Dynamic Backward Slicing of Model Transformations

Zoltan Ujhelyi, Akos Horvath, Déniel Varré
Department of Measurement and Information Systems
Budapest University of Technology and Economics, Budapest, Hungary
{ujhelyiz,ahorvath,varro} @mit.bme.hu

Abstract—Model transformations are frequently used means
for automating software development in various domains to
improve quality and reduce production costs. Debugging of
model transformations often necessitates identifying parts of
the transformation program and the transformed models which
have causal dependence on a selected statement. In traditional
programming environments, program slicing techniques are
widely used to calculate control and data dependencies between
the statements of the program. Here, we introduce program
slicing for model transformations where the main challenge is
to simultaneously assess data and control dependencies over
the transformation program and the underlying models of the
transformation. In this paper, we present a dynamic backward
slicing approach for both model transformation programs and
their transformed models based on automatically generated
execution trace models of transformations. We evaluate our
approach using different transformation case studies.

Keywords-Program slicing; Model transformations

I. INTRODUCTION

Model-driven design (MDD) aims to simultaneously im-
prove quality and productivity by providing early model
validation and automating various phases of software de-
velopment including source code, test case or configuration
generation. Model transformations (MT) play a central role
in automating such tasks. Model-to-model transformations
take one (or more) source model(s) as input and derive one
(or more) target model(s) as output typically together with
detailed traceability links. In-place model transformations
operate on the same model instance to provide model
simulation or refactoring.

Model transformations are captured in the form of a MT
program, which can be taken as a regular piece of software.
However, elementary steps in MT programs are captured by
data-driven declarative rules, while complex transformations
are assembled from elementary steps using imperative con-
trol structures. Due to this hybrid nature of MT languages,
the direct adaptation of existing software engineering results
is problematic, especially, when designing complex MTs
where debugging and validation plays a crucial role.

Many integrated development environments (IDEs) in-
clude sophisticated program slicing techniques to calculate
control and data dependencies between the statements of
a program. When debugging MTs, transformation experts
would require similar support to identify parts of the MT

program which have causal dependence on a selected pro-
gram statement (called slicing criterion). However, the slic-
ing criterion of a MT program can also depend on an element
of the underlying model when a read or write operation
on the element causes a causal dependency. For instance,
declarative model queries issued by transformation rules
might introduce data dependencies that can only be detected
by creating relevant slices of the transformed models as well.

In a previous short paper [1], we introduced the concepts
of MT slicing for the first time (up to our best knowledge),
and identified the main scientific challenges. We argued that
the adaptation of existing program slicing techniques turns
out to be non-trivial as MT programs take models as an
additional input. Therefore, MT slices should simultane-
ously incorporate the causally dependent statements and the
causally dependent parts of the underlying model.

A further difference to a traditional (dynamic) program
slicing setup comes from the fact that MTs are executed
mostly at design time in modern IDEs, which frequently
save additional information when executing a MT in order
to provide undo/redo support. Consequently, execution traces
of a MT run are readily available for MT slicing.

In [1], we informally sketched the idea of dynamic
backward slicing of model transformations. In the current
paper it is extended by formal definitions of MT slices
and the slicing algorithm itself. An extensive experimental
evaluation is also featured using various case studies taken
from previous model transformation benchmarks.

The rest of the paper is structured as follows. At first
dynamic backward MT slicing is demonstrated informally
on an example in followed by the presentation of
our slicing algorithm in An experimental evaluation
of our slicing algorithm is given in Related work

is discussed in [Sec. V| while concludes our paper.

II. MODEL TRANSFORMATION SLICING: AN EXAMPLE

A traditional program slice consists of the parts of a
program that (potentially) affect the values computed at
some point of interest [2]. In [1] we defined the slic-
ing problem of MTs as illustrated in The slicing
algorithm receives three inputs: the model transformation
program, the models on which the MT program operates
and the slicing criterion denoting the point of interest, that
is specified by a location (statement) in the MT program in

Criteria

Transformation
slice

Model
transformation
slicing

Transformation

=

Figure 1: Slicing Problem of Model Transformations

combination with a subset of the MT program variables and
elements of the model. As output, slicing algorithms need
to produce (1) transformation slices, which are statements
of the MT program depending or being dependent on the
slicing criterion, and (2) model slices, which are parts of
the model(s) depending (or being dependent) causally on
the slicing criterion (due to read or write model access).

Of the various program slicing techniques we focus on
dynamic and backward slicing in this paper. Dynamic slicing
relies on a specific execution of the program. In case of
MT slicing, the affected statements of the slicing criterion
are calculated with respect to this specific execution, while
model slices can be identified on its (input) models. A
backward slice of a MT consists of (1) all statements and
control predicates of the program and (2) all elements of the
underlying model the slicing criterion depends on.

In this section, we informally present the core technique
of dynamic backward slicing of MT programs using a
demonstrative example of Petri net simulation formalized by
model transformations in the MT language of the VIATRA2
framework. The example is frequently used to demonstrate
the usage of MTs in model simulation scenarios, and it
already served as a performance benchmark for MTs [3].
Furthermore, the choice of the VIATRA2 language was
motivated by the fact that it includes both declarative and
imperative language elements, thus our slicing results are
likely to be extensible for other MT languages as well.

A. Running example: Simulation of Petri nets

Petri nets are bipartite graphs with two disjoint set of
nodes: Places and Transitions. Places can contain an arbi-
trary number of Tokens that represent the state of the net. The
process called firing changes this state: a token is removed
from every input place of a transition, and then a token is
added to every output place of the firing transition. If there
are no tokens at an input place of a transition, the Transition
cannot fire. The structure of the modeling language of Petri
nets is formalized by a corresponding metamodel in

Example 1: depicts a simple Petri net. The net
consists of three places, representing a Client, a Server and
a Store and two transitions. The Client issues a query (the
Query transition fires), the query is saved in the store (a
token is created), the Server is activated (a token is created),
and the Client waits for a response (its token is removed).

