Generating Unit Isolation Environment
Using Symbolic Execution

Dévid Honfi and Zoltdn Micskei
Budapest University of Technology and Economics
Budapest, Hungary
Email: {honfi, micskeiz} @mit.bme.hu

Abstract—Research of source code-based test input generation
has recently reached a phase, where it can be transferred to
industrial practice. Symbolic execution is being one of the state-
of-the-art techniques, yet its usage on industrial-sized software
is often hindered by several factors, like the interaction with
environment. The solution of this problem can be supported
with isolating the interactions by using so-called test doubles
instead of the original objects. This time-consuming process
requires deep knowledge of the unit under test. The technique
presented in this paper is able to automatically generate the
isolation environment from the data collected during symbolic
execution. We also present our promising preliminary results
using a prototype implementation.

I. INTRODUCTION

Generating test inputs and test cases from source code
has been one of the main topics in software test research
since decades. Numerous techniques and algorithms have
been proposed to enhance the test generation processes by
analyzing only the source code itself, commonly called as
white-box test generation. Symbolic execution [1] is one of
the state-of-the-art techniques due to the promising results of
its fault detection ability. This technique represents possible
paths of the source code with logical formulas over symbolic
variables. The execution starts from an arbitrary entry point
and each statement is interpreted in parallel with gathering
the expressions over the symbolic variables. The solution of
these collected expressions provide input values that drive the
execution of a program along different paths.

In our previous research, we used Microsoft Pex [2] (cur-
rently known as IntelliTest) for test generation that is a state-
of-the-art white-box test generator tool for .NET. Pex uses
dynamic symbolic execution, which is an enhanced technique
that combines concrete with symbolic execution. The tool
generates input values for so-called Parameterized Unit Tests
(PUTs) [3] that are simple unit test methods with arbitrary
parameters. PUTs can be extended with assumptions and
assertions, thus can serve as a test specification. Pex generates
test cases from the combination of the generated inputs and
the corresponding PUTs.

A current research topic of symbolic execution is its in-
dustrial adoption. However, it is hindered by several factors
[4]-[7]. One of the main problems is that in the majority of
cases, the test cases generated by symbolic execution typically
achieve very low source code coverage. Our previous experi-
ences [8] also confirmed these challenges. We applied Pex in

testing of a model checker tool and a content management
system.

A solution for this problem could be isolating the external
dependencies of the unit under test. However, in large-scale
software that contains numerous components interacting with
each other, a plentiful of calls to the environment can be
identified. The identification and isolation of these calls is a
highly time-consuming task, especially for test engineers who
did not participate in the development of the unit.

In this paper, we present an approach and a prototype
tool that endeavors to support symbolic execution-based test
generation in complex, environment-dependent software by
automatically generating code for isolation purposes. Thus,
the research question of the paper is the following.

How can the isolation process be supported during symbolic
execution-based test generation?

II. BACKGROUND

Unit-level testing should be done in isolation, thus all the ex-
ternal dependencies of the unit should be removed or replaced.
A solution could be to replace the external dependency with a
replacement object, and call into that instead of the original.
This idea and the increasing importance of unit testing led
to a whole new area in software test engineering called fest
doubles.

Test doubles is the common name of static or dynamic
objects that can be used as a replacement of real objects during
test executions, in order to handle the problem of isolation in
unit testing. Many types of test doubles exist, however the
naming conventions can be different across publications. To
overcome this, Meszaros wrote a summarizing book [9], that
assesses the notions and patterns around unit testing, including
test doubles too. We also applied the notions of this book
extended with a Microsoft-specific type, called shims. Shims
are powerful test doubles where the call is made to the original
object, however the call is detoured during runtime to a user-
defined method. This allows easy isolation of calls that invoke
3rd party libraries, legacy code or other resources where source
is not available.

Consider the following example scenario introducing the
isolation problem. Let UUT be the unit under test, and let ED be
the external dependency. The body of method M1 (int) :int
contains a branching where the decision depends on the return

value of method M2 (int) : int from ED. Unit testing class
UUT shall include the isolation of the mentioned dependency,
moreover this shall be applied during symbolic execution-
based test generation too. If method M2 is not accessible during
testing due to some reason (e.g., not yet implemented, accesses
external resources) symbolic execution would not reach the
statements found in the two branches.

class UUT
{
ED ed = new ED();
int Ml (int a)
{
if (ED.M2 (a)) return 1;
else return -1;

If we assume that parameter a will not be larger than 10
and only -1 or 1 can be returned, then creating a PUT for
method M1 would look like the following.
void MlTest (int a)

{
Assume.IsTrue (a <= 10);
UUT uut = new UUT();

int result = uut.Ml(a);

Assert.IsTrue (result == 1 || result == -1);

PUTs are used for compact representation of multiple test
cases, where different input values trigger different behavior
of the unit under test. It can be seen however that the PUT
misses the isolation in this example. For the solution, we use
the isolation syntax defined by Microsoft Fakes, a powerful
isolation framework for .NET that uses shims, thus can isolate
wide-range of external invocations. Extending the PUT with
the following snippet will isolate the external call of M2 for
every instance of ED and return 1 or -1 depending on the value
of the passed parameter, thus simulating a custom behavior.

