-solvers. Complete frameworks with standalone
specification languages include Formula [35] (which uses Z3 SMT-
solver [23]), Alloy [36] (which relies on SAT solvers like Sat4j[53])
and Clafer [20] (using backend reasoners like Alloy).

There are several approaches aiming to validate standardized
engineering models enriched with OCL constraints [54] by relying
upon different back-end logic-based approaches such as constraint
logic programming [17, 37, 55], SAT-basedmodel finders (like Alloy)
[14, 16, 19, 24, 46, 47, 56], CSP solvers [49] first-order logic [57],
constructive query containment [58], higher-order logic [59, 60],
or rewriting logics [61]. Partial snapshots and WF constraints can
be uniformly represented as constraints [19]. Growing models are
supported in [15, 24] for a limited set of constraints.

Scalability of all these approaches are limited to small models /
counter-examples. Furthermore, these approaches are either a priori
bounded (where the search space needs to be restricted explicitly)
or they have decidability issues. As our approach is independent
from the actual mapping of constraints to logic formulae, it could
potentially be integrated with most of the above techniques by
complementing or replacing the back-end solvers.

UncertainModels. Partial models are similar to uncertain mod-
els, which offer a rich specification language [38, 62] amenable to
analysis. They a more user-friendly language compared to 3-valued
interpretations, but without handling additional WF constraints.
Potential concrete models compliant with an uncertain model can
be synthesized by the Alloy Analyzer [63], or refined by graph
transformation rules [26]. Each concrete model is derived in a sin-
gle step, thus their approach is not iterative like ours. Scalability
analysis is omitted from these papers, but refinement of uncertain
models is always decidable, thus termination is guaranteed.

Approaches like [64] analyze possible matches and executions of
model transformation rules on partial models by using a SAT solver
(MathSAT4) or by automated graph approximation (referred to as
“lifting”), or by graph query engines with [27]. As a key difference,
our approach carries out model refinement while simultaneously
evaluating graph query evaluation in an automated process.

Rule-based Instance Generators. A different class of model
generators relies on rule-based synthesis driven by randomized,
statistical or metamodel coverage information for testing purposes
[65–67]. Some approaches support the calculation of effective meta-
models [68], but partial snapshots are excluded from input specifi-
cations. Moreover, WF constraints are restricted to local constraints
evaluated on individual objects while global constraints of a DSL
are not supported. On the positive side, these approaches guarantee
the diversity of models and scale well in practice [67, 69].

Iterative Approaches. Iterative approaches generate models
by multiple solver calls. In [24] models are generated in by calling
Alloy in multiple steps, where each step extends the instance model
by a few elements. This approach scaled up to 50 object in 45s for
generating valid Yakindu Statecharts. An iterative approach is pro-
posed specifically for allocation problems in [70] based on Formula.
Models are generated in two steps to increase diversity of results

by first creating non-isomorphic submodels from an effective meta-
model fragment followed by a problem-specific symmetry-breaking
predicate [71] to ensures that no isomorphic models are generated
twice while constraint checks are postponed to the very final stage.
An iterative, counter-example guided synthesis is proposed for
higher-order logic formulae in [22], but the size of derived models
is fixed and smaller than 50 objects.

Symbolic Model Generation Technique Certain techniques
use abstract (or symbolic) graphs for analysis purposes. A tableau-
based reasoning method is proposed for graph properties [72–74],
which automatically refine solutions based on well-formedness
constraints, and handle state space in the form of a resolution tree.
As a key difference, our approach refines possible solutions in the
form of partial models, while [72, 73] resolves the graph constraints
to a concrete solution. Therefore our approach is able to exploit
efficient graph query engines to evaluate partial solutions, while
those techniques are demonstrated on small (< 10 objects) graphs
or with no scalability evaluation at all.

Additionally, different approaches use abstract interpretation
[29, 30], or predicate abstraction [31] for partial modeling. In those
approaches, concretization is used to materialize (typically small)
counter-examples for designated safety properties in a graph trans-
formation system. However, their focus is to support model check-
ing of abstract graph transformation systems, which can evaluate
complex trajectories, but do not scale in the size of the models.

6 CONCLUSION AND FUTUREWORK
We presented a novel graph solver to generate consistent models
of a designated size from a specification defined by a metamodel
and a set of WF constraints. Unlike existing approaches which
map the model generation problem to logic solvers (dominantly
SAT or SMT-solvers), we address the model generation problem of
consistent instances directly over graphs by combining advanced
graph-based techniques with core SAT-solving rules. Our approach
is fully automated and available as an open source tool [52].

Our experimental evaluation carried out over three industrial
domains confirmed that our solver is able to synthesize consistent
graph models with over 500-6000 objects with similar quality guar-
antees as provided by the popular relational model finder Alloy. The
scalability of our solver is 1-2 orders of magnitude better than ex-
isting mapping based approaches using Alloy with a SAT-solver in
the background. Such a difference in scalability likely indicates not
only the benefits of our approach but also the inherent problems of
mapping based model generation approaches deriving and solving
a SAT problem. Thus our solver can serve as the output of map-
pings that previously used Alloy for model generation purposes.
Altogether, our technique has the potential to be used in many
testing scenarios including validation of large industrial DSLs, but
its scalability is not yet sufficient for benchmarking purposes.

We have no precise claims on the diversity and realistic nature
of our model generator. In the future, we aim to extend the frame-
work to synthesize a set of graph models which are consistent,
diverse and realistic at the same time. Numerous studies [24, 25, 51]
have demonstrated that neither traditional SAT-solvers nor SMT-
solvers provide sufficient diversity for their outcome when called
repeatedly.
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