B. The VIATRA2 transformation language

1) Graph patterns: Graph patterns are often considered
as atomic units of MTs [4]. They represent complex struc-

InhibitorArc
[Association]

OutArc
Place | | Transition
[Class] I-—l [Class]
InArc

tokens [Association]
[Association]

Token
[Class]

Respond
(a) Metamodel for Petri nets (b) A Simple Petri
net
Figure 2: A Petri net Example
1 pattern sourcePlace(Tr, Pl) = {
2 Transition(Tr);
3 Place (Pl);
4 Place.OutArc(OA, P1l, Tr);
503
6 pattern targetPlace(Tr, P1l) = {
7 Transition(Tr);
8 Place (P1l);
9 Transition.InArc(IA, Tr, Pl);
0}
11 pattern place(Pl) = {
12 Place (Pl);
13}
14 pattern placeWithToken (Pl) = {
15 Place (P1l);
16 Place.Token (To);
17 Place.tokens (X, P1l, To);
18}
19 gtrule addToken(in P1l) = {
20 precondition find place (P1)
21 postcondition find placeWithToken (P1)
2}
23 gtrule removeToken(in Pl) = {
24 precondition find pattern placeWithToken (P1)
25 postcondition find pattern place (P1l)
26}
27 rule fireTransition(in T) =
28 if (find isTransitionFireable(T)) seq {
29 /* remove tokens from all input places #*/
30 forall Pl with find sourcePlace (T, Pl)
31 do apply removeToken(Pl); // GT rule invocation

32 /+ add tokens to all output places =/
33 forall Pl with find targetPlace (T, P1l)
34 do apply addToken(Pl));

Lst. 1: Petri net Firing in VIATRA2 with a Calculated Slice

tural conditions (or constraints) that are needed to be fulfilled
by a part of the (input) models. Graph patterns are also used
to declaratively define model manipulation steps.

Example 2: We present two graph patterns from
sourceplace (Line I)) identifies the source places of a
transition, while targetplace identifies the target
places of a transition. Both patterns contain a Transition
node Tr and a P1ace node p1 that are connected by an edge
of type of outarc and Inarc, respectively. It is important to
note that the variables outarc and InaArc are internal pattern
variables which are not available outside the pattern.

2) Graph transformation: Graph transformation (GT) [5]
provides a high-level rule and pattern-based manipulation
language for graph models. GT rules can be specified using
a left-hand side (LHS or precondition) graph (pattern) to
decide the applicability of the rule, and a right-hand side

Query
Client tore

Server

Respond Respond

(a) The Model After the (b) The

Calculated

Firing of the Transition Model Slices

Figure 3: The Dynamic Slice of the Firing of the Query Transition

(RHS or postcondition) graph (pattern) which declaratively
specifies the result model after the rule application. To
achieve this, the rule application removes all elements only
present in the LHS, creates all elements only present in the
RHS, and leaves every other element unchanged.

Example 3: uses two simple GT rules that are
(respectively) used to add a token to or remove a token from
a place. The LHS pattern of the addToken rule
consists of a single place, while its RHS extends it with
a token. This means, applying the rule creates a token and
connects it to the place. The removeToken rule is
expressed by swapping the same patterns: the token from
LHS is removed in accordance with the RHS.

3) Control Language: Complex MT programs can be
assembled from elementary graph patterns and graph trans-
formation rules using some kind of a control language. In
our examples, we use abstract state machine (ASM) [6] for
this purpose as available in the VIATRA2 framework.

ASMs provide complex model transformations with all
the necessary control structures including the sequencing
operator (seq), rule invocation (call), variable declarations
and updates (let and update constructs), if-then-else
structures, and GT rule application on a single match
(choose) or all possible matches (forall).

Example 4: The fireTransition rule describes
the firing of a Petri net transition in VIATRA2. At first it is
determined whether the input parameter is fireable using the
isTransitionFireable pattern. Then in a sequence the GT
rule removeToken is called for each sourcePlace, followed
by a call to GT rule addToken for every targetPlace.

C. A Sample Dynamic Backward Slice

To illustrate the slicing problem for model transforma-
tions, we consider the execution of the rule fireTransition
called with the transition Query as a parameter. The program
slice is depicted in while the model slice in

[Fig. 34 displays the model after the firing: the token from
the place cilient is removed, while tokens are added to the
places store and server. As slicing criteria, we selected
the GT rule application in [Line 34| and the variable p1.

During the execution of this firing, it is possible to obtain
an execution trace, that records for each program statement

the variable and model element accesses (both read and
write). We can calculate the backward slices for the criteria
by traversing the execution trace backwards. For each record
of the trace, we determine whether the criteria depends on
it either directly or indirectly as follows:

(1) At the last item of the trace the variable p1 is bound
during the matching of the pattern targetPlace, so the
pattern invocation is part of the slice (Line 33).

(2) As the pattern matching of targetPlace uses model
elements (server, Query and the 1A between them), they
have to be added to the model slice.

(3) The forall rule in[Cine 33|is included in the slice as
it defines the variable p1.

(4) On the other hand, the token removal operation
does not affect the slicing criterion as p1 is a
different variable (redefined locally), T is passed as input
parameter, while no model elements touched by this GT rule
are dependent from those required at the slicing criterion.

(5) Although the if condition in does not define
variables used later in the slice, it has to be added as one of
its contained forall rule is added to the slice.

(6) Finally, as the slice includes statements that use the
variable T, its definition as an incoming parameter of the
fireTransition rule is added to slice.

The model slices of the MT program might reference
elements created or deleted during the execution of the
transformation. E.g., tokens in the places store and server
were created, while the one in the place c1ient was removed
by the transformation run. To illustrate the model slice, we
added both the created and deleted elements to |[Fig. 3bl and
marked the elements in the slice. The crossed token (in the
place client) is deleted. Elements of the slice are contained
within dashed rectangles - namely, transition gQuery, place
server and the token in the place server.

III. A DYNAMIC BACKWARD SLICING ALGORITHM FOR
MODEL TRANSFORMATIONS

In this section we formalize our approach by first defining
execution traces for transformation programs (Sec. [[II-Al),
and show how to derive them during execution. Then we
present an algorithm (Sec. that uses these traces to
slice MT programs and models simultaneously.

A. Execution traces

1) Definitions: In advanced development and transforma-
tion environments, execution traces are often saved during
transformation execution to support undo/redo or to provide
traceability information between source and target models.
This is achieved by storing the set of created, modified or
removed model elements for each executed statement. To
support slicing, this information has to be extended with the
set of used transformation program statements and variables.

We define an execution trace as a sequence of trace
records that represents the execution of the MT program.