ED.AllInstances.M2 = (ED instance,
{ return param > 5 2 1 : -1; };

int param) =>

III. OVERVIEW OF THE APPROACH

In order to support symbolic execution-based test genera-
tion, our approach is to generate the isolation environment
automatically. This novel technique uses the collected data
from the symbolic execution process itself.

Fig. 1. The approach of automated isolation

Component
under test
1. Detection 2. Analysis 3. Generation
External pr— =
dependency A B.Foo(C ¢, int i) ‘ ‘ B.Foo := (c,i) => {..} ‘

The technique builds on top of parameterized unit tests in
order to have test doubles, which can give back values that
are relevant to the component under test. A quick overview of
the approach is presented in Figure 1.

The automated generation of isolation environment relies on
an analysis process, which is conducted when an invocation
to a predefined external dependency is reached during the
symbolic execution. Then, based on the results of the analysis,
the generation step creates double objects that are able to
replace the original ones.

A. Detection

Detection is the first phase of the isolation process. Firstly,
the test engineer defines the unit or namespace under test with
giving its fully qualified name (FQN). During the symbolic
execution, this FQN is used for detecting an external call
by analyzing the reached stack frames. When an external
invocation is detected, all the information regarding this call
is collected and stored for later usage by the analysis step.

B. Analysis

The analysis step plays the main role, since the decisions
are made here that define how double objects are generated.
The analysis can be divided into three substeps, which are the
analysis of return value, the analysis of parameters and the
assessment of the results gathered from the previous steps.

Fig. 2. Overview of return value analysis example

@ T ED

+ »{ PUT(int)}—u M1(int):intH M2(int) {int

@ Y

I Type detection and persistence

R

1) Return value analysis: In the first step, the return value
of the invoked external method is analyzed, which is a crucial
information of the double object. Figure 2 shows the overview
of the code example mentioned in Section II, where SE
denotes the symbolic execution process and A stands for our
analysis technique. The return value can be used in the unit
under test as a branch condition or other statements, thus
execution paths exists, which rely on this value. In order to
cover these paths, the correct value must be selected. If a
path relies on the variable that obtained its value from the
external call, the symbolic execution interprets it as a term
in the path condition. Problems occur, when the analysis can
not provide proper inputs through this dependency (e.g., not
yet implemented, gets value from database or file system).
This can be alleviated if the solver of symbolic execution can
give concrete values for the variable that represents the return
value. By this way, arbitrary values can be assigned to this
variable and the coverage criteria (e.g., an execution path) can
be satisfied that depends on the variable. The arbitrary values
can be passed to the concrete execution through the parameters
of the unit test. In summary, our idea provides a solution with
the analysis of the return value, where two actions are done.

o The parameters of the PUT is extended with the return

type of the external dependency.

o A test double is created in order to replace the behavior

of the original class. In the body of the double, the new

PUT parameter is returned, which gives the ability for
symbolic execution to handle it as a free variable that
can have arbitrary values.

Fig. 3. Overview of parameter analysis example

@ uT ED ED2
+ P‘ PUT(int) i—l-‘ M1(int):int i-—l M2 l@ rint
® i

1.) Type detection and persistence —1
2.) Field or property exploration and persistence

2) Parameter analysis: The analysis of parameters is the
second part of the analysis, however not all types of parameters
are in focus. Method parameters can be primitive or complex
types. In the two popular managed environments (.NET, Java)
every complex type is handled as reference and the parameters
are passed by value by default. Thus, when using reference
type parameters, the reference itself is passed to the method as
value, which means it is copied and refers to the same object.
This enables the called method to modify the pointed object,
which modifications can be also seen in the caller. However,
the original reference cannot be modified. The reference type
parameters lead to a problem in isolation scenarios, when the
called method is an external dependency, because the passed
object can be modified inside the dependency and therefore
it can affect the coverage in the unit under test. Our idea
to overcome this is similar as in the case of return values,
but the scenario is more complex. The first step is the same:
extending the parameters of the PUT with the complex type
parameter under analysis and handle it in the created double
object. However, due to the complex type, there are numerous
possibilities to modify the state of the object outside the
unit. The idea is to explore the publicly available fields and
properties of the object and use them to alter its state. By
this way, the generated results of our approach can simulate
the actions made inside the external dependency that can be
required to increase the coverage inside the unit under test.
Figure 3 presents this process on the extension of the example
found in Section II. The scenario contains a new ED2 external
dependency as a complex type parameter.