Table I: Illustration of the Slicing Algorithm

(a) Execution Trace

(b) The Execution of the Algorithm

Produces Uses Removes lookup require found slices A

P, P, U, Unm R, Var ME Var ME Var |[ME|translice |modelslice
{Ser, Qu, {Ser, Qu,
(0) rule fireTransition(in T) |{T} [] 0 0 {T}|Cli, ToC}| 0 {T}| 0 ({0,1,5,8}| Cli, ToC}
(1) if {Cli, {Cl, {Ser, Qu,
(find isFireable (T)) 0 0 {T} |ToC, Qu} 0 {T} [{Ser, Qu}|{T}|ToC,Qu}| 0 | 0| {1,5,8} |Cli,ToC}
(2) forall p1 0 0 0 0 0 {T}|{Ser,Qu}| 0 0 0|0 {5,8} |{Ser,Qu}
(3) £ind sourcePlace(T,P1l) |{Pl} 0 {T} |[{Cli, Qu} 0 {T} [{Ser,Qu}| 0 0 0 | 0| {58} |{Ser,Qu}
(4) apply removeToken (P1) 0 0 {Pl}| {Cli} |{ToC}||{T}|{Ser,Qu}| 0 0 0|0 {58} |[{Ser,Qu}

(5) forall P1 0 0] [0 {T} [{Ser,Qu}| 0 0 0 10| {58} [{Ser,Qu}
(6) £ind targetPlace(T,P1) |[{Pl} 0 {T} |{Sto, Qu} 0 {T} |{Ser,Qu}| 0 0 0|0 {8} {Ser, Qu}
(7) apply addToken (P1) 0 |{ToSt}|{Pl}| {Sto} 0 {T} |{Ser,Qu}| 0 0 0|0 {8} {Ser, Qu}
(8) find targetPlace(T,Pl) |{Pl} 0 {T} |{Ser,Qu}| 0 {Pl} 0 {T}|{Ser, Qu}|{Pl}| 0 {7} {Ser, Qu}

(9) apply addToken (P1) 0O [{ToSe}|{Pl}| {Ser} 0 {Pl}] 0 0 0|10 0 [

Loops and conditions are handled by referencing the same
program statement either several times or none at all.

Definition 1: Let M be the set of model elements, .S the
set of program statements and V' the set of program variables
of a model transformation program. A trace record is a tuple
TR = (s, sub, Py, Py, Up,, Uy, Ry,), where

e s € S is a program statement

o sub € S references the substatements of s, i.e. the set of
program statements executed while s is being executed,

e P, C V denote the variables produced (created or
updated) by the statement s

e U, CV are the variables used by s

e P,, C M are the model elements produced by s

o U,, € M are the model elements used (read) by s

e R,, C M are the model elements removed by s

A program statement uses a variable or model element,
if its execution depends on (the value of) the selected
variable or model element. Similarly, a statement produces a
variable or model element, if its value is created or changed
during the execution of the statement. However, if a model
element is removed during the execution, it is added to the
removed set. The reason for this distinction is twofold: (1)
the removal of the model element implies that the model
element is already created, and (2) if at a later point a
removed model element is tried to be accessed, it indicates
a transformation error to be reported to the developer.

Such trace records can be built from the executed state-
ments of the transformation program. The records of im-
perative language elements (e.g. ASM rules) can be derived
using similar logic to traditional program slicing methods,
while the trace records of declarative rules (e.g. GT rules)
are derived based on its execution semantics.

In the following we describe the derivation from VI-
ATRA2-specific declarative graph patterns and transforma-
tion rules. We believe the execution of specific language
constructs of other transformation languages, such as OCL
constraints can also be mapped to trace records similarly.

Example 5: To illustrate the use of execution traces, we
present in the partial execution trace of the Petri
net simulator program considering the execution of the
rule fireTransition with the parameter of the transition
ouery. The first column displays the corresponding program
statement, an identifier of the record. Substatements are pre-
sented with indentation - e.g., the £ind sourcePlace (T,P1)
statement is a substatement of the forall Pl statement in
row (2). The remaining columns display the produced, used
and removed variables and model elements respectively. For
readability, the associations between the model elements
(e.g. of type InArc, OutArc and tokens) are omitted.

2) Trace record of graph pattern calls: A graph pattern is
called with a set of program variables as parameters. These
variables either reference a model element (input or bound
parameter) or are undefined (output or unbound parameter).
In case of successful matching, all variables will reference a
model element: bound parameters remain unchanged, while
values are assigned to unbound parameters.

Additionally, the matched model elements have to be
added to the trace record as used model elements. Moreover,
as the model remain unchanged, both the set of produced
and removed model elements are empty. It is important to
note that all model elements have to be added, not only the
ones available as pattern parameter.

Example 6: Line (2) of displays the trace
record of the call of the sourceplace pattern. The vari-
able T is bound, while p1 is unbound, so P, = {PI}
and U, = {T}. The pattern is matched to the fol-
lowing model elements: Tr <+ Query, Pl < Client
and OutArc <+ OutArc(Client,Query), so U, =
{Query, Client, Out Arc(Client, Query)}.

3) Execution trace of GT rules: Graph transformation
rules can be considered as pattern matching followed by
a set of model manipulation rules (typically model element
creation or removal). So the trace record is constructed by
first creating the trace record of the precondition pattern
of the rule (as in case of graph patterns), then adding the

Require: Vi € 1.n: TR;
let lookup <+ Criteria
let translice < 0
let modelslice +
for i < n,1 do > Iterating over trace records backward

TR; = (Sv sub, Py, Py, Upm, Uy, Rm)

if (P, U Py,) Nlookup # (then
let require < U, UU,, U R,,
let found < P, U P,
let lookup < (lookup — found) U require
translice < translice U {s}
modelslice < modelslice UU,, U P,, U R,

else if R,, N lookup # () then > Use of removed model element
ERROR

else if sub N translice # () then
require < U, UU,, U R,
lookup + lookup U require
translice < translice U {s}
modelslice < modelslice UU,, U Py, U R,

end if

end for

> Ordered list of trace records

> Data dependency

> Control dependency

> Found is empty here

Lst. 2: The Slicing algorithm

modified elements to corresponding list (7}, or R,,).

If a model element is added both to the used and removed
set, it is possible to remove it from the uses set, as the
removed set already represents this information.

Example 7: Line (3) of presents the trace record
of the invocation of the GT rule removeToken. As pre-
condition it calls the placewithToken pattern resulting in
the following output: U, = {7, Pl}, P, = 0 and U,, =
{Client, TokenC, tokens(Client, TokenC')}.

As the postcondition pattern prescribes to remove the
token (and the related tokens edge), two remove oper-
ations will be recorded in the trace. The corresponding
sets of the trace record are as follows: P, = (and
R,, = {TokenC,tokens(Client, TokenC)}. Finally, the
model elements T'okenC' and tokens(Client, TokenC') can
be removed from U,,,, as they appear in the removed set R,,.

B. Generating backward slices from execution traces

We generate program slices by calculating dependencies
between trace records. Our algorithm, presented in
is similar to the dynamic slicing algorithm in [[7]], with the
addition of producing model slices as well.

The input of the algorithm is the ordered list of trace
records (T'R;) and the variables and model elements from
the slicing criteria. The algorithm assumes that the statement
referenced in the last record is the statement of the criteria.
This is not a real limitation, it is safe to omit the trace records
after the slicing criteria when deriving a backward slice.

The algorithm maintains three sets during the execution.
(1) Set translice stores the program statement, and (2) set
modelslice represents the model elements already identified
as parts of the slice. Finally, (3) set lookup stores the
variables and model elements that are considered for direct
data dependencies. The algorithm checks for every record:

1) If the current trace produces a variable or model

element that is present in the set lookup, then the
records has to be added because of data dependency

(either between the record and the criteria, or between
the record and an element already in the slice).

2) If the recorded statement removes an element that is
present in the lookup, it suggests an error, because a
model element is used that was previously removed.

3) If a substatement of the record is already added to the
trace, the record has to be added because of control
dependency (e.g. a pattern call inside a forall rule
cannot be evaluated without the forall rule).

The 1o0okup set is initialized to the variables and model
elements in the slicing criteria, and it is updated each time a
statement is added to the slice. More specifically, variables
and model elements produced by the statement are removed,
while elements used or removed by the statement are added.
After every trace record is processed, the lookup set will
store the variables and model elements the slicing criteria
depends on, but which are not initialized or modified during
the execution of the MT program. As a consequence, the
variables in the final 1ookup set are the subset of the input
variables of the transformation and the model elements are
the subset of the input model the criteria depends on.

Example 8: We illustrate the slicing algorithm using the
execution trace from and variable P1 as slicing
criteria. displays (in a bottom-up way) the changes
of the maintained sets. In line (9) the lookup starts with
the criteria that is only referenced in the call of the GT
rule applyToken, so neither set changes. The call of the
pattern targetPlace (line (8)) produces the variable p1, so
it is removed from the set 1ookup. However, the referenced
variable T and the model elements Query, Server and
Inarc (Server, Query) are added to the set 1ookup.

The other iteration in the forall rule (line (6) and (7))
does not reference any element that is introduced in the
lookup Set, thus, it is not included in the slice. The forall
rule (line (5)) produces no elements, but as it contains the
already included pattern call, it is added to the slice. One
can calculate similarly that the remaining three statements
do not provide new dependencies for the slicing criteria.

The conditional rule in line (1) is added since its sub-
statement forall rule from line (5) is already in the slice.

And finally, at line (0) we can detect that the model
elements Query, Client, Server and Inarc (Server, Query)
and outarc(Client, Query) had to exist before executing
the fireTransition rule. Similarly, the input variable T is
also present in the slice that is defined by the caller of the
rule. As a result, we obtain exactly those model elements and

program statements highlighted in the example of

C. Implementation

The proposed dynamic backward slicing algorithm has
been implemented within the VIATRA2 model transforma-
tion framework. For this purpose, we had to slightly extend
the VIATRA?2 interpreter to generate execution trace records.

Execution trace records are modelled (and optionally
persisted) as EMF models in our implementation. This offers
reusability by allowing other MT tools to provide such
records from their execution by similar modifications of their
interpreters. However, we believe in EMF-based approaches
these modifications could be substituted by relying on ad-
vanced EMF modeling technologies.

Finally, the created execution trace model together with
the slicing criterion selected by the transformation engineer
is passed as an input to the slicing algorithm, and the
calculated slices are displayed in the graphical user interface.

IV. EVALUATION

The aim of the evaluation is to demonstrate that our MT
slicing approach provides small, relevant slices describing
both control and data dependencies from the selected slicing
criteria with respect to the corresponding execution trace.
To illustrate the simultaneous slicing of the models and MT
programs, we selected four fundamentally different MT pro-
grams available in the VIATRA2 transformation framework,
which were already used in the past for performance bench-
mark investigations (e.g. at various model transformation
tool contests). These MT programs are used “as is”, without
any manual changes to them:

o Our running example, the Petri net simulator [3|] trans-
formation highlights typical domain specific language
simulation. However, due to its low complexity we used
it only as a stress test to our approach with various
model sizes.

o The AntWorld case study [8]], [9] of the GraBaTs Tool
Contest 2008 is a larger model simulator program
modeling the life of an ant colony with a continously
increasing population (and world). The transformation
features a more complex control structure, so we expect
that both model and control dependencies will con-
tribute to the calculated slices.

o The BPEL2SAL [10] case study developed as part of
the SENSORIA FP6 EU project is a good example for
typical model-to-model transformations with complex
control structure and transformation rules. In this case,
due to its large size and more imperative implementa-
tion style, we expect that the slicing of the transforma-
tion program will have a stronger correspondence with
the control flow rather than the data flow.

o We also evaluated the Reengineering case of the Trans-
formation Tool Contest 2011 [11]], that extracts state
machine models from a Java abstract syntax graph. The
transformation is similar in nature to the BPEL2SAL
case study, however the output model is created only
from a small subset of the input metamodel.

We evaluated our approach with the case studies using

multiple test cases, focusing on various aspects of MTs.

In [Table I1] for each test case we measured the number of
program statements (statement coverage), program variables

(variable coverage) and model elements (model coverage).
For statement coverage we display the number of statements
present in the slice (column %’), and their ratio to the
number of statements available in the MT program (column
“Total’) and in the trace (column ‘Trace’). The variable and
model coverage values are to be interpreted similarly.

We expect that these coverage metrics will be good
indicators of how the different slices correspond to the
structure of the MT program and the input model.

During the evaluation of the test cases we noticed that,
similar to most debugging techniques, trace generation slows
down normal MT execution by 2 — 3 times. However, even
the longest traces were processed by the slicing algorithm in
less then a minute, which we consider reasonable. A more
detailed performance assessment is planned as future work.

A. The Petri net Simulator Case study

1) Test Cases: We generated Petri nets ranging from
small (consisting 10 elements) to large (consisting 10000
elements), and executed firing sequences of 10 — 10000
iterations each. As criteria we selected a token created in the
final iteration. To manage the non-deterministic nature of the
program, for every net and firing sequence size the simulator
was executed ten times, and the result was averaged.