3) Assessment: During the last step of the analysis, all the
collected information about the return values and parameters
are filtered for duplications, then stored, which is used for dou-
ble generation. Every method should contain the information
that describe what to emit, when they are in the focus of code
generation, which also includes the doubles of complex type
parameters.

C. Generation

The generation is the last step of processing an external
dependency, which can be also divided into substeps. Firstly,
the newly created parameters of the parameterized unit tests is
emitted and appended to the original one. Then, the double of
the method is assembled and emitted into the body of the PUT.
This emission includes the name of the double method, which

can be specific to isolation frameworks and also includes the
inner body that can include setting of state modification for
parameters and verification too. Finally, the test doubles of
the complex type parameters are generated that are property
or field setter methods (if the type of the parameter is located
outside the unit under test).

IV. PRELIMINARY EVALUATION

We implemented the presented technique as an extension to
Microsoft Pex and Fakes. Fakes seamlessly collaborates with
Pex and is powerful enough to use for our approach. Fakes
is capable of creating stubs and shims for a very wide-range
of method calls (regardless its place and type) found in any
.NET software.

The implementation had many challenges including the run-
time reflection of types and methods. We used this technique
to obtain detailed information on each external call that is
required for the return value and the parameter analysis.

Although the current prototype implementation does not
support every scenario that can be found in arbitrary .NET
code, it does work sufficiently for preliminary evaluation.
We implemented example scenarios (intentionally similar to
real-world source code snippets) to present the potential in
our approach. The coverage results with and without our
technique is presented in Fig 4. This figures shows the
achieved statement coverage with and without the generated
isolation environment after one symbolic execution on the five
different method under test. The names starting with S denotes
simple scenarios where symbolic execution can benefit from
the isolation. The two methods denoted with RW represent
source code gathered from open-source software ([10] and the
CMS system mentioned in Section II. Note that we repeated
the evaluation three times on each method to produce valid
results, thus the presented figure shows the average of three
executions.

Fig. 4. The results of the preliminary evaluation
Non-isolated mIsolated

100%

80%

60%

40%

20%

0%
S01 S02

so3 RWO1 RW02
Method name

The results show that in each case, running Pex with

the generated isolation environment achieves higher statement

coverage than running the tool without any unit isolation. This

may emphasize that this technique has potential in the area

Statement coverage

of supporting the usage of symbolic execution in large-scale
industrial software.

V. RELATED WORK

Our idea originally derives from a paper written by Tillmann
et al. [11], where the idea of mock object generation is
described. They also created a case study for file-system
dependent software [12], which showed promising results.
Their technique is able to automatically create mock objects
with behavior and ability to return symbolic variables, which is
used during the symbolic execution to increase the coverage of
the unit under test. However, their solution needs the external
interfaces explicitly added to the parameterized unit tests,
moreover they did not consider reference type parameters that
can affect the coverage. Thus, our solution covers a wider
area of scenarios and needs rather less user interaction for
the automated generation (our approach only requires the
namespace of the unit under test).

The idea of Galler et al. is to generate mock objects
from predefined design by contract specifications [13]. These
contracts describe preconditions of a method, thus the derived
mocks are in respect of them, which makes mocks able
to avoid false behavior. However, their approach does not
relate to symbolic execution, and it may also introduce work
overhead to create contracts. A similar approach is introduced
in parallel with a symbolic execution engine to Java by Islam
et al. [14]. The difference is that they build on interfaces as
specifications instead of contracts.

An other approach of mock generation was presented by
Pasternak et al. [15]. They created a tool called GenUTest,
which is able to generate unit tests and so-called mock aspects
from previously monitored concrete executions. However, the
effectiveness of the approach largely relies on the complete-
ness of previous concrete executions, while our approach relies
on symbolic execution.

A very interesting approach is presented by Godefroid in
[16]. He introduced the idea of micro execution, where parts
of an arbitrary x86 program can be executed independently,
while the memory operations are monitored and caught before
they occur. The values to be returned for these operations are
generated by other tools or randomly. This can be thought
as a form of unit isolation in the lowest level as possible.
An approach like this may create several new challenges, but
micro execution could be able to provide solutions to some of
them according to the preliminary results.

VI. CONCLUSION AND FUTURE WORK

One of the discovered challenges in real-world scenarios
was the unit isolation in testing a software component, be-
cause these applications have several external dependencies
(e.g., databases, external services). Isolating the dependencies
requires large amount of time, which can be reduced by
automation.

The described isolation technique in this paper could sup-
port the solution of this problem by automatically generat-
ing isolation environment. The main idea is to detect the

dependencies during the symbolic execution and to generate
the isolation environment for the unit under test from the
data retrieved from symbolic execution. We also presented
our preliminary evaluation of a prototype implementation that
showed promising results.

The approach presented in this paper may be continued in
the following directions.

o Expanding the implementation to cover all the corner

cases found in real-world software.

o Experiments and measurements for the presented tech-
nique to confirm its usability in different scenarios.
Combination of automated isolation and compositional
symbolic execution [17] that leads to a new level of
automated test input generation, where the work of test
engineers can be greatly supported.

REFERENCES

[1] J. C. King, “Symbolic Execution and Program Testing,” Commun. ACM,
vol. 19, no. 7, pp. 385-394, 1976.

[2] N. Tillmann and J. de Halleux, “Pex—White Box Test Generation for
NET,” in TAP, ser. LNCS, B. Beckert and R. Hihnle, Eds. Springer,
2008, vol. 4966, pp. 134-153.

[3] J. de Halleux and N. Tillmann, “Parameterized Unit Testing with Pex,”
in TAP, ser. LNCS, B. Beckert and R. Hihnle, Eds. Springer, 2008,
vol. 4966, pp. 171-181.

[4] X. Qu and B. Robinson, “A Case Study of Concolic Testing Tools and
their Limitations,” in Empirical Software Engineering and Measurement
(ESEM), 2011 Int. Symposium on, Sept 2011, pp. 117-126.

[5] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg, “Does
automated white-box test generation really help software testers?” in
Proc. of the 2013 Int. Symposium on Software Testing and Analysis, ser.
ISSTA 2013. ACM, 2013, pp. 291-301.

[6] P. Braione, G. Denaro, A. Mattavelli, M. Vivanti, and A. Muhammad,
“Software testing with code-based test generators: data and lessons
learned from a case study with an industrial software component,”
Software Quality Journal, vol. 22, no. 2, pp. 1-23, 2013.

[7]1 N. Tillmann, J. de Halleux, and T. Xie, “Transferring an Automated
Test Generation Tool to Practice: From Pex to Fakes and Code Digger,”
in Proc. of the 29th ACM/IEEE Int. Conf. on Automated Software
Engineering, ser. ASE *14. ACM, 2014, pp. 385-396.

[8] D. Honfi, Z. Micskei, and A. Voros, “Support and Analysis of Symbolic
Execution-based Test Generation, TDK thesis, BME,” 2014.

[91 G. Meszaros, XUnit Test Patterns: Refactoring Test Code. Upper Saddle

River, NJ, USA: Prentice Hall PTR, 2006.

Telerik, “JustDecompile Decompilation Engine,” 2015.

Available: https://github.com/telerik/justdecompileengine

N. Tillmann and W. Schulte, “Mock-Object Generation with Behavior,”

Proceedings - 21st IEEE/ACM Int. Conf. on Automated Software Engi-

neering, ASE 2006, pp. 365-366, 2006.

M. R. Marri, T. Xie, N. Tillmann, J. De Halleux, and W. Schulte, “An

Empirical Study of Testing File-System-Dependent Software with Mock

Objects,” Proc. of the 2009 ICSE Workshop on Automation of Software

Test, AST 2009, pp. 149-153, 20009.

S. J. Galler, A. Maller, and F. Wotawa, “Automatically Extracting Mock

Object Behavior from Design by Contract Specification for Test Data

Generation,” in Proceedings of the 5th Workshop on Automation of

Software Test. ACM, 2010, pp. 43-50.

M. Islam and C. Csallner, “Dsc+Mock: A Test Case + Mock Class

Generator in Support of Coding against Interfaces,” in Proc. of the 8th

International Workshop on Dynamic Analysis. ACM, 2010, pp. 26-31.

B. Pasternak, S. Tyszberowicz, and A. Yehudai, “GenUTest: a Unit Test

and Mock Aspect Generation Tool,” International Journal on STTT,

vol. 11, no. 4, pp. 273-290, 2009.

P. Godefroid, “Micro Execution,” in Proc. of the 36th Int. Conf. on

Software Engineering. ACM, 2014, pp. 539-549.

S. Anand, P. Godefroid, and N. Tillmann, “Demand-Driven Composi-

tional Symbolic Execution,” in TACAS, ser. LNCS. Springer Berlin

Heidelberg, 2008, vol. 4963, pp. 367-381.

[10] [Online].

(11]

(12]

[13]

[14]

[15]

[16]

(17]