2) Lessons Learned: [Table ITa]shows the slice sizes of the
simulator transformation. Because of the non-determinism of
the transformation, firing only a few transitions in a large net
the iterations will be independent from each other, making
the case non-representative. We omitted such cases from the
final results. Additionally, we removed the number of fokens
from the model slice size to get more comparable results,
as the number of tokens clearly dominated the model slice,
especially in case of smaller net sizes.

These results were in line with our expectations for slicing
simulation MTs:

o Program slices are largely model independent: the slices
cover exactly the same program statements and vari-
ables. However, if the firings were independent from
the criteria, then some statements and variables were
not included in the result slice, although such cases are
not presented in

e Model slices largely depend on both the number of
firings and the overall size of the net: if the number
of iterations exceeds the size of the net, most places
and fransitions are present in the trace and slice.

B. The AntWorld Case Study

1) Overview of the Transformation: The AntWorld case
study describes a transformation to simulate the life of a
simple ant colony searching for food to spawn more ants on
a dynamically growing rectangular world. The ant collective
forms a swarm intelligence, as ants discovering food sources
leave a pheromone trail on their way back so that the food
will be easily found again by other ants.

Table II: Slice Sizes of Transformation Programs

(a) Slicing Results of the Petri net Simulator

(b) Slicing Results of the BPEL2SAL Transformation

Firings Statement Coverage Variable Coverage Model Coverage Break Statement Coverage | Variable Coverage Model Coverage
Total Trace # Total Trace # Total Trace # | Total | Trace # | Total | Trace # | Total | Trace
10 14+0 35,9% 50,0%) 5+0 45,5% 62,5% 22,1%6,2 50,2%|74,7+18,6% o | Break1 93 1,6%| 24,8% 8| 0,3% 8,3%) 16| 0,3% 1,0%
o 100 1440 35,9% 50,0%) 50 45,5%] 62,5% 43,9+0,3 99,8%|99,8+0,7% g Break 2| 183| 3,2%| 28,9%| 24| 0,8%| 11,6%) 56| 1,2%| 2,8%
- 1000 1410 35,9% 50,0%) 510 45,5% 62,5% 44+0,0 100,0%|100,0+0,0% - Break 3 199 3,4%| 26,6%) 22| 0,7% 8,1%) 48| 1,0% 2,2%)
10000 14+0 35,9% 50,0%) 5:0 45,5% 62,5% 4410,0 100,0%|100,0+0,0% % Break 4] 415 7,1%| 30,7% 127 4,2%| 20,9% 237| 5,0% 7,4%)
100 140 35,9% 50,0%) 510 45,5% 62,5% 195,7£32,8 52,0%|86,3+11,1% T End 832| 14,3%| 44,2%) 374| 12,3%| 41,5%) 717| 15,0%| 15,9%
§ 1000 14+0 35,9% 50,0%) 5+0 45,5% 62,5% 37145,8 98,7%|99,910,3% ﬁ Break 1 93! 1,6%| 24,8%| 8| 0,3% 8,3%| 16| 0,1% 1,0%
10000 140 35,9% 50,0%) 5+0 45,5% 62,5% 376+0,0 100,0%|100,0+0,0% S| Break2| 203| 3,5%| 30,2% 24| 0,8%| 10,6%| 63[0,2% 1,9%
° 100 1410 35,9% 50,0%) 50 45,5% 62,5% 70,6£49,1 1,8%19,5¢11,9% :c::. Break 3| 217 37%| 273%| 22| 07%] 7,5% so| 02%| 1,1%)
§ 1000 140 35,9% 50,0%) 5+0 45,5% 62,5%| 684,2+308,2! 17,8%|(38,1+17,4% '-GEJ Break 4| 664| 11,4%| 42,3%| 259| 8,5%| 35,8%| 2509| 8,6%| 17,1%)
10000 140 35,9% 50,0% 510 45,5% 62,5%| 3239,8+305,4 84,1%|93,316,6% Is] End| 1181| 20,3%| 46,3% 577| 18,9%| 45,2%| 5174| 17,8%| 20,0%)
o 100 14+0 35,9% 50,0%) 5+0 45,5% 62,5% 58,2+35,9 0,1%(16,3+8,0%
§ 1000 1410 35,9% 50,0%) 5+0 45,5% 62,5% 477,9+140,2 1,2%|19,4%5,0%
= 10000 140 35,9% 50,0%) 510 45,5% 62,5%| 1211,9+1435,0! 3,0%|16,8+19,4%
(c) Slicing Results of the Antworld Case Study (d) Slicing Results of the Reengineering Case Study
Break Statement Coverage Variable Coverage Model Coverage Break Statement Coverage | Variable Coverage Model Coverage
Total Trace # Total Trace # Total Trace # | Total | Trace # | Total | Trace # | Total | Trace
Grab| 75,15+10,6(50,3+8,6%| 50,416,6%| 40,4+6,4| 27,3+0,1%| 53,8+7,9%| 201,4+84,6| 36,0+13,9%| 36,0£13,9%) Break 1 17| 10,6%| 17,9% 6| 4,6%| 16,7%| 21| 0,1%| 12,1%|
Deposit| 77,6£12,9] 53,0£0,5%| 53,0+7,1%| 41,7548,4| 28,2+1,1%| 56,1+9,6%) 206,1+75,7| 38,5+12,5%| 38,5+12,5% Break 2 33| 20,5%| 33,0%) 18| 13,8%| 48,6%) 65| 0,4%| 28,8%|
§ Move| 75,1£7,1| 51,3+3,3%| 51,3%3,8%| 40,35+4,9| 27,216,4%| 54,4+4,9%) 204,0+114,2| 32,7+15,2%| 32,7+15,2%) Break 3 35| 21,7%| 34,7%) 18| 13,8%| 47,4%) 102[0,7%| 12,1%
E Search| 17,85%25,7| 12,3+7,1%| 12,4+16,9%| 6,55+15,6| 4,4+3,1%| 8,9+22,5% 49,1+127,8| 9,2417,6%| 9,2+17,6%| Break 4| 39| 24,2%| 32,0%) 19| 14,6%| 46,3%) 139 0,9%| 15,6%
S Japororate| 82,145,3| 54,6+7,9%| 54,7+3,1%| 43,4+3,6| 29,3+2,4%| 57,443,9% 161,3+100,0(29,9+12,1%| 29,9+12,1% End 39| 24,2%| 31,7% 19| 14,6%| 46,3% 150 1,0%| 16,8%)
Consume| 81,5+8,9| 55,6+1,2%| 55,613,7%| 43,1%5,5| 29,1+2,2%| 58,245,2% 157,8+70,0(27,1+13,1%| 27,1+13,1%
Grow| 45,55%0,7| 29,1+1,5%| 29,1+1,6%) 1920,0| 12,8+3,8%| 24,1+1,3%) 376,8+80,1| 47,8+8,9%| 47,8%8,9%|
Grab)| 90,8+0,4| 52,0+£1,9%| 52,0£2,3% 4910,0(33,1+0,8%| 56,3+2,2%) 857,34226,2| 52,246,2%| 52,2+6,2%)
Deposit| 90,75+0,6(52,3+0,5%| 52,3+1,4%) 49+0,0(33,1+0,8%| 56,3+2,2%) 896,3+349,7| 58,5+1,7%| 58,5+1,7%)
ﬁ Move| 90,85%0,5[51,948,9%| 51,9+9,3% 49+0,0(33,1+0,8%| 56,3+2,2%) 812,8+269,4| 52,9+7,2%| 52,9%7,2%|
5 Search 44139,0| 25,2+1,1%| 25,2+22,3%| 21,4+23,1| 14,416,2%| 24,6+26,6%) 284,61374,1| 19,5+25,8%| 19,5+25,8%)
Q lapororate 96,95+7,0| 55,5+7,5%| 55,6%4,1%| 51,25+4,3| 34,6+2,8%| 58,9+4,9% 736,5+228,3| 48,4+11,5%| 48,4+11,5%
Consume| 95,9+7,8| 54,9+4,1%| 54,94,5%| 50,6+4,9| 34,1+8,9%| 58,25,7%) 729,14203,0| 49,2+6,4%| 49,216,4%|
Grow| 4610,0| 26,4+3,7%| 26,4%3,7% 1910,0| 12,8+3,8%| 21,8+3,9%| 886,1+295,8| 38,3+4,1%| 38,3+4,1%)

The simulation is executed in rounds, executing 7 different

tasks each round. 4 tasks describe the behaviour of the ants:
(1) searcher ants grab food from their current field, (2) ants
at the hill deposit the food they were carrying, (3) carrier
ants move closer to the hill and produce pheromones and (4)
searcher ants search for food. After the ant tasks 3 world
management tasks are executed: (5) pheromone evaporates
from the fields, (6) the hill consumes food to produce more
ants and finally (7) the grid grows when a searcher has
crossed the boundary, and new food is produced.

The simulation starts with a very small model that is
extended rapidly during the execution of the transformation.

2) Test Cases: We defined a breakpoint at the end of each
task, that was triggered after 10 or 50 rounds. To handle the
random nature of the simulation each case was executed 10
times, and the results were averaged. Although the tasks are
implemented separately, we expect large slices because of
various data and model dependencies between the tasks.

3) Lessons learned: describes the size of the

result slices. Based on the results we concluded that

e When comparing the Statement coverage results of the
10 round and 50 round simulations, we found that
both slice and trace sizes are similar when considering
the same breakpoints. This means, in 10 rounds the
commonly used program statements are covered, and
longer executions increase coverage slightly.

¢ However, the number of variables used in the trace

increases with a longer execution - the same percentage
of variables from the trace is present in the slice, the
trace itself uses a larger set of available variables.

o The different executions of the simulation resulted in
slices of similar size (small standard deviation), except
the searcher test cases. In that case sometimes the slices
are very small (a few statements and model elements),
while in other cases they are an order of magnitude
larger (large standard deviation).

« In this case there is no difference between the total and
effective model size, as the transformation traverses the
small, predefined model and extends it during runtime.

C. The BPEL2SAL Transformation

1) Overview of the Transformation: The BPEL2SAL
transformation program [[10] is a complex MT that trans-
forms business process models captured in BPEL into the
SAL model checker to analyze error propagation scenarios.

The transformation is one of the most complex ones
created in VIATRAZ2: it consists of 102 ASM rules, 177 graph
patterns and is over 8000 lines of code. It was implemented
more like a traditional imperative program and thus does
not use GT rules. This results in some really complicated
ASM rules (over 100 lines of code) with complex control
dependencies. However, as the control flow is less data-
oriented, data dependencies are easier to calculate.

2) Test Cases: For the BPEL2SAL test cases, we focused
on the analysis of the MT program itself using two different

processes, where the Hello World model represents the most
simple BPEL model with a single process together with one
start and one end nodes, while the Credit process [12]] is an
industrial example describing a complex credit evaluation
process consisting of 220 BPEL model elements.

The BPEL2SAL transformation can be clearly separated
into 4 phases, which deal with creating the parts of the
generated SAL transition system description. The first phase
(1) produces type definitions, followed by the (2) generation
of variable declarations. Then (3) the variables are initial-
ized, and (4) the SAL transitions are created. The first three
phases are of roughly the same size, while the fourth is
significantly more complicated and longer.

To create slices of this MT, we set up a breakpoint after
each phase (and an additional breakpoint in the middle of
phase (4) to split its complexity). In each case, we selected
the last created model element and corresponding creation
statement as the slicing criteria. Our aim with this setup is
to get an overview on the distribution of complexity over
the different phases of the transformation.

3) Lessons Learned: We expected that slices contain only
a few variables and model elements, as the various phases
of the transformation are well separated: although a large
number of model elements are created in each phase, only a
limited number of them are reused from earlier phases (e.g.
identifiers referencing type names, etc.).

displays the results of the measurements. Based
on these results we conclude that

o As the execution progresses between the phases, the
slices get typically larger (with the notable exception of
the third breakpoint). Compared to the size of the trace,
we found that around 25-45% of the statements are in
the slice, a similar, but smaller 8-45% of variables, and
only 15-20% model elements. This was in line with our
expectations that only a limited number of variables are
passed between phases.

o However, total statement coverage is small (under
20%), as various parts of the MT program are only
executed if certain BPEL constructs are used in the
input (e.g. compensation handling).

o The variable coverage behaves similarly as the state-
ment coverage due to the fact that variables of non-
executed statements are also not part of the trace.

« Finally, the model coverage results show that the trans-
formation progresses the effective coverage converges
to the total coverage metrics, meaning that the transfor-
mation covers the complete input model as expected.

D. The Reengineering Case Study

1) Overview of the Transformation: The objective of the
Reengineering case study [11]] is the extraction of a simple
state machine with actions and triggers from an abstract
syntax graph of a Java program. The transformation itself
is much simpler and smaller then the BPEL2SAL case, and

uses a similar imperative style with graph patterns. The main
difference is between the two transformations is the handling
of their input: the BPEL2SAL transformation reads its entire
input, and performs complex transformation steps, while the
Reengineering case operates only on a small subset.

The transformation can be broken down into two phases:
the first phase creates every state, transition, trigger and
action, then the second phase links the states and transitions.

2) Test Cases: To evaluate the slicing of the Reengineer-
ing transformation, we used the input model defined with
the transformation in [[11]]. We evaluated 4 breakpoints: (1)
during transition creation, (2) after trigger creation, (3) after
action creation and (4) during linking.

3) Lessons Learned: As the various tasks of the trans-
formation are interdependent, we expect a large number of
variables present in the slices, as any previously variable or
model element may be reused.

presents the resulting slice sizes calculated from
the breakpoints. Based on these results we noticed that

« Slices use about one third of the elements from the
trace, and almost half of the variables. This suggests
many data dependencies between phases.

« However, Total model coverage is very low: as by the
specification the goal is to extract information from the
model, a large part of the input model is irrelevant and
is present neither in the slice nor the trace.

E. Summary

Our measurements show that our MT slicing approach is
able to provide small and understandable slices that encapsu-
lates both control and data (model) dependency information
simultaneously. In addition to that, by the analysis of the
measurements we concluded that

o In case of complex, imperative control structures, MT

slices are dominantly created from the dependency
between the statements of the transformation programs,
thus traditional imperative program slicing techniques
are applicable and provide appropriate results.

o In case of declarative transformation rules slices are

primarily created based on model dependencies.

In complex MTs declarative and imperative rules are often
combined, where our combined approach is the most useful.

V. RELATED WORK

Traditional program slicing techniques have been regu-
larly and exhaustively surveyed in the past in papers like
[21, [13]]. The current paper does not enhance the theory
of program slicing with new core algorithms, rather it
innovatively applies a combination of existing techniques
to solve a slicing problem in a new domain, in the field of
MT programs. Anyhow, the main difference with respect to
traditional program slicing is that a MT slice simultaneously
identifies program variables and model elements affecting a
specific location of interest of our MT program.

A. Slicing of Declarative Programs

In the context of program slicing, the closest related work
addresses the slicing of logic programs (as the declarative
pattern and rule language of VIATRA2 shares certain sim-
ilarities with logic programs). Forward slicing of Prolog
programs are discussed in [14] based on partial evaluation,
while the static and dynamic slicing of logic programs in
[15] uses a similar slicing algorithm as ours. Our work was
also influenced by [16] which augments the data flow anal-
ysis with control-flow dependences in order to identify the
source of a bug included in a logic program. This approach
was later extended in [17] to the slicing of constraint logic
programs (with fixed domains). Our conceptual extension
to existing slicing techniques for logic programs is the
incorporation of model slices into the slices.

Program slicing for the declarative language of the Alloy
Analyzer was proposed in [I8] as a novel optimization
strategy to improve the verification of Alloy specifications.

B. Model slicing

Model slicing [19] techniques have already been success-
fully applied in the context of MDD. Slicing was proposed
for model reduction purposes in [20]], [21] to make the
following automated verification phase more efficient.

In the context of UML models, Lano et. al. [22] exploits
both declarative elements (like pre- and postconditions of
methods) and imperative elements (state machines) when
constructing UML model slices. Here the authors use model
transformations for carrying out slicing of UML models.
The slicing of finite state machines in a UML context
was studied by Tratt [23], especially, to identify control
dependence. A similar study was also executed for extended
finite state machines in [24]]. A dynamic slicing technique for
UML architectural models is introduced in [25]] using model
dependence graphs to compute dynamic slices based on the
structural and behavioral (interactions only) UML models.

Metamodel pruning [26] can also be interpreted as a
specific slicing problem in the context of MDD where the
effective metamodel is aimed to be automatically derived,
which represents a specific view. Moreover, model slicing is
used in [27]] to modularize the UML metamodel into a set
of small metamodels for each UML diagram type.

Various model slicing techniques are successfully merged
by Blouin et al. [28] into a single, generative framework,
using different slice types for different models.

Still, none of the existing model slicing approaches in the
context of MDD address the slicing of MT programs, which
is the main contribution of our current work.

C. Model transformation debugging

Basic debugging support is provided in many model
transformation tools including ATL, GReAT, VIATRA2, FU-
JABA, Tefkat, and many more. The authors of [29] propose a
dynamic tainting technique for debugging failures of model

transformations, and propose automated techniques to repair
input model faults [30]. On the contrary, our assumption
is that the transformation itself is faulty, and not the input
model. Colored Petri nets are used for underlying formal
support for debugging transformations in [31f]. The debug-
ging of triple graph grammar transformations is discussed
in [32], which envisions the future use of slicing techniques
in the context of model transformations.

A forensic debugging approach of model transformations
introduced in [33]] by using the trace information of model
transformation executions in order to determine the intercon-
nections of source and target elements with transformation
logic. It is probably closest to our current work as it proposes
that MT slicing can be used for the selective re-execution
of (parts of) the MT in a controlled runtime environment
to gather knowledge about specific bugs, but no detailed
discussion is provided how MT slicing could be carried out.

VI. CONCLUSION

In the paper, we proposed a dynamic backward slicing
approach for model transformation programs. Compared to
slicing traditional programs, MT slices need to simultane-
ously include the program statements as well as the model
elements which affect the slicing criterion (which may also
include a model element in addition to a statement and
a variable). The calculation of MT slices relies upon an
execution trace, which is typically persisted by development
and transformation frameworks, thus our approach could be
easily adapted to other MT frameworks and languages. Our
measurements have also indicated that dynamic slices can
be efficiently computed for complex MT programs and large
source models using the proposed rich trace information.

A future research area is the building of a debugger for
MT programs that records traces during execution, and uses
the presented approach to step backward to the last relevant
executed statement for the selected criteria. We also plan to
adapt our approach to other MT environments by creating
trace records from the various language elements.

Additionally, in line with the overview of MT slicing
problems in [1] we plan to address dynamic forward slicing,
and static (forward and backward) slicing for the future.

ACKNOWLEDGMENT

This work was partially supported by the SecureChange
European project, (ICT-FET-231101) the CERTIMOT
project (ERC_HU-09-1-2010-0003), by the grant TAMOP
- 4.2.2.B-10/1-2010-0009 and Janos Bolyai Scholarship.

REFERENCES

[1] Z. Ujhelyi, A. Horvath, and D. Varr6, “Towards dynamic
backwards slicing of model transformations,” in Automated
Software Engineering, 26th IEEE/ACM Int. Conf. on, 2011.

[2] E. Tip, “A survey of program slicing techniques,” Journal of
Programming Languages 3(3), 1995.

(3]

(4]

(3]

(6]

(7]

(8]

(91

(10]

(1]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

G. Bergmann, A. Horvith, I. Ré4th, and D. Varré, “A bench-
mark evaluation of incremental pattern matching in graph
transformation,” in Proc. 4th Int. Conf. on Graph Transfor-
mations, 2008.

D. Varr6 and A. Balogh, “The model transformation language
of the VIATRA?2 framework,” Sci. Comput. Program., vol. 68,
no. 3, 2007.

G. Rozenberg, Ed., Handbook of Graph Grammars and
Computing by Graph Transformations: Foundations. World
Scientific, 1997.

E. Borger and R. Stirk, Abstract State Machines: A Method
for High-Level System Design and Analysis. Springer, 2003.

B. Korel and J. Laski, “Dynamic program slicing,” Informa-
tion Processing Letters, vol. 29, no. 3, 1988.

A. Zindorf, “Antworld benchmark specification, GraBaTs
2008,” 2008, available from http://is.tm.tue.nl/staft/pvgorp/
events/grabats2009/cases/grabats2008performancecase.pdf.

A. Horvith, G. Bergmann, I. R4th, and D. Varré, “Experimen-
tal assessment of combining pattern matching strategies with
VIATRAZ2,” Int. Journal on Software Tools for Technology
Transfer (STTT), vol. 12, 2010.

L. Gonczy, A. Hegediis, and D. Varré, “Methodologies for
Model-Driven Development and Deployment: an Overview,”
in Rigourous Software Engineering for Service-Oriented Sys-
tems. Springer, 2011.

T. Horn, “Program understanding: A reengineering case for
the transformation tool contest,” in TTC 2011: Fifth Trans-
Sformation Tool Contest, Ziirich, Switzerland. EPTCS, 2011.

M. Alessandrini and D. Dost, “SENSORIA Deliverable D8.3.a:
Finance case study: Requirements modelling and analysis of
selected scenarios,” S&N AG, Tech. Rep., 2007.

B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen, “A brief survey
of program slicing,” ACM SIGSOFT Software Engineering
Notes, vol. 30, no. 2, 2005.

M. Leuschel and G. Vidal, “Forward slicing by conjunctive
partial deduction and argument filtering,” in Programming
Languages and Systems. Springer, 2005, LNCS 3444.

W. Vasconcelos, “A flexible framework for dynamic and static
slicing of logic programs,” in Practical Aspects of Declarative
Languages. Springer, 1998, LNCS.

G. Szilagyi, L. Harmath, and T. Gyiméthy, “The debug slicing
of logic programs,” Acta Cybernetica, vol. 15, no. 2, 2001.

G. Szilagyi, T. Gyiméthy, and J. Matuszyniski, “Static and
dynamic slicing of constraint logic programs,” Automated
Software Engineering, vol. 9, 2002.

E. Uzuncaova and S. Khurshid, “Kato: A program slicing tool
for declarative specifications,” in 29th Int. Conf. on Software
Engineering. 1EEE, 2007.

H. Kagdi, J. I. Maletic, and A. Sutton, “Context-free slicing
of UML class models,” in 21st Int. Conf. on Software Main-
tenance ICSMO05. 1EEE, 2005.

(20]

(21]

[22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

I. Schaefer and A. Poetzsch-Heffter, “Slicing for model
reduction in adaptive embedded systems development,” in
Int. Workshop on Software engineering for adaptive and self-
managing systems. New York, USA: ACM, 2008.

A. Shaikh, R. Claris6, U. K. Wiil, and N. Memon,
“Verification-driven slicing of UML/OCL models,” in 25th
IEEE/ACM Int. Conf. on Automated Software Engineering.
ACM, 2010.

K. Lano and S. Kolahdouz-Rahimi, “Slicing of UML models
using model transformations,” in Model Driven Engineering
Languages and Systems. Springer, 2010, LNCS 6395.

K. Androutsopoulos, D. Clark, M. Harman, Z. Li, and
L. Tratt, “Control dependence for extended finite state ma-
chines,” in Fundamental Approaches to Software Engineering,
12th Int. Conf., FASE 2009. Springer, 2009, LNCS 5503.

B. Korel, I. Singh, L. Tahat, and B. Vaysburg, “Slicing of
state-based models,” Software Maintenance, IEEE Int. Conf.
on, 2003.

J. T. Lallchandani and R. Mall, “A dynamic slicing technique
for UML architectural models,” IEEE Transactions on Soft-
ware Engineering, vol. 37, no. 6, 2011.

S. Sen, N. Moha, B. Baudry, and J. Jézéquel, “Meta-model
pruning,” in Model Driven Engineering Languages and Sys-
tems. Springer, 2009.

J. H. Bae, K. Lee, and H. S. Chae, “Modularization of the
UML metamodel using model slicing,” in 3rd Int. Conf. on
Information Technology: New Generations. 1EEE, 2008.

A. Blouin, B. Combemale, B. Baudry, and O. Beaudoux,
“Modeling model slicers,” in Model Driven Engineering
Languages and Systems. Springer, 2011, LNCS 6981.

P. Dhoolia, S. Mani, V. S. Sinha, and S. Sinha, “Debugging
model-transformation failures using dynamic tainting,” in
24th European conference on Object-oriented programming.
Springer, 2010.

S. Mani, V. S. Sinha, P. Dhoolia, and S. Sinha, “Automated
support for repairing input-model faults,” in 25th IEEE/ACM
Int. Conf. on Automated Software Engineering. ACM, 2010.

J. Schoenboeck, G. Kappel, A. Kusel, W. Retschitzegger,
W. Schwinger, and M. Wimmer, “Catch me if you can
- debugging support for model transformations,” in Model
Driven Engineering Languages and Systems, 13th Int. Conf.
Springer, 2010, LNCS 6002.

M. Seifert and S. Katscher, “Debugging triple graph grammar-
based model transformations,” in Fujaba Days, 2008.

M. Hibberd, M. Lawley, and K. Raymond, “Forensic debug-
ging of model transformations,” in Model Driven Engineering

Languages and Systems, 10th Int. Conf. Springer, 2007,
LNCS 4735.

http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/cases/grabats2008performancecase.pdf
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/cases/grabats2008performancecase.pdf

